blob: b2f9b6cad900d01fdc016610254955b0425f319b [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <stdarg.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "common/tools_common.h"
#if CONFIG_AV1_ENCODER
#include "aom/aomcx.h"
#endif
#if CONFIG_AV1_DECODER
#include "aom/aomdx.h"
#endif
#if defined(_WIN32)
#include <io.h>
#include <fcntl.h>
#endif
#define LOG_ERROR(label) \
do { \
const char *l = label; \
va_list ap; \
va_start(ap, fmt); \
if (l) fprintf(stderr, "%s: ", l); \
vfprintf(stderr, fmt, ap); \
fprintf(stderr, "\n"); \
va_end(ap); \
} while (0)
FILE *set_binary_mode(FILE *stream) {
(void)stream;
#if defined(_WIN32)
_setmode(_fileno(stream), _O_BINARY);
#endif
return stream;
}
void die(const char *fmt, ...) {
LOG_ERROR(NULL);
usage_exit();
}
void fatal(const char *fmt, ...) {
LOG_ERROR("Fatal");
exit(EXIT_FAILURE);
}
void aom_tools_warn(const char *fmt, ...) { LOG_ERROR("Warning"); }
void die_codec(aom_codec_ctx_t *ctx, const char *s) {
const char *detail = aom_codec_error_detail(ctx);
fprintf(stderr, "%s: %s\n", s, aom_codec_error(ctx));
if (detail) fprintf(stderr, " %s\n", detail);
exit(EXIT_FAILURE);
}
const char *image_format_to_string(aom_img_fmt_t fmt) {
switch (fmt) {
case AOM_IMG_FMT_I420: return "I420";
case AOM_IMG_FMT_I422: return "I422";
case AOM_IMG_FMT_I444: return "I444";
case AOM_IMG_FMT_YV12: return "YV12";
case AOM_IMG_FMT_NV12: return "NV12";
case AOM_IMG_FMT_YV1216: return "YV1216";
case AOM_IMG_FMT_I42016: return "I42016";
case AOM_IMG_FMT_I42216: return "I42216";
case AOM_IMG_FMT_I44416: return "I44416";
default: return "Other";
}
}
int read_yuv_frame(struct AvxInputContext *input_ctx, aom_image_t *yuv_frame) {
FILE *f = input_ctx->file;
struct FileTypeDetectionBuffer *detect = &input_ctx->detect;
int plane = 0;
int shortread = 0;
const int bytespp = (yuv_frame->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1;
for (plane = 0; plane < 3; ++plane) {
uint8_t *ptr;
int w = aom_img_plane_width(yuv_frame, plane);
const int h = aom_img_plane_height(yuv_frame, plane);
int r;
// Assuming that for nv12 we read all chroma data at once
if (yuv_frame->fmt == AOM_IMG_FMT_NV12 && plane > 1) break;
if (yuv_frame->fmt == AOM_IMG_FMT_NV12 && plane == 1) w *= 2;
/* Determine the correct plane based on the image format. The for-loop
* always counts in Y,U,V order, but this may not match the order of
* the data on disk.
*/
switch (plane) {
case 1:
ptr =
yuv_frame->planes[yuv_frame->fmt == AOM_IMG_FMT_YV12 ? AOM_PLANE_V
: AOM_PLANE_U];
break;
case 2:
ptr =
yuv_frame->planes[yuv_frame->fmt == AOM_IMG_FMT_YV12 ? AOM_PLANE_U
: AOM_PLANE_V];
break;
default: ptr = yuv_frame->planes[plane];
}
for (r = 0; r < h; ++r) {
size_t needed = w * bytespp;
size_t buf_position = 0;
const size_t left = detect->buf_read - detect->position;
if (left > 0) {
const size_t more = (left < needed) ? left : needed;
memcpy(ptr, detect->buf + detect->position, more);
buf_position = more;
needed -= more;
detect->position += more;
}
if (needed > 0) {
shortread |= (fread(ptr + buf_position, 1, needed, f) < needed);
}
ptr += yuv_frame->stride[plane];
}
}
return shortread;
}
struct CodecInfo {
// Pointer to a function of zero arguments that returns an aom_codec_iface_t.
