| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| #include <stdbool.h> |
| |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/blend.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| |
| #include "av1/common/cfl.h" |
| #include "av1/common/common.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/obmc.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/scan.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/txb_common.h" |
| #include "av1/common/warped_motion.h" |
| |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/cost.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/hybrid_fwd_txfm.h" |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/ml.h" |
| #include "av1/encoder/palette.h" |
| #include "av1/encoder/pustats.h" |
| #include "av1/encoder/random.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/tokenize.h" |
| #include "av1/encoder/tx_prune_model_weights.h" |
| |
| // Set this macro as 1 to collect data about tx size selection. |
| #define COLLECT_TX_SIZE_DATA 0 |
| |
| #if COLLECT_TX_SIZE_DATA |
| static const char av1_tx_size_data_output_file[] = "tx_size_data.txt"; |
| #endif |
| |
| typedef void (*model_rd_for_sb_type)( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, |
| int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); |
| typedef void (*model_rd_from_sse_type)(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| BLOCK_SIZE plane_bsize, int plane, |
| int64_t sse, int num_samples, int *rate, |
| int64_t *dist); |
| |
| static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, |
| int plane_to, int mi_row, int mi_col, |
| int *out_rate_sum, int64_t *out_dist_sum, |
| int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, |
| int64_t *plane_dist); |
| static void model_rd_for_sb_with_curvfit( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, |
| int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); |
| static void model_rd_for_sb_with_surffit( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, |
| int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); |
| static void model_rd_for_sb_with_dnn( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, |
| int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); |
| static void model_rd_for_sb_with_fullrdy( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, |
| int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); |
| static void model_rd_from_sse(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, |
| int plane, int64_t sse, int num_samples, |
| int *rate, int64_t *dist); |
| static void model_rd_with_dnn(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, |
| int plane, int64_t sse, int num_samples, |
| int *rate, int64_t *dist); |
| static void model_rd_with_curvfit(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| BLOCK_SIZE plane_bsize, int plane, |
| int64_t sse, int num_samples, int *rate, |
| int64_t *dist); |
| static void model_rd_with_surffit(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| BLOCK_SIZE plane_bsize, int plane, |
| int64_t sse, int num_samples, int *rate, |
| int64_t *dist); |
| |
| enum { |
| MODELRD_LEGACY, |
| MODELRD_CURVFIT, |
| MODELRD_SUFFIT, |
| MODELRD_DNN, |
| MODELRD_FULLRDY, |
| MODELRD_TYPES |
| } UENUM1BYTE(ModelRdType); |
| |
| static model_rd_for_sb_type model_rd_sb_fn[MODELRD_TYPES] = { |
| model_rd_for_sb, model_rd_for_sb_with_curvfit, model_rd_for_sb_with_surffit, |
| model_rd_for_sb_with_dnn, model_rd_for_sb_with_fullrdy |
| }; |
| |
| static model_rd_from_sse_type model_rd_sse_fn[MODELRD_TYPES] = { |
| model_rd_from_sse, model_rd_with_curvfit, model_rd_with_surffit, |
| model_rd_with_dnn, NULL |
| }; |
| |
| // 0: Legacy model |
| // 1: Curve fit model |
| // 2: Surface fit model |
| // 3: DNN regression model |
| // 4: Full rd model |
| #define MODELRD_TYPE_INTERP_FILTER 1 |
| #define MODELRD_TYPE_TX_SEARCH_PRUNE 1 |
| #define MODELRD_TYPE_MASKED_COMPOUND 1 |
| #define MODELRD_TYPE_INTERINTRA 1 |
| #define MODELRD_TYPE_INTRA 1 |
| #define MODELRD_TYPE_DIST_WTD_COMPOUND 1 |
| #define MODELRD_TYPE_MOTION_MODE_RD 1 |
| |
| #define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS) |
| static const InterpFilters filter_sets[DUAL_FILTER_SET_SIZE] = { |
| 0x00000000, 0x00010000, 0x00020000, // y = 0 |
| 0x00000001, 0x00010001, 0x00020001, // y = 1 |
| 0x00000002, 0x00010002, 0x00020002, // y = 2 |
| }; |
| |
| typedef struct { |
| PREDICTION_MODE mode; |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } MODE_DEFINITION; |
| |
| enum { |
| FTXS_NONE = 0, |
| FTXS_DCT_AND_1D_DCT_ONLY = 1 << 0, |
| FTXS_DISABLE_TRELLIS_OPT = 1 << 1, |
| FTXS_USE_TRANSFORM_DOMAIN = 1 << 2 |
| } UENUM1BYTE(FAST_TX_SEARCH_MODE); |
| |
| struct rdcost_block_args { |
| const AV1_COMP *cpi; |
| MACROBLOCK *x; |
| ENTROPY_CONTEXT t_above[MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT t_left[MAX_MIB_SIZE]; |
| RD_STATS rd_stats; |
| int64_t this_rd; |
| int64_t best_rd; |
| int exit_early; |
| int incomplete_exit; |
| int use_fast_coef_costing; |
| FAST_TX_SEARCH_MODE ftxs_mode; |
| int skip_trellis; |
| }; |
| |
| #define LAST_NEW_MV_INDEX 6 |
| static const MODE_DEFINITION av1_mode_order[MAX_MODES] = { |
| { NEARESTMV, { LAST_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { LAST2_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { LAST3_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { ALTREF2_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } }, |
| |
| { NEWMV, { LAST_FRAME, NONE_FRAME } }, |
| { NEWMV, { LAST2_FRAME, NONE_FRAME } }, |
| { NEWMV, { LAST3_FRAME, NONE_FRAME } }, |
| { NEWMV, { BWDREF_FRAME, NONE_FRAME } }, |
| { NEWMV, { ALTREF2_FRAME, NONE_FRAME } }, |
| { NEWMV, { ALTREF_FRAME, NONE_FRAME } }, |
| { NEWMV, { GOLDEN_FRAME, NONE_FRAME } }, |
| |
| { NEARMV, { LAST_FRAME, NONE_FRAME } }, |
| { NEARMV, { LAST2_FRAME, NONE_FRAME } }, |
| { NEARMV, { LAST3_FRAME, NONE_FRAME } }, |
| { NEARMV, { BWDREF_FRAME, NONE_FRAME } }, |
| { NEARMV, { ALTREF2_FRAME, NONE_FRAME } }, |
| { NEARMV, { ALTREF_FRAME, NONE_FRAME } }, |
| { NEARMV, { GOLDEN_FRAME, NONE_FRAME } }, |
| |
| { GLOBALMV, { LAST_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { LAST2_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { LAST3_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { BWDREF_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { ALTREF2_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { GOLDEN_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { ALTREF_FRAME, NONE_FRAME } }, |
| |
| // TODO(zoeliu): May need to reconsider the order on the modes to check |
| |
| { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| |
| { NEAREST_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEAREST_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| |
| { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, BWDREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| |
| { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEAR_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEAR_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| |
| { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, LAST2_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, LAST2_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, LAST3_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, LAST3_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| |
| { NEAR_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| |
| // intra modes |
| { DC_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { PAETH_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { SMOOTH_V_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { SMOOTH_H_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { H_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { V_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D135_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D203_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D157_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D67_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D113_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D45_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| }; |
| |
| static const int16_t intra_to_mode_idx[INTRA_MODE_NUM] = { |
| THR_DC, // DC_PRED, |
| THR_V_PRED, // V_PRED, |
| THR_H_PRED, // H_PRED, |
| THR_D45_PRED, // D45_PRED, |
| THR_D135_PRED, // D135_PRED, |
| THR_D113_PRED, // D113_PRED, |
| THR_D157_PRED, // D157_PRED, |
| THR_D203_PRED, // D203_PRED, |
| THR_D67_PRED, // D67_PRED, |
| THR_SMOOTH, // SMOOTH_PRED, |
| THR_SMOOTH_V, // SMOOTH_V_PRED, |
| THR_SMOOTH_H, // SMOOTH_H_PRED, |
| THR_PAETH, // PAETH_PRED, |
| }; |
| |
| /* clang-format off */ |
| static const int16_t single_inter_to_mode_idx[SINGLE_INTER_MODE_NUM] |
| [REF_FRAMES] = { |
| // NEARESTMV, |
| { -1, THR_NEARESTMV, THR_NEARESTL2, THR_NEARESTL3, |
| THR_NEARESTG, THR_NEARESTB, THR_NEARESTA2, THR_NEARESTA, }, |
| // NEARMV, |
| { -1, THR_NEARMV, THR_NEARL2, THR_NEARL3, |
| THR_NEARG, THR_NEARB, THR_NEARA2, THR_NEARA, }, |
| // GLOBALMV, |
| { -1, THR_GLOBALMV, THR_GLOBALL2, THR_GLOBALL3, |
| THR_GLOBALG, THR_GLOBALB, THR_GLOBALA2, THR_GLOBALA, }, |
| // NEWMV, |
| { -1, THR_NEWMV, THR_NEWL2, THR_NEWL3, |
| THR_NEWG, THR_NEWB, THR_NEWA2, THR_NEWA, }, |
| }; |
| /* clang-format on */ |
| |
| /* clang-format off */ |
| static const int16_t comp_inter_to_mode_idx[COMP_INTER_MODE_NUM][REF_FRAMES] |
| [REF_FRAMES] = { |
| // NEAREST_NEARESTMV, |
| { |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, |
| THR_COMP_NEAREST_NEARESTLL2, THR_COMP_NEAREST_NEARESTLL3, |
| THR_COMP_NEAREST_NEARESTLG, THR_COMP_NEAREST_NEARESTLB, |
| THR_COMP_NEAREST_NEARESTLA2, THR_COMP_NEAREST_NEARESTLA, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAREST_NEARESTL2B, |
| THR_COMP_NEAREST_NEARESTL2A2, THR_COMP_NEAREST_NEARESTL2A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAREST_NEARESTL3B, |
| THR_COMP_NEAREST_NEARESTL3A2, THR_COMP_NEAREST_NEARESTL3A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAREST_NEARESTGB, |
| THR_COMP_NEAREST_NEARESTGA2, THR_COMP_NEAREST_NEARESTGA, }, |
| { -1, -1, |
| -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAREST_NEARESTBA, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| }, |
| // NEAR_NEARMV, |
| { |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, |
| THR_COMP_NEAR_NEARLL2, THR_COMP_NEAR_NEARLL3, |
| THR_COMP_NEAR_NEARLG, THR_COMP_NEAR_NEARLB, |
| THR_COMP_NEAR_NEARLA2, THR_COMP_NEAR_NEARLA, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAR_NEARL2B, |
| THR_COMP_NEAR_NEARL2A2, THR_COMP_NEAR_NEARL2A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAR_NEARL3B, |
| THR_COMP_NEAR_NEARL3A2, THR_COMP_NEAR_NEARL3A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAR_NEARGB, |
| THR_COMP_NEAR_NEARGA2, THR_COMP_NEAR_NEARGA, }, |
| { -1, -1, |
| -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAR_NEARBA, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| }, |
| // NEAREST_NEWMV, |
| { |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, |
| THR_COMP_NEAREST_NEWLL2, THR_COMP_NEAREST_NEWLL3, |
| THR_COMP_NEAREST_NEWLG, THR_COMP_NEAREST_NEWLB, |
| THR_COMP_NEAREST_NEWLA2, THR_COMP_NEAREST_NEWLA, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAREST_NEWL2B, |
| THR_COMP_NEAREST_NEWL2A2, THR_COMP_NEAREST_NEWL2A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAREST_NEWL3B, |
| THR_COMP_NEAREST_NEWL3A2, THR_COMP_NEAREST_NEWL3A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAREST_NEWGB, |
| THR_COMP_NEAREST_NEWGA2, THR_COMP_NEAREST_NEWGA, }, |
| { -1, -1, |
| -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAREST_NEWBA, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| }, |
| // NEW_NEARESTMV, |
| { |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, |
| THR_COMP_NEW_NEARESTLL2, THR_COMP_NEW_NEARESTLL3, |
| THR_COMP_NEW_NEARESTLG, THR_COMP_NEW_NEARESTLB, |
| THR_COMP_NEW_NEARESTLA2, THR_COMP_NEW_NEARESTLA, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEARESTL2B, |
| THR_COMP_NEW_NEARESTL2A2, THR_COMP_NEW_NEARESTL2A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEARESTL3B, |
| THR_COMP_NEW_NEARESTL3A2, THR_COMP_NEW_NEARESTL3A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEARESTGB, |
| THR_COMP_NEW_NEARESTGA2, THR_COMP_NEW_NEARESTGA, }, |
| { -1, -1, |
| -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEARESTBA, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| }, |
| // NEAR_NEWMV, |
| { |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, |
| THR_COMP_NEAR_NEWLL2, THR_COMP_NEAR_NEWLL3, |
| THR_COMP_NEAR_NEWLG, THR_COMP_NEAR_NEWLB, |
| THR_COMP_NEAR_NEWLA2, THR_COMP_NEAR_NEWLA, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAR_NEWL2B, |
| THR_COMP_NEAR_NEWL2A2, THR_COMP_NEAR_NEWL2A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAR_NEWL3B, |
| THR_COMP_NEAR_NEWL3A2, THR_COMP_NEAR_NEWL3A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAR_NEWGB, |
| THR_COMP_NEAR_NEWGA2, THR_COMP_NEAR_NEWGA, }, |
| { -1, -1, |
| -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEAR_NEWBA, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| }, |
| // NEW_NEARMV, |
| { |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, |
| THR_COMP_NEW_NEARLL2, THR_COMP_NEW_NEARLL3, |
| THR_COMP_NEW_NEARLG, THR_COMP_NEW_NEARLB, |
| THR_COMP_NEW_NEARLA2, THR_COMP_NEW_NEARLA, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEARL2B, |
| THR_COMP_NEW_NEARL2A2, THR_COMP_NEW_NEARL2A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEARL3B, |
| THR_COMP_NEW_NEARL3A2, THR_COMP_NEW_NEARL3A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEARGB, |
| THR_COMP_NEW_NEARGA2, THR_COMP_NEW_NEARGA, }, |
| { -1, -1, |
| -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEARBA, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| }, |
| // GLOBAL_GLOBALMV, |
| { |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, |
| THR_COMP_GLOBAL_GLOBALLL2, THR_COMP_GLOBAL_GLOBALLL3, |
| THR_COMP_GLOBAL_GLOBALLG, THR_COMP_GLOBAL_GLOBALLB, |
| THR_COMP_GLOBAL_GLOBALLA2, THR_COMP_GLOBAL_GLOBALLA, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_GLOBAL_GLOBALL2B, |
| THR_COMP_GLOBAL_GLOBALL2A2, THR_COMP_GLOBAL_GLOBALL2A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_GLOBAL_GLOBALL3B, |
| THR_COMP_GLOBAL_GLOBALL3A2, THR_COMP_GLOBAL_GLOBALL3A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_GLOBAL_GLOBALGB, |
| THR_COMP_GLOBAL_GLOBALGA2, THR_COMP_GLOBAL_GLOBALGA, }, |
| { -1, -1, |
| -1, -1, |
| -1, -1, |
| -1, THR_COMP_GLOBAL_GLOBALBA, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| }, |
| // NEW_NEWMV, |
| { |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, |
| THR_COMP_NEW_NEWLL2, THR_COMP_NEW_NEWLL3, |
| THR_COMP_NEW_NEWLG, THR_COMP_NEW_NEWLB, |
| THR_COMP_NEW_NEWLA2, THR_COMP_NEW_NEWLA, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEWL2B, |
| THR_COMP_NEW_NEWL2A2, THR_COMP_NEW_NEWL2A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEWL3B, |
| THR_COMP_NEW_NEWL3A2, THR_COMP_NEW_NEWL3A, }, |
| { -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEWGB, |
| THR_COMP_NEW_NEWGA2, THR_COMP_NEW_NEWGA, }, |
| { -1, -1, |
| -1, -1, |
| -1, -1, |
| -1, THR_COMP_NEW_NEWBA, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| { -1, -1, -1, -1, -1, -1, -1, -1, }, |
| }, |
| }; |
| /* clang-format on */ |
| // Calculate rd threshold based on ref best rd and relevant scaling factors |
| static INLINE int64_t get_rd_thresh_from_best_rd(int64_t ref_best_rd, |
| int mul_factor, |
| int div_factor) { |
| int64_t rd_thresh = ref_best_rd; |
| if (div_factor != 0) { |
| rd_thresh = ref_best_rd < (div_factor * (INT64_MAX / mul_factor)) |
| ? ((ref_best_rd / div_factor) * mul_factor) |
| : INT64_MAX; |
| } |
| return rd_thresh; |
| } |
| |
| static int get_prediction_mode_idx(PREDICTION_MODE this_mode, |
| MV_REFERENCE_FRAME ref_frame, |
| MV_REFERENCE_FRAME second_ref_frame) { |
| if (this_mode < INTRA_MODE_END) { |
| assert(ref_frame == INTRA_FRAME); |
| assert(second_ref_frame == NONE_FRAME); |
| return intra_to_mode_idx[this_mode - INTRA_MODE_START]; |
| } |
| if (this_mode >= SINGLE_INTER_MODE_START && |
| this_mode < SINGLE_INTER_MODE_END) { |
| assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME)); |
| return single_inter_to_mode_idx[this_mode - SINGLE_INTER_MODE_START] |
| [ref_frame]; |
| } |
| if (this_mode >= COMP_INTER_MODE_START && this_mode < COMP_INTER_MODE_END) { |
| assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME)); |
| assert((second_ref_frame > INTRA_FRAME) && |
| (second_ref_frame <= ALTREF_FRAME)); |
| return comp_inter_to_mode_idx[this_mode - COMP_INTER_MODE_START][ref_frame] |
| [second_ref_frame]; |
| } |
| assert(0); |
| return -1; |
| } |
| |
| static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = { |
| DC_PRED, H_PRED, V_PRED, SMOOTH_PRED, PAETH_PRED, |
| SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED, D157_PRED, |
| D67_PRED, D113_PRED, D45_PRED, |
| }; |
| |
| static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = { |
| UV_DC_PRED, UV_CFL_PRED, UV_H_PRED, UV_V_PRED, |
| UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED, |
| UV_D135_PRED, UV_D203_PRED, UV_D157_PRED, UV_D67_PRED, |
| UV_D113_PRED, UV_D45_PRED, |
| }; |
| |
| typedef struct SingleInterModeState { |
| int64_t rd; |
| MV_REFERENCE_FRAME ref_frame; |
| int valid; |
| } SingleInterModeState; |
| |
| typedef struct InterModeSearchState { |
| int64_t best_rd; |
| MB_MODE_INFO best_mbmode; |
| int best_rate_y; |
| int best_rate_uv; |
| int best_mode_skippable; |
| int best_skip2; |
| int best_mode_index; |
| int skip_intra_modes; |
| int num_available_refs; |
| int64_t dist_refs[REF_FRAMES]; |
| int dist_order_refs[REF_FRAMES]; |
| int64_t mode_threshold[MAX_MODES]; |
| PREDICTION_MODE best_intra_mode; |
| int64_t best_intra_rd; |
| int angle_stats_ready; |
| uint8_t directional_mode_skip_mask[INTRA_MODES]; |
| unsigned int best_pred_sse; |
| int rate_uv_intra[TX_SIZES_ALL]; |
| int rate_uv_tokenonly[TX_SIZES_ALL]; |
| int64_t dist_uvs[TX_SIZES_ALL]; |
| int skip_uvs[TX_SIZES_ALL]; |
| UV_PREDICTION_MODE mode_uv[TX_SIZES_ALL]; |
| PALETTE_MODE_INFO pmi_uv[TX_SIZES_ALL]; |
| int8_t uv_angle_delta[TX_SIZES_ALL]; |
| int64_t best_pred_rd[REFERENCE_MODES]; |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| // Save a set of single_newmv for each checked ref_mv. |
| int_mv single_newmv[MAX_REF_MV_SEARCH][REF_FRAMES]; |
| int single_newmv_rate[MAX_REF_MV_SEARCH][REF_FRAMES]; |
| int single_newmv_valid[MAX_REF_MV_SEARCH][REF_FRAMES]; |
| int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES]; |
| // The rd of simple translation in single inter modes |
| int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES]; |
| |
| // Single search results by [directions][modes][reference frames] |
| SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; |
| int single_state_cnt[2][SINGLE_INTER_MODE_NUM]; |
| SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM] |
| [FWD_REFS]; |
| int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM]; |
| |
| MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; |
| } InterModeSearchState; |
| |
| static int inter_mode_data_block_idx(BLOCK_SIZE bsize) { |
| if (bsize == BLOCK_4X4 || bsize == BLOCK_4X8 || bsize == BLOCK_8X4 || |
| bsize == BLOCK_4X16 || bsize == BLOCK_16X4) { |
| return -1; |
| } |
| return 1; |
| } |
| |
| void av1_inter_mode_data_init(TileDataEnc *tile_data) { |
| for (int i = 0; i < BLOCK_SIZES_ALL; ++i) { |
| InterModeRdModel *md = &tile_data->inter_mode_rd_models[i]; |
| md->ready = 0; |
| md->num = 0; |
| md->dist_sum = 0; |
| md->ld_sum = 0; |
| md->sse_sum = 0; |
| md->sse_sse_sum = 0; |
| md->sse_ld_sum = 0; |
| } |
| } |
| |
| static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize, |
| int64_t sse, int *est_residue_cost, |
| int64_t *est_dist) { |
| aom_clear_system_state(); |
| const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; |
| if (md->ready) { |
| if (sse < md->dist_mean) { |
| *est_residue_cost = 0; |
| *est_dist = sse; |
| } else { |
| *est_dist = (int64_t)round(md->dist_mean); |
| const double est_ld = md->a * sse + md->b; |
| // Clamp estimated rate cost by INT_MAX / 2. |
| // TODO(angiebird@google.com): find better solution than clamping. |
| if (fabs(est_ld) < 1e-2) { |
| *est_residue_cost = INT_MAX / 2; |
| } else { |
| double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld); |
| if (est_residue_cost_dbl < 0) { |
| *est_residue_cost = 0; |
| } else { |
| *est_residue_cost = |
| (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2); |
| } |
| } |
| if (*est_residue_cost <= 0) { |
| *est_residue_cost = 0; |
| *est_dist = sse; |
| } |
| } |
| return 1; |
| } |
| return 0; |
| } |
| |
| void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) { |
| aom_clear_system_state(); |
| for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { |
| const int block_idx = inter_mode_data_block_idx(bsize); |
| InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; |
| if (block_idx == -1) continue; |
| if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) { |
| continue; |
| } else { |
| if (md->ready == 0) { |
| md->dist_mean = md->dist_sum / md->num; |
| md->ld_mean = md->ld_sum / md->num; |
| md->sse_mean = md->sse_sum / md->num; |
| md->sse_sse_mean = md->sse_sse_sum / md->num; |
| md->sse_ld_mean = md->sse_ld_sum / md->num; |
| } else { |
| const double factor = 3; |
| md->dist_mean = |
| (md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1); |
| md->ld_mean = |
| (md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1); |
| md->sse_mean = |
| (md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1); |
| md->sse_sse_mean = |
| (md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) / |
| (factor + 1); |
| md->sse_ld_mean = |
| (md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) / |
| (factor + 1); |
| } |
| |
| const double my = md->ld_mean; |
| const double mx = md->sse_mean; |
| const double dx = sqrt(md->sse_sse_mean); |
| const double dxy = md->sse_ld_mean; |
| |
| md->a = (dxy - mx * my) / (dx * dx - mx * mx); |
| md->b = my - md->a * mx; |
| md->ready = 1; |
| |
| md->num = 0; |
| md->dist_sum = 0; |
| md->ld_sum = 0; |
| md->sse_sum = 0; |
| md->sse_sse_sum = 0; |
| md->sse_ld_sum = 0; |
| } |
| (void)rdmult; |
| } |
| } |
| |
| static void inter_mode_data_push(TileDataEnc *tile_data, BLOCK_SIZE bsize, |
| int64_t sse, int64_t dist, int residue_cost) { |
| if (residue_cost == 0 || sse == dist) return; |
| const int block_idx = inter_mode_data_block_idx(bsize); |
| if (block_idx == -1) return; |
| InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize]; |
| if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) { |
| aom_clear_system_state(); |
| const double ld = (sse - dist) * 1. / residue_cost; |
| ++rd_model->num; |
| rd_model->dist_sum += dist; |
| rd_model->ld_sum += ld; |
| rd_model->sse_sum += sse; |
| rd_model->sse_sse_sum += (double)sse * (double)sse; |
| rd_model->sse_ld_sum += sse * ld; |
| } |
| } |
| |
| static void inter_modes_info_push(InterModesInfo *inter_modes_info, |
| int mode_rate, int64_t sse, int64_t rd, |
| bool true_rd, uint8_t *blk_skip, |
| RD_STATS *rd_cost, RD_STATS *rd_cost_y, |
| RD_STATS *rd_cost_uv, |
| const MB_MODE_INFO *mbmi) { |
| const int num = inter_modes_info->num; |
| assert(num < MAX_INTER_MODES); |
| inter_modes_info->mbmi_arr[num] = *mbmi; |
| inter_modes_info->mode_rate_arr[num] = mode_rate; |
| inter_modes_info->sse_arr[num] = sse; |
| inter_modes_info->est_rd_arr[num] = rd; |
| inter_modes_info->true_rd_arr[num] = true_rd; |
| if (blk_skip != NULL) { |
| memcpy(inter_modes_info->blk_skip_arr[num], blk_skip, |
| sizeof(blk_skip[0]) * MAX_MIB_SIZE * MAX_MIB_SIZE); |
| } |
| inter_modes_info->rd_cost_arr[num] = *rd_cost; |
| inter_modes_info->rd_cost_y_arr[num] = *rd_cost_y; |
| inter_modes_info->rd_cost_uv_arr[num] = *rd_cost_uv; |
| ++inter_modes_info->num; |
| } |
| |
| static int compare_rd_idx_pair(const void *a, const void *b) { |
| if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) { |
| return 0; |
| } else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) { |
| return 1; |
| } else { |
| return -1; |
| } |
| } |
| |
| static void inter_modes_info_sort(const InterModesInfo *inter_modes_info, |
| RdIdxPair *rd_idx_pair_arr) { |
| if (inter_modes_info->num == 0) { |
| return; |
| } |
| for (int i = 0; i < inter_modes_info->num; ++i) { |
| rd_idx_pair_arr[i].idx = i; |
| rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i]; |
| } |
| qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]), |
| compare_rd_idx_pair); |
| } |
| |
| static INLINE int write_uniform_cost(int n, int v) { |
| const int l = get_unsigned_bits(n); |
| const int m = (1 << l) - n; |
| if (l == 0) return 0; |
| if (v < m) |
| return av1_cost_literal(l - 1); |
| else |
| return av1_cost_literal(l); |
| } |
| |
| // Similar to store_cfl_required(), but for use during the RDO process, |
| // where we haven't yet determined whether this block uses CfL. |
| static INLINE CFL_ALLOWED_TYPE store_cfl_required_rdo(const AV1_COMMON *cm, |
| const MACROBLOCK *x) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| if (cm->seq_params.monochrome || x->skip_chroma_rd) return CFL_DISALLOWED; |
| |
| if (!xd->cfl.is_chroma_reference) { |
| // For non-chroma-reference blocks, we should always store the luma pixels, |
| // in case the corresponding chroma-reference block uses CfL. |
| // Note that this can only happen for block sizes which are <8 on |
| // their shortest side, as otherwise they would be chroma reference |
| // blocks. |
| return CFL_ALLOWED; |
| } |
| |
| // For chroma reference blocks, we should store data in the encoder iff we're |
| // allowed to try out CfL. |
| return is_cfl_allowed(xd); |
| } |
| |
| // constants for prune 1 and prune 2 decision boundaries |
| #define FAST_EXT_TX_CORR_MID 0.0 |
| #define FAST_EXT_TX_EDST_MID 0.1 |
| #define FAST_EXT_TX_CORR_MARGIN 0.5 |
| #define FAST_EXT_TX_EDST_MARGIN 0.3 |
| |
| static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode); |
| |
| static unsigned pixel_dist_visible_only( |
| const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src, |
| const int src_stride, const uint8_t *dst, const int dst_stride, |
| const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows, |
| int visible_cols) { |
| unsigned sse; |
| |
| if (txb_rows == visible_rows && txb_cols == visible_cols) { |
| cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); |
| return sse; |
| } |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| if (is_cur_buf_hbd(xd)) { |
| uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride, |
| visible_cols, visible_rows); |
| return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2); |
| } |
| sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols, |
| visible_rows); |
| return sse; |
| } |
| |
| #if CONFIG_DIST_8X8 |
| static uint64_t cdef_dist_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src, |
| int sstride, int coeff_shift) { |
| uint64_t svar = 0; |
| uint64_t dvar = 0; |
| uint64_t sum_s = 0; |
| uint64_t sum_d = 0; |
| uint64_t sum_s2 = 0; |
| uint64_t sum_d2 = 0; |
| uint64_t sum_sd = 0; |
| uint64_t dist = 0; |
| |
| int i, j; |
| for (i = 0; i < 8; i++) { |
| for (j = 0; j < 8; j++) { |
| sum_s += src[i * sstride + j]; |
| sum_d += dst[i * dstride + j]; |
| sum_s2 += src[i * sstride + j] * src[i * sstride + j]; |
| sum_d2 += dst[i * dstride + j] * dst[i * dstride + j]; |
| sum_sd += src[i * sstride + j] * dst[i * dstride + j]; |
| } |
| } |
| /* Compute the variance -- the calculation cannot go negative. */ |
| svar = sum_s2 - ((sum_s * sum_s + 32) >> 6); |
| dvar = sum_d2 - ((sum_d * sum_d + 32) >> 6); |
| |
| // Tuning of jm's original dering distortion metric used in CDEF tool, |
| // suggested by jm |
| const uint64_t a = 4; |
| const uint64_t b = 2; |
| const uint64_t c1 = (400 * a << 2 * coeff_shift); |
| const uint64_t c2 = (b * 20000 * a * a << 4 * coeff_shift); |
| |
| dist = (uint64_t)floor(.5 + (sum_d2 + sum_s2 - 2 * sum_sd) * .5 * |
| (svar + dvar + c1) / |
| (sqrt(svar * (double)dvar + c2))); |
| |
| // Calibrate dist to have similar rate for the same QP with MSE only |
| // distortion (as in master branch) |
| dist = (uint64_t)((float)dist * 0.75); |
| |
| return dist; |
| } |
| |
| static int od_compute_var_4x4(uint16_t *x, int stride) { |
| int sum; |
| int s2; |
| int i; |
| sum = 0; |
| s2 = 0; |
| for (i = 0; i < 4; i++) { |
| int j; |
| for (j = 0; j < 4; j++) { |
| int t; |
| |
| t = x[i * stride + j]; |
| sum += t; |
| s2 += t * t; |
| } |
| } |
| |
| return (s2 - (sum * sum >> 4)) >> 4; |
| } |
| |
| /* OD_DIST_LP_MID controls the frequency weighting filter used for computing |
| the distortion. For a value X, the filter is [1 X 1]/(X + 2) and |
| is applied both horizontally and vertically. For X=5, the filter is |
| a good approximation for the OD_QM8_Q4_HVS quantization matrix. */ |
| #define OD_DIST_LP_MID (5) |
| #define OD_DIST_LP_NORM (OD_DIST_LP_MID + 2) |
| |
| static double od_compute_dist_8x8(int use_activity_masking, uint16_t *x, |
| uint16_t *y, od_coeff *e_lp, int stride) { |
| double sum; |
| int min_var; |
| double mean_var; |
| double var_stat; |
| double activity; |
| double calibration; |
| int i; |
| int j; |
| double vardist; |
| |
| vardist = 0; |
| |
| #if 1 |
| min_var = INT_MAX; |
| mean_var = 0; |
| for (i = 0; i < 3; i++) { |
| for (j = 0; j < 3; j++) { |
| int varx; |
| int vary; |
| varx = od_compute_var_4x4(x + 2 * i * stride + 2 * j, stride); |
| vary = od_compute_var_4x4(y + 2 * i * stride + 2 * j, stride); |
| min_var = OD_MINI(min_var, varx); |
| mean_var += 1. / (1 + varx); |
| /* The cast to (double) is to avoid an overflow before the sqrt.*/ |
| vardist += varx - 2 * sqrt(varx * (double)vary) + vary; |
| } |
| } |
| /* We use a different variance statistic depending on whether activity |
| masking is used, since the harmonic mean appeared slightly worse with |
| masking off. The calibration constant just ensures that we preserve the |
| rate compared to activity=1. */ |
| if (use_activity_masking) { |
| calibration = 1.95; |
| var_stat = 9. / mean_var; |
| } else { |
| calibration = 1.62; |
| var_stat = min_var; |
| } |
| /* 1.62 is a calibration constant, 0.25 is a noise floor and 1/6 is the |
| activity masking constant. */ |
| activity = calibration * pow(.25 + var_stat, -1. / 6); |
| #else |
| activity = 1; |
| #endif // 1 |
| sum = 0; |
| for (i = 0; i < 8; i++) { |
| for (j = 0; j < 8; j++) |
| sum += e_lp[i * stride + j] * (double)e_lp[i * stride + j]; |
| } |
| /* Normalize the filter to unit DC response. */ |
| sum *= 1. / (OD_DIST_LP_NORM * OD_DIST_LP_NORM * OD_DIST_LP_NORM * |
| OD_DIST_LP_NORM); |
| return activity * activity * (sum + vardist); |
| } |
| |
| // Note : Inputs x and y are in a pixel domain |
| static double od_compute_dist_common(int activity_masking, uint16_t *x, |
| uint16_t *y, int bsize_w, int bsize_h, |
| int qindex, od_coeff *tmp, |
| od_coeff *e_lp) { |
| int i, j; |
| double sum = 0; |
| const int mid = OD_DIST_LP_MID; |
| |
| for (j = 0; j < bsize_w; j++) { |
| e_lp[j] = mid * tmp[j] + 2 * tmp[bsize_w + j]; |
| e_lp[(bsize_h - 1) * bsize_w + j] = mid * tmp[(bsize_h - 1) * bsize_w + j] + |
| 2 * tmp[(bsize_h - 2) * bsize_w + j]; |
| } |
| for (i = 1; i < bsize_h - 1; i++) { |
| for (j = 0; j < bsize_w; j++) { |
| e_lp[i * bsize_w + j] = mid * tmp[i * bsize_w + j] + |
| tmp[(i - 1) * bsize_w + j] + |
| tmp[(i + 1) * bsize_w + j]; |
| } |
| } |
| for (i = 0; i < bsize_h; i += 8) { |
| for (j = 0; j < bsize_w; j += 8) { |
| sum += od_compute_dist_8x8(activity_masking, &x[i * bsize_w + j], |
| &y[i * bsize_w + j], &e_lp[i * bsize_w + j], |
| bsize_w); |
| } |
| } |
| /* Scale according to linear regression against SSE, for 8x8 blocks. */ |
| if (activity_masking) { |
| sum *= 2.2 + (1.7 - 2.2) * (qindex - 99) / (210 - 99) + |
| (qindex < 99 ? 2.5 * (qindex - 99) / 99 * (qindex - 99) / 99 : 0); |
| } else { |
| sum *= qindex >= 128 |
| ? 1.4 + (0.9 - 1.4) * (qindex - 128) / (209 - 128) |
| : qindex <= 43 ? 1.5 + (2.0 - 1.5) * (qindex - 43) / (16 - 43) |
| : 1.5 + (1.4 - 1.5) * (qindex - 43) / (128 - 43); |
| } |
| |
| return sum; |
| } |
| |
| static double od_compute_dist(uint16_t *x, uint16_t *y, int bsize_w, |
| int bsize_h, int qindex) { |
| assert(bsize_w >= 8 && bsize_h >= 8); |
| |
| int activity_masking = 0; |
| |
| int i, j; |
| DECLARE_ALIGNED(16, od_coeff, e[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]); |
| for (i = 0; i < bsize_h; i++) { |
| for (j = 0; j < bsize_w; j++) { |
| e[i * bsize_w + j] = x[i * bsize_w + j] - y[i * bsize_w + j]; |
| } |
| } |
| int mid = OD_DIST_LP_MID; |
| for (i = 0; i < bsize_h; i++) { |
| tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1]; |
| tmp[i * bsize_w + bsize_w - 1] = |
| mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2]; |
| for (j = 1; j < bsize_w - 1; j++) { |
| tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] + |
| e[i * bsize_w + j + 1]; |
| } |
| } |
| return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h, |
| qindex, tmp, e_lp); |
| } |
| |
| static double od_compute_dist_diff(uint16_t *x, int16_t *e, int bsize_w, |
| int bsize_h, int qindex) { |
| assert(bsize_w >= 8 && bsize_h >= 8); |
| |
| int activity_masking = 0; |
| |
| DECLARE_ALIGNED(16, uint16_t, y[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, od_coeff, tmp[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_SB_SQUARE]); |
| int i, j; |
| for (i = 0; i < bsize_h; i++) { |
| for (j = 0; j < bsize_w; j++) { |
| y[i * bsize_w + j] = x[i * bsize_w + j] - e[i * bsize_w + j]; |
| } |
| } |
| int mid = OD_DIST_LP_MID; |
| for (i = 0; i < bsize_h; i++) { |
| tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1]; |
| tmp[i * bsize_w + bsize_w - 1] = |
| mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2]; |
| for (j = 1; j < bsize_w - 1; j++) { |
| tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] + |
| e[i * bsize_w + j + 1]; |
| } |
| } |
| return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h, |
| qindex, tmp, e_lp); |
| } |
| |
| int64_t av1_dist_8x8(const AV1_COMP *const cpi, const MACROBLOCK *x, |
| const uint8_t *src, int src_stride, const uint8_t *dst, |
| int dst_stride, const BLOCK_SIZE tx_bsize, int bsw, |
| int bsh, int visible_w, int visible_h, int qindex) { |
| int64_t d = 0; |
| int i, j; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint16_t, rec[MAX_SB_SQUARE]); |
| |
| assert(bsw >= 8); |
| assert(bsh >= 8); |
| assert((bsw & 0x07) == 0); |
| assert((bsh & 0x07) == 0); |
| |
| if (x->tune_metric == AOM_TUNE_CDEF_DIST || |
| x->tune_metric == AOM_TUNE_DAALA_DIST) { |
| if (is_cur_buf_hbd(xd)) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; |
| |
| if ((bsw == visible_w) && (bsh == visible_h)) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i]; |
| } else { |
| for (j = 0; j < visible_h; j++) |
| for (i = 0; i < visible_w; i++) |
| rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i]; |
| |
| if (visible_w < bsw) { |
| for (j = 0; j < bsh; j++) |
| for (i = visible_w; i < bsw; i++) |
| rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; |
| } |
| |
| if (visible_h < bsh) { |
| for (j = visible_h; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; |
| } |
| } |
| } else { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i]; |
| |
| if ((bsw == visible_w) && (bsh == visible_h)) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) rec[j * bsw + i] = dst[j * dst_stride + i]; |
| } else { |
| for (j = 0; j < visible_h; j++) |
| for (i = 0; i < visible_w; i++) |
| rec[j * bsw + i] = dst[j * dst_stride + i]; |
| |
| if (visible_w < bsw) { |
| for (j = 0; j < bsh; j++) |
| for (i = visible_w; i < bsw; i++) |
| rec[j * bsw + i] = src[j * src_stride + i]; |
| } |
| |
| if (visible_h < bsh) { |
| for (j = visible_h; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| rec[j * bsw + i] = src[j * src_stride + i]; |
| } |
| } |
| } |
| } |
| |
| if (x->tune_metric == AOM_TUNE_DAALA_DIST) { |
| d = (int64_t)od_compute_dist(orig, rec, bsw, bsh, qindex); |
| } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) { |
| int coeff_shift = AOMMAX(xd->bd - 8, 0); |
| |
| for (i = 0; i < bsh; i += 8) { |
| for (j = 0; j < bsw; j += 8) { |
| d += cdef_dist_8x8_16bit(&rec[i * bsw + j], bsw, &orig[i * bsw + j], |
| bsw, coeff_shift); |
| } |
| } |
| if (is_cur_buf_hbd(xd)) d = ((uint64_t)d) >> 2 * coeff_shift; |
| } else { |
| // Otherwise, MSE by default |
| d = pixel_dist_visible_only(cpi, x, src, src_stride, dst, dst_stride, |
| tx_bsize, bsh, bsw, visible_h, visible_w); |
| } |
| |
| return d; |
| } |
| |
| static int64_t dist_8x8_diff(const MACROBLOCK *x, const uint8_t *src, |
| int src_stride, const int16_t *diff, |
| int diff_stride, int bsw, int bsh, int visible_w, |
| int visible_h, int qindex) { |
| int64_t d = 0; |
| int i, j; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| DECLARE_ALIGNED(16, uint16_t, orig[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(16, int16_t, diff16[MAX_SB_SQUARE]); |
| |
| assert(bsw >= 8); |
| assert(bsh >= 8); |
| assert((bsw & 0x07) == 0); |
| assert((bsh & 0x07) == 0); |
| |
| if (x->tune_metric == AOM_TUNE_CDEF_DIST || |
| x->tune_metric == AOM_TUNE_DAALA_DIST) { |
| if (is_cur_buf_hbd(xd)) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; |
| } else { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i]; |
| } |
| |
| if ((bsw == visible_w) && (bsh == visible_h)) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| diff16[j * bsw + i] = diff[j * diff_stride + i]; |
| } else { |
| for (j = 0; j < visible_h; j++) |
| for (i = 0; i < visible_w; i++) |
| diff16[j * bsw + i] = diff[j * diff_stride + i]; |
| |
| if (visible_w < bsw) { |
| for (j = 0; j < bsh; j++) |
| for (i = visible_w; i < bsw; i++) diff16[j * bsw + i] = 0; |
| } |
| |
| if (visible_h < bsh) { |
| for (j = visible_h; j < bsh; j++) |
| for (i = 0; i < bsw; i++) diff16[j * bsw + i] = 0; |
| } |
| } |
| } |
| |
| if (x->tune_metric == AOM_TUNE_DAALA_DIST) { |
| d = (int64_t)od_compute_dist_diff(orig, diff16, bsw, bsh, qindex); |
| } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) { |
| int coeff_shift = AOMMAX(xd->bd - 8, 0); |
| DECLARE_ALIGNED(16, uint16_t, dst16[MAX_SB_SQUARE]); |
| |
| for (i = 0; i < bsh; i++) { |
| for (j = 0; j < bsw; j++) { |
| dst16[i * bsw + j] = orig[i * bsw + j] - diff16[i * bsw + j]; |
| } |
| } |
| |
| for (i = 0; i < bsh; i += 8) { |
| for (j = 0; j < bsw; j += 8) { |
| d += cdef_dist_8x8_16bit(&dst16[i * bsw + j], bsw, &orig[i * bsw + j], |
| bsw, coeff_shift); |
| } |
| } |
| // Don't scale 'd' for HBD since it will be done by caller side for diff |
| // input |
| } else { |
| // Otherwise, MSE by default |
| d = aom_sum_squares_2d_i16(diff, diff_stride, visible_w, visible_h); |
| } |
| |
| return d; |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| static void get_energy_distribution_finer(const int16_t *diff, int stride, |
| int bw, int bh, float *hordist, |
| float *verdist) { |
| // First compute downscaled block energy values (esq); downscale factors |
| // are defined by w_shift and h_shift. |
| unsigned int esq[256]; |
| const int w_shift = bw <= 8 ? 0 : 1; |
| const int h_shift = bh <= 8 ? 0 : 1; |
| const int esq_w = bw >> w_shift; |
| const int esq_h = bh >> h_shift; |
| const int esq_sz = esq_w * esq_h; |
| int i, j; |
| memset(esq, 0, esq_sz * sizeof(esq[0])); |
| if (w_shift) { |
| for (i = 0; i < bh; i++) { |
| unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; |
| const int16_t *cur_diff_row = diff + i * stride; |
| for (j = 0; j < bw; j += 2) { |
| cur_esq_row[j >> 1] += (cur_diff_row[j] * cur_diff_row[j] + |
| cur_diff_row[j + 1] * cur_diff_row[j + 1]); |
| } |
| } |
| } else { |
| for (i = 0; i < bh; i++) { |
| unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; |
| const int16_t *cur_diff_row = diff + i * stride; |
| for (j = 0; j < bw; j++) { |
| cur_esq_row[j] += cur_diff_row[j] * cur_diff_row[j]; |
| } |
| } |
| } |
| |
| uint64_t total = 0; |
| for (i = 0; i < esq_sz; i++) total += esq[i]; |
| |
| // Output hordist and verdist arrays are normalized 1D projections of esq |
| if (total == 0) { |
| float hor_val = 1.0f / esq_w; |
| for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val; |
| float ver_val = 1.0f / esq_h; |
| for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val; |
| return; |
| } |
| |
| const float e_recip = 1.0f / (float)total; |
| memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0])); |
| memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0])); |
| const unsigned int *cur_esq_row; |
| for (i = 0; i < esq_h - 1; i++) { |
| cur_esq_row = esq + i * esq_w; |
| for (j = 0; j < esq_w - 1; j++) { |
| hordist[j] += (float)cur_esq_row[j]; |
| verdist[i] += (float)cur_esq_row[j]; |
| } |
| verdist[i] += (float)cur_esq_row[j]; |
| } |
| cur_esq_row = esq + i * esq_w; |
| for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j]; |
| |
| for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip; |
| for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip; |
| } |
| |
| // Similar to get_horver_correlation, but also takes into account first |
| // row/column, when computing horizontal/vertical correlation. |
| void av1_get_horver_correlation_full_c(const int16_t *diff, int stride, |
| int width, int height, float *hcorr, |
| float *vcorr) { |
| // The following notation is used: |
| // x - current pixel |
| // y - left neighbor pixel |
| // z - top neighbor pixel |
| int64_t x_sum = 0, x2_sum = 0, xy_sum = 0, xz_sum = 0; |
| int64_t x_firstrow = 0, x_finalrow = 0, x_firstcol = 0, x_finalcol = 0; |
| int64_t x2_firstrow = 0, x2_finalrow = 0, x2_firstcol = 0, x2_finalcol = 0; |
| |
| // First, process horizontal correlation on just the first row |
| x_sum += diff[0]; |
| x2_sum += diff[0] * diff[0]; |
| x_firstrow += diff[0]; |
| x2_firstrow += diff[0] * diff[0]; |
| for (int j = 1; j < width; ++j) { |
| const int16_t x = diff[j]; |
| const int16_t y = diff[j - 1]; |
| x_sum += x; |
| x_firstrow += x; |
| x2_sum += x * x; |
| x2_firstrow += x * x; |
| xy_sum += x * y; |
| } |
| |
| // Process vertical correlation in the first column |
| x_firstcol += diff[0]; |
| x2_firstcol += diff[0] * diff[0]; |
| for (int i = 1; i < height; ++i) { |
| const int16_t x = diff[i * stride]; |
| const int16_t z = diff[(i - 1) * stride]; |
| x_sum += x; |
| x_firstcol += x; |
| x2_sum += x * x; |
| x2_firstcol += x * x; |
| xz_sum += x * z; |
| } |
| |
| // Now process horiz and vert correlation through the rest unit |
| for (int i = 1; i < height; ++i) { |
| for (int j = 1; j < width; ++j) { |
| const int16_t x = diff[i * stride + j]; |
| const int16_t y = diff[i * stride + j - 1]; |
| const int16_t z = diff[(i - 1) * stride + j]; |
| x_sum += x; |
| x2_sum += x * x; |
| xy_sum += x * y; |
| xz_sum += x * z; |
| } |
| } |
| |
| for (int j = 0; j < width; ++j) { |
| x_finalrow += diff[(height - 1) * stride + j]; |
| x2_finalrow += |
| diff[(height - 1) * stride + j] * diff[(height - 1) * stride + j]; |
| } |
| for (int i = 0; i < height; ++i) { |
| x_finalcol += diff[i * stride + width - 1]; |
| x2_finalcol += diff[i * stride + width - 1] * diff[i * stride + width - 1]; |
| } |
| |
| int64_t xhor_sum = x_sum - x_finalcol; |
| int64_t xver_sum = x_sum - x_finalrow; |
| int64_t y_sum = x_sum - x_firstcol; |
| int64_t z_sum = x_sum - x_firstrow; |
| int64_t x2hor_sum = x2_sum - x2_finalcol; |
| int64_t x2ver_sum = x2_sum - x2_finalrow; |
| int64_t y2_sum = x2_sum - x2_firstcol; |
| int64_t z2_sum = x2_sum - x2_firstrow; |
| |
| const float num_hor = (float)(height * (width - 1)); |
| const float num_ver = (float)((height - 1) * width); |
| |
| const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor; |
| const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver; |
| |
| const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor; |
| const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver; |
| |
| const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor; |
| const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver; |
| |
| if (xhor_var_n > 0 && y_var_n > 0) { |
| *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n); |
| *hcorr = *hcorr < 0 ? 0 : *hcorr; |
| } else { |
| *hcorr = 1.0; |
| } |
| if (xver_var_n > 0 && z_var_n > 0) { |
| *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n); |
| *vcorr = *vcorr < 0 ? 0 : *vcorr; |
| } else { |
| *vcorr = 1.0; |
| } |
| } |
| |
| // Transforms raw scores into a probability distribution across 16 TX types |
| static void score_2D_transform_pow8(float *scores_2D, float shift) { |
| float sum = 0.0f; |
| int i; |
| for (i = 0; i < 16; i++) { |
| const float v = AOMMIN(AOMMAX(scores_2D[i] + shift, 1e-3f), 100.0f); |
| const float v2 = v * v; |
| const float v4 = v2 * v2; |
| scores_2D[i] = v4 * v4; |
| sum += scores_2D[i]; |
| } |
| for (i = 0; i < 16; i++) { |
| if (scores_2D[i] * 10000 < sum) |
| scores_2D[i] = 0.0f; |
| else if (sum < 1e-16f) |
| scores_2D[i] *= 1e16f; |
| else |
| scores_2D[i] /= sum; |
| } |
| } |
| |
| // These thresholds were calibrated to provide a certain number of TX types |
| // pruned by the model on average, i.e. selecting a threshold with index i |
| // will lead to pruning i+1 TX types on average |
| static const float *prune_2D_adaptive_thresholds[] = { |
| // TX_4X4 |
| (float[]){ 0.00549f, 0.01306f, 0.02039f, 0.02747f, 0.03406f, 0.04065f, |
| 0.04724f, 0.05383f, 0.06067f, 0.06799f, 0.07605f, 0.08533f, |
| 0.09778f, 0.11780f }, |
| // TX_8X8 |
| (float[]){ 0.00037f, 0.00183f, 0.00525f, 0.01038f, 0.01697f, 0.02502f, |
| 0.03381f, 0.04333f, 0.05286f, 0.06287f, 0.07434f, 0.08850f, |
| 0.10803f, 0.14124f }, |
| // TX_16X16 |
| (float[]){ 0.01404f, 0.02820f, 0.04211f, 0.05164f, 0.05798f, 0.06335f, |
| 0.06897f, 0.07629f, 0.08875f, 0.11169f }, |
| // TX_32X32 |
| NULL, |
| // TX_64X64 |
| NULL, |
| // TX_4X8 |
| (float[]){ 0.00183f, 0.00745f, 0.01428f, 0.02185f, 0.02966f, 0.03723f, |
| 0.04456f, 0.05188f, 0.05920f, 0.06702f, 0.07605f, 0.08704f, |
| 0.10168f, 0.12585f }, |
| // TX_8X4 |
| (float[]){ 0.00085f, 0.00476f, 0.01135f, 0.01892f, 0.02698f, 0.03528f, |
| 0.04358f, 0.05164f, 0.05994f, 0.06848f, 0.07849f, 0.09021f, |
| 0.10583f, 0.13123f }, |
| // TX_8X16 |
| (float[]){ 0.00037f, 0.00232f, 0.00671f, 0.01257f, 0.01965f, 0.02722f, |
| 0.03552f, 0.04382f, 0.05237f, 0.06189f, 0.07336f, 0.08728f, |
| 0.10730f, 0.14221f }, |
| // TX_16X8 |
| (float[]){ 0.00061f, 0.00330f, 0.00818f, 0.01453f, 0.02185f, 0.02966f, |
| 0.03772f, 0.04578f, 0.05383f, 0.06262f, 0.07288f, 0.08582f, |
| 0.10339f, 0.13464f }, |
| // TX_16X32 |
| NULL, |
| // TX_32X16 |
| NULL, |
| // TX_32X64 |
| NULL, |
| // TX_64X32 |
| NULL, |
| // TX_4X16 |
| (float[]){ 0.00232f, 0.00671f, 0.01257f, 0.01941f, 0.02673f, 0.03430f, |
| 0.04211f, 0.04968f, 0.05750f, 0.06580f, 0.07507f, 0.08655f, |
| 0.10242f, 0.12878f }, |
| // TX_16X4 |
| (float[]){ 0.00110f, 0.00525f, 0.01208f, 0.01990f, 0.02795f, 0.03601f, |
| 0.04358f, 0.05115f, 0.05896f, 0.06702f, 0.07629f, 0.08752f, |
| 0.10217f, 0.12610f }, |
| // TX_8X32 |
| NULL, |
| // TX_32X8 |
| NULL, |
| // TX_16X64 |
| NULL, |
| // TX_64X16 |
| NULL, |
| }; |
| |
| // Probablities are sorted in descending order. |
| static INLINE void sort_probability(float prob[], int txk[], int len) { |
| int i, j, k; |
| |
| for (i = 1; i <= len - 1; ++i) { |
| for (j = 0; j < i; ++j) { |
| if (prob[j] < prob[i]) { |
| float temp; |
| int tempi; |
| |
| temp = prob[i]; |
| tempi = txk[i]; |
| |
| for (k = i; k > j; k--) { |
| prob[k] = prob[k - 1]; |
| txk[k] = txk[k - 1]; |
| } |
| |
| prob[j] = temp; |
| txk[j] = tempi; |
| break; |
| } |
| } |
| } |
| } |
| |
| static uint16_t prune_tx_2D(MACROBLOCK *x, BLOCK_SIZE bsize, TX_SIZE tx_size, |
| int blk_row, int blk_col, TxSetType tx_set_type, |
| TX_TYPE_PRUNE_MODE prune_mode, int *txk_map) { |
| int tx_type_table_2D[16] = { |
| DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT, |
| ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST, |
| FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST, |
| H_DCT, H_ADST, H_FLIPADST, IDTX |
| }; |
| if (tx_set_type != EXT_TX_SET_ALL16 && |
| tx_set_type != EXT_TX_SET_DTT9_IDTX_1DDCT) |
| return 0; |
| const NN_CONFIG *nn_config_hor = av1_tx_type_nnconfig_map_hor[tx_size]; |
| const NN_CONFIG *nn_config_ver = av1_tx_type_nnconfig_map_ver[tx_size]; |
| if (!nn_config_hor || !nn_config_ver) return 0; // Model not established yet. |
| |
| aom_clear_system_state(); |
| float hfeatures[16], vfeatures[16]; |
| float hscores[4], vscores[4]; |
| float scores_2D[16]; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| const int hfeatures_num = bw <= 8 ? bw : bw / 2; |
| const int vfeatures_num = bh <= 8 ? bh : bh / 2; |
| assert(hfeatures_num <= 16); |
| assert(vfeatures_num <= 16); |
| |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const int diff_stride = block_size_wide[bsize]; |
| const int16_t *diff = p->src_diff + 4 * blk_row * diff_stride + 4 * blk_col; |
| get_energy_distribution_finer(diff, diff_stride, bw, bh, hfeatures, |
| vfeatures); |
| av1_get_horver_correlation_full(diff, diff_stride, bw, bh, |
| &hfeatures[hfeatures_num - 1], |
| &vfeatures[vfeatures_num - 1]); |
| av1_nn_predict(hfeatures, nn_config_hor, hscores); |
| av1_nn_predict(vfeatures, nn_config_ver, vscores); |
| aom_clear_system_state(); |
| |
| float score_2D_average = 0.0f; |
| for (int i = 0; i < 4; i++) { |
| float *cur_scores_2D = scores_2D + i * 4; |
| cur_scores_2D[0] = vscores[i] * hscores[0]; |
| cur_scores_2D[1] = vscores[i] * hscores[1]; |
| cur_scores_2D[2] = vscores[i] * hscores[2]; |
| cur_scores_2D[3] = vscores[i] * hscores[3]; |
| score_2D_average += cur_scores_2D[0] + cur_scores_2D[1] + cur_scores_2D[2] + |
| cur_scores_2D[3]; |
| } |
| score_2D_average /= 16; |
| |
| const int prune_aggr_table[2][2] = { { 7, 5 }, { 10, 7 } }; |
| int pruning_aggressiveness = 1; |
| if (tx_set_type == EXT_TX_SET_ALL16) { |
| score_2D_transform_pow8(scores_2D, (10 - score_2D_average)); |
| pruning_aggressiveness = |
| prune_aggr_table[prune_mode - PRUNE_2D_ACCURATE][0]; |
| } else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT) { |
| score_2D_transform_pow8(scores_2D, (20 - score_2D_average)); |
| pruning_aggressiveness = |
| prune_aggr_table[prune_mode - PRUNE_2D_ACCURATE][1]; |
| } |
| |
| // Always keep the TX type with the highest score, prune all others with |
| // score below score_thresh. |
| int max_score_i = 0; |
| float max_score = 0.0f; |
| for (int i = 0; i < 16; i++) { |
| if (scores_2D[i] > max_score && |
| av1_ext_tx_used[tx_set_type][tx_type_table_2D[i]]) { |
| max_score = scores_2D[i]; |
| max_score_i = i; |
| } |
| } |
| |
| const float score_thresh = |
| prune_2D_adaptive_thresholds[tx_size][pruning_aggressiveness - 1]; |
| |
| uint16_t prune_bitmask = 0; |
| for (int i = 0; i < 16; i++) { |
| if (scores_2D[i] < score_thresh && i != max_score_i) |
| prune_bitmask |= (1 << tx_type_table_2D[i]); |
| } |
| |
| sort_probability(scores_2D, tx_type_table_2D, TX_TYPES); |
| memcpy(txk_map, tx_type_table_2D, sizeof(tx_type_table_2D)); |
| |
| return prune_bitmask; |
| } |
| |
| static void model_rd_from_sse(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, |
| int plane, int64_t sse, int num_samples, |
| int *rate, int64_t *dist) { |
| (void)num_samples; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| |
| // Fast approximate the modelling function. |
| if (cpi->sf.simple_model_rd_from_var) { |
| const int64_t square_error = sse; |
| int quantizer = pd->dequant_Q3[1] >> dequant_shift; |
| if (quantizer < 120) |
| *rate = (int)AOMMIN( |
| (square_error * (280 - quantizer)) >> (16 - AV1_PROB_COST_SHIFT), |
| INT_MAX); |
| else |
| *rate = 0; |
| assert(*rate >= 0); |
| *dist = (square_error * quantizer) >> 8; |
| } else { |
| av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[plane_bsize], |
| pd->dequant_Q3[1] >> dequant_shift, rate, |
| dist); |
| } |
| *dist <<= 4; |
| } |
| |
| static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| int64_t total_sse = 0; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bs = get_plane_block_size(mbmi->sb_type, pd->subsampling_x, |
| pd->subsampling_y); |
| unsigned int sse; |
| |
| if (x->skip_chroma_rd && plane) continue; |
| |
| cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| &sse); |
| total_sse += sse; |
| } |
| total_sse <<= 4; |
| return total_sse; |
| } |
| |
| static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, |
| int plane_to, int mi_row, int mi_col, |
| int *out_rate_sum, int64_t *out_dist_sum, |
| int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, |
| int64_t *plane_dist) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| int plane; |
| (void)mi_row; |
| (void)mi_col; |
| const int ref = xd->mi[0]->ref_frame[0]; |
| |
| int64_t rate_sum = 0; |
| int64_t dist_sum = 0; |
| int64_t total_sse = 0; |
| |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| int64_t sse; |
| int rate; |
| int64_t dist; |
| |
| if (x->skip_chroma_rd && plane) continue; |
| |
| if (is_cur_buf_hbd(xd)) { |
| sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, bw, bh); |
| } else { |
| sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, |
| bh); |
| } |
| sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); |
| |
| model_rd_from_sse(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist); |
| |
| if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); |
| |
| total_sse += sse; |
| rate_sum += rate; |
| dist_sum += dist; |
| if (plane_rate) plane_rate[plane] = rate; |
| if (plane_sse) plane_sse[plane] = sse; |
| if (plane_dist) plane_dist[plane] = dist; |
| assert(rate_sum >= 0); |
| } |
| |
| if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; |
| if (skip_sse_sb) *skip_sse_sb = total_sse << 4; |
| rate_sum = AOMMIN(rate_sum, INT_MAX); |
| *out_rate_sum = (int)rate_sum; |
| *out_dist_sum = dist_sum; |
| } |
| |
| int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, |
| intptr_t block_size, int64_t *ssz) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += coeff[i] * coeff[i]; |
| } |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| int64_t av1_highbd_block_error_c(const tran_low_t *coeff, |
| const tran_low_t *dqcoeff, intptr_t block_size, |
| int64_t *ssz, int bd) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| int shift = 2 * (bd - 8); |
| int rounding = shift > 0 ? 1 << (shift - 1) : 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int64_t diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; |
| } |
| assert(error >= 0 && sqcoeff >= 0); |
| error = (error + rounding) >> shift; |
| sqcoeff = (sqcoeff + rounding) >> shift; |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| // Get transform block visible dimensions cropped to the MI units. |
| static void get_txb_dimensions(const MACROBLOCKD *xd, int plane, |
| BLOCK_SIZE plane_bsize, int blk_row, int blk_col, |
| BLOCK_SIZE tx_bsize, int *width, int *height, |
| int *visible_width, int *visible_height) { |
| assert(tx_bsize <= plane_bsize); |
| int txb_height = block_size_high[tx_bsize]; |
| int txb_width = block_size_wide[tx_bsize]; |
| const int block_height = block_size_high[plane_bsize]; |
| const int block_width = block_size_wide[plane_bsize]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| // TODO(aconverse@google.com): Investigate using crop_width/height here rather |
| // than the MI size |
| const int block_rows = |
| (xd->mb_to_bottom_edge >= 0) |
| ? block_height |
| : (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + block_height; |
| const int block_cols = |
| (xd->mb_to_right_edge >= 0) |
| ? block_width |
| : (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + block_width; |
| const int tx_unit_size = tx_size_wide_log2[0]; |
| if (width) *width = txb_width; |
| if (height) *height = txb_height; |
| *visible_width = clamp(block_cols - (blk_col << tx_unit_size), 0, txb_width); |
| *visible_height = |
| clamp(block_rows - (blk_row << tx_unit_size), 0, txb_height); |
| } |
| |
| // Compute the pixel domain distortion from src and dst on all visible 4x4s in |
| // the |
| // transform block. |
| static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x, |
| int plane, const uint8_t *src, const int src_stride, |
| const uint8_t *dst, const int dst_stride, |
| int blk_row, int blk_col, |
| const BLOCK_SIZE plane_bsize, |
| const BLOCK_SIZE tx_bsize) { |
| int txb_rows, txb_cols, visible_rows, visible_cols; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, |
| &txb_cols, &txb_rows, &visible_cols, &visible_rows); |
| assert(visible_rows > 0); |
| assert(visible_cols > 0); |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && plane == 0) |
| return (unsigned)av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride, |
| tx_bsize, txb_cols, txb_rows, visible_cols, |
| visible_rows, x->qindex); |
| #endif // CONFIG_DIST_8X8 |
| |
| unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst, |
| dst_stride, tx_bsize, txb_rows, |
| txb_cols, visible_rows, visible_cols); |
| |
| return sse; |
| } |
| |
| // Compute the pixel domain distortion from diff on all visible 4x4s in the |
| // transform block. |
| static INLINE int64_t pixel_diff_dist(const MACROBLOCK *x, int plane, |
| int blk_row, int blk_col, |
| const BLOCK_SIZE plane_bsize, |
| const BLOCK_SIZE tx_bsize, |
| unsigned int *block_mse_q8) { |
| int visible_rows, visible_cols; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL, |
| NULL, &visible_cols, &visible_rows); |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int16_t *diff = x->plane[plane].src_diff; |
| #if CONFIG_DIST_8X8 |
| int txb_height = block_size_high[tx_bsize]; |
| int txb_width = block_size_wide[tx_bsize]; |