aom_codec_iface_t *(*interface)(void);
const char *short_name;
uint32_t fourcc;
};
#if CONFIG_AV1_ENCODER
static const struct CodecInfo aom_encoders[] = {
{ &aom_codec_av1_cx, "av1", AV1_FOURCC },
};
int get_aom_encoder_count(void) {
return sizeof(aom_encoders) / sizeof(aom_encoders[0]);
}
aom_codec_iface_t *get_aom_encoder_by_index(int i) {
assert(i >= 0 && i < get_aom_encoder_count());
return aom_encoders[i].interface();
}
aom_codec_iface_t *get_aom_encoder_by_short_name(const char *name) {
for (int i = 0; i < get_aom_encoder_count(); ++i) {
const struct CodecInfo *info = &aom_encoders[i];
if (strcmp(info->short_name, name) == 0) return info->interface();
}
return NULL;
}
uint32_t get_fourcc_by_aom_encoder(aom_codec_iface_t *iface) {
for (int i = 0; i < get_aom_encoder_count(); ++i) {
const struct CodecInfo *info = &aom_encoders[i];
if (info->interface() == iface) {
return info->fourcc;
}
}
return 0;
}
const char *get_short_name_by_aom_encoder(aom_codec_iface_t *iface) {
for (int i = 0; i < get_aom_encoder_count(); ++i) {
const struct CodecInfo *info = &aom_encoders[i];
if (info->interface() == iface) {
return info->short_name;
}
}
return NULL;
}
#endif // CONFIG_AV1_ENCODER
#if CONFIG_AV1_DECODER
static const struct CodecInfo aom_decoders[] = {
{ &aom_codec_av1_dx, "av1", AV1_FOURCC },
};
int get_aom_decoder_count(void) {
return sizeof(aom_decoders) / sizeof(aom_decoders[0]);
}
aom_codec_iface_t *get_aom_decoder_by_index(int i) {
assert(i >= 0 && i < get_aom_decoder_count());
return aom_decoders[i].interface();
}
aom_codec_iface_t *get_aom_decoder_by_short_name(const char *name) {
for (int i = 0; i < get_aom_decoder_count(); ++i) {
const struct CodecInfo *info = &aom_decoders[i];
if (strcmp(info->short_name, name) == 0) return info->interface();
}
return NULL;
}
aom_codec_iface_t *get_aom_decoder_by_fourcc(uint32_t fourcc) {
for (int i = 0; i < get_aom_decoder_count(); ++i) {
const struct CodecInfo *info = &aom_decoders[i];
if (info->fourcc == fourcc) return info->interface();
}
return NULL;
}
const char *get_short_name_by_aom_decoder(aom_codec_iface_t *iface) {
for (int i = 0; i < get_aom_decoder_count(); ++i) {
const struct CodecInfo *info = &aom_decoders[i];
if (info->interface() == iface) {
return info->short_name;
}
}
return NULL;
}
uint32_t get_fourcc_by_aom_decoder(aom_codec_iface_t *iface) {
for (int i = 0; i < get_aom_decoder_count(); ++i) {
const struct CodecInfo *info = &aom_decoders[i];
if (info->interface() == iface) {
return info->fourcc;
}
}
return 0;
}
#endif // CONFIG_AV1_DECODER
void aom_img_write(const aom_image_t *img, FILE *file) {
int plane;
const int bytespp = (img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1;
for (plane = 0; plane < 3; ++plane) {
const unsigned char *buf = img->planes[plane];
const int stride = img->stride[plane];
int w = aom_img_plane_width(img, plane);
const int h = aom_img_plane_height(img, plane);
int y;
// Assuming that for nv12 we write all chroma data at once
if (img->fmt == AOM_IMG_FMT_NV12 && plane > 1) break;
if (img->fmt == AOM_IMG_FMT_NV12 && plane == 1) w *= 2;
for (y = 0; y < h; ++y) {
fwrite(buf, bytespp, w, file);
buf += stride;
}
}
}
bool aom_img_read(aom_image_t *img, FILE *file) {
int plane;
const int bytespp = (img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1;
for (plane = 0; plane < 3; ++plane) {
unsigned char *buf = img->planes[plane];
const int stride = img->stride[plane];
int w = aom_img_plane_width(img, plane);
const int h = aom_img_plane_height(img, plane);
int y;
// Assuming that for nv12 we read all chroma data at once
if (img->fmt == AOM_IMG_FMT_NV12 && plane > 1) break;
if (img->fmt == AOM_IMG_FMT_NV12 && plane == 1) w *= 2;
for (y = 0; y < h; ++y) {
if (fread(buf, bytespp, w, file) != (size_t)w) return false;
buf += stride;
}
}
return true;
}
// TODO(dkovalev) change sse_to_psnr signature: double -> int64_t
double sse_to_psnr(double samples, double peak, double sse) {
static const double kMaxPSNR = 100.0;
if (sse > 0.0) {
const double psnr = 10.0 * log10(samples * peak * peak / sse);
return psnr > kMaxPSNR ? kMaxPSNR : psnr;
} else {
return kMaxPSNR;
}
}
// TODO(debargha): Consolidate the functions below into a separate file.