| if (x->using_dist_8x8 && plane == 0) { |
| const int src_stride = x->plane[plane].src.stride; |
| const int src_idx = (blk_row * src_stride + blk_col) |
| << tx_size_wide_log2[0]; |
| const int diff_idx = (blk_row * diff_stride + blk_col) |
| << tx_size_wide_log2[0]; |
| const uint8_t *src = &x->plane[plane].src.buf[src_idx]; |
| return dist_8x8_diff(x, src, src_stride, diff + diff_idx, diff_stride, |
| txb_width, txb_height, visible_cols, visible_rows, |
| x->qindex); |
| } |
| #endif |
| diff += ((blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]); |
| uint64_t sse = |
| aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, visible_rows); |
| if (block_mse_q8 != NULL) { |
| if (visible_cols > 0 && visible_rows > 0) |
| *block_mse_q8 = |
| (unsigned int)((256 * sse) / (visible_cols * visible_rows)); |
| else |
| *block_mse_q8 = UINT_MAX; |
| } |
| return sse; |
| } |
| |
| int av1_count_colors(const uint8_t *src, int stride, int rows, int cols, |
| int *val_count) { |
| const int max_pix_val = 1 << 8; |
| memset(val_count, 0, max_pix_val * sizeof(val_count[0])); |
| for (int r = 0; r < rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| const int this_val = src[r * stride + c]; |
| assert(this_val < max_pix_val); |
| ++val_count[this_val]; |
| } |
| } |
| int n = 0; |
| for (int i = 0; i < max_pix_val; ++i) { |
| if (val_count[i]) ++n; |
| } |
| return n; |
| } |
| |
| int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols, |
| int bit_depth, int *val_count) { |
| assert(bit_depth <= 12); |
| const int max_pix_val = 1 << bit_depth; |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| memset(val_count, 0, max_pix_val * sizeof(val_count[0])); |
| for (int r = 0; r < rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| const int this_val = src[r * stride + c]; |
| assert(this_val < max_pix_val); |
| if (this_val >= max_pix_val) return 0; |
| ++val_count[this_val]; |
| } |
| } |
| int n = 0; |
| for (int i = 0; i < max_pix_val; ++i) { |
| if (val_count[i]) ++n; |
| } |
| return n; |
| } |
| |
| static void inverse_transform_block_facade(MACROBLOCKD *xd, int plane, |
| int block, int blk_row, int blk_col, |
| int eob, int reduced_tx_set) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| const PLANE_TYPE plane_type = get_plane_type(plane); |
| const TX_SIZE tx_size = av1_get_tx_size(plane, xd); |
| const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, |
| tx_size, reduced_tx_set); |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, |
| dst_stride, eob, reduced_tx_set); |
| } |
| |
| static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record, const uint32_t hash); |
| |
| static uint32_t get_intra_txb_hash(MACROBLOCK *x, int plane, int blk_row, |
| int blk_col, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size) { |
| int16_t tmp_data[64 * 64]; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int16_t *diff = x->plane[plane].src_diff; |
| const int16_t *cur_diff_row = diff + 4 * blk_row * diff_stride + 4 * blk_col; |
| const int txb_w = tx_size_wide[tx_size]; |
| const int txb_h = tx_size_high[tx_size]; |
| uint8_t *hash_data = (uint8_t *)cur_diff_row; |
| if (txb_w != diff_stride) { |
| int16_t *cur_hash_row = tmp_data; |
| for (int i = 0; i < txb_h; i++) { |
| memcpy(cur_hash_row, cur_diff_row, sizeof(*diff) * txb_w); |
| cur_hash_row += txb_w; |
| cur_diff_row += diff_stride; |
| } |
| hash_data = (uint8_t *)tmp_data; |
| } |
| CRC32C *crc = &x->mb_rd_record.crc_calculator; |
| const uint32_t hash = av1_get_crc32c_value(crc, hash_data, 2 * txb_w * txb_h); |
| return (hash << 5) + tx_size; |
| } |
| |
| static INLINE void dist_block_tx_domain(MACROBLOCK *x, int plane, int block, |
| TX_SIZE tx_size, int64_t *out_dist, |
| int64_t *out_sse) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| // Transform domain distortion computation is more efficient as it does |
| // not involve an inverse transform, but it is less accurate. |
| const int buffer_length = av1_get_max_eob(tx_size); |
| int64_t this_sse; |
| // TX-domain results need to shift down to Q2/D10 to match pixel |
| // domain distortion values which are in Q2^2 |
| int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2; |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| |
| if (is_cur_buf_hbd(xd)) |
| *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, &this_sse, |
| xd->bd); |
| else |
| *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse); |
| |
| *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift); |
| *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift); |
| } |
| |
| static INLINE int64_t dist_block_px_domain(const AV1_COMP *cpi, MACROBLOCK *x, |
| int plane, BLOCK_SIZE plane_bsize, |
| int block, int blk_row, int blk_col, |
| TX_SIZE tx_size) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const uint16_t eob = p->eobs[block]; |
| const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; |
| const int bsw = block_size_wide[tx_bsize]; |
| const int bsh = block_size_high[tx_bsize]; |
| const int src_stride = x->plane[plane].src.stride; |
| const int dst_stride = xd->plane[plane].dst.stride; |
| // Scale the transform block index to pixel unit. |
| const int src_idx = (blk_row * src_stride + blk_col) << tx_size_wide_log2[0]; |
| const int dst_idx = (blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]; |
| const uint8_t *src = &x->plane[plane].src.buf[src_idx]; |
| const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx]; |
| const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| |
| assert(cpi != NULL); |
| assert(tx_size_wide_log2[0] == tx_size_high_log2[0]); |
| |
| uint8_t *recon; |
| DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]); |
| |
| if (is_cur_buf_hbd(xd)) { |
| recon = CONVERT_TO_BYTEPTR(recon16); |
| av1_highbd_convolve_2d_copy_sr(CONVERT_TO_SHORTPTR(dst), dst_stride, |
| CONVERT_TO_SHORTPTR(recon), MAX_TX_SIZE, bsw, |
| bsh, NULL, NULL, 0, 0, NULL, xd->bd); |
| } else { |
| recon = (uint8_t *)recon16; |
| av1_convolve_2d_copy_sr(dst, dst_stride, recon, MAX_TX_SIZE, bsw, bsh, NULL, |
| NULL, 0, 0, NULL); |
| } |
| |
| const PLANE_TYPE plane_type = get_plane_type(plane); |
| TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, |
| cpi->common.reduced_tx_set_used); |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon, |
| MAX_TX_SIZE, eob, |
| cpi->common.reduced_tx_set_used); |
| |
| return 16 * pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE, |
| blk_row, blk_col, plane_bsize, tx_bsize); |
| } |
| |
| static double get_diff_mean(const uint8_t *src, int src_stride, |
| const uint8_t *dst, int dst_stride, int w, int h) { |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| const int diff = src[j * src_stride + i] - dst[j * dst_stride + i]; |
| sum += diff; |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| |
| static double get_highbd_diff_mean(const uint8_t *src8, int src_stride, |
| const uint8_t *dst8, int dst_stride, int w, |
| int h) { |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| const uint16_t *dst = CONVERT_TO_SHORTPTR(dst8); |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| const int diff = src[j * src_stride + i] - dst[j * dst_stride + i]; |
| sum += diff; |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| |
| static double get_sse_norm(const int16_t *diff, int stride, int w, int h) { |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| const int err = diff[j * stride + i]; |
| sum += err * err; |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| |
| static double get_sad_norm(const int16_t *diff, int stride, int w, int h) { |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| sum += abs(diff[j * stride + i]); |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| |
| static void get_2x2_normalized_sses_and_sads( |
| const AV1_COMP *const cpi, BLOCK_SIZE tx_bsize, const uint8_t *const src, |
| int src_stride, const uint8_t *const dst, int dst_stride, |
| const int16_t *const src_diff, int diff_stride, double *const sse_norm_arr, |
| double *const sad_norm_arr) { |
| const BLOCK_SIZE tx_bsize_half = |
| get_partition_subsize(tx_bsize, PARTITION_SPLIT); |
| if (tx_bsize_half == BLOCK_INVALID) { // manually calculate stats |
| const int half_width = block_size_wide[tx_bsize] / 2; |
| const int half_height = block_size_high[tx_bsize] / 2; |
| for (int row = 0; row < 2; ++row) { |
| for (int col = 0; col < 2; ++col) { |
| const int16_t *const this_src_diff = |
| src_diff + row * half_height * diff_stride + col * half_width; |
| if (sse_norm_arr) { |
| sse_norm_arr[row * 2 + col] = |
| get_sse_norm(this_src_diff, diff_stride, half_width, half_height); |
| } |
| if (sad_norm_arr) { |
| sad_norm_arr[row * 2 + col] = |
| get_sad_norm(this_src_diff, diff_stride, half_width, half_height); |
| } |
| } |
| } |
| } else { // use function pointers to calculate stats |
| const int half_width = block_size_wide[tx_bsize_half]; |
| const int half_height = block_size_high[tx_bsize_half]; |
| const int num_samples_half = half_width * half_height; |
| for (int row = 0; row < 2; ++row) { |
| for (int col = 0; col < 2; ++col) { |
| const uint8_t *const this_src = |
| src + row * half_height * src_stride + col * half_width; |
| const uint8_t *const this_dst = |
| dst + row * half_height * dst_stride + col * half_width; |
| |
| if (sse_norm_arr) { |
| unsigned int this_sse; |
| cpi->fn_ptr[tx_bsize_half].vf(this_src, src_stride, this_dst, |
| dst_stride, &this_sse); |
| sse_norm_arr[row * 2 + col] = (double)this_sse / num_samples_half; |
| } |
| |
| if (sad_norm_arr) { |
| const unsigned int this_sad = cpi->fn_ptr[tx_bsize_half].sdf( |
| this_src, src_stride, this_dst, dst_stride); |
| sad_norm_arr[row * 2 + col] = (double)this_sad / num_samples_half; |
| } |
| } |
| } |
| } |
| } |
| |
| // NOTE: CONFIG_COLLECT_RD_STATS has 3 possible values |
| // 0: Do not collect any RD stats |
| // 1: Collect RD stats for transform units |
| // 2: Collect RD stats for partition units |
| #if CONFIG_COLLECT_RD_STATS |
| |
| static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize, |
| const uint8_t *src, int src_stride, |
| const uint8_t *dst, int dst_stride, |
| int need_4th, double *hordist, |
| double *verdist) { |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| if (bsize < BLOCK_16X16 || (bsize >= BLOCK_4X16 && bsize <= BLOCK_32X8)) { |
| // Special cases: calculate 'esq' values manually, as we don't have 'vf' |
| // functions for the 16 (very small) sub-blocks of this block. |
| const int w_shift = (bw == 4) ? 0 : (bw == 8) ? 1 : (bw == 16) ? 2 : 3; |
| const int h_shift = (bh == 4) ? 0 : (bh == 8) ? 1 : (bh == 16) ? 2 : 3; |
| assert(bw <= 32); |
| assert(bh <= 32); |
| assert(((bw - 1) >> w_shift) + (((bh - 1) >> h_shift) << 2) == 15); |
| if (cpi->common.seq_params.use_highbitdepth) { |
| const uint16_t *src16 = CONVERT_TO_SHORTPTR(src); |
| const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| for (int i = 0; i < bh; ++i) |
| for (int j = 0; j < bw; ++j) { |
| const int index = (j >> w_shift) + ((i >> h_shift) << 2); |
| esq[index] += |
| (src16[j + i * src_stride] - dst16[j + i * dst_stride]) * |
| (src16[j + i * src_stride] - dst16[j + i * dst_stride]); |
| } |
| } else { |
| for (int i = 0; i < bh; ++i) |
| for (int j = 0; j < bw; ++j) { |
| const int index = (j >> w_shift) + ((i >> h_shift) << 2); |
| esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) * |
| (src[j + i * src_stride] - dst[j + i * dst_stride]); |
| } |
| } |
| } else { // Calculate 'esq' values using 'vf' functions on the 16 sub-blocks. |
| const int f_index = |
| (bsize < BLOCK_SIZES) ? bsize - BLOCK_16X16 : bsize - BLOCK_8X16; |
| assert(f_index >= 0 && f_index < BLOCK_SIZES_ALL); |
| const BLOCK_SIZE subsize = (BLOCK_SIZE)f_index; |
| assert(block_size_wide[bsize] == 4 * block_size_wide[subsize]); |
| assert(block_size_high[bsize] == 4 * block_size_high[subsize]); |
| cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[0]); |
| cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, |
| &esq[1]); |
| cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, |
| &esq[2]); |
| cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[3]); |
| src += bh / 4 * src_stride; |
| dst += bh / 4 * dst_stride; |
| |
| cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[4]); |
| cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, |
| &esq[5]); |
| cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, |
| &esq[6]); |
| cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[7]); |
| src += bh / 4 * src_stride; |
| dst += bh / 4 * dst_stride; |
| |
| cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[8]); |
| cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, |
| &esq[9]); |
| cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, |
| &esq[10]); |
| cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[11]); |
| src += bh / 4 * src_stride; |
| dst += bh / 4 * dst_stride; |
| |
| cpi->fn_ptr[subsize].vf(src, src_stride, dst, dst_stride, &esq[12]); |
| cpi->fn_ptr[subsize].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, |
| &esq[13]); |
| cpi->fn_ptr[subsize].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, |
| &esq[14]); |
| cpi->fn_ptr[subsize].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[15]); |
| } |
| |
| double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + |
| esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + |
| esq[12] + esq[13] + esq[14] + esq[15]; |
| if (total > 0) { |
| const double e_recip = 1.0 / total; |
| hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip; |
| hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip; |
| hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip; |
| if (need_4th) { |
| hordist[3] = ((double)esq[3] + esq[7] + esq[11] + esq[15]) * e_recip; |
| } |
| verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip; |
| verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip; |
| verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip; |
| if (need_4th) { |
| verdist[3] = ((double)esq[12] + esq[13] + esq[14] + esq[15]) * e_recip; |
| } |
| } else { |
| hordist[0] = verdist[0] = 0.25; |
| hordist[1] = verdist[1] = 0.25; |
| hordist[2] = verdist[2] = 0.25; |
| if (need_4th) { |
| hordist[3] = verdist[3] = 0.25; |
| } |
| } |
| } |
| |
| #if CONFIG_COLLECT_RD_STATS == 1 |
| static double get_mean(const int16_t *diff, int stride, int w, int h) { |
| double sum = 0.0; |
| for (int j = 0; j < h; ++j) { |
| for (int i = 0; i < w; ++i) { |
| sum += diff[j * stride + i]; |
| } |
| } |
| assert(w > 0 && h > 0); |
| return sum / (w * h); |
| } |
| |
| static void PrintTransformUnitStats(const AV1_COMP *const cpi, MACROBLOCK *x, |
| const RD_STATS *const rd_stats, int blk_row, |
| int blk_col, BLOCK_SIZE plane_bsize, |
| TX_SIZE tx_size, TX_TYPE tx_type, |
| int64_t rd) { |
| if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; |
| |
| // Generate small sample to restrict output size. |
| static unsigned int seed = 21743; |
| if (lcg_rand16(&seed) % 256 > 0) return; |
| |
| const char output_file[] = "tu_stats.txt"; |
| FILE *fout = fopen(output_file, "a"); |
| if (!fout) return; |
| |
| const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const int plane = 0; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int txw = tx_size_wide[tx_size]; |
| const int txh = tx_size_high[tx_size]; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int q_step = pd->dequant_Q3[1] >> dequant_shift; |
| const int num_samples = txw * txh; |
| |
| const double rate_norm = (double)rd_stats->rate / num_samples; |
| const double dist_norm = (double)rd_stats->dist / num_samples; |
| |
| fprintf(fout, "%g %g", rate_norm, dist_norm); |
| |
| const int src_stride = p->src.stride; |
| const uint8_t *const src = |
| &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; |
| const int dst_stride = pd->dst.stride; |
| const uint8_t *const dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| unsigned int sse; |
| cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); |
| const double sse_norm = (double)sse / num_samples; |
| |
| const unsigned int sad = |
| cpi->fn_ptr[tx_bsize].sdf(src, src_stride, dst, dst_stride); |
| const double sad_norm = (double)sad / num_samples; |
| |
| fprintf(fout, " %g %g", sse_norm, sad_norm); |
| |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int16_t *const src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) << tx_size_wide_log2[0]]; |
| |
| double sse_norm_arr[4], sad_norm_arr[4]; |
| get_2x2_normalized_sses_and_sads(cpi, tx_bsize, src, src_stride, dst, |
| dst_stride, src_diff, diff_stride, |
| sse_norm_arr, sad_norm_arr); |
| for (int i = 0; i < 4; ++i) { |
| fprintf(fout, " %g", sse_norm_arr[i]); |
| } |
| for (int i = 0; i < 4; ++i) { |
| fprintf(fout, " %g", sad_norm_arr[i]); |
| } |
| |
| const TX_TYPE_1D tx_type_1d_row = htx_tab[tx_type]; |
| const TX_TYPE_1D tx_type_1d_col = vtx_tab[tx_type]; |
| |
| fprintf(fout, " %d %d %d %d %d", q_step, tx_size_wide[tx_size], |
| tx_size_high[tx_size], tx_type_1d_row, tx_type_1d_col); |
| |
| int model_rate; |
| int64_t model_dist; |
| model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, tx_bsize, plane, sse, num_samples, |
| &model_rate, &model_dist); |
| const double model_rate_norm = (double)model_rate / num_samples; |
| const double model_dist_norm = (double)model_dist / num_samples; |
| fprintf(fout, " %g %g", model_rate_norm, model_dist_norm); |
| |
| const double mean = get_mean(src_diff, diff_stride, txw, txh); |
| float hor_corr, vert_corr; |
| av1_get_horver_correlation_full(src_diff, diff_stride, txw, txh, &hor_corr, |
| &vert_corr); |
| fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); |
| |
| double hdist[4] = { 0 }, vdist[4] = { 0 }; |
| get_energy_distribution_fine(cpi, tx_bsize, src, src_stride, dst, dst_stride, |
| 1, hdist, vdist); |
| fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], |
| hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); |
| |
| fprintf(fout, " %d %" PRId64, x->rdmult, rd); |
| |
| fprintf(fout, "\n"); |
| fclose(fout); |
| } |
| #endif // CONFIG_COLLECT_RD_STATS == 1 |
| |
| #if CONFIG_COLLECT_RD_STATS >= 2 |
| static void PrintPredictionUnitStats(const AV1_COMP *const cpi, |
| const TileDataEnc *tile_data, |
| MACROBLOCK *x, |
| const RD_STATS *const rd_stats, |
| BLOCK_SIZE plane_bsize) { |
| if (rd_stats->invalid_rate) return; |
| if (rd_stats->rate == INT_MAX || rd_stats->dist == INT64_MAX) return; |
| |
| if (cpi->sf.inter_mode_rd_model_estimation == 1 && |
| (tile_data == NULL || |
| !tile_data->inter_mode_rd_models[plane_bsize].ready)) |
| return; |
| (void)tile_data; |
| // Generate small sample to restrict output size. |
| static unsigned int seed = 95014; |
| |
| if ((lcg_rand16(&seed) % (1 << (14 - num_pels_log2_lookup[plane_bsize]))) != |
| 1) |
| return; |
| |
| const char output_file[] = "pu_stats.txt"; |
| FILE *fout = fopen(output_file, "a"); |
| if (!fout) return; |
| |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const int plane = 0; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| int bw, bh; |
| get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, |
| &bh); |
| const int num_samples = bw * bh; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int q_step = pd->dequant_Q3[1] >> dequant_shift; |
| |
| const double rate_norm = (double)rd_stats->rate / num_samples; |
| const double dist_norm = (double)rd_stats->dist / num_samples; |
| const double rdcost_norm = |
| (double)RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) / num_samples; |
| |
| fprintf(fout, "%g %g %g", rate_norm, dist_norm, rdcost_norm); |
| |
| const int src_stride = p->src.stride; |
| const uint8_t *const src = p->src.buf; |
| const int dst_stride = pd->dst.stride; |
| const uint8_t *const dst = pd->dst.buf; |
| const int16_t *const src_diff = p->src_diff; |
| const int shift = (xd->bd - 8); |
| |
| int64_t sse; |
| if (is_cur_buf_hbd(xd)) { |
| sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| bw, bh); |
| } else { |
| sse = |
| aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, bh); |
| } |
| sse = ROUND_POWER_OF_TWO(sse, shift * 2); |
| const double sse_norm = (double)sse / num_samples; |
| |
| const unsigned int sad = |
| cpi->fn_ptr[plane_bsize].sdf(src, src_stride, dst, dst_stride); |
| const double sad_norm = |
| (double)sad / (1 << num_pels_log2_lookup[plane_bsize]); |
| |
| fprintf(fout, " %g %g", sse_norm, sad_norm); |
| |
| double sse_norm_arr[4], sad_norm_arr[4]; |
| get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst, |
| dst_stride, src_diff, diff_stride, |
| sse_norm_arr, sad_norm_arr); |
| if (shift) { |
| for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift)); |
| for (int k = 0; k < 4; ++k) sad_norm_arr[k] /= (1 << shift); |
| } |
| for (int i = 0; i < 4; ++i) { |
| fprintf(fout, " %g", sse_norm_arr[i]); |
| } |
| for (int i = 0; i < 4; ++i) { |
| fprintf(fout, " %g", sad_norm_arr[i]); |
| } |
| |
| fprintf(fout, " %d %d %d %d", q_step, x->rdmult, bw, bh); |
| |
| int model_rate; |
| int64_t model_dist; |
| model_rd_sse_fn[MODELRD_CURVFIT](cpi, x, plane_bsize, plane, sse, num_samples, |
| &model_rate, &model_dist); |
| const double model_rdcost_norm = |
| (double)RDCOST(x->rdmult, model_rate, model_dist) / num_samples; |
| const double model_rate_norm = (double)model_rate / num_samples; |
| const double model_dist_norm = (double)model_dist / num_samples; |
| fprintf(fout, " %g %g %g", model_rate_norm, model_dist_norm, |
| model_rdcost_norm); |
| |
| double mean; |
| if (is_cur_buf_hbd(xd)) { |
| mean = get_highbd_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, bw, bh); |
| } else { |
| mean = get_diff_mean(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| bw, bh); |
| } |
| mean /= (1 << shift); |
| float hor_corr, vert_corr; |
| av1_get_horver_correlation_full(src_diff, diff_stride, bw, bh, &hor_corr, |
| &vert_corr); |
| fprintf(fout, " %g %g %g", mean, hor_corr, vert_corr); |
| |
| double hdist[4] = { 0 }, vdist[4] = { 0 }; |
| get_energy_distribution_fine(cpi, plane_bsize, src, src_stride, dst, |
| dst_stride, 1, hdist, vdist); |
| fprintf(fout, " %g %g %g %g %g %g %g %g", hdist[0], hdist[1], hdist[2], |
| hdist[3], vdist[0], vdist[1], vdist[2], vdist[3]); |
| |
| if (cpi->sf.inter_mode_rd_model_estimation == 1) { |
| assert(tile_data->inter_mode_rd_models[plane_bsize].ready); |
| const int64_t overall_sse = get_sse(cpi, x); |
| int est_residue_cost = 0; |
| int64_t est_dist = 0; |
| get_est_rate_dist(tile_data, plane_bsize, overall_sse, &est_residue_cost, |
| &est_dist); |
| const double est_residue_cost_norm = (double)est_residue_cost / num_samples; |
| const double est_dist_norm = (double)est_dist / num_samples; |
| const double est_rdcost_norm = |
| (double)RDCOST(x->rdmult, est_residue_cost, est_dist) / num_samples; |
| fprintf(fout, " %g %g %g", est_residue_cost_norm, est_dist_norm, |
| est_rdcost_norm); |
| } |
| |
| fprintf(fout, "\n"); |
| fclose(fout); |
| } |
| #endif // CONFIG_COLLECT_RD_STATS >= 2 |
| #endif // CONFIG_COLLECT_RD_STATS |
| |
| static void model_rd_with_dnn(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, |
| int plane, int64_t sse, int num_samples, |
| int *rate, int64_t *dist) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int log_numpels = num_pels_log2_lookup[plane_bsize]; |
| |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int q_step = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1); |
| |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| int bw, bh; |
| get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, |
| &bh); |
| const int src_stride = p->src.stride; |
| const uint8_t *const src = p->src.buf; |
| const int dst_stride = pd->dst.stride; |
| const uint8_t *const dst = pd->dst.buf; |
| const int16_t *const src_diff = p->src_diff; |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int shift = (xd->bd - 8); |
| |
| if (sse == 0) { |
| if (rate) *rate = 0; |
| if (dist) *dist = 0; |
| return; |
| } |
| if (plane) { |
| int model_rate; |
| int64_t model_dist; |
| model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, num_samples, |
| &model_rate, &model_dist); |
| if (rate) *rate = model_rate; |
| if (dist) *dist = model_dist; |
| return; |
| } |
| |
| aom_clear_system_state(); |
| const double sse_norm = (double)sse / num_samples; |
| |
| double sse_norm_arr[4]; |
| get_2x2_normalized_sses_and_sads(cpi, plane_bsize, src, src_stride, dst, |
| dst_stride, src_diff, diff_stride, |
| sse_norm_arr, NULL); |
| double mean; |
| if (is_cur_buf_hbd(xd)) { |
| mean = get_highbd_diff_mean(src, src_stride, dst, dst_stride, bw, bh); |
| } else { |
| mean = get_diff_mean(src, src_stride, dst, dst_stride, bw, bh); |
| } |
| if (shift) { |
| for (int k = 0; k < 4; ++k) sse_norm_arr[k] /= (1 << (2 * shift)); |
| mean /= (1 << shift); |
| } |
| double sse_norm_sum = 0.0, sse_frac_arr[3]; |
| for (int k = 0; k < 4; ++k) sse_norm_sum += sse_norm_arr[k]; |
| for (int k = 0; k < 3; ++k) |
| sse_frac_arr[k] = |
| sse_norm_sum > 0.0 ? sse_norm_arr[k] / sse_norm_sum : 0.25; |
| const double q_sqr = (double)(q_step * q_step); |
| const double q_sqr_by_sse_norm = q_sqr / (sse_norm + 1.0); |
| const double mean_sqr_by_sse_norm = mean * mean / (sse_norm + 1.0); |
| float hor_corr, vert_corr; |
| av1_get_horver_correlation_full(src_diff, diff_stride, bw, bh, &hor_corr, |
| &vert_corr); |
| |
| float features[NUM_FEATURES_PUSTATS]; |
| features[0] = (float)hor_corr; |
| features[1] = (float)log_numpels; |
| features[2] = (float)mean_sqr_by_sse_norm; |
| features[3] = (float)q_sqr_by_sse_norm; |
| features[4] = (float)sse_frac_arr[0]; |
| features[5] = (float)sse_frac_arr[1]; |
| features[6] = (float)sse_frac_arr[2]; |
| features[7] = (float)vert_corr; |
| |
| float rate_f, dist_by_sse_norm_f; |
| av1_nn_predict(features, &av1_pustats_dist_nnconfig, &dist_by_sse_norm_f); |
| av1_nn_predict(features, &av1_pustats_rate_nnconfig, &rate_f); |
| aom_clear_system_state(); |
| const float dist_f = (float)((double)dist_by_sse_norm_f * (1.0 + sse_norm)); |
| int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); |
| int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); |
| |
| // Check if skip is better |
| if (rate_i == 0) { |
| dist_i = sse << 4; |
| } else if (RDCOST(x->rdmult, rate_i, dist_i) >= |
| RDCOST(x->rdmult, 0, sse << 4)) { |
| rate_i = 0; |
| dist_i = sse << 4; |
| } |
| |
| if (rate) *rate = rate_i; |
| if (dist) *dist = dist_i; |
| return; |
| } |
| |
| static void model_rd_for_sb_with_dnn( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, |
| int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { |
| (void)mi_row; |
| (void)mi_col; |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| const int ref = xd->mi[0]->ref_frame[0]; |
| |
| int64_t rate_sum = 0; |
| int64_t dist_sum = 0; |
| int64_t total_sse = 0; |
| |
| for (int plane = plane_from; plane <= plane_to; ++plane) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| int64_t dist, sse; |
| int rate; |
| |
| if (x->skip_chroma_rd && plane) continue; |
| |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const int shift = (xd->bd - 8); |
| int bw, bh; |
| get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, |
| &bw, &bh); |
| if (is_cur_buf_hbd(xd)) { |
| sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, bw, bh); |
| } else { |
| sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, |
| bh); |
| } |
| sse = ROUND_POWER_OF_TWO(sse, shift * 2); |
| |
| model_rd_with_dnn(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist); |
| |
| if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); |
| |
| total_sse += sse; |
| rate_sum += rate; |
| dist_sum += dist; |
| |
| if (plane_rate) plane_rate[plane] = rate; |
| if (plane_sse) plane_sse[plane] = sse; |
| if (plane_dist) plane_dist[plane] = dist; |
| } |
| |
| if (skip_txfm_sb) *skip_txfm_sb = rate_sum == 0; |
| if (skip_sse_sb) *skip_sse_sb = total_sse << 4; |
| *out_rate_sum = (int)rate_sum; |
| *out_dist_sum = dist_sum; |
| } |
| |
| // Fits a surface for rate and distortion using as features: |
| // log2(sse_norm + 1) and log2(sse_norm/qstep^2) |
| static void model_rd_with_surffit(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| BLOCK_SIZE plane_bsize, int plane, |
| int64_t sse, int num_samples, int *rate, |
| int64_t *dist) { |
| (void)cpi; |
| (void)plane_bsize; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int qstep = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1); |
| if (sse == 0) { |
| if (rate) *rate = 0; |
| if (dist) *dist = 0; |
| return; |
| } |
| aom_clear_system_state(); |
| const double sse_norm = (double)sse / num_samples; |
| const double qstepsqr = (double)qstep * qstep; |
| const double xm = log(sse_norm + 1.0) / log(2.0); |
| const double yl = log(sse_norm / qstepsqr) / log(2.0); |
| double rate_f, dist_by_sse_norm_f; |
| |
| av1_model_rd_surffit(plane_bsize, sse_norm, xm, yl, &rate_f, |
| &dist_by_sse_norm_f); |
| |
| const double dist_f = dist_by_sse_norm_f * sse_norm; |
| int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); |
| int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); |
| aom_clear_system_state(); |
| |
| // Check if skip is better |
| if (rate_i == 0) { |
| dist_i = sse << 4; |
| } else if (RDCOST(x->rdmult, rate_i, dist_i) >= |
| RDCOST(x->rdmult, 0, sse << 4)) { |
| rate_i = 0; |
| dist_i = sse << 4; |
| } |
| |
| if (rate) *rate = rate_i; |
| if (dist) *dist = dist_i; |
| } |
| |
| static void model_rd_for_sb_with_surffit( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, |
| int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { |
| (void)mi_row; |
| (void)mi_col; |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| const int ref = xd->mi[0]->ref_frame[0]; |
| |
| int64_t rate_sum = 0; |
| int64_t dist_sum = 0; |
| int64_t total_sse = 0; |
| |
| for (int plane = plane_from; plane <= plane_to; ++plane) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| int64_t dist, sse; |
| int rate; |
| |
| if (x->skip_chroma_rd && plane) continue; |
| |
| int bw, bh; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const int shift = (xd->bd - 8); |
| get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, |
| &bw, &bh); |
| if (is_cur_buf_hbd(xd)) { |
| sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, bw, bh); |
| } else { |
| sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, |
| bh); |
| } |
| sse = ROUND_POWER_OF_TWO(sse, shift * 2); |
| |
| model_rd_with_surffit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, |
| &dist); |
| |
| if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); |
| |
| total_sse += sse; |
| rate_sum += rate; |
| dist_sum += dist; |
| |
| if (plane_rate) plane_rate[plane] = rate; |
| if (plane_sse) plane_sse[plane] = sse; |
| if (plane_dist) plane_dist[plane] = dist; |
| } |
| |
| if (skip_txfm_sb) *skip_txfm_sb = rate_sum == 0; |
| if (skip_sse_sb) *skip_sse_sb = total_sse << 4; |
| *out_rate_sum = (int)rate_sum; |
| *out_dist_sum = dist_sum; |
| } |
| |
| // Fits a curve for rate and distortion using as feature: |
| // log2(sse_norm/qstep^2) |
| static void model_rd_with_curvfit(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| BLOCK_SIZE plane_bsize, int plane, |
| int64_t sse, int num_samples, int *rate, |
| int64_t *dist) { |
| (void)cpi; |
| (void)plane_bsize; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; |
| const int qstep = AOMMAX(pd->dequant_Q3[1] >> dequant_shift, 1); |
| |
| if (sse == 0) { |
| if (rate) *rate = 0; |
| if (dist) *dist = 0; |
| return; |
| } |
| aom_clear_system_state(); |
| const double sse_norm = (double)sse / num_samples; |
| const double qstepsqr = (double)qstep * qstep; |
| const double xqr = log2(sse_norm / qstepsqr); |
| |
| double rate_f, dist_by_sse_norm_f; |
| av1_model_rd_curvfit(plane_bsize, sse_norm, xqr, &rate_f, |
| &dist_by_sse_norm_f); |
| |
| const double dist_f = dist_by_sse_norm_f * sse_norm; |
| int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); |
| int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); |
| aom_clear_system_state(); |
| |
| // Check if skip is better |
| if (rate_i == 0) { |
| dist_i = sse << 4; |
| } else if (RDCOST(x->rdmult, rate_i, dist_i) >= |
| RDCOST(x->rdmult, 0, sse << 4)) { |
| rate_i = 0; |
| dist_i = sse << 4; |
| } |
| |
| if (rate) *rate = rate_i; |
| if (dist) *dist = dist_i; |
| } |
| |
| static void model_rd_for_sb_with_curvfit( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, |
| int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { |
| (void)mi_row; |
| (void)mi_col; |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| const int ref = xd->mi[0]->ref_frame[0]; |
| |
| int64_t rate_sum = 0; |
| int64_t dist_sum = 0; |
| int64_t total_sse = 0; |
| |
| for (int plane = plane_from; plane <= plane_to; ++plane) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| int64_t dist, sse; |
| int rate; |
| |
| if (x->skip_chroma_rd && plane) continue; |
| |
| int bw, bh; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const int shift = (xd->bd - 8); |
| get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, |
| &bw, &bh); |
| |
| if (is_cur_buf_hbd(xd)) { |
| sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, bw, bh); |
| } else { |
| sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, |
| bh); |
| } |
| |
| sse = ROUND_POWER_OF_TWO(sse, shift * 2); |
| model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, |
| &dist); |
| |
| if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); |
| |
| total_sse += sse; |
| rate_sum += rate; |
| dist_sum += dist; |
| |
| if (plane_rate) plane_rate[plane] = rate; |
| if (plane_sse) plane_sse[plane] = sse; |
| if (plane_dist) plane_dist[plane] = dist; |
| } |
| |
| if (skip_txfm_sb) *skip_txfm_sb = rate_sum == 0; |
| if (skip_sse_sb) *skip_sse_sb = total_sse << 4; |
| *out_rate_sum = (int)rate_sum; |
| *out_dist_sum = dist_sum; |
| } |
| |
| static int64_t search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, |
| int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| const TXB_CTX *const txb_ctx, |
| FAST_TX_SEARCH_MODE ftxs_mode, |
| int use_fast_coef_costing, int skip_trellis, |
| int64_t ref_best_rd, RD_STATS *best_rd_stats) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int is_inter = is_inter_block(mbmi); |
| int64_t best_rd = INT64_MAX; |
| uint16_t best_eob = 0; |
| TX_TYPE best_tx_type = DCT_DCT; |
| TX_TYPE last_tx_type = TX_TYPES; |
| const int fast_tx_search = ftxs_mode & FTXS_DCT_AND_1D_DCT_ONLY; |
| // The buffer used to swap dqcoeff in macroblockd_plane so we can keep dqcoeff |
| // of the best tx_type |
| DECLARE_ALIGNED(32, tran_low_t, this_dqcoeff[MAX_SB_SQUARE]); |
| tran_low_t *orig_dqcoeff = pd->dqcoeff; |
| tran_low_t *best_dqcoeff = this_dqcoeff; |
| const int txk_type_idx = |
| av1_get_txk_type_index(plane_bsize, blk_row, blk_col); |
| int perform_block_coeff_opt; |
| av1_invalid_rd_stats(best_rd_stats); |
| |
| TXB_RD_INFO *intra_txb_rd_info = NULL; |
| uint16_t cur_joint_ctx = 0; |
| const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); |
| const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); |
| const int within_border = |
| mi_row >= xd->tile.mi_row_start && |
| (mi_row + mi_size_high[plane_bsize] < xd->tile.mi_row_end) && |
| mi_col >= xd->tile.mi_col_start && |
| (mi_col + mi_size_wide[plane_bsize] < xd->tile.mi_col_end); |
| skip_trellis |= |
| cpi->optimize_seg_arr[mbmi->segment_id] == NO_TRELLIS_OPT || |
| cpi->optimize_seg_arr[mbmi->segment_id] == FINAL_PASS_TRELLIS_OPT; |
| if (within_border && cpi->sf.use_intra_txb_hash && frame_is_intra_only(cm) && |
| !is_inter && plane == 0 && |
| tx_size_wide[tx_size] == tx_size_high[tx_size]) { |
| const uint32_t intra_hash = |
| get_intra_txb_hash(x, plane, blk_row, blk_col, plane_bsize, tx_size); |
| const int intra_hash_idx = |
| find_tx_size_rd_info(&x->txb_rd_record_intra, intra_hash); |
| intra_txb_rd_info = &x->txb_rd_record_intra.tx_rd_info[intra_hash_idx]; |
| |
| cur_joint_ctx = (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx; |
| if (intra_txb_rd_info->entropy_context == cur_joint_ctx && |
| x->txb_rd_record_intra.tx_rd_info[intra_hash_idx].valid) { |
| mbmi->txk_type[txk_type_idx] = intra_txb_rd_info->tx_type; |
| const TX_TYPE ref_tx_type = |
| av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col, |
| tx_size, cpi->common.reduced_tx_set_used); |
| if (ref_tx_type == intra_txb_rd_info->tx_type) { |
| best_rd_stats->rate = intra_txb_rd_info->rate; |
| best_rd_stats->dist = intra_txb_rd_info->dist; |
| best_rd_stats->sse = intra_txb_rd_info->sse; |
| best_rd_stats->skip = intra_txb_rd_info->eob == 0; |
| x->plane[plane].eobs[block] = intra_txb_rd_info->eob; |
| x->plane[plane].txb_entropy_ctx[block] = |
| intra_txb_rd_info->txb_entropy_ctx; |
| best_rd = RDCOST(x->rdmult, best_rd_stats->rate, best_rd_stats->dist); |
| best_eob = intra_txb_rd_info->eob; |
| best_tx_type = intra_txb_rd_info->tx_type; |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| best_tx_type); |
| goto RECON_INTRA; |
| } |
| } |
| } |
| |
| int rate_cost = 0; |
| // if txk_allowed = TX_TYPES, >1 tx types are allowed, else, if txk_allowed < |
| // TX_TYPES, only that specific tx type is allowed. |
| TX_TYPE txk_allowed = TX_TYPES; |
| int txk_map[TX_TYPES] = { |
| 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 |
| }; |
| |
| if ((!is_inter && x->use_default_intra_tx_type) || |
| (is_inter && x->use_default_inter_tx_type)) { |
| txk_allowed = |
| get_default_tx_type(0, xd, tx_size, cpi->is_screen_content_type); |
| } else if (x->rd_model == LOW_TXFM_RD) { |
| if (plane == 0) txk_allowed = DCT_DCT; |
| } |
| |
| uint8_t best_txb_ctx = 0; |
| const TxSetType tx_set_type = |
| av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used); |
| |
| TX_TYPE uv_tx_type = DCT_DCT; |
| if (plane) { |
| // tx_type of PLANE_TYPE_UV should be the same as PLANE_TYPE_Y |
| uv_tx_type = txk_allowed = |
| av1_get_tx_type(get_plane_type(plane), xd, blk_row, blk_col, tx_size, |
| cm->reduced_tx_set_used); |
| } |
| const uint16_t ext_tx_used_flag = av1_ext_tx_used_flag[tx_set_type]; |
| if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32 || |
| ext_tx_used_flag == 0x0001 || |
| (is_inter && cpi->oxcf.use_inter_dct_only) || |
| (!is_inter && cpi->oxcf.use_intra_dct_only)) { |
| txk_allowed = DCT_DCT; |
| } |
| uint16_t allowed_tx_mask = 0; // 1: allow; 0: skip. |
| if (txk_allowed < TX_TYPES) { |
| allowed_tx_mask = 1 << txk_allowed; |
| allowed_tx_mask &= ext_tx_used_flag; |
| } else if (fast_tx_search) { |
| allowed_tx_mask = 0x0c01; // V_DCT, H_DCT, DCT_DCT |
| allowed_tx_mask &= ext_tx_used_flag; |
| } else { |
| assert(plane == 0); |
| allowed_tx_mask = ext_tx_used_flag; |
| // !fast_tx_search && txk_end != txk_start && plane == 0 |
| if (cpi->sf.tx_type_search.prune_mode >= PRUNE_2D_ACCURATE && is_inter) { |
| const uint16_t prune = |
| prune_tx_2D(x, plane_bsize, tx_size, blk_row, blk_col, tx_set_type, |
| cpi->sf.tx_type_search.prune_mode, txk_map); |
| allowed_tx_mask &= (~prune); |
| } |
| } |
| |
| if (cpi->oxcf.enable_flip_idtx == 0) { |
| for (TX_TYPE tx_type = FLIPADST_DCT; tx_type <= H_FLIPADST; ++tx_type) { |
| allowed_tx_mask &= ~(1 << tx_type); |
| } |
| } |
| |
| // Need to have at least one transform type allowed. |
| if (allowed_tx_mask == 0) { |
| txk_allowed = (plane ? uv_tx_type : DCT_DCT); |
| allowed_tx_mask = (1 << txk_allowed); |
| } |
| |
| const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; |
| int64_t block_sse = 0; |
| unsigned int block_mse_q8 = UINT_MAX; |
| block_sse = pixel_diff_dist(x, plane, blk_row, blk_col, plane_bsize, tx_bsize, |
| &block_mse_q8); |
| assert(block_mse_q8 != UINT_MAX); |
| if (is_cur_buf_hbd(xd)) { |
| block_sse = ROUND_POWER_OF_TWO(block_sse, (xd->bd - 8) * 2); |
| block_mse_q8 = ROUND_POWER_OF_TWO(block_mse_q8, (xd->bd - 8) * 2); |
| } |
| block_sse *= 16; |
| // Tranform domain distortion is accurate for higher residuals. |
| // TODO(any): Experiment with variance and mean based thresholds |
| int use_transform_domain_distortion = |
| (cpi->sf.use_transform_domain_distortion > 0) && |
| (block_mse_q8 >= cpi->tx_domain_dist_threshold) && |
| // Any 64-pt transforms only preserves half the coefficients. |
| // Therefore transform domain distortion is not valid for these |
| // transform sizes. |
| txsize_sqr_up_map[tx_size] != TX_64X64; |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8) use_transform_domain_distortion = 0; |
| #endif |
| int calc_pixel_domain_distortion_final = |
| cpi->sf.use_transform_domain_distortion == 1 && |
| use_transform_domain_distortion && x->rd_model != LOW_TXFM_RD; |
| if (calc_pixel_domain_distortion_final && |
| (txk_allowed < TX_TYPES || allowed_tx_mask == 0x0001)) |
| calc_pixel_domain_distortion_final = use_transform_domain_distortion = 0; |
| |
| const uint16_t *eobs_ptr = x->plane[plane].eobs; |
| |
| // Used mse based threshold logic to take decision of R-D of optimization of |
| // coeffs. For smaller residuals, coeff optimization would be helpful. For |
| // larger residuals, R-D optimization may not be effective. |
| // TODO(any): Experiment with variance and mean based thresholds |
| perform_block_coeff_opt = (block_mse_q8 <= cpi->coeff_opt_dist_threshold); |
| |
| assert(IMPLIES(txk_allowed < TX_TYPES, allowed_tx_mask == 1 << txk_allowed)); |
| |
| for (int idx = 0; idx < TX_TYPES; ++idx) { |
| const TX_TYPE tx_type = (TX_TYPE)txk_map[idx]; |
| if (!(allowed_tx_mask & (1 << tx_type))) continue; |
| if (plane == 0) mbmi->txk_type[txk_type_idx] = tx_type; |
| RD_STATS this_rd_stats; |
| av1_invalid_rd_stats(&this_rd_stats); |
| if (skip_trellis || (!perform_block_coeff_opt)) { |
| av1_xform_quant( |
| cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, tx_type, |
| USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); |
| rate_cost = av1_cost_coeffs(cm, x, plane, block, tx_size, tx_type, |
| txb_ctx, use_fast_coef_costing); |
| } else { |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, |
| tx_size, tx_type, AV1_XFORM_QUANT_FP); |
| if (cpi->sf.optimize_b_precheck && best_rd < INT64_MAX && |
| eobs_ptr[block] >= 4) { |
| // Calculate distortion quickly in transform domain. |
| dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist, |
| &this_rd_stats.sse); |
| |
| const int64_t best_rd_ = AOMMIN(best_rd, ref_best_rd); |
| const int64_t dist_cost_estimate = |
| RDCOST(x->rdmult, 0, AOMMIN(this_rd_stats.dist, this_rd_stats.sse)); |
| if (dist_cost_estimate - (dist_cost_estimate >> 3) > best_rd_) continue; |
| } |
| av1_optimize_b(cpi, x, plane, block, tx_size, tx_type, txb_ctx, |
| cpi->sf.trellis_eob_fast, &rate_cost); |
| } |
| if (eobs_ptr[block] == 0) { |
| // When eob is 0, pixel domain distortion is more efficient and accurate. |
| this_rd_stats.dist = this_rd_stats.sse = block_sse; |
| } else if (use_transform_domain_distortion) { |
| dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist, |
| &this_rd_stats.sse); |
| } else { |
| int64_t sse_diff = INT64_MAX; |
| // high_energy threshold assumes that every pixel within a txfm block |
| // has a residue energy of at least 25% of the maximum, i.e. 128 * 128 |
| // for 8 bit, then the threshold is scaled based on input bit depth. |
| const int64_t high_energy_thresh = |
| ((int64_t)128 * 128 * tx_size_2d[tx_size]) << ((xd->bd - 8) * 2); |
| const int is_high_energy = (block_sse >= high_energy_thresh); |
| if (tx_size == TX_64X64 || is_high_energy) { |
| // Because 3 out 4 quadrants of transform coefficients are forced to |
| // zero, the inverse transform has a tendency to overflow. sse_diff |
| // is effectively the energy of those 3 quadrants, here we use it |
| // to decide if we should do pixel domain distortion. If the energy |
| // is mostly in first quadrant, then it is unlikely that we have |
| // overflow issue in inverse transform. |
| dist_block_tx_domain(x, plane, block, tx_size, &this_rd_stats.dist, |
| &this_rd_stats.sse); |
| sse_diff = block_sse - this_rd_stats.sse; |
| } |
| if (tx_size != TX_64X64 || !is_high_energy || |
| (sse_diff * 2) < this_rd_stats.sse) { |
| const int64_t tx_domain_dist = this_rd_stats.dist; |
| this_rd_stats.dist = dist_block_px_domain( |
| cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); |
| // For high energy blocks, occasionally, the pixel domain distortion |
| // can be artificially low due to clamping at reconstruction stage |
| // even when inverse transform output is hugely different from the |
| // actual residue. |
| if (is_high_energy && this_rd_stats.dist < tx_domain_dist) |
| this_rd_stats.dist = tx_domain_dist; |
| } else { |
| this_rd_stats.dist += sse_diff; |
| } |
| this_rd_stats.sse = block_sse; |
| } |
| |
| this_rd_stats.rate = rate_cost; |
| |
| const int64_t rd = |
| RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); |
| |
| if (rd < best_rd) { |
| best_rd = rd; |
| *best_rd_stats = this_rd_stats; |
| best_tx_type = tx_type; |
| best_txb_ctx = x->plane[plane].txb_entropy_ctx[block]; |
| best_eob = x->plane[plane].eobs[block]; |
| last_tx_type = best_tx_type; |
| |
| // Swap qcoeff and dqcoeff buffers |
| tran_low_t *const tmp_dqcoeff = best_dqcoeff; |
| best_dqcoeff = pd->dqcoeff; |
| pd->dqcoeff = tmp_dqcoeff; |
| } |
| |
| #if CONFIG_COLLECT_RD_STATS == 1 |
| if (plane == 0) { |
| PrintTransformUnitStats(cpi, x, &this_rd_stats, blk_row, blk_col, |
| plane_bsize, tx_size, tx_type, rd); |
| } |
| #endif // CONFIG_COLLECT_RD_STATS == 1 |
| |
| #if COLLECT_TX_SIZE_DATA |
| // Generate small sample to restrict output size. |
| static unsigned int seed = 21743; |
| if (lcg_rand16(&seed) % 200 == 0) { |
| FILE *fp = NULL; |
| |
| if (within_border) { |
| fp = fopen(av1_tx_size_data_output_file, "a"); |
| } |
| |
| if (fp) { |
| // Transform info and RD |
| const int txb_w = tx_size_wide[tx_size]; |
| const int txb_h = tx_size_high[tx_size]; |
| |
| // Residue signal. |
| const int diff_stride = block_size_wide[plane_bsize]; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| const int16_t *src_diff = |
| &p->src_diff[(blk_row * diff_stride + blk_col) * 4]; |
| |
| for (int r = 0; r < txb_h; ++r) { |
| for (int c = 0; c < txb_w; ++c) { |
| fprintf(fp, "%d,", src_diff[c]); |
| } |
| src_diff += diff_stride; |
| } |
| |
| fprintf(fp, "%d,%d,%d,%" PRId64, txb_w, txb_h, tx_type, rd); |
| fprintf(fp, "\n"); |
| fclose(fp); |
| } |
| } |
| #endif // COLLECT_TX_SIZE_DATA |
| |
| if (cpi->sf.adaptive_txb_search_level) { |
| if ((best_rd - (best_rd >> cpi->sf.adaptive_txb_search_level)) > |
| ref_best_rd) { |
| break; |
| } |
| } |
| |
| // Skip transform type search when we found the block has been quantized to |
| // all zero and at the same time, it has better rdcost than doing transform. |
| if (cpi->sf.tx_type_search.skip_tx_search && !best_eob) break; |
| } |
| |
| assert(best_rd != INT64_MAX); |
| |
| best_rd_stats->skip = best_eob == 0; |
| if (plane == 0) { |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| best_tx_type); |
| } |
| x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx; |
| x->plane[plane].eobs[block] = best_eob; |
| |
| pd->dqcoeff = best_dqcoeff; |
| |
| if (calc_pixel_domain_distortion_final && best_eob) { |
| best_rd_stats->dist = dist_block_px_domain( |
| cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size); |
| best_rd_stats->sse = block_sse; |
| } |
| |
| if (intra_txb_rd_info != NULL) { |
| intra_txb_rd_info->valid = 1; |
| intra_txb_rd_info->entropy_context = cur_joint_ctx; |
| intra_txb_rd_info->rate = best_rd_stats->rate; |
| intra_txb_rd_info->dist = best_rd_stats->dist; |
| intra_txb_rd_info->sse = best_rd_stats->sse; |
| intra_txb_rd_info->eob = best_eob; |
| intra_txb_rd_info->txb_entropy_ctx = best_txb_ctx; |
| if (plane == 0) intra_txb_rd_info->tx_type = best_tx_type; |
| } |
| |
| RECON_INTRA: |
| if (!is_inter && best_eob && |
| (blk_row + tx_size_high_unit[tx_size] < mi_size_high[plane_bsize] || |
| blk_col + tx_size_wide_unit[tx_size] < mi_size_wide[plane_bsize])) { |
| // intra mode needs decoded result such that the next transform block |
| // can use it for prediction. |
| // if the last search tx_type is the best tx_type, we don't need to |
| // do this again |
| if (best_tx_type != last_tx_type) { |
| if (skip_trellis) { |
| av1_xform_quant( |
| cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| best_tx_type, |
| USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); |
| } else { |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, |
| tx_size, best_tx_type, AV1_XFORM_QUANT_FP); |
| av1_optimize_b(cpi, x, plane, block, tx_size, best_tx_type, txb_ctx, |
| cpi->sf.trellis_eob_fast, &rate_cost); |
| } |
| } |
| |
| inverse_transform_block_facade(xd, plane, block, blk_row, blk_col, |
| x->plane[plane].eobs[block], |
| cm->reduced_tx_set_used); |
| |
| // This may happen because of hash collision. The eob stored in the hash |
| // table is non-zero, but the real eob is zero. We need to make sure tx_type |
| // is DCT_DCT in this case. |
| if (plane == 0 && x->plane[plane].eobs[block] == 0 && |
| best_tx_type != DCT_DCT) { |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| DCT_DCT); |
| } |
| } |
| pd->dqcoeff = orig_dqcoeff; |
| |
| return best_rd; |
| } |
| |
| static void block_rd_txfm(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { |
| struct rdcost_block_args *args = arg; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int is_inter = is_inter_block(xd->mi[0]); |
| const AV1_COMP *cpi = args->cpi; |
| ENTROPY_CONTEXT *a = args->t_above + blk_col; |
| ENTROPY_CONTEXT *l = args->t_left + blk_row; |
| const AV1_COMMON *cm = &cpi->common; |
| RD_STATS this_rd_stats; |
| |
| av1_init_rd_stats(&this_rd_stats); |
| |
| if (args->exit_early) { |
| args->incomplete_exit = 1; |
| return; |
| } |
| |
| if (!is_inter) { |
| av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); |
| av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); |
| } |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); |
| search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| &txb_ctx, args->ftxs_mode, args->use_fast_coef_costing, |
| args->skip_trellis, args->best_rd - args->this_rd, |
| &this_rd_stats); |
| |
| if (plane == AOM_PLANE_Y && xd->cfl.store_y) { |
| assert(!is_inter || plane_bsize < BLOCK_8X8); |
| cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); |
| } |
| |
| #if CONFIG_RD_DEBUG |
| av1_update_txb_coeff_cost(&this_rd_stats, plane, tx_size, blk_row, blk_col, |
| this_rd_stats.rate); |
| #endif // CONFIG_RD_DEBUG |
| av1_set_txb_context(x, plane, block, tx_size, a, l); |
| |
| const int blk_idx = |
| blk_row * (block_size_wide[plane_bsize] >> tx_size_wide_log2[0]) + |
| blk_col; |
| |
| if (plane == 0) |
| set_blk_skip(x, plane, blk_idx, x->plane[plane].eobs[block] == 0); |
| else |
| set_blk_skip(x, plane, blk_idx, 0); |
| |
| const int64_t rd1 = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); |
| const int64_t rd2 = RDCOST(x->rdmult, 0, this_rd_stats.sse); |
| |
| // TODO(jingning): temporarily enabled only for luma component |
| const int64_t rd = AOMMIN(rd1, rd2); |
| |
| this_rd_stats.skip &= !x->plane[plane].eobs[block]; |
| |
| av1_merge_rd_stats(&args->rd_stats, &this_rd_stats); |
| |
| args->this_rd += rd; |
| |
| if (args->this_rd > args->best_rd) args->exit_early = 1; |
| } |
| |
| static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi, |
| RD_STATS *rd_stats, int64_t ref_best_rd, |
| int64_t this_rd, int plane, BLOCK_SIZE bsize, |
| TX_SIZE tx_size, int use_fast_coef_casting, |
| FAST_TX_SEARCH_MODE ftxs_mode, int skip_trellis) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct rdcost_block_args args; |
| av1_zero(args); |
| args.x = x; |
| args.cpi = cpi; |
| args.best_rd = ref_best_rd; |
| args.use_fast_coef_costing = use_fast_coef_casting; |
| args.ftxs_mode = ftxs_mode; |
| args.this_rd = this_rd; |
| args.skip_trellis = skip_trellis; |
| av1_init_rd_stats(&args.rd_stats); |
| |
| if (!cpi->oxcf.enable_tx64 && txsize_sqr_up_map[tx_size] == TX_64X64) { |
| av1_invalid_rd_stats(rd_stats); |
| return; |
| } |
| |
| if (plane == 0) xd->mi[0]->tx_size = tx_size; |
| |
| av1_get_entropy_contexts(bsize, pd, args.t_above, args.t_left); |
| |
| if (args.this_rd > args.best_rd) { |
| args.exit_early = 1; |
| } |
| |
| av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm, |
| &args); |
| |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int is_inter = is_inter_block(mbmi); |
| const int invalid_rd = is_inter ? args.incomplete_exit : args.exit_early; |
| |
| if (invalid_rd) { |
| av1_invalid_rd_stats(rd_stats); |
| } else { |
| *rd_stats = args.rd_stats; |
| } |
| } |
| |
| static int tx_size_cost(const AV1_COMMON *const cm, const MACROBLOCK *const x, |
| BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| assert(bsize == x->e_mbd.mi[0]->sb_type); |
| if (cm->tx_mode != TX_MODE_SELECT || !block_signals_txsize(bsize)) return 0; |
| |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| const int depth = tx_size_to_depth(tx_size, bsize); |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const int tx_size_ctx = get_tx_size_context(xd); |
| return x->tx_size_cost[tx_size_cat][tx_size_ctx][depth]; |
| } |
| |
| static int64_t txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, int64_t ref_best_rd, BLOCK_SIZE bs, |
| TX_SIZE tx_size, FAST_TX_SEARCH_MODE ftxs_mode, |
| int skip_trellis) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| int64_t rd = INT64_MAX; |
| const int skip_ctx = av1_get_skip_context(xd); |
| int s0, s1; |
| const int is_inter = is_inter_block(mbmi); |
| const int tx_select = |
| cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type); |
| int ctx = txfm_partition_context( |
| xd->above_txfm_context, xd->left_txfm_context, mbmi->sb_type, tx_size); |
| const int r_tx_size = is_inter ? x->txfm_partition_cost[ctx][0] |
| : tx_size_cost(cm, x, bs, tx_size); |
| |
| assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs))); |
| |
| s0 = x->skip_cost[skip_ctx][0]; |
| s1 = x->skip_cost[skip_ctx][1]; |
| |
| int64_t skip_rd; |
| int64_t this_rd; |
| |
| if (is_inter) { |
| skip_rd = RDCOST(x->rdmult, s1, 0); |
| this_rd = RDCOST(x->rdmult, s0 + r_tx_size * tx_select, 0); |
| } else { |
| skip_rd = RDCOST(x->rdmult, s1 + r_tx_size * tx_select, 0); |
| this_rd = RDCOST(x->rdmult, s0 + r_tx_size * tx_select, 0); |
| } |
| |
| mbmi->tx_size = tx_size; |
| txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOMMIN(this_rd, skip_rd), |
| AOM_PLANE_Y, bs, tx_size, cpi->sf.use_fast_coef_costing, |
| ftxs_mode, skip_trellis); |
| if (rd_stats->rate == INT_MAX) return INT64_MAX; |
| |
| // rdstats->rate should include all the rate except skip/non-skip cost as the |
| // same is accounted in the caller functions after rd evaluation of all |
| // planes. However the decisions should be done after considering the |
| // skip/non-skip header cost |
| if (rd_stats->skip) { |
| if (is_inter) { |
| rd = RDCOST(x->rdmult, s1, rd_stats->sse); |
| } else { |
| rd = RDCOST(x->rdmult, s1 + r_tx_size * tx_select, rd_stats->sse); |
| rd_stats->rate += r_tx_size * tx_select; |
| } |
| } else { |
| rd = RDCOST(x->rdmult, rd_stats->rate + s0 + r_tx_size * tx_select, |
| rd_stats->dist); |
| rd_stats->rate += r_tx_size * tx_select; |
| } |
| if (is_inter && !xd->lossless[xd->mi[0]->segment_id]) { |
| int64_t temp_skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse); |
| if (temp_skip_rd <= rd) { |
| rd = temp_skip_rd; |
| rd_stats->rate = 0; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip = 1; |
| } |
| } |
| |
| return rd; |
| } |
| |
| static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs, |
| MACROBLOCK *x, int64_t ref_best_rd, |
| RD_STATS *rd_stats) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| if (ref_best_rd < 0) return INT64_MAX; |
| av1_subtract_plane(x, bs, 0); |
| x->rd_model = LOW_TXFM_RD; |
| int skip_trellis = cpi->optimize_seg_arr[xd->mi[0]->segment_id] == |
| NO_ESTIMATE_YRD_TRELLIS_OPT; |
| const int64_t rd = |
| txfm_yrd(cpi, x, rd_stats, ref_best_rd, bs, max_txsize_rect_lookup[bs], |
| FTXS_NONE, skip_trellis); |
| x->rd_model = FULL_TXFM_RD; |
| if (rd != INT64_MAX) { |
| const int skip_ctx = av1_get_skip_context(xd); |
| if (rd_stats->skip) { |
| const int s1 = x->skip_cost[skip_ctx][1]; |
| rd_stats->rate = s1; |
| } else { |
| const int s0 = x->skip_cost[skip_ctx][0]; |
| rd_stats->rate += s0; |
| } |
| } |
| return rd; |
| } |
| |
| static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode); |
| const int skip_ctx = av1_get_skip_context(xd); |
| int s0, s1; |
| |
| s0 = x->skip_cost[skip_ctx][0]; |
| s1 = x->skip_cost[skip_ctx][1]; |
| |
| int64_t skip_rd = RDCOST(x->rdmult, s1, 0); |
| int64_t this_rd = RDCOST(x->rdmult, s0, 0); |
| |
| txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOMMIN(this_rd, skip_rd), |
| AOM_PLANE_Y, bs, mbmi->tx_size, |
| cpi->sf.use_fast_coef_costing, FTXS_NONE, 0); |
| } |
| |
| static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| mbmi->tx_size = TX_4X4; |
| // TODO(any) : Pass this_rd based on skip/non-skip cost |
| txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, 0, bs, mbmi->tx_size, |
| cpi->sf.use_fast_coef_costing, FTXS_NONE, 0); |
| } |
| |
| static INLINE int bsize_to_num_blk(BLOCK_SIZE bsize) { |
| int num_blk = 1 << (num_pels_log2_lookup[bsize] - 2 * tx_size_wide_log2[0]); |
| return num_blk; |
| } |
| |
| static int get_search_init_depth(int mi_width, int mi_height, int is_inter, |
| const SPEED_FEATURES *sf) { |
| if (sf->tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH; |
| |
| if (sf->tx_size_search_lgr_block) { |
| if (mi_width > mi_size_wide[BLOCK_64X64] || |
| mi_height > mi_size_high[BLOCK_64X64]) |
| return MAX_VARTX_DEPTH; |
| } |
| |
| if (is_inter) { |