static void highbd_img_upshift(aom_image_t *dst, const aom_image_t *src,
int input_shift) {
// Note the offset is 1 less than half.
const int offset = input_shift > 0 ? (1 << (input_shift - 1)) - 1 : 0;
int plane;
if (dst->d_w != src->d_w || dst->d_h != src->d_h ||
dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift || dst->fmt != src->fmt ||
input_shift < 0) {
fatal("Unsupported image conversion");
}
switch (src->fmt) {
case AOM_IMG_FMT_I42016:
case AOM_IMG_FMT_I42216:
case AOM_IMG_FMT_I44416: break;
default: fatal("Unsupported image conversion");
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
const uint16_t *p_src =
(const uint16_t *)(src->planes[plane] + y * src->stride[plane]);
uint16_t *p_dst =
(uint16_t *)(dst->planes[plane] + y * dst->stride[plane]);
for (x = 0; x < w; x++) *p_dst++ = (*p_src++ << input_shift) + offset;
}
}
}
static void lowbd_img_upshift(aom_image_t *dst, const aom_image_t *src,
int input_shift) {
// Note the offset is 1 less than half.
const int offset = input_shift > 0 ? (1 << (input_shift - 1)) - 1 : 0;
int plane;
if (dst->d_w != src->d_w || dst->d_h != src->d_h ||
dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift ||
dst->fmt != src->fmt + AOM_IMG_FMT_HIGHBITDEPTH || input_shift < 0) {
fatal("Unsupported image conversion");
}
switch (src->fmt) {
case AOM_IMG_FMT_YV12:
case AOM_IMG_FMT_I420:
case AOM_IMG_FMT_I422:
case AOM_IMG_FMT_I444: break;
default: fatal("Unsupported image conversion");
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
const uint8_t *p_src = src->planes[plane] + y * src->stride[plane];
uint16_t *p_dst =
(uint16_t *)(dst->planes[plane] + y * dst->stride[plane]);
for (x = 0; x < w; x++) {
*p_dst++ = (*p_src++ << input_shift) + offset;
}
}
}
}
void aom_img_upshift(aom_image_t *dst, const aom_image_t *src,
int input_shift) {
if (src->fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
highbd_img_upshift(dst, src, input_shift);
} else {
lowbd_img_upshift(dst, src, input_shift);
}
}
void aom_img_truncate_16_to_8(aom_image_t *dst, const aom_image_t *src) {
int plane;
if (dst->fmt + AOM_IMG_FMT_HIGHBITDEPTH != src->fmt || dst->d_w != src->d_w ||
dst->d_h != src->d_h || dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift) {
fatal("Unsupported image conversion");
}
switch (dst->fmt) {
case AOM_IMG_FMT_I420:
case AOM_IMG_FMT_I422:
case AOM_IMG_FMT_I444: break;
default: fatal("Unsupported image conversion");
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
const uint16_t *p_src =
(const uint16_t *)(src->planes[plane] + y * src->stride[plane]);
uint8_t *p_dst = dst->planes[plane] + y * dst->stride[plane];
for (x = 0; x < w; x++) {
*p_dst++ = (uint8_t)(*p_src++);
}
}
}
}
static void highbd_img_downshift(aom_image_t *dst, const aom_image_t *src,
int down_shift) {
int plane;
if (dst->d_w != src->d_w || dst->d_h != src->d_h ||
dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift || dst->fmt != src->fmt ||
down_shift < 0) {
fatal("Unsupported image conversion");
}
switch (src->fmt) {
case AOM_IMG_FMT_I42016:
case AOM_IMG_FMT_I42216:
case AOM_IMG_FMT_I44416: break;
default: fatal("Unsupported image conversion");
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
const uint16_t *p_src =
(const uint16_t *)(src->planes[plane] + y * src->stride[plane]);
uint16_t *p_dst =
(uint16_t *)(dst->planes[plane] + y * dst->stride[plane]);
for (x = 0; x < w; x++) *p_dst++ = *p_src++ >> down_shift;
}
}
}
static void lowbd_img_downshift(aom_image_t *dst, const aom_image_t *src,
int down_shift) {
int plane;
if (dst->d_w != src->d_w || dst->d_h != src->d_h ||
dst->x_chroma_shift != src->x_chroma_shift ||
dst->y_chroma_shift != src->y_chroma_shift ||
src->fmt != dst->fmt + AOM_IMG_FMT_HIGHBITDEPTH || down_shift < 0) {
fatal("Unsupported image conversion");
}
switch (dst->fmt) {
case AOM_IMG_FMT_I420:
case AOM_IMG_FMT_I422:
case AOM_IMG_FMT_I444: break;
default: fatal("Unsupported image conversion");
}
for (plane = 0; plane < 3; plane++) {
int w = src->d_w;
int h = src->d_h;
int x, y;
if (plane) {
w = (w + src->x_chroma_shift) >> src->x_chroma_shift;
h = (h + src->y_chroma_shift) >> src->y_chroma_shift;
}
for (y = 0; y < h; y++) {
const uint16_t *p_src =
(const uint16_t *)(src->planes[plane] + y * src->stride[plane]);
uint8_t *p_dst = dst->planes[plane] + y * dst->stride[plane];
for (x = 0; x < w; x++) {
*p_dst++ = *p_src++ >> down_shift;
}
}
}
}
void aom_img_downshift(aom_image_t *dst, const aom_image_t *src,
int down_shift) {
if (dst->fmt & AOM_IMG_FMT_HIGHBITDEPTH) {
highbd_img_downshift(dst, src, down_shift);
} else {
lowbd_img_downshift(dst, src, down_shift);
}
}
static int img_shifted_realloc_required(const aom_image_t *img,
const aom_image_t *shifted,
aom_img_fmt_t required_fmt) {
return img->d_w != shifted->d_w || img->d_h != shifted->d_h ||
required_fmt != shifted->fmt;
}
bool aom_shift_img(unsigned int output_bit_depth, aom_image_t **img_ptr,
aom_image_t **img_shifted_ptr) {
aom_image_t *img = *img_ptr;
aom_image_t *img_shifted = *img_shifted_ptr;
const aom_img_fmt_t shifted_fmt = output_bit_depth == 8
? img->fmt & ~AOM_IMG_FMT_HIGHBITDEPTH
: img->fmt | AOM_IMG_FMT_HIGHBITDEPTH;
if (shifted_fmt != img->fmt || output_bit_depth != img->bit_depth) {
if (img_shifted &&
img_shifted_realloc_required(img, img_shifted, shifted_fmt)) {
aom_img_free(img_shifted);
img_shifted = NULL;
}
if (img_shifted) {
img_shifted->monochrome = img->monochrome;
}
if (!img_shifted) {
img_shifted = aom_img_alloc(NULL, shifted_fmt, img->d_w, img->d_h, 16);
if (!img_shifted) {
*img_shifted_ptr = NULL;
return false;
}
img_shifted->bit_depth = output_bit_depth;
img_shifted->monochrome = img->monochrome;
img_shifted->csp = img->csp;
}
if (output_bit_depth > img->bit_depth) {
aom_img_upshift(img_shifted, img, output_bit_depth - img->bit_depth);
} else {
aom_img_downshift(img_shifted, img, img->bit_depth - output_bit_depth);
}
*img_shifted_ptr = img_shifted;
*img_ptr = img_shifted;
}
return true;
}
// Related to I420, NV12 format has one luma "luminance" plane Y and one plane
// with U and V values interleaved.