| return (mi_height != mi_width) ? sf->inter_tx_size_search_init_depth_rect |
| : sf->inter_tx_size_search_init_depth_sqr; |
| } else { |
| return (mi_height != mi_width) ? sf->intra_tx_size_search_init_depth_rect |
| : sf->intra_tx_size_search_init_depth_sqr; |
| } |
| } |
| |
| static void choose_tx_size_type_from_rd(const AV1_COMP *const cpi, |
| MACROBLOCK *x, RD_STATS *rd_stats, |
| int64_t ref_best_rd, BLOCK_SIZE bs) { |
| av1_invalid_rd_stats(rd_stats); |
| |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bs]; |
| const int tx_select = cm->tx_mode == TX_MODE_SELECT; |
| int start_tx; |
| int depth, init_depth; |
| |
| if (tx_select) { |
| start_tx = max_rect_tx_size; |
| init_depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs], |
| is_inter_block(mbmi), &cpi->sf); |
| } else { |
| const TX_SIZE chosen_tx_size = tx_size_from_tx_mode(bs, cm->tx_mode); |
| start_tx = chosen_tx_size; |
| init_depth = MAX_TX_DEPTH; |
| } |
| |
| TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| TX_SIZE best_tx_size = max_rect_tx_size; |
| int64_t best_rd = INT64_MAX; |
| const int n4 = bsize_to_num_blk(bs); |
| x->rd_model = FULL_TXFM_RD; |
| depth = init_depth; |
| int64_t rd[MAX_TX_DEPTH + 1] = { INT64_MAX, INT64_MAX, INT64_MAX }; |
| for (int n = start_tx; depth <= MAX_TX_DEPTH; |
| depth++, n = sub_tx_size_map[n]) { |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8) { |
| if (tx_size_wide[n] < 8 || tx_size_high[n] < 8) continue; |
| } |
| #endif |
| if (!cpi->oxcf.enable_tx64 && txsize_sqr_up_map[n] == TX_64X64) continue; |
| |
| RD_STATS this_rd_stats; |
| rd[depth] = |
| txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, n, FTXS_NONE, 0); |
| |
| if (rd[depth] < best_rd) { |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); |
| memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4); |
| best_tx_size = n; |
| best_rd = rd[depth]; |
| *rd_stats = this_rd_stats; |
| } |
| if (n == TX_4X4) break; |
| // If we are searching three depths, prune the smallest size depending |
| // on rd results for the first two depths for low contrast blocks. |
| if (depth > init_depth && depth != MAX_TX_DEPTH && |
| x->source_variance < 256) { |
| if (rd[depth - 1] != INT64_MAX && rd[depth] > rd[depth - 1]) break; |
| } |
| } |
| |
| if (rd_stats->rate != INT_MAX) { |
| mbmi->tx_size = best_tx_size; |
| memcpy(mbmi->txk_type, best_txk_type, |
| sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); |
| memcpy(x->blk_skip, best_blk_skip, sizeof(best_blk_skip[0]) * n4); |
| } |
| } |
| |
| // origin_threshold * 128 / 100 |
| static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = { |
| { |
| 64, 64, 64, 70, 60, 60, 68, 68, 68, 68, 68, |
| 68, 68, 68, 68, 68, 64, 64, 70, 70, 68, 68, |
| }, |
| { |
| 88, 88, 88, 86, 87, 87, 68, 68, 68, 68, 68, |
| 68, 68, 68, 68, 68, 88, 88, 86, 86, 68, 68, |
| }, |
| { |
| 90, 93, 93, 90, 93, 93, 74, 74, 74, 74, 74, |
| 74, 74, 74, 74, 74, 90, 90, 90, 90, 74, 74, |
| }, |
| }; |
| |
| // lookup table for predict_skip_flag |
| // int max_tx_size = max_txsize_rect_lookup[bsize]; |
| // if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16) |
| // max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16); |
| static const TX_SIZE max_predict_sf_tx_size[BLOCK_SIZES_ALL] = { |
| TX_4X4, TX_4X8, TX_8X4, TX_8X8, TX_8X16, TX_16X8, |
| TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_16X16, |
| TX_16X16, TX_16X16, TX_16X16, TX_16X16, TX_4X16, TX_16X4, |
| TX_8X8, TX_8X8, TX_16X16, TX_16X16, |
| }; |
| |
| // Uses simple features on top of DCT coefficients to quickly predict |
| // whether optimal RD decision is to skip encoding the residual. |
| // The sse value is stored in dist. |
| static int predict_skip_flag(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist, |
| int reduced_tx_set) { |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const int16_t dc_q = av1_dc_quant_QTX(x->qindex, 0, xd->bd); |
| |
| *dist = pixel_diff_dist(x, 0, 0, 0, bsize, bsize, NULL); |
| |
| const int64_t mse = *dist / bw / bh; |
| // Normalized quantizer takes the transform upscaling factor (8 for tx size |
| // smaller than 32) into account. |
| const int16_t normalized_dc_q = dc_q >> 3; |
| const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8; |
| // Predict not to skip when mse is larger than threshold. |
| if (mse > mse_thresh) return 0; |
| |
| const int max_tx_size = max_predict_sf_tx_size[bsize]; |
| const int tx_h = tx_size_high[max_tx_size]; |
| const int tx_w = tx_size_wide[max_tx_size]; |
| DECLARE_ALIGNED(32, tran_low_t, coefs[32 * 32]); |
| TxfmParam param; |
| param.tx_type = DCT_DCT; |
| param.tx_size = max_tx_size; |
| param.bd = xd->bd; |
| param.is_hbd = is_cur_buf_hbd(xd); |
| param.lossless = 0; |
| param.tx_set_type = av1_get_ext_tx_set_type( |
| param.tx_size, is_inter_block(xd->mi[0]), reduced_tx_set); |
| const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2); |
| const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize]; |
| const int16_t *src_diff = x->plane[0].src_diff; |
| const int n_coeff = tx_w * tx_h; |
| const int16_t ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd); |
| const uint32_t dc_thresh = max_qcoef_thresh * dc_q; |
| const uint32_t ac_thresh = max_qcoef_thresh * ac_q; |
| for (int row = 0; row < bh; row += tx_h) { |
| for (int col = 0; col < bw; col += tx_w) { |
| av1_fwd_txfm(src_diff + col, coefs, bw, ¶m); |
| // Operating on TX domain, not pixels; we want the QTX quantizers |
| const uint32_t dc_coef = (((uint32_t)abs(coefs[0])) << 7); |
| if (dc_coef >= dc_thresh) return 0; |
| for (int i = 1; i < n_coeff; ++i) { |
| const uint32_t ac_coef = (((uint32_t)abs(coefs[i])) << 7); |
| if (ac_coef >= ac_thresh) return 0; |
| } |
| } |
| src_diff += tx_h * bw; |
| } |
| return 1; |
| } |
| |
| // Used to set proper context for early termination with skip = 1. |
| static void set_skip_flag(MACROBLOCK *x, RD_STATS *rd_stats, int bsize, |
| int64_t dist) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int n4 = bsize_to_num_blk(bsize); |
| const TX_SIZE tx_size = max_txsize_rect_lookup[bsize]; |
| memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN); |
| memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size)); |
| mbmi->tx_size = tx_size; |
| for (int i = 0; i < n4; ++i) set_blk_skip(x, 0, i, 1); |
| rd_stats->skip = 1; |
| if (is_cur_buf_hbd(xd)) dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2); |
| rd_stats->dist = rd_stats->sse = (dist << 4); |
| // Though decision is to make the block as skip based on luma stats, |
| // it is possible that block becomes non skip after chroma rd. In addition |
| // intermediate non skip costs calculated by caller function will be |
| // incorrect, if rate is set as zero (i.e., if zero_blk_rate is not |
| // accounted). Hence intermediate rate is populated to code the luma tx blks |
| // as skip, the caller function based on final rd decision (i.e., skip vs |
| // non-skip) sets the final rate accordingly. Here the rate populated |
| // corresponds to coding all the tx blocks with zero_blk_rate (based on max tx |
| // size possible) in the current block. Eg: For 128*128 block, rate would be |
| // 4 * zero_blk_rate where zero_blk_rate corresponds to coding of one 64x64 tx |
| // block as 'all zeros' |
| ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; |
| av1_get_entropy_contexts(bsize, &xd->plane[0], ctxa, ctxl); |
| ENTROPY_CONTEXT *ta = ctxa; |
| ENTROPY_CONTEXT *tl = ctxl; |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| TXB_CTX txb_ctx; |
| get_txb_ctx(bsize, tx_size, 0, ta, tl, &txb_ctx); |
| const int zero_blk_rate = x->coeff_costs[txs_ctx][PLANE_TYPE_Y] |
| .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; |
| rd_stats->rate = zero_blk_rate * |
| (block_size_wide[bsize] >> tx_size_wide_log2[tx_size]) * |
| (block_size_high[bsize] >> tx_size_high_log2[tx_size]); |
| } |
| |
| static INLINE uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) { |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| const int16_t *diff = x->plane[0].src_diff; |
| const uint32_t hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator, |
| (uint8_t *)diff, 2 * rows * cols); |
| return (hash << 5) + bsize; |
| } |
| |
| static void save_tx_rd_info(int n4, uint32_t hash, const MACROBLOCK *const x, |
| const RD_STATS *const rd_stats, |
| MB_RD_RECORD *tx_rd_record) { |
| int index; |
| if (tx_rd_record->num < RD_RECORD_BUFFER_LEN) { |
| index = |
| (tx_rd_record->index_start + tx_rd_record->num) % RD_RECORD_BUFFER_LEN; |
| ++tx_rd_record->num; |
| } else { |
| index = tx_rd_record->index_start; |
| tx_rd_record->index_start = |
| (tx_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN; |
| } |
| MB_RD_INFO *const tx_rd_info = &tx_rd_record->tx_rd_info[index]; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| tx_rd_info->hash_value = hash; |
| tx_rd_info->tx_size = mbmi->tx_size; |
| memcpy(tx_rd_info->blk_skip, x->blk_skip, |
| sizeof(tx_rd_info->blk_skip[0]) * n4); |
| av1_copy(tx_rd_info->inter_tx_size, mbmi->inter_tx_size); |
| av1_copy(tx_rd_info->txk_type, mbmi->txk_type); |
| tx_rd_info->rd_stats = *rd_stats; |
| } |
| |
| static void fetch_tx_rd_info(int n4, const MB_RD_INFO *const tx_rd_info, |
| RD_STATS *const rd_stats, MACROBLOCK *const x) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| mbmi->tx_size = tx_rd_info->tx_size; |
| memcpy(x->blk_skip, tx_rd_info->blk_skip, |
| sizeof(tx_rd_info->blk_skip[0]) * n4); |
| av1_copy(mbmi->inter_tx_size, tx_rd_info->inter_tx_size); |
| av1_copy(mbmi->txk_type, tx_rd_info->txk_type); |
| *rd_stats = tx_rd_info->rd_stats; |
| } |
| |
| static INLINE int32_t find_mb_rd_info(const MB_RD_RECORD *const mb_rd_record, |
| const int64_t ref_best_rd, |
| const uint32_t hash) { |
| int32_t match_index = -1; |
| if (ref_best_rd != INT64_MAX) { |
| for (int i = 0; i < mb_rd_record->num; ++i) { |
| const int index = (mb_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN; |
| // If there is a match in the tx_rd_record, fetch the RD decision and |
| // terminate early. |
| if (mb_rd_record->tx_rd_info[index].hash_value == hash) { |
| match_index = index; |
| break; |
| } |
| } |
| } |
| return match_index; |
| } |
| |
| static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bs, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| av1_init_rd_stats(rd_stats); |
| int is_inter = is_inter_block(xd->mi[0]); |
| assert(bs == xd->mi[0]->sb_type); |
| |
| const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); |
| const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); |
| |
| uint32_t hash = 0; |
| int32_t match_index = -1; |
| MB_RD_RECORD *mb_rd_record = NULL; |
| const int within_border = mi_row >= xd->tile.mi_row_start && |
| (mi_row + mi_size_high[bs] < xd->tile.mi_row_end) && |
| mi_col >= xd->tile.mi_col_start && |
| (mi_col + mi_size_wide[bs] < xd->tile.mi_col_end); |
| const int is_mb_rd_hash_enabled = |
| (within_border && cpi->sf.use_mb_rd_hash && is_inter); |
| const int n4 = bsize_to_num_blk(bs); |
| if (is_mb_rd_hash_enabled) { |
| hash = get_block_residue_hash(x, bs); |
| mb_rd_record = &x->mb_rd_record; |
| match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash); |
| if (match_index != -1) { |
| MB_RD_INFO *tx_rd_info = &mb_rd_record->tx_rd_info[match_index]; |
| fetch_tx_rd_info(n4, tx_rd_info, rd_stats, x); |
| return; |
| } |
| } |
| |
| // If we predict that skip is the optimal RD decision - set the respective |
| // context and terminate early. |
| int64_t dist; |
| |
| if (cpi->sf.tx_type_search.use_skip_flag_prediction && is_inter && |
| (!xd->lossless[xd->mi[0]->segment_id]) && |
| predict_skip_flag(x, bs, &dist, cpi->common.reduced_tx_set_used)) { |
| // Populate rdstats as per skip decision |
| set_skip_flag(x, rd_stats, bs, dist); |
| // Save the RD search results into tx_rd_record. |
| if (is_mb_rd_hash_enabled) |
| save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); |
| return; |
| } |
| |
| if (xd->lossless[xd->mi[0]->segment_id]) { |
| choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); |
| } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) { |
| choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); |
| } else { |
| choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs); |
| } |
| |
| // Save the RD search results into tx_rd_record. |
| if (is_mb_rd_hash_enabled) { |
| assert(mb_rd_record != NULL); |
| save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); |
| } |
| } |
| |
| // Return the rate cost for luma prediction mode info. of intra blocks. |
| static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x, |
| const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, |
| int mode_cost) { |
| int total_rate = mode_cost; |
| const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0; |
| const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra; |
| const int use_intrabc = mbmi->use_intrabc; |
| // Can only activate one mode. |
| assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc + |
| use_filter_intra) <= 1); |
| const int try_palette = |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); |
| if (try_palette && mbmi->mode == DC_PRED) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| const int mode_ctx = av1_get_palette_mode_ctx(xd); |
| total_rate += x->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette]; |
| if (use_palette) { |
| const uint8_t *const color_map = xd->plane[0].color_index_map; |
| int block_width, block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, |
| &cols); |
| const int plt_size = mbmi->palette_mode_info.palette_size[0]; |
| int palette_mode_cost = |
| x->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] + |
| write_uniform_cost(plt_size, color_map[0]); |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 0, color_cache); |
| palette_mode_cost += |
| av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache, |
| n_cache, cpi->common.seq_params.bit_depth); |
| palette_mode_cost += |
| av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP); |
| total_rate += palette_mode_cost; |
| } |
| } |
| if (av1_filter_intra_allowed(&cpi->common, mbmi)) { |
| total_rate += x->filter_intra_cost[mbmi->sb_type][use_filter_intra]; |
| if (use_filter_intra) { |
| total_rate += x->filter_intra_mode_cost[mbmi->filter_intra_mode_info |
| .filter_intra_mode]; |
| } |
| } |
| if (av1_is_directional_mode(mbmi->mode)) { |
| if (av1_use_angle_delta(bsize)) { |
| total_rate += x->angle_delta_cost[mbmi->mode - V_PRED] |
| [MAX_ANGLE_DELTA + |
| mbmi->angle_delta[PLANE_TYPE_Y]]; |
| } |
| } |
| if (av1_allow_intrabc(&cpi->common)) |
| total_rate += x->intrabc_cost[use_intrabc]; |
| return total_rate; |
| } |
| |
| // Return the rate cost for chroma prediction mode info. of intra blocks. |
| static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x, |
| const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, |
| int mode_cost) { |
| int total_rate = mode_cost; |
| const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0; |
| const UV_PREDICTION_MODE mode = mbmi->uv_mode; |
| // Can only activate one mode. |
| assert(((mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1); |
| |
| const int try_palette = |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); |
| if (try_palette && mode == UV_DC_PRED) { |
| const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info; |
| total_rate += |
| x->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette]; |
| if (use_palette) { |
| const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| const int plt_size = pmi->palette_size[1]; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const uint8_t *const color_map = xd->plane[1].color_index_map; |
| int palette_mode_cost = |
| x->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] + |
| write_uniform_cost(plt_size, color_map[0]); |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 1, color_cache); |
| palette_mode_cost += av1_palette_color_cost_uv( |
| pmi, color_cache, n_cache, cpi->common.seq_params.bit_depth); |
| palette_mode_cost += |
| av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP); |
| total_rate += palette_mode_cost; |
| } |
| } |
| if (av1_is_directional_mode(get_uv_mode(mode))) { |
| if (av1_use_angle_delta(bsize)) { |
| total_rate += |
| x->angle_delta_cost[mode - V_PRED][mbmi->angle_delta[PLANE_TYPE_UV] + |
| MAX_ANGLE_DELTA]; |
| } |
| } |
| return total_rate; |
| } |
| |
| static int conditional_skipintra(PREDICTION_MODE mode, |
| PREDICTION_MODE best_intra_mode) { |
| if (mode == D113_PRED && best_intra_mode != V_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| if (mode == D67_PRED && best_intra_mode != V_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D203_PRED && best_intra_mode != H_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D157_PRED && best_intra_mode != H_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| return 0; |
| } |
| |
| // Model based RD estimation for luma intra blocks. |
| static int64_t intra_model_yrd(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, int mode_cost, int mi_row, |
| int mi_col) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(!is_inter_block(mbmi)); |
| RD_STATS this_rd_stats; |
| int row, col; |
| int64_t temp_sse, this_rd; |
| TX_SIZE tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); |
| const int stepr = tx_size_high_unit[tx_size]; |
| const int stepc = tx_size_wide_unit[tx_size]; |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| mbmi->tx_size = tx_size; |
| // Prediction. |
| for (row = 0; row < max_blocks_high; row += stepr) { |
| for (col = 0; col < max_blocks_wide; col += stepc) { |
| av1_predict_intra_block_facade(cm, xd, 0, col, row, tx_size); |
| } |
| } |
| // RD estimation. |
| model_rd_sb_fn[MODELRD_TYPE_INTRA]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &this_rd_stats.rate, |
| &this_rd_stats.dist, &this_rd_stats.skip, &temp_sse, NULL, NULL, NULL); |
| if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { |
| mode_cost += |
| x->angle_delta_cost[mbmi->mode - V_PRED] |
| [MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_Y]]; |
| } |
| if (mbmi->mode == DC_PRED && |
| av1_filter_intra_allowed_bsize(cm, mbmi->sb_type)) { |
| if (mbmi->filter_intra_mode_info.use_filter_intra) { |
| const int mode = mbmi->filter_intra_mode_info.filter_intra_mode; |
| mode_cost += x->filter_intra_cost[mbmi->sb_type][1] + |
| x->filter_intra_mode_cost[mode]; |
| } else { |
| mode_cost += x->filter_intra_cost[mbmi->sb_type][0]; |
| } |
| } |
| this_rd = |
| RDCOST(x->rdmult, this_rd_stats.rate + mode_cost, this_rd_stats.dist); |
| return this_rd; |
| } |
| |
| // Extends 'color_map' array from 'orig_width x orig_height' to 'new_width x |
| // new_height'. Extra rows and columns are filled in by copying last valid |
| // row/column. |
| static void extend_palette_color_map(uint8_t *const color_map, int orig_width, |
| int orig_height, int new_width, |
| int new_height) { |
| int j; |
| assert(new_width >= orig_width); |
| assert(new_height >= orig_height); |
| if (new_width == orig_width && new_height == orig_height) return; |
| |
| for (j = orig_height - 1; j >= 0; --j) { |
| memmove(color_map + j * new_width, color_map + j * orig_width, orig_width); |
| // Copy last column to extra columns. |
| memset(color_map + j * new_width + orig_width, |
| color_map[j * new_width + orig_width - 1], new_width - orig_width); |
| } |
| // Copy last row to extra rows. |
| for (j = orig_height; j < new_height; ++j) { |
| memcpy(color_map + j * new_width, color_map + (orig_height - 1) * new_width, |
| new_width); |
| } |
| } |
| |
| // Bias toward using colors in the cache. |
| // TODO(huisu): Try other schemes to improve compression. |
| static void optimize_palette_colors(uint16_t *color_cache, int n_cache, |
| int n_colors, int stride, int *centroids) { |
| if (n_cache <= 0) return; |
| for (int i = 0; i < n_colors * stride; i += stride) { |
| int min_diff = abs(centroids[i] - (int)color_cache[0]); |
| int idx = 0; |
| for (int j = 1; j < n_cache; ++j) { |
| const int this_diff = abs(centroids[i] - color_cache[j]); |
| if (this_diff < min_diff) { |
| min_diff = this_diff; |
| idx = j; |
| } |
| } |
| if (min_diff <= 1) centroids[i] = color_cache[idx]; |
| } |
| } |
| |
| // Given the base colors as specified in centroids[], calculate the RD cost |
| // of palette mode. |
| static void palette_rd_y(const AV1_COMP *const cpi, MACROBLOCK *x, |
| MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int dc_mode_cost, const int *data, |
| int *centroids, int n, uint16_t *color_cache, |
| int n_cache, MB_MODE_INFO *best_mbmi, |
| uint8_t *best_palette_color_map, int64_t *best_rd, |
| int64_t *best_model_rd, int *rate, int *rate_tokenonly, |
| int *rate_overhead, int64_t *distortion, |
| int *skippable, PICK_MODE_CONTEXT *ctx, |
| uint8_t *blk_skip) { |
| optimize_palette_colors(color_cache, n_cache, n, 1, centroids); |
| int k = av1_remove_duplicates(centroids, n); |
| if (k < PALETTE_MIN_SIZE) { |
| // Too few unique colors to create a palette. And DC_PRED will work |
| // well for that case anyway. So skip. |
| return; |
| } |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| if (cpi->common.seq_params.use_highbitdepth) |
| for (int i = 0; i < k; ++i) |
| pmi->palette_colors[i] = clip_pixel_highbd( |
| (int)centroids[i], cpi->common.seq_params.bit_depth); |
| else |
| for (int i = 0; i < k; ++i) |
| pmi->palette_colors[i] = clip_pixel(centroids[i]); |
| pmi->palette_size[0] = k; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| uint8_t *const color_map = xd->plane[0].color_index_map; |
| int block_width, block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, |
| &cols); |
| av1_calc_indices(data, centroids, color_map, rows * cols, k, 1); |
| extend_palette_color_map(color_map, cols, rows, block_width, block_height); |
| const int palette_mode_cost = |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, dc_mode_cost); |
| int64_t this_model_rd = |
| intra_model_yrd(cpi, x, bsize, palette_mode_cost, mi_row, mi_col); |
| if (*best_model_rd != INT64_MAX && |
| this_model_rd > *best_model_rd + (*best_model_rd >> 1)) |
| return; |
| if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; |
| RD_STATS tokenonly_rd_stats; |
| super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); |
| if (tokenonly_rd_stats.rate == INT_MAX) return; |
| int this_rate = tokenonly_rd_stats.rate + palette_mode_cost; |
| int64_t this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) { |
| tokenonly_rd_stats.rate -= |
| tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); |
| } |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| memcpy(best_palette_color_map, color_map, |
| block_width * block_height * sizeof(color_map[0])); |
| *best_mbmi = *mbmi; |
| memcpy(blk_skip, x->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| *rate_overhead = this_rate - tokenonly_rd_stats.rate; |
| if (rate) *rate = this_rate; |
| if (rate_tokenonly) *rate_tokenonly = tokenonly_rd_stats.rate; |
| if (distortion) *distortion = tokenonly_rd_stats.dist; |
| if (skippable) *skippable = tokenonly_rd_stats.skip; |
| } |
| } |
| |
| static int rd_pick_palette_intra_sby( |
| const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int dc_mode_cost, MB_MODE_INFO *best_mbmi, |
| uint8_t *best_palette_color_map, int64_t *best_rd, int64_t *best_model_rd, |
| int *rate, int *rate_tokenonly, int64_t *distortion, int *skippable, |
| PICK_MODE_CONTEXT *ctx, uint8_t *best_blk_skip) { |
| int rate_overhead = 0; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(!is_inter_block(mbmi)); |
| assert(av1_allow_palette(cpi->common.allow_screen_content_tools, bsize)); |
| const SequenceHeader *const seq_params = &cpi->common.seq_params; |
| int colors, n; |
| const int src_stride = x->plane[0].src.stride; |
| const uint8_t *const src = x->plane[0].src.buf; |
| uint8_t *const color_map = xd->plane[0].color_index_map; |
| int block_width, block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, |
| &cols); |
| |
| int count_buf[1 << 12]; // Maximum (1 << 12) color levels. |
| if (seq_params->use_highbitdepth) |
| colors = av1_count_colors_highbd(src, src_stride, rows, cols, |
| seq_params->bit_depth, count_buf); |
| else |
| colors = av1_count_colors(src, src_stride, rows, cols, count_buf); |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| |
| if (colors > 1 && colors <= 64) { |
| int r, c, i; |
| const int max_itr = 50; |
| int *const data = x->palette_buffer->kmeans_data_buf; |
| int centroids[PALETTE_MAX_SIZE]; |
| int lb, ub, val; |
| uint16_t *src16 = CONVERT_TO_SHORTPTR(src); |
| if (seq_params->use_highbitdepth) |
| lb = ub = src16[0]; |
| else |
| lb = ub = src[0]; |
| |
| if (seq_params->use_highbitdepth) { |
| for (r = 0; r < rows; ++r) { |
| for (c = 0; c < cols; ++c) { |
| val = src16[r * src_stride + c]; |
| data[r * cols + c] = val; |
| if (val < lb) |
| lb = val; |
| else if (val > ub) |
| ub = val; |
| } |
| } |
| } else { |
| for (r = 0; r < rows; ++r) { |
| for (c = 0; c < cols; ++c) { |
| val = src[r * src_stride + c]; |
| data[r * cols + c] = val; |
| if (val < lb) |
| lb = val; |
| else if (val > ub) |
| ub = val; |
| } |
| } |
| } |
| |
| mbmi->mode = DC_PRED; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 0, color_cache); |
| |
| // Find the dominant colors, stored in top_colors[]. |
| int top_colors[PALETTE_MAX_SIZE] = { 0 }; |
| for (i = 0; i < AOMMIN(colors, PALETTE_MAX_SIZE); ++i) { |
| int max_count = 0; |
| for (int j = 0; j < (1 << seq_params->bit_depth); ++j) { |
| if (count_buf[j] > max_count) { |
| max_count = count_buf[j]; |
| top_colors[i] = j; |
| } |
| } |
| assert(max_count > 0); |
| count_buf[top_colors[i]] = 0; |
| } |
| |
| // Try the dominant colors directly. |
| // TODO(huisu@google.com): Try to avoid duplicate computation in cases |
| // where the dominant colors and the k-means results are similar. |
| for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) { |
| for (i = 0; i < n; ++i) centroids[i] = top_colors[i]; |
| palette_rd_y(cpi, x, mbmi, bsize, mi_row, mi_col, dc_mode_cost, data, |
| centroids, n, color_cache, n_cache, best_mbmi, |
| best_palette_color_map, best_rd, best_model_rd, rate, |
| rate_tokenonly, &rate_overhead, distortion, skippable, ctx, |
| best_blk_skip); |
| } |
| |
| // K-means clustering. |
| for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) { |
| if (colors == PALETTE_MIN_SIZE) { |
| // Special case: These colors automatically become the centroids. |
| assert(colors == n); |
| assert(colors == 2); |
| centroids[0] = lb; |
| centroids[1] = ub; |
| } else { |
| for (i = 0; i < n; ++i) { |
| centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2; |
| } |
| av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr); |
| } |
| palette_rd_y(cpi, x, mbmi, bsize, mi_row, mi_col, dc_mode_cost, data, |
| centroids, n, color_cache, n_cache, best_mbmi, |
| best_palette_color_map, best_rd, best_model_rd, rate, |
| rate_tokenonly, &rate_overhead, distortion, skippable, ctx, |
| best_blk_skip); |
| } |
| } |
| |
| if (best_mbmi->palette_mode_info.palette_size[0] > 0) { |
| memcpy(color_map, best_palette_color_map, |
| block_width * block_height * sizeof(best_palette_color_map[0])); |
| } |
| *mbmi = *best_mbmi; |
| return rate_overhead; |
| } |
| |
| // Return 1 if an filter intra mode is selected; return 0 otherwise. |
| static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int mi_row, int mi_col, int *rate, |
| int *rate_tokenonly, int64_t *distortion, |
| int *skippable, BLOCK_SIZE bsize, |
| int mode_cost, int64_t *best_rd, |
| int64_t *best_model_rd, |
| PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| int filter_intra_selected_flag = 0; |
| FILTER_INTRA_MODE mode; |
| TX_SIZE best_tx_size = TX_8X8; |
| FILTER_INTRA_MODE_INFO filter_intra_mode_info; |
| TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; |
| (void)ctx; |
| av1_zero(filter_intra_mode_info); |
| mbmi->filter_intra_mode_info.use_filter_intra = 1; |
| mbmi->mode = DC_PRED; |
| mbmi->palette_mode_info.palette_size[0] = 0; |
| |
| for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { |
| int64_t this_rd, this_model_rd; |
| RD_STATS tokenonly_rd_stats; |
| mbmi->filter_intra_mode_info.filter_intra_mode = mode; |
| this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost, mi_row, mi_col); |
| if (*best_model_rd != INT64_MAX && |
| this_model_rd > *best_model_rd + (*best_model_rd >> 1)) |
| continue; |
| if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; |
| super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); |
| if (tokenonly_rd_stats.rate == INT_MAX) continue; |
| const int this_rate = |
| tokenonly_rd_stats.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost); |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| best_tx_size = mbmi->tx_size; |
| filter_intra_mode_info = mbmi->filter_intra_mode_info; |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| *rate = this_rate; |
| *rate_tokenonly = tokenonly_rd_stats.rate; |
| *distortion = tokenonly_rd_stats.dist; |
| *skippable = tokenonly_rd_stats.skip; |
| filter_intra_selected_flag = 1; |
| } |
| } |
| |
| if (filter_intra_selected_flag) { |
| mbmi->mode = DC_PRED; |
| mbmi->tx_size = best_tx_size; |
| mbmi->filter_intra_mode_info = filter_intra_mode_info; |
| memcpy(mbmi->txk_type, best_txk_type, |
| sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| // Run RD calculation with given luma intra prediction angle., and return |
| // the RD cost. Update the best mode info. if the RD cost is the best so far. |
| static int64_t calc_rd_given_intra_angle( |
| const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int mode_cost, int64_t best_rd_in, int8_t angle_delta, |
| int max_angle_delta, int *rate, RD_STATS *rd_stats, int *best_angle_delta, |
| TX_SIZE *best_tx_size, int64_t *best_rd, int64_t *best_model_rd, |
| TX_TYPE *best_txk_type, uint8_t *best_blk_skip) { |
| RD_STATS tokenonly_rd_stats; |
| int64_t this_rd, this_model_rd; |
| MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; |
| const int n4 = bsize_to_num_blk(bsize); |
| assert(!is_inter_block(mbmi)); |
| mbmi->angle_delta[PLANE_TYPE_Y] = angle_delta; |
| this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost, mi_row, mi_col); |
| if (*best_model_rd != INT64_MAX && |
| this_model_rd > *best_model_rd + (*best_model_rd >> 1)) |
| return INT64_MAX; |
| if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; |
| super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in); |
| if (tokenonly_rd_stats.rate == INT_MAX) return INT64_MAX; |
| |
| int this_rate = |
| mode_cost + tokenonly_rd_stats.rate + |
| x->angle_delta_cost[mbmi->mode - V_PRED][max_angle_delta + angle_delta]; |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| |
| if (this_rd < *best_rd) { |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| memcpy(best_blk_skip, x->blk_skip, sizeof(best_blk_skip[0]) * n4); |
| *best_rd = this_rd; |
| *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_Y]; |
| *best_tx_size = mbmi->tx_size; |
| *rate = this_rate; |
| rd_stats->rate = tokenonly_rd_stats.rate; |
| rd_stats->dist = tokenonly_rd_stats.dist; |
| rd_stats->skip = tokenonly_rd_stats.skip; |
| } |
| return this_rd; |
| } |
| |
| // With given luma directional intra prediction mode, pick the best angle delta |
| // Return the RD cost corresponding to the best angle delta. |
| static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int mi_row, int mi_col, int *rate, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int mode_cost, int64_t best_rd, |
| int64_t *best_model_rd) { |
| MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; |
| assert(!is_inter_block(mbmi)); |
| |
| int best_angle_delta = 0; |
| int64_t rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; |
| TX_SIZE best_tx_size = mbmi->tx_size; |
| TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| |
| for (int i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; |
| |
| int first_try = 1; |
| for (int angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| for (int i = 0; i < 2; ++i) { |
| const int64_t best_rd_in = |
| (best_rd == INT64_MAX) ? INT64_MAX |
| : (best_rd + (best_rd >> (first_try ? 3 : 5))); |
| const int64_t this_rd = calc_rd_given_intra_angle( |
| cpi, x, bsize, mi_row, mi_col, mode_cost, best_rd_in, |
| (1 - 2 * i) * angle_delta, MAX_ANGLE_DELTA, rate, rd_stats, |
| &best_angle_delta, &best_tx_size, &best_rd, best_model_rd, |
| best_txk_type, best_blk_skip); |
| rd_cost[2 * angle_delta + i] = this_rd; |
| if (first_try && this_rd == INT64_MAX) return best_rd; |
| first_try = 0; |
| if (angle_delta == 0) { |
| rd_cost[1] = this_rd; |
| break; |
| } |
| } |
| } |
| |
| assert(best_rd != INT64_MAX); |
| for (int angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| for (int i = 0; i < 2; ++i) { |
| int skip_search = 0; |
| const int64_t rd_thresh = best_rd + (best_rd >> 5); |
| if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && |
| rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) |
| skip_search = 1; |
| if (!skip_search) { |
| calc_rd_given_intra_angle(cpi, x, bsize, mi_row, mi_col, mode_cost, |
| best_rd, (1 - 2 * i) * angle_delta, |
| MAX_ANGLE_DELTA, rate, rd_stats, |
| &best_angle_delta, &best_tx_size, &best_rd, |
| best_model_rd, best_txk_type, best_blk_skip); |
| } |
| } |
| } |
| |
| if (rd_stats->rate != INT_MAX) { |
| mbmi->tx_size = best_tx_size; |
| mbmi->angle_delta[PLANE_TYPE_Y] = best_angle_delta; |
| memcpy(mbmi->txk_type, best_txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| memcpy(x->blk_skip, best_blk_skip, |
| sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); |
| } |
| return best_rd; |
| } |
| |
| // Indices are sign, integer, and fractional part of the gradient value |
| static const uint8_t gradient_to_angle_bin[2][7][16] = { |
| { |
| { 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, |
| { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, |
| }, |
| { |
| { 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 }, |
| { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 }, |
| { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, |
| { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, |
| { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, |
| { 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, |
| { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, |
| }, |
| }; |
| |
| /* clang-format off */ |
| static const uint8_t mode_to_angle_bin[INTRA_MODES] = { |
| 0, 2, 6, 0, 4, 3, 5, 7, 1, 0, |
| 0, |
| }; |
| /* clang-format on */ |
| |
| static void get_gradient_hist(const uint8_t *src, int src_stride, int rows, |
| int cols, uint64_t *hist) { |
| src += src_stride; |
| for (int r = 1; r < rows; ++r) { |
| for (int c = 1; c < cols; ++c) { |
| int dx = src[c] - src[c - 1]; |
| int dy = src[c] - src[c - src_stride]; |
| int index; |
| const int temp = dx * dx + dy * dy; |
| if (dy == 0) { |
| index = 2; |
| } else { |
| const int sn = (dx > 0) ^ (dy > 0); |
| dx = abs(dx); |
| dy = abs(dy); |
| const int remd = (dx % dy) * 16 / dy; |
| const int quot = dx / dy; |
| index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; |
| } |
| hist[index] += temp; |
| } |
| src += src_stride; |
| } |
| } |
| |
| static void get_highbd_gradient_hist(const uint8_t *src8, int src_stride, |
| int rows, int cols, uint64_t *hist) { |
| uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| src += src_stride; |
| for (int r = 1; r < rows; ++r) { |
| for (int c = 1; c < cols; ++c) { |
| int dx = src[c] - src[c - 1]; |
| int dy = src[c] - src[c - src_stride]; |
| int index; |
| const int temp = dx * dx + dy * dy; |
| if (dy == 0) { |
| index = 2; |
| } else { |
| const int sn = (dx > 0) ^ (dy > 0); |
| dx = abs(dx); |
| dy = abs(dy); |
| const int remd = (dx % dy) * 16 / dy; |
| const int quot = dx / dy; |
| index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; |
| } |
| hist[index] += temp; |
| } |
| src += src_stride; |
| } |
| } |
| |
| static void angle_estimation(const uint8_t *src, int src_stride, int rows, |
| int cols, BLOCK_SIZE bsize, int is_hbd, |
| uint8_t *directional_mode_skip_mask) { |
| // Check if angle_delta is used |
| if (!av1_use_angle_delta(bsize)) return; |
| |
| uint64_t hist[DIRECTIONAL_MODES] = { 0 }; |
| if (is_hbd) |
| get_highbd_gradient_hist(src, src_stride, rows, cols, hist); |
| else |
| get_gradient_hist(src, src_stride, rows, cols, hist); |
| |
| int i; |
| uint64_t hist_sum = 0; |
| for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; |
| for (i = 0; i < INTRA_MODES; ++i) { |
| if (av1_is_directional_mode(i)) { |
| const uint8_t angle_bin = mode_to_angle_bin[i]; |
| uint64_t score = 2 * hist[angle_bin]; |
| int weight = 2; |
| if (angle_bin > 0) { |
| score += hist[angle_bin - 1]; |
| ++weight; |
| } |
| if (angle_bin < DIRECTIONAL_MODES - 1) { |
| score += hist[angle_bin + 1]; |
| ++weight; |
| } |
| const int thresh = 10; |
| if (score * thresh < hist_sum * weight) directional_mode_skip_mask[i] = 1; |
| } |
| } |
| } |
| |
| // Given selected prediction mode, search for the best tx type and size. |
| static void intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, const int *bmode_costs, |
| int64_t *best_rd, int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| MB_MODE_INFO *best_mbmi, PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| RD_STATS rd_stats; |
| super_block_yrd(cpi, x, &rd_stats, bsize, *best_rd); |
| if (rd_stats.rate == INT_MAX) return; |
| int this_rate_tokenonly = rd_stats.rate; |
| if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) { |
| // super_block_yrd above includes the cost of the tx_size in the |
| // tokenonly rate, but for intra blocks, tx_size is always coded |
| // (prediction granularity), so we account for it in the full rate, |
| // not the tokenonly rate. |
| this_rate_tokenonly -= tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); |
| } |
| const int this_rate = |
| rd_stats.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]); |
| const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist); |
| if (this_rd < *best_rd) { |
| *best_mbmi = *mbmi; |
| *best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = rd_stats.dist; |
| *skippable = rd_stats.skip; |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| |
| // This function is used only for intra_only frames |
| static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int mi_row, int mi_col, int *rate, |
| int *rate_tokenonly, int64_t *distortion, |
| int *skippable, BLOCK_SIZE bsize, |
| int64_t best_rd, PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(!is_inter_block(mbmi)); |
| int64_t best_model_rd = INT64_MAX; |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| int is_directional_mode; |
| uint8_t directional_mode_skip_mask[INTRA_MODES] = { 0 }; |
| int beat_best_rd = 0; |
| const int *bmode_costs; |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int try_palette = |
| cpi->oxcf.enable_palette && |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); |
| uint8_t *best_palette_color_map = |
| try_palette ? x->palette_buffer->best_palette_color_map : NULL; |
| const MB_MODE_INFO *above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *left_mi = xd->left_mbmi; |
| const PREDICTION_MODE A = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE L = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[A]; |
| const int left_ctx = intra_mode_context[L]; |
| bmode_costs = x->y_mode_costs[above_ctx][left_ctx]; |
| |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| if (cpi->sf.intra_angle_estimation) { |
| const int src_stride = x->plane[0].src.stride; |
| const uint8_t *src = x->plane[0].src.buf; |
| angle_estimation(src, src_stride, rows, cols, bsize, is_cur_buf_hbd(xd), |
| directional_mode_skip_mask); |
| } |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| pmi->palette_size[0] = 0; |
| |
| if (cpi->sf.tx_type_search.fast_intra_tx_type_search || |
| cpi->oxcf.use_intra_default_tx_only) |
| x->use_default_intra_tx_type = 1; |
| else |
| x->use_default_intra_tx_type = 0; |
| |
| MB_MODE_INFO best_mbmi = *mbmi; |
| /* Y Search for intra prediction mode */ |
| for (int mode_idx = INTRA_MODE_START; mode_idx < INTRA_MODE_END; ++mode_idx) { |
| RD_STATS this_rd_stats; |
| int this_rate, this_rate_tokenonly, s; |
| int64_t this_distortion, this_rd, this_model_rd; |
| mbmi->mode = intra_rd_search_mode_order[mode_idx]; |
| if ((!cpi->oxcf.enable_smooth_intra || cpi->sf.disable_smooth_intra) && |
| (mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED || |
| mbmi->mode == SMOOTH_V_PRED)) |
| continue; |
| if (!cpi->oxcf.enable_paeth_intra && mbmi->mode == PAETH_PRED) continue; |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| this_model_rd = |
| intra_model_yrd(cpi, x, bsize, bmode_costs[mbmi->mode], mi_row, mi_col); |
| if (best_model_rd != INT64_MAX && |
| this_model_rd > best_model_rd + (best_model_rd >> 1)) |
| continue; |
| if (this_model_rd < best_model_rd) best_model_rd = this_model_rd; |
| is_directional_mode = av1_is_directional_mode(mbmi->mode); |
| if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue; |
| if (is_directional_mode && av1_use_angle_delta(bsize) && |
| cpi->oxcf.enable_angle_delta) { |
| this_rd_stats.rate = INT_MAX; |
| rd_pick_intra_angle_sby(cpi, x, mi_row, mi_col, &this_rate, |
| &this_rd_stats, bsize, bmode_costs[mbmi->mode], |
| best_rd, &best_model_rd); |
| } else { |
| super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd); |
| } |
| this_rate_tokenonly = this_rd_stats.rate; |
| this_distortion = this_rd_stats.dist; |
| s = this_rd_stats.skip; |
| |
| if (this_rate_tokenonly == INT_MAX) continue; |
| |
| if (!xd->lossless[mbmi->segment_id] && |
| block_signals_txsize(mbmi->sb_type)) { |
| // super_block_yrd above includes the cost of the tx_size in the |
| // tokenonly rate, but for intra blocks, tx_size is always coded |
| // (prediction granularity), so we account for it in the full rate, |
| // not the tokenonly rate. |
| this_rate_tokenonly -= |
| tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); |
| } |
| this_rate = |
| this_rd_stats.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]); |
| this_rd = RDCOST(x->rdmult, this_rate, this_distortion); |
| if (this_rd < best_rd) { |
| best_mbmi = *mbmi; |
| best_rd = this_rd; |
| beat_best_rd = 1; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| |
| if (try_palette) { |
| rd_pick_palette_intra_sby( |
| cpi, x, bsize, mi_row, mi_col, bmode_costs[DC_PRED], &best_mbmi, |
| best_palette_color_map, &best_rd, &best_model_rd, rate, rate_tokenonly, |
| distortion, skippable, ctx, ctx->blk_skip); |
| } |
| |
| if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) { |
| if (rd_pick_filter_intra_sby( |
| cpi, x, mi_row, mi_col, rate, rate_tokenonly, distortion, skippable, |
| bsize, bmode_costs[DC_PRED], &best_rd, &best_model_rd, ctx)) { |
| best_mbmi = *mbmi; |
| } |
| } |
| |
| // If previous searches use only the default tx type, do an extra search for |
| // the best tx type. |
| if (cpi->sf.tx_type_search.fast_intra_tx_type_search && |
| !cpi->oxcf.use_intra_default_tx_only) { |
| *mbmi = best_mbmi; |
| x->use_default_intra_tx_type = 0; |
| intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, rate_tokenonly, |
| distortion, skippable, &best_mbmi, ctx); |
| } |
| |
| *mbmi = best_mbmi; |
| return best_rd; |
| } |
| |
| // Return value 0: early termination triggered, no valid rd cost available; |
| // 1: rd cost values are valid. |
| static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; |
| const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); |
| int plane; |
| int is_cost_valid = 1; |
| const int is_inter = is_inter_block(mbmi); |
| int64_t this_rd = 0, skip_rd = 0; |
| av1_init_rd_stats(rd_stats); |
| |
| if (ref_best_rd < 0) is_cost_valid = 0; |
| |
| if (x->skip_chroma_rd) return is_cost_valid; |
| |
| bsize = scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| if (is_inter && is_cost_valid) { |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) |
| av1_subtract_plane(x, bsize, plane); |
| } |
| |
| if (is_cost_valid) { |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) { |
| RD_STATS pn_rd_stats; |
| int64_t chroma_ref_best_rd = ref_best_rd; |
| // For inter blocks, refined ref_best_rd is used for early exit |
| // For intra blocks, even though current rd crosses ref_best_rd, early |
| // exit is not recommended as current rd is used for gating subsequent |
| // modes as well (say, for angular modes) |
| // TODO(any): Extend the early exit mechanism for intra modes as well |
| if (cpi->sf.perform_best_rd_based_gating_for_chroma && is_inter && |
| chroma_ref_best_rd != INT64_MAX) |
| chroma_ref_best_rd = ref_best_rd - AOMMIN(this_rd, skip_rd); |
| txfm_rd_in_plane(x, cpi, &pn_rd_stats, chroma_ref_best_rd, 0, plane, |
| bsize, uv_tx_size, cpi->sf.use_fast_coef_costing, |
| FTXS_NONE, 0); |
| if (pn_rd_stats.rate == INT_MAX) { |
| is_cost_valid = 0; |
| break; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| skip_rd = RDCOST(x->rdmult, 0, rd_stats->sse); |
| if (AOMMIN(this_rd, skip_rd) > ref_best_rd) { |
| is_cost_valid = 0; |
| break; |
| } |
| } |
| } |
| |
| if (!is_cost_valid) { |
| // reset cost value |
| av1_invalid_rd_stats(rd_stats); |
| } |
| |
| return is_cost_valid; |
| } |
| |
| // Pick transform type for a transform block of tx_size. |
| static void tx_type_rd(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size, |
| int blk_row, int blk_col, int plane, int block, |
| int plane_bsize, TXB_CTX *txb_ctx, RD_STATS *rd_stats, |
| FAST_TX_SEARCH_MODE ftxs_mode, int64_t ref_rdcost, |
| TXB_RD_INFO *rd_info_array) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const uint16_t cur_joint_ctx = |
| (txb_ctx->dc_sign_ctx << 8) + txb_ctx->txb_skip_ctx; |
| const int txk_type_idx = |
| av1_get_txk_type_index(plane_bsize, blk_row, blk_col); |
| // Look up RD and terminate early in case when we've already processed exactly |
| // the same residual with exactly the same entropy context. |
| if (rd_info_array != NULL && rd_info_array->valid && |
| rd_info_array->entropy_context == cur_joint_ctx) { |
| if (plane == 0) |
| x->e_mbd.mi[0]->txk_type[txk_type_idx] = rd_info_array->tx_type; |
| const TX_TYPE ref_tx_type = |
| av1_get_tx_type(get_plane_type(plane), &x->e_mbd, blk_row, blk_col, |
| tx_size, cpi->common.reduced_tx_set_used); |
| if (ref_tx_type == rd_info_array->tx_type) { |
| rd_stats->rate += rd_info_array->rate; |
| rd_stats->dist += rd_info_array->dist; |
| rd_stats->sse += rd_info_array->sse; |
| rd_stats->skip &= rd_info_array->eob == 0; |
| p->eobs[block] = rd_info_array->eob; |
| p->txb_entropy_ctx[block] = rd_info_array->txb_entropy_ctx; |
| return; |
| } |
| } |
| |
| RD_STATS this_rd_stats; |
| search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| txb_ctx, ftxs_mode, 0, 0, ref_rdcost, &this_rd_stats); |
| |
| av1_merge_rd_stats(rd_stats, &this_rd_stats); |
| |
| // Save RD results for possible reuse in future. |
| if (rd_info_array != NULL) { |
| rd_info_array->valid = 1; |
| rd_info_array->entropy_context = cur_joint_ctx; |
| rd_info_array->rate = this_rd_stats.rate; |
| rd_info_array->dist = this_rd_stats.dist; |
| rd_info_array->sse = this_rd_stats.sse; |
| rd_info_array->eob = p->eobs[block]; |
| rd_info_array->txb_entropy_ctx = p->txb_entropy_ctx[block]; |
| if (plane == 0) { |
| rd_info_array->tx_type = x->e_mbd.mi[0]->txk_type[txk_type_idx]; |
| } |
| } |
| } |
| |
| static void get_mean_and_dev(const int16_t *data, int stride, int bw, int bh, |
| float *mean, float *dev) { |
| int x_sum = 0; |
| uint64_t x2_sum = 0; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| const int val = data[j]; |
| x_sum += val; |
| x2_sum += val * val; |
| } |
| data += stride; |
| } |
| |
| const int num = bw * bh; |
| const float e_x = (float)x_sum / num; |
| const float e_x2 = (float)((double)x2_sum / num); |
| const float diff = e_x2 - e_x * e_x; |
| *dev = (diff > 0) ? sqrtf(diff) : 0; |
| *mean = e_x; |
| } |
| |
| static void get_mean_and_dev_float(const float *data, int stride, int bw, |
| int bh, float *mean, float *dev) { |
| float x_sum = 0; |
| float x2_sum = 0; |
| for (int i = 0; i < bh; ++i) { |
| for (int j = 0; j < bw; ++j) { |
| const float val = data[j]; |
| x_sum += val; |
| x2_sum += val * val; |
| } |
| data += stride; |
| } |
| |
| const int num = bw * bh; |
| const float e_x = x_sum / num; |
| const float e_x2 = x2_sum / num; |
| const float diff = e_x2 - e_x * e_x; |
| *dev = (diff > 0) ? sqrtf(diff) : 0; |
| *mean = e_x; |
| } |
| |
| // Feature used by the model to predict tx split: the mean and standard |
| // deviation values of the block and sub-blocks. |
| static void get_mean_dev_features(const int16_t *data, int stride, int bw, |
| int bh, int levels, float *feature) { |
| int feature_idx = 0; |
| int width = bw; |
| int height = bh; |
| const int16_t *const data_ptr = &data[0]; |
| for (int lv = 0; lv < levels; ++lv) { |
| if (width < 2 || height < 2) break; |
| float mean_buf[16]; |
| float dev_buf[16]; |
| int blk_idx = 0; |
| for (int row = 0; row < bh; row += height) { |
| for (int col = 0; col < bw; col += width) { |
| float mean, dev; |
| get_mean_and_dev(data_ptr + row * stride + col, stride, width, height, |
| &mean, &dev); |
| feature[feature_idx++] = mean; |
| feature[feature_idx++] = dev; |
| mean_buf[blk_idx] = mean; |
| dev_buf[blk_idx++] = dev; |
| } |
| } |
| if (blk_idx > 1) { |
| float mean, dev; |
| // Deviation of means. |
| get_mean_and_dev_float(mean_buf, 1, 1, blk_idx, &mean, &dev); |
| feature[feature_idx++] = dev; |
| // Mean of deviations. |
| get_mean_and_dev_float(dev_buf, 1, 1, blk_idx, &mean, &dev); |
| feature[feature_idx++] = mean; |
| } |
| // Reduce the block size when proceeding to the next level. |
| if (height == width) { |
| height = height >> 1; |
| width = width >> 1; |
| } else if (height > width) { |
| height = height >> 1; |
| } else { |
| width = width >> 1; |
| } |
| } |
| } |
| |
| static int ml_predict_tx_split(MACROBLOCK *x, BLOCK_SIZE bsize, int blk_row, |
| int blk_col, TX_SIZE tx_size) { |
| const NN_CONFIG *nn_config = av1_tx_split_nnconfig_map[tx_size]; |
| if (!nn_config) return -1; |
| |
| const int diff_stride = block_size_wide[bsize]; |
| const int16_t *diff = |
| x->plane[0].src_diff + 4 * blk_row * diff_stride + 4 * blk_col; |
| const int bw = tx_size_wide[tx_size]; |
| const int bh = tx_size_high[tx_size]; |
| aom_clear_system_state(); |
| |
| float features[64] = { 0.0f }; |
| get_mean_dev_features(diff, diff_stride, bw, bh, 2, features); |
| |
| float score = 0.0f; |
| av1_nn_predict(features, nn_config, &score); |
| aom_clear_system_state(); |
| if (score > 8.0f) return 100; |
| if (score < -8.0f) return 0; |
| score = 1.0f / (1.0f + (float)exp(-score)); |
| return (int)(score * 100); |
| } |
| |
| typedef struct { |
| int64_t rd; |
| int txb_entropy_ctx; |
| TX_TYPE tx_type; |
| } TxCandidateInfo; |
| |
| static void try_tx_block_no_split( |
| const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, |
| TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, |
| const ENTROPY_CONTEXT *ta, const ENTROPY_CONTEXT *tl, |
| int txfm_partition_ctx, RD_STATS *rd_stats, int64_t ref_best_rd, |
| FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node, |
| TxCandidateInfo *no_split) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| struct macroblock_plane *const p = &x->plane[0]; |
| const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| |
| no_split->rd = INT64_MAX; |
| no_split->txb_entropy_ctx = 0; |
| no_split->tx_type = TX_TYPES; |
| |
| const ENTROPY_CONTEXT *const pta = ta + blk_col; |
| const ENTROPY_CONTEXT *const ptl = tl + blk_row; |
| |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, 0, pta, ptl, &txb_ctx); |
| const int zero_blk_rate = x->coeff_costs[txs_ctx][PLANE_TYPE_Y] |
| .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; |
| rd_stats->zero_rate = zero_blk_rate; |
| const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); |
| mbmi->inter_tx_size[index] = tx_size; |
| tx_type_rd(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize, &txb_ctx, |
| rd_stats, ftxs_mode, ref_best_rd, |
| rd_info_node != NULL ? rd_info_node->rd_info_array : NULL); |
| assert(rd_stats->rate < INT_MAX); |
| |
| if ((RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= |
| RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || |
| rd_stats->skip == 1) && |
| !xd->lossless[mbmi->segment_id]) { |
| #if CONFIG_RD_DEBUG |
| av1_update_txb_coeff_cost(rd_stats, 0, tx_size, blk_row, blk_col, |
| zero_blk_rate - rd_stats->rate); |
| #endif // CONFIG_RD_DEBUG |
| rd_stats->rate = zero_blk_rate; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip = 1; |
| set_blk_skip(x, 0, blk_row * bw + blk_col, 1); |
| p->eobs[block] = 0; |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| DCT_DCT); |
| } else { |
| set_blk_skip(x, 0, blk_row * bw + blk_col, 0); |
| rd_stats->skip = 0; |
| } |
| |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) |
| rd_stats->rate += x->txfm_partition_cost[txfm_partition_ctx][0]; |
| |
| no_split->rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| no_split->txb_entropy_ctx = p->txb_entropy_ctx[block]; |
| const int txk_type_idx = |
| av1_get_txk_type_index(plane_bsize, blk_row, blk_col); |
| no_split->tx_type = mbmi->txk_type[txk_type_idx]; |
| } |
| |
| static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, |
| int blk_col, int block, TX_SIZE tx_size, int depth, |
| BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, |
| TXFM_CONTEXT *tx_left, RD_STATS *rd_stats, |
| int64_t prev_level_rd, int64_t ref_best_rd, |
| int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode, |
| TXB_RD_INFO_NODE *rd_info_node); |
| |
| static void try_tx_block_split( |
| const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, int blk_col, int block, |
| TX_SIZE tx_size, int depth, BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, |
| int txfm_partition_ctx, int64_t no_split_rd, int64_t ref_best_rd, |
| FAST_TX_SEARCH_MODE ftxs_mode, TXB_RD_INFO_NODE *rd_info_node, |
| RD_STATS *split_rd_stats, int64_t *split_rd) { |
| assert(tx_size < TX_SIZES_ALL); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int max_blocks_high = max_block_high(xd, plane_bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int sub_step = bsw * bsh; |
| const int nblks = |
| (tx_size_high_unit[tx_size] / bsh) * (tx_size_wide_unit[tx_size] / bsw); |
| assert(nblks > 0); |
| int blk_idx = 0; |
| int64_t tmp_rd = 0; |
| *split_rd = INT64_MAX; |
| split_rd_stats->rate = x->txfm_partition_cost[txfm_partition_ctx][1]; |
| |
| for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { |
| for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw, ++blk_idx) { |
| assert(blk_idx < 4); |
| const int offsetr = blk_row + r; |
| const int offsetc = blk_col + c; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| |
| RD_STATS this_rd_stats; |
| int this_cost_valid = 1; |
| select_tx_block( |
| cpi, x, offsetr, offsetc, block, sub_txs, depth + 1, plane_bsize, ta, |
| tl, tx_above, tx_left, &this_rd_stats, no_split_rd / nblks, |
| ref_best_rd - tmp_rd, &this_cost_valid, ftxs_mode, |
| (rd_info_node != NULL) ? rd_info_node->children[blk_idx] : NULL); |
| if (!this_cost_valid) return; |
| av1_merge_rd_stats(split_rd_stats, &this_rd_stats); |
| tmp_rd = RDCOST(x->rdmult, split_rd_stats->rate, split_rd_stats->dist); |
| if (no_split_rd < tmp_rd) return; |
| block += sub_step; |
| } |
| } |
| |
| *split_rd = tmp_rd; |
| } |
| |
| // Search for the best tx partition/type for a given luma block. |
| static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, |
| int blk_col, int block, TX_SIZE tx_size, int depth, |
| BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *ta, |
| ENTROPY_CONTEXT *tl, TXFM_CONTEXT *tx_above, |
| TXFM_CONTEXT *tx_left, RD_STATS *rd_stats, |
| int64_t prev_level_rd, int64_t ref_best_rd, |
| int *is_cost_valid, FAST_TX_SEARCH_MODE ftxs_mode, |
| TXB_RD_INFO_NODE *rd_info_node) { |
| assert(tx_size < TX_SIZES_ALL); |
| av1_init_rd_stats(rd_stats); |
| if (ref_best_rd < 0) { |
| *is_cost_valid = 0; |
| return; |
| } |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int max_blocks_high = max_block_high(xd, plane_bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, |
| mbmi->sb_type, tx_size); |
| struct macroblock_plane *const p = &x->plane[0]; |
| |
| const int try_no_split = |
| cpi->oxcf.enable_tx64 || txsize_sqr_up_map[tx_size] != TX_64X64; |
| int try_split = tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH; |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8) |
| try_split &= tx_size_wide[tx_size] >= 16 && tx_size_high[tx_size] >= 16; |
| #endif |
| TxCandidateInfo no_split = { INT64_MAX, 0, TX_TYPES }; |
| |
| // TX no split |
| if (try_no_split) { |
| try_tx_block_no_split(cpi, x, blk_row, blk_col, block, tx_size, depth, |
| plane_bsize, ta, tl, ctx, rd_stats, ref_best_rd, |
| ftxs_mode, rd_info_node, &no_split); |
| |
| if (cpi->sf.adaptive_txb_search_level && |
| (no_split.rd - |
| (no_split.rd >> (1 + cpi->sf.adaptive_txb_search_level))) > |
| ref_best_rd) { |
| *is_cost_valid = 0; |
| return; |
| } |
| |
| if (cpi->sf.txb_split_cap) { |
| if (p->eobs[block] == 0) try_split = 0; |
| } |
| |
| if (cpi->sf.adaptive_txb_search_level && |
| (no_split.rd - |
| (no_split.rd >> (2 + cpi->sf.adaptive_txb_search_level))) > |
| prev_level_rd) { |
| try_split = 0; |
| } |
| } |
| |
| if (x->e_mbd.bd == 8 && try_split && |
| !(ref_best_rd == INT64_MAX && no_split.rd == INT64_MAX)) { |
| const int threshold = cpi->sf.tx_type_search.ml_tx_split_thresh; |
| if (threshold >= 0) { |