void aom_img_write_nv12(const aom_image_t *img, FILE *file) {
// Y plane
const unsigned char *buf = img->planes[0];
int stride = img->stride[0];
int w = aom_img_plane_width(img, 0) *
((img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1);
int h = aom_img_plane_height(img, 0);
int x, y;
for (y = 0; y < h; ++y) {
fwrite(buf, 1, w, file);
buf += stride;
}
// Interleaved U and V plane
const unsigned char *ubuf = img->planes[1];
const unsigned char *vbuf = img->planes[2];
const size_t size = (img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1;
stride = img->stride[1];
w = aom_img_plane_width(img, 1);
h = aom_img_plane_height(img, 1);
for (y = 0; y < h; ++y) {
for (x = 0; x < w; ++x) {
fwrite(ubuf, size, 1, file);
fwrite(vbuf, size, 1, file);
ubuf += size;
vbuf += size;
}
ubuf += (stride - w * size);
vbuf += (stride - w * size);
}
}
size_t read_from_input(struct AvxInputContext *input_ctx, size_t n,
unsigned char *buf) {
const size_t buffered_bytes =
input_ctx->detect.buf_read - input_ctx->detect.position;
size_t read_n;
if (buffered_bytes == 0) {
read_n = fread(buf, 1, n, input_ctx->file);
} else if (n <= buffered_bytes) {
memcpy(buf, input_ctx->detect.buf + input_ctx->detect.position, n);
input_ctx->detect.position += n;
read_n = n;
} else {
memcpy(buf, input_ctx->detect.buf + input_ctx->detect.position,
buffered_bytes);
input_ctx->detect.position += buffered_bytes;
read_n = buffered_bytes;
read_n +=
fread(buf + buffered_bytes, 1, n - buffered_bytes, input_ctx->file);
}
return read_n;
}
size_t input_to_detect_buf(struct AvxInputContext *input_ctx, size_t n) {
if (n + input_ctx->detect.position > DETECT_BUF_SZ) {
die("Failed to store in the detect buffer, maximum size exceeded.");
}
const size_t buffered_bytes =
input_ctx->detect.buf_read - input_ctx->detect.position;
size_t read_n;
if (buffered_bytes == 0) {
read_n = fread(input_ctx->detect.buf + input_ctx->detect.buf_read, 1, n,
input_ctx->file);
input_ctx->detect.buf_read += read_n;
} else if (n <= buffered_bytes) {
// In this case, don't need to do anything as the data is already in
// the detect buffer
read_n = n;
} else {
read_n = fread(input_ctx->detect.buf + input_ctx->detect.buf_read, 1,
n - buffered_bytes, input_ctx->file);
input_ctx->detect.buf_read += read_n;
read_n += buffered_bytes;
}
return read_n;
}
// Read from detect buffer to a buffer. If not enough, read from input and also
// buffer them first.
size_t buffer_input(struct AvxInputContext *input_ctx, size_t n,
unsigned char *buf, bool buffered) {
if (!buffered) {
return read_from_input(input_ctx, n, buf);
}
const size_t buf_n = input_to_detect_buf(input_ctx, n);
if (buf_n < n) {
return buf_n;
}
return read_from_input(input_ctx, n, buf);
}
void rewind_detect(struct AvxInputContext *input_ctx) {
input_ctx->detect.position = 0;
}
bool input_eof(struct AvxInputContext *input_ctx) {
return feof(input_ctx->file) &&
input_ctx->detect.position == input_ctx->detect.buf_read;
}