| const int split_score = |
| ml_predict_tx_split(x, plane_bsize, blk_row, blk_col, tx_size); |
| if (split_score >= 0 && split_score < threshold) try_split = 0; |
| } |
| } |
| |
| // TX split |
| int64_t split_rd = INT64_MAX; |
| RD_STATS split_rd_stats; |
| av1_init_rd_stats(&split_rd_stats); |
| if (try_split) { |
| try_tx_block_split(cpi, x, blk_row, blk_col, block, tx_size, depth, |
| plane_bsize, ta, tl, tx_above, tx_left, ctx, no_split.rd, |
| AOMMIN(no_split.rd, ref_best_rd), ftxs_mode, |
| rd_info_node, &split_rd_stats, &split_rd); |
| } |
| |
| if (no_split.rd < split_rd) { |
| ENTROPY_CONTEXT *pta = ta + blk_col; |
| ENTROPY_CONTEXT *ptl = tl + blk_row; |
| const TX_SIZE tx_size_selected = tx_size; |
| p->txb_entropy_ctx[block] = no_split.txb_entropy_ctx; |
| av1_set_txb_context(x, 0, block, tx_size_selected, pta, ptl); |
| txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, |
| tx_size); |
| for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) { |
| for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) { |
| const int index = |
| av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx); |
| mbmi->inter_tx_size[index] = tx_size_selected; |
| } |
| } |
| mbmi->tx_size = tx_size_selected; |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| no_split.tx_type); |
| set_blk_skip(x, 0, blk_row * bw + blk_col, rd_stats->skip); |
| } else { |
| *rd_stats = split_rd_stats; |
| if (split_rd == INT64_MAX) *is_cost_valid = 0; |
| } |
| } |
| |
| static int64_t select_tx_size_and_type(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t ref_best_rd, |
| TXB_RD_INFO_NODE *rd_info_tree) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(is_inter_block(xd->mi[0])); |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| // TODO(debargha): enable this as a speed feature where the |
| // select_inter_block_yrd() function above will use a simplified search |
| // such as not using full optimize, but the inter_block_yrd() function |
| // will use more complex search given that the transform partitions have |
| // already been decided. |
| |
| const int fast_tx_search = cpi->sf.tx_size_search_method > USE_FULL_RD; |
| int64_t rd_thresh = ref_best_rd; |
| if (fast_tx_search && rd_thresh < INT64_MAX) { |
| if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3); |
| } |
| assert(rd_thresh > 0); |
| |
| const FAST_TX_SEARCH_MODE ftxs_mode = |
| fast_tx_search ? FTXS_DCT_AND_1D_DCT_ONLY : FTXS_NONE; |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; |
| av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); |
| memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); |
| memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); |
| |
| const int skip_ctx = av1_get_skip_context(xd); |
| const int s0 = x->skip_cost[skip_ctx][0]; |
| const int s1 = x->skip_cost[skip_ctx][1]; |
| const int init_depth = |
| get_search_init_depth(mi_width, mi_height, 1, &cpi->sf); |
| const TX_SIZE max_tx_size = max_txsize_rect_lookup[plane_bsize]; |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| const int step = bw * bh; |
| int64_t skip_rd = RDCOST(x->rdmult, s1, 0); |
| int64_t this_rd = RDCOST(x->rdmult, s0, 0); |
| int block = 0; |
| |
| av1_init_rd_stats(rd_stats); |
| for (int idy = 0; idy < mi_height; idy += bh) { |
| for (int idx = 0; idx < mi_width; idx += bw) { |
| const int64_t best_rd_sofar = |
| (rd_thresh == INT64_MAX) ? INT64_MAX |
| : (rd_thresh - (AOMMIN(skip_rd, this_rd))); |
| int is_cost_valid = 1; |
| RD_STATS pn_rd_stats; |
| select_tx_block(cpi, x, idy, idx, block, max_tx_size, init_depth, |
| plane_bsize, ctxa, ctxl, tx_above, tx_left, &pn_rd_stats, |
| INT64_MAX, best_rd_sofar, &is_cost_valid, ftxs_mode, |
| rd_info_tree); |
| if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| return INT64_MAX; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse); |
| this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); |
| block += step; |
| if (rd_info_tree != NULL) rd_info_tree += 1; |
| } |
| } |
| |
| if (skip_rd <= this_rd) { |
| rd_stats->skip = 1; |
| } else { |
| rd_stats->skip = 0; |
| } |
| |
| if (rd_stats->rate == INT_MAX) return INT64_MAX; |
| |
| // If fast_tx_search is true, only DCT and 1D DCT were tested in |
| // select_inter_block_yrd() above. Do a better search for tx type with |
| // tx sizes already decided. |
| if (fast_tx_search) { |
| if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, FTXS_NONE)) |
| return INT64_MAX; |
| } |
| |
| int64_t rd; |
| if (rd_stats->skip) { |
| rd = RDCOST(x->rdmult, s1, rd_stats->sse); |
| } else { |
| rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); |
| if (!xd->lossless[xd->mi[0]->segment_id]) |
| rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse)); |
| } |
| |
| return rd; |
| } |
| |
| // Finds rd cost for a y block, given the transform size partitions |
| static void tx_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, |
| int blk_col, int block, TX_SIZE tx_size, |
| BLOCK_SIZE plane_bsize, int depth, |
| ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx, |
| TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, |
| int64_t ref_best_rd, RD_STATS *rd_stats, |
| FAST_TX_SEARCH_MODE ftxs_mode) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int max_blocks_high = max_block_high(xd, plane_bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0); |
| |
| assert(tx_size < TX_SIZES_ALL); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[av1_get_txb_size_index( |
| plane_bsize, blk_row, blk_col)]; |
| |
| int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, |
| mbmi->sb_type, tx_size); |
| |
| av1_init_rd_stats(rd_stats); |
| if (tx_size == plane_tx_size) { |
| ENTROPY_CONTEXT *ta = above_ctx + blk_col; |
| ENTROPY_CONTEXT *tl = left_ctx + blk_row; |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, 0, ta, tl, &txb_ctx); |
| |
| const int zero_blk_rate = x->coeff_costs[txs_ctx][get_plane_type(0)] |
| .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; |
| rd_stats->zero_rate = zero_blk_rate; |
| tx_type_rd(cpi, x, tx_size, blk_row, blk_col, 0, block, plane_bsize, |
| &txb_ctx, rd_stats, ftxs_mode, ref_best_rd, NULL); |
| const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= |
| RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || |
| rd_stats->skip == 1) { |
| rd_stats->rate = zero_blk_rate; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip = 1; |
| set_blk_skip(x, 0, blk_row * mi_width + blk_col, 1); |
| x->plane[0].eobs[block] = 0; |
| x->plane[0].txb_entropy_ctx[block] = 0; |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| DCT_DCT); |
| } else { |
| rd_stats->skip = 0; |
| set_blk_skip(x, 0, blk_row * mi_width + blk_col, 0); |
| } |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) |
| rd_stats->rate += x->txfm_partition_cost[ctx][0]; |
| av1_set_txb_context(x, 0, block, tx_size, ta, tl); |
| txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, |
| tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int step = bsh * bsw; |
| RD_STATS pn_rd_stats; |
| int64_t this_rd = 0; |
| assert(bsw > 0 && bsh > 0); |
| |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| |
| av1_init_rd_stats(&pn_rd_stats); |
| tx_block_yrd(cpi, x, offsetr, offsetc, block, sub_txs, plane_bsize, |
| depth + 1, above_ctx, left_ctx, tx_above, tx_left, |
| ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode); |
| if (pn_rd_stats.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| return; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist); |
| block += step; |
| } |
| } |
| |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) |
| rd_stats->rate += x->txfm_partition_cost[ctx][1]; |
| } |
| } |
| |
| // Return value 0: early termination triggered, no valid rd cost available; |
| // 1: rd cost values are valid. |
| static int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t ref_best_rd, FAST_TX_SEARCH_MODE ftxs_mode) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int is_cost_valid = 1; |
| int64_t this_rd = 0; |
| |
| if (ref_best_rd < 0) is_cost_valid = 0; |
| |
| av1_init_rd_stats(rd_stats); |
| |
| if (is_cost_valid) { |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| const int init_depth = |
| get_search_init_depth(mi_width, mi_height, 1, &cpi->sf); |
| int idx, idy; |
| int block = 0; |
| int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| ENTROPY_CONTEXT ctxa[MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_above[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_left[MAX_MIB_SIZE]; |
| RD_STATS pn_rd_stats; |
| |
| av1_get_entropy_contexts(bsize, pd, ctxa, ctxl); |
| memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); |
| memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); |
| |
| for (idy = 0; idy < mi_height; idy += bh) { |
| for (idx = 0; idx < mi_width; idx += bw) { |
| av1_init_rd_stats(&pn_rd_stats); |
| tx_block_yrd(cpi, x, idy, idx, block, max_tx_size, plane_bsize, |
| init_depth, ctxa, ctxl, tx_above, tx_left, |
| ref_best_rd - this_rd, &pn_rd_stats, ftxs_mode); |
| if (pn_rd_stats.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| return 0; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| this_rd += |
| AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist), |
| RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse)); |
| block += step; |
| } |
| } |
| } |
| |
| const int skip_ctx = av1_get_skip_context(xd); |
| const int s0 = x->skip_cost[skip_ctx][0]; |
| const int s1 = x->skip_cost[skip_ctx][1]; |
| int64_t skip_rd = RDCOST(x->rdmult, s1, rd_stats->sse); |
| this_rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); |
| if (skip_rd < this_rd) { |
| this_rd = skip_rd; |
| rd_stats->rate = 0; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip = 1; |
| } |
| if (this_rd > ref_best_rd) is_cost_valid = 0; |
| |
| if (!is_cost_valid) { |
| // reset cost value |
| av1_invalid_rd_stats(rd_stats); |
| } |
| return is_cost_valid; |
| } |
| |
| static int find_tx_size_rd_info(TXB_RD_RECORD *cur_record, |
| const uint32_t hash) { |
| // Linear search through the circular buffer to find matching hash. |
| for (int i = cur_record->index_start - 1; i >= 0; i--) { |
| if (cur_record->hash_vals[i] == hash) return i; |
| } |
| for (int i = cur_record->num - 1; i >= cur_record->index_start; i--) { |
| if (cur_record->hash_vals[i] == hash) return i; |
| } |
| int index; |
| // If not found - add new RD info into the buffer and return its index |
| if (cur_record->num < TX_SIZE_RD_RECORD_BUFFER_LEN) { |
| index = (cur_record->index_start + cur_record->num) % |
| TX_SIZE_RD_RECORD_BUFFER_LEN; |
| cur_record->num++; |
| } else { |
| index = cur_record->index_start; |
| cur_record->index_start = |
| (cur_record->index_start + 1) % TX_SIZE_RD_RECORD_BUFFER_LEN; |
| } |
| |
| cur_record->hash_vals[index] = hash; |
| av1_zero(cur_record->tx_rd_info[index]); |
| return index; |
| } |
| |
| typedef struct { |
| int leaf; |
| int8_t children[4]; |
| } RD_RECORD_IDX_NODE; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_8x8[] = { |
| { 1, { 0 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_8x16[] = { |
| { 0, { 1, 2, -1, -1 } }, |
| { 1, { 0, 0, 0, 0 } }, |
| { 1, { 0, 0, 0, 0 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_16x8[] = { |
| { 0, { 1, 2, -1, -1 } }, |
| { 1, { 0 } }, |
| { 1, { 0 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_16x16[] = { |
| { 0, { 1, 2, 3, 4 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } }, { 1, { 0 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_1_2[] = { |
| { 0, { 1, 2, -1, -1 } }, |
| { 0, { 3, 4, 5, 6 } }, |
| { 0, { 7, 8, 9, 10 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_2_1[] = { |
| { 0, { 1, 2, -1, -1 } }, |
| { 0, { 3, 4, 7, 8 } }, |
| { 0, { 5, 6, 9, 10 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_sqr[] = { |
| { 0, { 1, 2, 3, 4 } }, { 0, { 5, 6, 9, 10 } }, { 0, { 7, 8, 11, 12 } }, |
| { 0, { 13, 14, 17, 18 } }, { 0, { 15, 16, 19, 20 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_64x128[] = { |
| { 0, { 2, 3, 4, 5 } }, { 0, { 6, 7, 8, 9 } }, |
| { 0, { 10, 11, 14, 15 } }, { 0, { 12, 13, 16, 17 } }, |
| { 0, { 18, 19, 22, 23 } }, { 0, { 20, 21, 24, 25 } }, |
| { 0, { 26, 27, 30, 31 } }, { 0, { 28, 29, 32, 33 } }, |
| { 0, { 34, 35, 38, 39 } }, { 0, { 36, 37, 40, 41 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_128x64[] = { |
| { 0, { 2, 3, 6, 7 } }, { 0, { 4, 5, 8, 9 } }, |
| { 0, { 10, 11, 18, 19 } }, { 0, { 12, 13, 20, 21 } }, |
| { 0, { 14, 15, 22, 23 } }, { 0, { 16, 17, 24, 25 } }, |
| { 0, { 26, 27, 34, 35 } }, { 0, { 28, 29, 36, 37 } }, |
| { 0, { 30, 31, 38, 39 } }, { 0, { 32, 33, 40, 41 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_128x128[] = { |
| { 0, { 4, 5, 8, 9 } }, { 0, { 6, 7, 10, 11 } }, |
| { 0, { 12, 13, 16, 17 } }, { 0, { 14, 15, 18, 19 } }, |
| { 0, { 20, 21, 28, 29 } }, { 0, { 22, 23, 30, 31 } }, |
| { 0, { 24, 25, 32, 33 } }, { 0, { 26, 27, 34, 35 } }, |
| { 0, { 36, 37, 44, 45 } }, { 0, { 38, 39, 46, 47 } }, |
| { 0, { 40, 41, 48, 49 } }, { 0, { 42, 43, 50, 51 } }, |
| { 0, { 52, 53, 60, 61 } }, { 0, { 54, 55, 62, 63 } }, |
| { 0, { 56, 57, 64, 65 } }, { 0, { 58, 59, 66, 67 } }, |
| { 0, { 68, 69, 76, 77 } }, { 0, { 70, 71, 78, 79 } }, |
| { 0, { 72, 73, 80, 81 } }, { 0, { 74, 75, 82, 83 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_1_4[] = { |
| { 0, { 1, -1, 2, -1 } }, |
| { 0, { 3, 4, -1, -1 } }, |
| { 0, { 5, 6, -1, -1 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE rd_record_tree_4_1[] = { |
| { 0, { 1, 2, -1, -1 } }, |
| { 0, { 3, 4, -1, -1 } }, |
| { 0, { 5, 6, -1, -1 } }, |
| }; |
| |
| static const RD_RECORD_IDX_NODE *rd_record_tree[BLOCK_SIZES_ALL] = { |
| NULL, // BLOCK_4X4 |
| NULL, // BLOCK_4X8 |
| NULL, // BLOCK_8X4 |
| rd_record_tree_8x8, // BLOCK_8X8 |
| rd_record_tree_8x16, // BLOCK_8X16 |
| rd_record_tree_16x8, // BLOCK_16X8 |
| rd_record_tree_16x16, // BLOCK_16X16 |
| rd_record_tree_1_2, // BLOCK_16X32 |
| rd_record_tree_2_1, // BLOCK_32X16 |
| rd_record_tree_sqr, // BLOCK_32X32 |
| rd_record_tree_1_2, // BLOCK_32X64 |
| rd_record_tree_2_1, // BLOCK_64X32 |
| rd_record_tree_sqr, // BLOCK_64X64 |
| rd_record_tree_64x128, // BLOCK_64X128 |
| rd_record_tree_128x64, // BLOCK_128X64 |
| rd_record_tree_128x128, // BLOCK_128X128 |
| NULL, // BLOCK_4X16 |
| NULL, // BLOCK_16X4 |
| rd_record_tree_1_4, // BLOCK_8X32 |
| rd_record_tree_4_1, // BLOCK_32X8 |
| rd_record_tree_1_4, // BLOCK_16X64 |
| rd_record_tree_4_1, // BLOCK_64X16 |
| }; |
| |
| static const int rd_record_tree_size[BLOCK_SIZES_ALL] = { |
| 0, // BLOCK_4X4 |
| 0, // BLOCK_4X8 |
| 0, // BLOCK_8X4 |
| sizeof(rd_record_tree_8x8) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X8 |
| sizeof(rd_record_tree_8x16) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X16 |
| sizeof(rd_record_tree_16x8) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X8 |
| sizeof(rd_record_tree_16x16) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X16 |
| sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X32 |
| sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X16 |
| sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X32 |
| sizeof(rd_record_tree_1_2) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X64 |
| sizeof(rd_record_tree_2_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X32 |
| sizeof(rd_record_tree_sqr) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X64 |
| sizeof(rd_record_tree_64x128) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X128 |
| sizeof(rd_record_tree_128x64) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_128X64 |
| sizeof(rd_record_tree_128x128) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_128X128 |
| 0, // BLOCK_4X16 |
| 0, // BLOCK_16X4 |
| sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_8X32 |
| sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_32X8 |
| sizeof(rd_record_tree_1_4) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_16X64 |
| sizeof(rd_record_tree_4_1) / sizeof(RD_RECORD_IDX_NODE), // BLOCK_64X16 |
| }; |
| |
| static INLINE void init_rd_record_tree(TXB_RD_INFO_NODE *tree, |
| BLOCK_SIZE bsize) { |
| const RD_RECORD_IDX_NODE *rd_record = rd_record_tree[bsize]; |
| const int size = rd_record_tree_size[bsize]; |
| for (int i = 0; i < size; ++i) { |
| if (rd_record[i].leaf) { |
| av1_zero(tree[i].children); |
| } else { |
| for (int j = 0; j < 4; ++j) { |
| const int8_t idx = rd_record[i].children[j]; |
| tree[i].children[j] = idx > 0 ? &tree[idx] : NULL; |
| } |
| } |
| } |
| } |
| |
| // Go through all TX blocks that could be used in TX size search, compute |
| // residual hash values for them and find matching RD info that stores previous |
| // RD search results for these TX blocks. The idea is to prevent repeated |
| // rate/distortion computations that happen because of the combination of |
| // partition and TX size search. The resulting RD info records are returned in |
| // the form of a quadtree for easier access in actual TX size search. |
| static int find_tx_size_rd_records(MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, TXB_RD_INFO_NODE *dst_rd_info) { |
| TXB_RD_RECORD *rd_records_table[4] = { x->txb_rd_record_8X8, |
| x->txb_rd_record_16X16, |
| x->txb_rd_record_32X32, |
| x->txb_rd_record_64X64 }; |
| const TX_SIZE max_square_tx_size = max_txsize_lookup[bsize]; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| |
| // Hashing is performed only for square TX sizes larger than TX_4X4 |
| if (max_square_tx_size < TX_8X8) return 0; |
| const int diff_stride = bw; |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const int16_t *diff = &p->src_diff[0]; |
| init_rd_record_tree(dst_rd_info, bsize); |
| // Coordinates of the top-left corner of current block within the superblock |
| // measured in pixels: |
| const int mi_row_in_sb = (mi_row % MAX_MIB_SIZE) << MI_SIZE_LOG2; |
| const int mi_col_in_sb = (mi_col % MAX_MIB_SIZE) << MI_SIZE_LOG2; |
| int cur_rd_info_idx = 0; |
| int cur_tx_depth = 0; |
| TX_SIZE cur_tx_size = max_txsize_rect_lookup[bsize]; |
| while (cur_tx_depth <= MAX_VARTX_DEPTH) { |
| const int cur_tx_bw = tx_size_wide[cur_tx_size]; |
| const int cur_tx_bh = tx_size_high[cur_tx_size]; |
| if (cur_tx_bw < 8 || cur_tx_bh < 8) break; |
| const TX_SIZE next_tx_size = sub_tx_size_map[cur_tx_size]; |
| const int tx_size_idx = cur_tx_size - TX_8X8; |
| for (int row = 0; row < bh; row += cur_tx_bh) { |
| for (int col = 0; col < bw; col += cur_tx_bw) { |
| if (cur_tx_bw != cur_tx_bh) { |
| // Use dummy nodes for all rectangular transforms within the |
| // TX size search tree. |
| dst_rd_info[cur_rd_info_idx].rd_info_array = NULL; |
| } else { |
| // Get spatial location of this TX block within the superblock |
| // (measured in cur_tx_bsize units). |
| const int row_in_sb = (mi_row_in_sb + row) / cur_tx_bh; |
| const int col_in_sb = (mi_col_in_sb + col) / cur_tx_bw; |
| |
| int16_t hash_data[MAX_SB_SQUARE]; |
| int16_t *cur_hash_row = hash_data; |
| const int16_t *cur_diff_row = diff + row * diff_stride + col; |
| for (int i = 0; i < cur_tx_bh; i++) { |
| memcpy(cur_hash_row, cur_diff_row, sizeof(*hash_data) * cur_tx_bw); |
| cur_hash_row += cur_tx_bw; |
| cur_diff_row += diff_stride; |
| } |
| const int hash = av1_get_crc32c_value(&x->mb_rd_record.crc_calculator, |
| (uint8_t *)hash_data, |
| 2 * cur_tx_bw * cur_tx_bh); |
| // Find corresponding RD info based on the hash value. |
| const int record_idx = |
| row_in_sb * (MAX_MIB_SIZE >> (tx_size_idx + 1)) + col_in_sb; |
| TXB_RD_RECORD *records = &rd_records_table[tx_size_idx][record_idx]; |
| int idx = find_tx_size_rd_info(records, hash); |
| dst_rd_info[cur_rd_info_idx].rd_info_array = |
| &records->tx_rd_info[idx]; |
| } |
| ++cur_rd_info_idx; |
| } |
| } |
| cur_tx_size = next_tx_size; |
| ++cur_tx_depth; |
| } |
| return 1; |
| } |
| |
| // Search for best transform size and type for luma inter blocks. |
| static void pick_tx_size_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, int64_t ref_best_rd) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(is_inter_block(xd->mi[0])); |
| |
| av1_invalid_rd_stats(rd_stats); |
| |
| if (cpi->sf.model_based_prune_tx_search_level && ref_best_rd != INT64_MAX) { |
| int model_rate; |
| int64_t model_dist; |
| int model_skip; |
| model_rd_sb_fn[MODELRD_TYPE_TX_SEARCH_PRUNE]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &model_rate, &model_dist, |
| &model_skip, NULL, NULL, NULL, NULL); |
| const int64_t model_rd = RDCOST(x->rdmult, model_rate, model_dist); |
| // If the modeled rd is a lot worse than the best so far, breakout. |
| // TODO(debargha, urvang): Improve the model and make the check below |
| // tighter. |
| assert(cpi->sf.model_based_prune_tx_search_level >= 0 && |
| cpi->sf.model_based_prune_tx_search_level <= 2); |
| static const int prune_factor_by8[] = { 3, 5 }; |
| if (!model_skip && |
| ((model_rd * |
| prune_factor_by8[cpi->sf.model_based_prune_tx_search_level - 1]) >> |
| 3) > ref_best_rd) |
| return; |
| } |
| |
| uint32_t hash = 0; |
| int32_t match_index = -1; |
| MB_RD_RECORD *mb_rd_record = NULL; |
| const int within_border = |
| mi_row >= xd->tile.mi_row_start && |
| (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) && |
| mi_col >= xd->tile.mi_col_start && |
| (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end); |
| const int is_mb_rd_hash_enabled = (within_border && cpi->sf.use_mb_rd_hash); |
| const int n4 = bsize_to_num_blk(bsize); |
| if (is_mb_rd_hash_enabled) { |
| hash = get_block_residue_hash(x, bsize); |
| mb_rd_record = &x->mb_rd_record; |
| match_index = find_mb_rd_info(mb_rd_record, ref_best_rd, hash); |
| if (match_index != -1) { |
| MB_RD_INFO *tx_rd_info = &mb_rd_record->tx_rd_info[match_index]; |
| fetch_tx_rd_info(n4, tx_rd_info, rd_stats, x); |
| return; |
| } |
| } |
| |
| // If we predict that skip is the optimal RD decision - set the respective |
| // context and terminate early. |
| int64_t dist; |
| if (cpi->sf.tx_type_search.use_skip_flag_prediction && |
| predict_skip_flag(x, bsize, &dist, cm->reduced_tx_set_used)) { |
| set_skip_flag(x, rd_stats, bsize, dist); |
| // Save the RD search results into tx_rd_record. |
| if (is_mb_rd_hash_enabled) |
| save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); |
| return; |
| } |
| #if CONFIG_SPEED_STATS |
| ++x->tx_search_count; |
| #endif // CONFIG_SPEED_STATS |
| |
| // Precompute residual hashes and find existing or add new RD records to |
| // store and reuse rate and distortion values to speed up TX size search. |
| TXB_RD_INFO_NODE matched_rd_info[4 + 16 + 64]; |
| int found_rd_info = 0; |
| if (ref_best_rd != INT64_MAX && within_border && cpi->sf.use_inter_txb_hash) { |
| found_rd_info = |
| find_tx_size_rd_records(x, bsize, mi_row, mi_col, matched_rd_info); |
| } |
| |
| int found = 0; |
| RD_STATS this_rd_stats; |
| av1_init_rd_stats(&this_rd_stats); |
| const int64_t rd = |
| select_tx_size_and_type(cpi, x, &this_rd_stats, bsize, ref_best_rd, |
| found_rd_info ? matched_rd_info : NULL); |
| |
| if (rd < INT64_MAX) { |
| *rd_stats = this_rd_stats; |
| found = 1; |
| } |
| |
| // We should always find at least one candidate unless ref_best_rd is less |
| // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type |
| // might have failed to find something better) |
| assert(IMPLIES(!found, ref_best_rd != INT64_MAX)); |
| if (!found) return; |
| |
| // Save the RD search results into tx_rd_record. |
| if (is_mb_rd_hash_enabled) { |
| assert(mb_rd_record != NULL); |
| save_tx_rd_info(n4, hash, x, rd_stats, mb_rd_record); |
| } |
| } |
| |
| static void model_rd_for_sb_with_fullrdy( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, |
| int plane_from, int plane_to, int mi_row, int mi_col, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, int64_t *skip_sse_sb, |
| int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { |
| const int ref = xd->mi[0]->ref_frame[0]; |
| |
| int64_t rate_sum = 0; |
| int64_t dist_sum = 0; |
| int64_t total_sse = 0; |
| assert(bsize < BLOCK_SIZES_ALL); |
| |
| for (int plane = plane_from; plane <= plane_to; ++plane) { |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| int64_t sse; |
| int rate; |
| int64_t dist; |
| |
| if (x->skip_chroma_rd && plane) continue; |
| |
| if (is_cur_buf_hbd(xd)) { |
| sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride, bw, bh); |
| } else { |
| sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, |
| bh); |
| } |
| sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); |
| |
| RD_STATS rd_stats; |
| if (plane == 0) { |
| pick_tx_size_type_yrd(cpi, x, &rd_stats, bsize, mi_row, mi_col, |
| INT64_MAX); |
| if (rd_stats.rate == INT_MAX) { |
| rate = 0; |
| dist = sse << 4; |
| } else { |
| rate = rd_stats.rate; |
| dist = rd_stats.dist; |
| } |
| } else { |
| model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, |
| &dist); |
| } |
| |
| if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); |
| |
| total_sse += sse; |
| rate_sum += rate; |
| dist_sum += dist; |
| |
| if (plane_rate) plane_rate[plane] = rate; |
| if (plane_sse) plane_sse[plane] = sse; |
| if (plane_dist) plane_dist[plane] = dist; |
| } |
| |
| if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; |
| if (skip_sse_sb) *skip_sse_sb = total_sse << 4; |
| *out_rate_sum = (int)rate_sum; |
| *out_dist_sum = dist_sum; |
| } |
| |
| static void rd_pick_palette_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int dc_mode_cost, |
| uint8_t *best_palette_color_map, |
| MB_MODE_INFO *const best_mbmi, |
| int64_t *best_rd, int *rate, |
| int *rate_tokenonly, int64_t *distortion, |
| int *skippable) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(!is_inter_block(mbmi)); |
| assert( |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type)); |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const SequenceHeader *const seq_params = &cpi->common.seq_params; |
| int this_rate; |
| int64_t this_rd; |
| int colors_u, colors_v, colors; |
| const int src_stride = x->plane[1].src.stride; |
| const uint8_t *const src_u = x->plane[1].src.buf; |
| const uint8_t *const src_v = x->plane[2].src.buf; |
| uint8_t *const color_map = xd->plane[1].color_index_map; |
| RD_STATS tokenonly_rd_stats; |
| int plane_block_width, plane_block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, |
| &plane_block_height, &rows, &cols); |
| |
| mbmi->uv_mode = UV_DC_PRED; |
| |
| int count_buf[1 << 12]; // Maximum (1 << 12) color levels. |
| if (seq_params->use_highbitdepth) { |
| colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols, |
| seq_params->bit_depth, count_buf); |
| colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols, |
| seq_params->bit_depth, count_buf); |
| } else { |
| colors_u = av1_count_colors(src_u, src_stride, rows, cols, count_buf); |
| colors_v = av1_count_colors(src_v, src_stride, rows, cols, count_buf); |
| } |
| |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 1, color_cache); |
| |
| colors = colors_u > colors_v ? colors_u : colors_v; |
| if (colors > 1 && colors <= 64) { |
| int r, c, n, i, j; |
| const int max_itr = 50; |
| int lb_u, ub_u, val_u; |
| int lb_v, ub_v, val_v; |
| int *const data = x->palette_buffer->kmeans_data_buf; |
| int centroids[2 * PALETTE_MAX_SIZE]; |
| |
| uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u); |
| uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v); |
| if (seq_params->use_highbitdepth) { |
| lb_u = src_u16[0]; |
| ub_u = src_u16[0]; |
| lb_v = src_v16[0]; |
| ub_v = src_v16[0]; |
| } else { |
| lb_u = src_u[0]; |
| ub_u = src_u[0]; |
| lb_v = src_v[0]; |
| ub_v = src_v[0]; |
| } |
| |
| for (r = 0; r < rows; ++r) { |
| for (c = 0; c < cols; ++c) { |
| if (seq_params->use_highbitdepth) { |
| val_u = src_u16[r * src_stride + c]; |
| val_v = src_v16[r * src_stride + c]; |
| data[(r * cols + c) * 2] = val_u; |
| data[(r * cols + c) * 2 + 1] = val_v; |
| } else { |
| val_u = src_u[r * src_stride + c]; |
| val_v = src_v[r * src_stride + c]; |
| data[(r * cols + c) * 2] = val_u; |
| data[(r * cols + c) * 2 + 1] = val_v; |
| } |
| if (val_u < lb_u) |
| lb_u = val_u; |
| else if (val_u > ub_u) |
| ub_u = val_u; |
| if (val_v < lb_v) |
| lb_v = val_v; |
| else if (val_v > ub_v) |
| ub_v = val_v; |
| } |
| } |
| |
| for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2; |
| --n) { |
| for (i = 0; i < n; ++i) { |
| centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2; |
| centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2; |
| } |
| av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr); |
| optimize_palette_colors(color_cache, n_cache, n, 2, centroids); |
| // Sort the U channel colors in ascending order. |
| for (i = 0; i < 2 * (n - 1); i += 2) { |
| int min_idx = i; |
| int min_val = centroids[i]; |
| for (j = i + 2; j < 2 * n; j += 2) |
| if (centroids[j] < min_val) min_val = centroids[j], min_idx = j; |
| if (min_idx != i) { |
| int temp_u = centroids[i], temp_v = centroids[i + 1]; |
| centroids[i] = centroids[min_idx]; |
| centroids[i + 1] = centroids[min_idx + 1]; |
| centroids[min_idx] = temp_u, centroids[min_idx + 1] = temp_v; |
| } |
| } |
| av1_calc_indices(data, centroids, color_map, rows * cols, n, 2); |
| extend_palette_color_map(color_map, cols, rows, plane_block_width, |
| plane_block_height); |
| pmi->palette_size[1] = n; |
| for (i = 1; i < 3; ++i) { |
| for (j = 0; j < n; ++j) { |
| if (seq_params->use_highbitdepth) |
| pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd( |
| (int)centroids[j * 2 + i - 1], seq_params->bit_depth); |
| else |
| pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = |
| clip_pixel((int)centroids[j * 2 + i - 1]); |
| } |
| } |
| |
| super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); |
| if (tokenonly_rd_stats.rate == INT_MAX) continue; |
| this_rate = tokenonly_rd_stats.rate + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, dc_mode_cost); |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| *best_mbmi = *mbmi; |
| memcpy(best_palette_color_map, color_map, |
| plane_block_width * plane_block_height * |
| sizeof(best_palette_color_map[0])); |
| *rate = this_rate; |
| *distortion = tokenonly_rd_stats.dist; |
| *rate_tokenonly = tokenonly_rd_stats.rate; |
| *skippable = tokenonly_rd_stats.skip; |
| } |
| } |
| } |
| if (best_mbmi->palette_mode_info.palette_size[1] > 0) { |
| memcpy(color_map, best_palette_color_map, |
| plane_block_width * plane_block_height * |
| sizeof(best_palette_color_map[0])); |
| } |
| } |
| |
| // Run RD calculation with given chroma intra prediction angle., and return |
| // the RD cost. Update the best mode info. if the RD cost is the best so far. |
| static int64_t pick_intra_angle_routine_sbuv( |
| const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats, |
| int *best_angle_delta, int64_t *best_rd) { |
| MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; |
| assert(!is_inter_block(mbmi)); |
| int this_rate; |
| int64_t this_rd; |
| RD_STATS tokenonly_rd_stats; |
| |
| if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in)) |
| return INT64_MAX; |
| this_rate = tokenonly_rd_stats.rate + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead); |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; |
| *rate = this_rate; |
| rd_stats->rate = tokenonly_rd_stats.rate; |
| rd_stats->dist = tokenonly_rd_stats.dist; |
| rd_stats->skip = tokenonly_rd_stats.skip; |
| } |
| return this_rd; |
| } |
| |
| // With given chroma directional intra prediction mode, pick the best angle |
| // delta. Return true if a RD cost that is smaller than the input one is found. |
| static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int rate_overhead, |
| int64_t best_rd, int *rate, |
| RD_STATS *rd_stats) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| assert(!is_inter_block(mbmi)); |
| int i, angle_delta, best_angle_delta = 0; |
| int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; |
| |
| rd_stats->rate = INT_MAX; |
| rd_stats->skip = 0; |
| rd_stats->dist = INT64_MAX; |
| for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; |
| |
| for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| for (i = 0; i < 2; ++i) { |
| best_rd_in = (best_rd == INT64_MAX) |
| ? INT64_MAX |
| : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5))); |
| mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; |
| this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, |
| best_rd_in, rate, rd_stats, |
| &best_angle_delta, &best_rd); |
| rd_cost[2 * angle_delta + i] = this_rd; |
| if (angle_delta == 0) { |
| if (this_rd == INT64_MAX) return 0; |
| rd_cost[1] = this_rd; |
| break; |
| } |
| } |
| } |
| |
| assert(best_rd != INT64_MAX); |
| for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| int64_t rd_thresh; |
| for (i = 0; i < 2; ++i) { |
| int skip_search = 0; |
| rd_thresh = best_rd + (best_rd >> 5); |
| if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && |
| rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) |
| skip_search = 1; |
| if (!skip_search) { |
| mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; |
| pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd, |
| rate, rd_stats, &best_angle_delta, |
| &best_rd); |
| } |
| } |
| } |
| |
| mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta; |
| return rd_stats->rate != INT_MAX; |
| } |
| |
| #define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \ |
| (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1) |
| static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi, |
| TX_SIZE tx_size, int64_t best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| #if CONFIG_DEBUG |
| assert(is_cfl_allowed(xd) && cpi->oxcf.enable_cfl_intra); |
| const int ssx = xd->plane[AOM_PLANE_U].subsampling_x; |
| const int ssy = xd->plane[AOM_PLANE_U].subsampling_y; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(mbmi->sb_type, ssx, ssy); |
| (void)plane_bsize; |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| if (!xd->lossless[mbmi->segment_id]) { |
| assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]); |
| assert(block_size_high[plane_bsize] == tx_size_high[tx_size]); |
| } |
| #endif // CONFIG_DEBUG |
| |
| xd->cfl.use_dc_pred_cache = 1; |
| const int64_t mode_rd = |
| RDCOST(x->rdmult, |
| x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED], 0); |
| int64_t best_rd_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; |
| int best_c[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; |
| #if CONFIG_DEBUG |
| int best_rate_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; |
| #endif // CONFIG_DEBUG |
| |
| for (int plane = 0; plane < CFL_PRED_PLANES; plane++) { |
| RD_STATS rd_stats; |
| av1_init_rd_stats(&rd_stats); |
| for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { |
| best_rd_uv[joint_sign][plane] = INT64_MAX; |
| best_c[joint_sign][plane] = 0; |
| } |
| // Collect RD stats for an alpha value of zero in this plane. |
| // Skip i == CFL_SIGN_ZERO as (0, 0) is invalid. |
| for (int i = CFL_SIGN_NEG; i < CFL_SIGNS; i++) { |
| const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, CFL_SIGN_ZERO, i); |
| if (i == CFL_SIGN_NEG) { |
| mbmi->cfl_alpha_idx = 0; |
| mbmi->cfl_alpha_signs = joint_sign; |
| txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, 0, plane + 1, bsize, |
| tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE, 0); |
| if (rd_stats.rate == INT_MAX) break; |
| } |
| const int alpha_rate = x->cfl_cost[joint_sign][plane][0]; |
| best_rd_uv[joint_sign][plane] = |
| RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist); |
| #if CONFIG_DEBUG |
| best_rate_uv[joint_sign][plane] = rd_stats.rate; |
| #endif // CONFIG_DEBUG |
| } |
| } |
| |
| int best_joint_sign = -1; |
| |
| for (int plane = 0; plane < CFL_PRED_PLANES; plane++) { |
| for (int pn_sign = CFL_SIGN_NEG; pn_sign < CFL_SIGNS; pn_sign++) { |
| int progress = 0; |
| for (int c = 0; c < CFL_ALPHABET_SIZE; c++) { |
| int flag = 0; |
| RD_STATS rd_stats; |
| if (c > 2 && progress < c) break; |
| av1_init_rd_stats(&rd_stats); |
| for (int i = 0; i < CFL_SIGNS; i++) { |
| const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, pn_sign, i); |
| if (i == 0) { |
| mbmi->cfl_alpha_idx = (c << CFL_ALPHABET_SIZE_LOG2) + c; |
| mbmi->cfl_alpha_signs = joint_sign; |
| txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, 0, plane + 1, bsize, |
| tx_size, cpi->sf.use_fast_coef_costing, FTXS_NONE, |
| 0); |
| if (rd_stats.rate == INT_MAX) break; |
| } |
| const int alpha_rate = x->cfl_cost[joint_sign][plane][c]; |
| int64_t this_rd = |
| RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist); |
| if (this_rd >= best_rd_uv[joint_sign][plane]) continue; |
| best_rd_uv[joint_sign][plane] = this_rd; |
| best_c[joint_sign][plane] = c; |
| #if CONFIG_DEBUG |
| best_rate_uv[joint_sign][plane] = rd_stats.rate; |
| #endif // CONFIG_DEBUG |
| flag = 2; |
| if (best_rd_uv[joint_sign][!plane] == INT64_MAX) continue; |
| this_rd += mode_rd + best_rd_uv[joint_sign][!plane]; |
| if (this_rd >= best_rd) continue; |
| best_rd = this_rd; |
| best_joint_sign = joint_sign; |
| } |
| progress += flag; |
| } |
| } |
| } |
| |
| int best_rate_overhead = INT_MAX; |
| int ind = 0; |
| if (best_joint_sign >= 0) { |
| const int u = best_c[best_joint_sign][CFL_PRED_U]; |
| const int v = best_c[best_joint_sign][CFL_PRED_V]; |
| ind = (u << CFL_ALPHABET_SIZE_LOG2) + v; |
| best_rate_overhead = x->cfl_cost[best_joint_sign][CFL_PRED_U][u] + |
| x->cfl_cost[best_joint_sign][CFL_PRED_V][v]; |
| #if CONFIG_DEBUG |
| xd->cfl.rate = x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED] + |
| best_rate_overhead + |
| best_rate_uv[best_joint_sign][CFL_PRED_U] + |
| best_rate_uv[best_joint_sign][CFL_PRED_V]; |
| #endif // CONFIG_DEBUG |
| } else { |
| best_joint_sign = 0; |
| } |
| |
| mbmi->cfl_alpha_idx = ind; |
| mbmi->cfl_alpha_signs = best_joint_sign; |
| xd->cfl.use_dc_pred_cache = 0; |
| xd->cfl.dc_pred_is_cached[0] = 0; |
| xd->cfl.dc_pred_is_cached[1] = 0; |
| return best_rate_overhead; |
| } |
| |
| static void init_sbuv_mode(MB_MODE_INFO *const mbmi) { |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->palette_mode_info.palette_size[1] = 0; |
| } |
| |
| static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize, TX_SIZE max_tx_size) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| assert(!is_inter_block(mbmi)); |
| MB_MODE_INFO best_mbmi = *mbmi; |
| int64_t best_rd = INT64_MAX, this_rd; |
| |
| for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) { |
| int this_rate; |
| RD_STATS tokenonly_rd_stats; |
| UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx]; |
| const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode)); |
| if (!(cpi->sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] & |
| (1 << mode))) |
| continue; |
| if (!cpi->oxcf.enable_smooth_intra && mode >= UV_SMOOTH_PRED && |
| mode <= UV_SMOOTH_H_PRED) |
| continue; |
| |
| if (!cpi->oxcf.enable_paeth_intra && mode == UV_PAETH_PRED) continue; |
| |
| mbmi->uv_mode = mode; |
| int cfl_alpha_rate = 0; |
| if (mode == UV_CFL_PRED) { |
| if (!is_cfl_allowed(xd) || !cpi->oxcf.enable_cfl_intra) continue; |
| assert(!is_directional_mode); |
| const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); |
| cfl_alpha_rate = cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd); |
| if (cfl_alpha_rate == INT_MAX) continue; |
| } |
| mbmi->angle_delta[PLANE_TYPE_UV] = 0; |
| if (is_directional_mode && av1_use_angle_delta(mbmi->sb_type) && |
| cpi->oxcf.enable_angle_delta) { |
| const int rate_overhead = |
| x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode]; |
| if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd, |
| &this_rate, &tokenonly_rd_stats)) |
| continue; |
| } else { |
| if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) { |
| continue; |
| } |
| } |
| const int mode_cost = |
| x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode] + |
| cfl_alpha_rate; |
| this_rate = tokenonly_rd_stats.rate + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost); |
| if (mode == UV_CFL_PRED) { |
| assert(is_cfl_allowed(xd) && cpi->oxcf.enable_cfl_intra); |
| #if CONFIG_DEBUG |
| if (!xd->lossless[mbmi->segment_id]) |
| assert(xd->cfl.rate == tokenonly_rd_stats.rate + mode_cost); |
| #endif // CONFIG_DEBUG |
| } |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| |
| if (this_rd < best_rd) { |
| best_mbmi = *mbmi; |
| best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = tokenonly_rd_stats.rate; |
| *distortion = tokenonly_rd_stats.dist; |
| *skippable = tokenonly_rd_stats.skip; |
| } |
| } |
| |
| const int try_palette = |
| cpi->oxcf.enable_palette && |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); |
| if (try_palette) { |
| uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map; |
| rd_pick_palette_intra_sbuv( |
| cpi, x, |
| x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_DC_PRED], |
| best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly, |
| distortion, skippable); |
| } |
| |
| *mbmi = best_mbmi; |
| // Make sure we actually chose a mode |
| assert(best_rd < INT64_MAX); |
| return best_rd; |
| } |
| |
| static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, TX_SIZE max_tx_size, |
| int *rate_uv, int *rate_uv_tokenonly, |
| int64_t *dist_uv, int *skip_uv, |
| UV_PREDICTION_MODE *mode_uv) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int mi_row = -xd->mb_to_top_edge >> (3 + MI_SIZE_LOG2); |
| const int mi_col = -xd->mb_to_left_edge >> (3 + MI_SIZE_LOG2); |
| // Use an estimated rd for uv_intra based on DC_PRED if the |
| // appropriate speed flag is set. |
| init_sbuv_mode(mbmi); |
| if (x->skip_chroma_rd) { |
| *rate_uv = 0; |
| *rate_uv_tokenonly = 0; |
| *dist_uv = 0; |
| *skip_uv = 1; |
| *mode_uv = UV_DC_PRED; |
| return; |
| } |
| xd->cfl.is_chroma_reference = |
| is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y); |
| bsize = scale_chroma_bsize(bsize, xd->plane[AOM_PLANE_U].subsampling_x, |
| xd->plane[AOM_PLANE_U].subsampling_y); |
| // Only store reconstructed luma when there's chroma RDO. When there's no |
| // chroma RDO, the reconstructed luma will be stored in encode_superblock(). |
| xd->cfl.store_y = store_cfl_required_rdo(cm, x); |
| if (xd->cfl.store_y) { |
| // Restore reconstructed luma values. |
| av1_encode_intra_block_plane(cpi, x, mbmi->sb_type, AOM_PLANE_Y, |
| cpi->optimize_seg_arr[mbmi->segment_id], |
| mi_row, mi_col); |
| xd->cfl.store_y = 0; |
| } |
| rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, |
| bsize, max_tx_size); |
| *mode_uv = mbmi->uv_mode; |
| } |
| |
| static int cost_mv_ref(const MACROBLOCK *const x, PREDICTION_MODE mode, |
| int16_t mode_context) { |
| if (is_inter_compound_mode(mode)) { |
| return x |
| ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; |
| } |
| |
| int mode_cost = 0; |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| |
| assert(is_inter_mode(mode)); |
| |
| if (mode == NEWMV) { |
| mode_cost = x->newmv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost = x->newmv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| |
| if (mode == GLOBALMV) { |
| mode_cost += x->zeromv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost += x->zeromv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| mode_cost += x->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; |
| return mode_cost; |
| } |
| } |
| } |
| |
| static int get_interinter_compound_mask_rate(const MACROBLOCK *const x, |
| const MB_MODE_INFO *const mbmi) { |
| switch (mbmi->interinter_comp.type) { |
| case COMPOUND_AVERAGE: return 0; |
| case COMPOUND_WEDGE: |
| return get_interinter_wedge_bits(mbmi->sb_type) > 0 |
| ? av1_cost_literal(1) + |
| x->wedge_idx_cost[mbmi->sb_type] |
| [mbmi->interinter_comp.wedge_index] |
| : 0; |
| case COMPOUND_DIFFWTD: return av1_cost_literal(1); |
| default: assert(0); return 0; |
| } |
| } |
| |
| static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) { |
| return (mv->row >> 3) < mv_limits->row_min || |
| (mv->row >> 3) > mv_limits->row_max || |
| (mv->col >> 3) < mv_limits->col_min || |
| (mv->col >> 3) > mv_limits->col_max; |
| } |
| |
| static INLINE PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode, |
| int ref_idx, int is_comp_pred) { |
| PREDICTION_MODE single_mode; |
| if (is_comp_pred) { |
| single_mode = |
| ref_idx ? compound_ref1_mode(this_mode) : compound_ref0_mode(this_mode); |
| } else { |
| single_mode = this_mode; |
| } |
| return single_mode; |
| } |
| |
| static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int_mv *cur_mv, int mi_row, |
| int mi_col, int_mv *ref_mv_sub8x8[2], |
| const uint8_t *mask, int mask_stride, |
| int *rate_mv, const int block) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int pw = block_size_wide[bsize]; |
| const int ph = block_size_high[bsize]; |
| const int plane = 0; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| // This function should only ever be called for compound modes |
| assert(has_second_ref(mbmi)); |
| const int_mv init_mv[2] = { cur_mv[0], cur_mv[1] }; |
| const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] }; |
| int_mv ref_mv[2]; |
| int ite, ref; |
| // ic and ir are the 4x4 coordinates of the sub8x8 at index "block" |
| const int ic = block & 1; |
| const int ir = (block - ic) >> 1; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; |
| const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; |
| |
| ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); |
| conv_params.use_dist_wtd_comp_avg = 0; |
| WarpTypesAllowed warp_types[2]; |
| for (ref = 0; ref < 2; ++ref) { |
| const WarpedMotionParams *const wm = |
| &xd->global_motion[xd->mi[0]->ref_frame[ref]]; |
| const int is_global = is_global_mv_block(xd->mi[0], wm->wmtype); |
| warp_types[ref].global_warp_allowed = is_global; |
| warp_types[ref].local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL; |
| } |
| |
| // Do joint motion search in compound mode to get more accurate mv. |
| struct buf_2d backup_yv12[2][MAX_MB_PLANE]; |
| int last_besterr[2] = { INT_MAX, INT_MAX }; |
| const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { |
| av1_get_scaled_ref_frame(cpi, refs[0]), |
| av1_get_scaled_ref_frame(cpi, refs[1]) |
| }; |
| |
| // Prediction buffer from second frame. |
| DECLARE_ALIGNED(16, uint8_t, second_pred16[MAX_SB_SQUARE * sizeof(uint16_t)]); |
| uint8_t *second_pred = get_buf_by_bd(xd, second_pred16); |
| (void)ref_mv_sub8x8; |
| |
| MV *const best_mv = &x->best_mv.as_mv; |
| const int search_range = SEARCH_RANGE_8P; |
| const int sadpb = x->sadperbit16; |
| // Allow joint search multiple times iteratively for each reference frame |
| // and break out of the search loop if it couldn't find a better mv. |
| for (ite = 0; ite < 4; ite++) { |
| struct buf_2d ref_yv12[2]; |
| int bestsme = INT_MAX; |
| MvLimits tmp_mv_limits = x->mv_limits; |
| int id = ite % 2; // Even iterations search in the first reference frame, |
| // odd iterations search in the second. The predictor |
| // found for the 'other' reference frame is factored in. |
| if (ite >= 2 && cur_mv[!id].as_int == init_mv[!id].as_int) { |
| if (cur_mv[id].as_int == init_mv[id].as_int) { |
| break; |
| } else { |
| int_mv cur_int_mv, init_int_mv; |
| cur_int_mv.as_mv.col = cur_mv[id].as_mv.col >> 3; |
| cur_int_mv.as_mv.row = cur_mv[id].as_mv.row >> 3; |
| init_int_mv.as_mv.row = init_mv[id].as_mv.row >> 3; |
| init_int_mv.as_mv.col = init_mv[id].as_mv.col >> 3; |
| if (cur_int_mv.as_int == init_int_mv.as_int) { |
| break; |
| } |
| } |
| } |
| for (ref = 0; ref < 2; ++ref) { |
| ref_mv[ref] = av1_get_ref_mv(x, ref); |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| if (scaled_ref_frame[ref]) { |
| int i; |
| for (i = 0; i < num_planes; i++) |
| backup_yv12[ref][i] = xd->plane[i].pre[ref]; |
| av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, |
| NULL, num_planes); |
| } |
| } |
| |
| assert(IMPLIES(scaled_ref_frame[0] != NULL, |
| cm->width == scaled_ref_frame[0]->y_crop_width && |
| cm->height == scaled_ref_frame[0]->y_crop_height)); |
| assert(IMPLIES(scaled_ref_frame[1] != NULL, |
| cm->width == scaled_ref_frame[1]->y_crop_width && |
| cm->height == scaled_ref_frame[1]->y_crop_height)); |
| |
| // Initialize based on (possibly scaled) prediction buffers. |
| ref_yv12[0] = xd->plane[plane].pre[0]; |
| ref_yv12[1] = xd->plane[plane].pre[1]; |
| |
| // Get the prediction block from the 'other' reference frame. |
| const InterpFilters interp_filters = EIGHTTAP_REGULAR; |
| |
| // Since we have scaled the reference frames to match the size of the |
| // current frame we must use a unit scaling factor during mode selection. |
| av1_build_inter_predictor(ref_yv12[!id].buf, ref_yv12[!id].stride, |
| second_pred, pw, &cur_mv[!id].as_mv, |
| &cm->sf_identity, pw, ph, &conv_params, |
| interp_filters, &warp_types[!id], p_col, p_row, |
| plane, !id, MV_PRECISION_Q3, mi_col * MI_SIZE, |
| mi_row * MI_SIZE, xd, cm->allow_warped_motion); |
| |
| const int order_idx = id != 0; |
| av1_dist_wtd_comp_weight_assign( |
| cm, mbmi, order_idx, &xd->jcp_param.fwd_offset, |
| &xd->jcp_param.bck_offset, &xd->jcp_param.use_dist_wtd_comp_avg, 1); |
| |
| // Do full-pixel compound motion search on the current reference frame. |
| if (id) xd->plane[plane].pre[0] = ref_yv12[id]; |
| av1_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv); |
| |
| // Use the mv result from the single mode as mv predictor. |
| *best_mv = cur_mv[id].as_mv; |
| |
| best_mv->col >>= 3; |
| best_mv->row >>= 3; |
| |
| // Small-range full-pixel motion search. |
| bestsme = av1_refining_search_8p_c(x, sadpb, search_range, |
| &cpi->fn_ptr[bsize], mask, mask_stride, |
| id, &ref_mv[id].as_mv, second_pred); |
| if (bestsme < INT_MAX) { |
| if (mask) |
| bestsme = av1_get_mvpred_mask_var(x, best_mv, &ref_mv[id].as_mv, |
| second_pred, mask, mask_stride, id, |
| &cpi->fn_ptr[bsize], 1); |
| else |
| bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv, |
| second_pred, &cpi->fn_ptr[bsize], 1); |
| } |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| // Restore the pointer to the first (possibly scaled) prediction buffer. |
| if (id) xd->plane[plane].pre[0] = ref_yv12[0]; |
| |
| for (ref = 0; ref < 2; ++ref) { |
| if (scaled_ref_frame[ref]) { |
| // Swap back the original buffers for subpel motion search. |
| for (int i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[ref] = backup_yv12[ref][i]; |
| } |
| // Re-initialize based on unscaled prediction buffers. |
| ref_yv12[ref] = xd->plane[plane].pre[ref]; |
| } |
| } |
| |
| // Do sub-pixel compound motion search on the current reference frame. |
| if (id) xd->plane[plane].pre[0] = ref_yv12[id]; |
| |
| if (cpi->common.cur_frame_force_integer_mv) { |
| x->best_mv.as_mv.row *= 8; |
| x->best_mv.as_mv.col *= 8; |
| } |
| if (bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| unsigned int sse; |
| bestsme = cpi->find_fractional_mv_step( |
| x, cm, mi_row, mi_col, &ref_mv[id].as_mv, |
| cpi->common.allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL, |
| x->nmv_vec_cost, x->mv_cost_stack, &dis, &sse, second_pred, mask, |
| mask_stride, id, pw, ph, cpi->sf.use_accurate_subpel_search, 1); |
| } |
| |
| // Restore the pointer to the first prediction buffer. |
| if (id) xd->plane[plane].pre[0] = ref_yv12[0]; |
| if (bestsme < last_besterr[id]) { |
| cur_mv[id].as_mv = *best_mv; |
| last_besterr[id] = bestsme; |
| } else { |
| break; |
| } |
| } |
| |
| *rate_mv = 0; |
| |
| for (ref = 0; ref < 2; ++ref) { |
| const int_mv curr_ref_mv = av1_get_ref_mv(x, ref); |
| *rate_mv += |
| av1_mv_bit_cost(&cur_mv[ref].as_mv, &curr_ref_mv.as_mv, x->nmv_vec_cost, |
| x->mv_cost_stack, MV_COST_WEIGHT); |
| } |
| } |
| |
| static void estimate_ref_frame_costs( |
| const AV1_COMMON *cm, const MACROBLOCKD *xd, const MACROBLOCK *x, |
| int segment_id, unsigned int *ref_costs_single, |
| unsigned int (*ref_costs_comp)[REF_FRAMES]) { |
| int seg_ref_active = |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); |
| if (seg_ref_active) { |
| memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); |
| int ref_frame; |
| for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) |
| memset(ref_costs_comp[ref_frame], 0, |
| REF_FRAMES * sizeof((*ref_costs_comp)[0])); |
| } else { |
| int intra_inter_ctx = av1_get_intra_inter_context(xd); |
| ref_costs_single[INTRA_FRAME] = x->intra_inter_cost[intra_inter_ctx][0]; |
| unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1]; |
| |
| for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) |
| ref_costs_single[i] = base_cost; |
| |
| const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd); |
| const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd); |
| const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd); |
| const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd); |
| const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd); |
| const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd); |
| |
| // Determine cost of a single ref frame, where frame types are represented |
| // by a tree: |
| // Level 0: add cost whether this ref is a forward or backward ref |
| ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; |
| ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p1][0][1]; |
| ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; |
| |
| // Level 1: if this ref is forward ref, |
| // add cost whether it is last/last2 or last3/golden |
| ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p3][2][0]; |
| ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p3][2][0]; |
| ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p3][2][1]; |
| ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p3][2][1]; |
| |
| // Level 1: if this ref is backward ref |
| // then add cost whether this ref is altref or backward ref |
| ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p2][1][0]; |
| ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p2][1][0]; |
| ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p2][1][1]; |
| |
| // Level 2: further add cost whether this ref is last or last2 |
| ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p4][3][0]; |
| ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p4][3][1]; |
| |
| // Level 2: last3 or golden |
| ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p5][4][0]; |
| ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p5][4][1]; |
| |
| // Level 2: bwdref or altref2 |
| ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p6][5][0]; |
| ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p6][5][1]; |
| |
| if (cm->current_frame.reference_mode != SINGLE_REFERENCE) { |
| // Similar to single ref, determine cost of compound ref frames. |
| // cost_compound_refs = cost_first_ref + cost_second_ref |
| const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd); |
| const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd); |
| const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd); |
| const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd); |
| const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd); |
| |
| const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); |
| unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 }; |
| |
| ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] = |
| ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][1]; |
| ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0; |
| ref_bicomp_costs[ALTREF_FRAME] = 0; |
| |
| // cost of first ref frame |
| ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| |
| ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0]; |
| ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1]; |
| |
| ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0]; |
| ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1]; |
| |
| // cost of second ref frame |
| ref_bicomp_costs[BWDREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[ALTREF2_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[ALTREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1]; |
| |
| ref_bicomp_costs[BWDREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0]; |
| ref_bicomp_costs[ALTREF2_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1]; |
| |
| // cost: if one ref frame is forward ref, the other ref is backward ref |
| int ref0, ref1; |
| for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { |
| for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) { |
| ref_costs_comp[ref0][ref1] = |
| ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1]; |
| } |
| } |
| |
| // cost: if both ref frames are the same side. |
| const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd); |
| const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd); |
| const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd); |
| ref_costs_comp[LAST_FRAME][LAST2_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0]; |
| ref_costs_comp[LAST_FRAME][LAST3_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0]; |
| ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1]; |
| ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1]; |
| } else { |
| int ref0, ref1; |
| for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { |
| for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) |
| ref_costs_comp[ref0][ref1] = 512; |
| } |
| ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512; |
| ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512; |
| ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512; |
| ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512; |
| } |
| } |
| } |
| |
| static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, |
| int mode_index, |
| int64_t comp_pred_diff[REFERENCE_MODES], |
| int skippable) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->rd_stats.skip = x->skip; |
| ctx->skippable = skippable; |
| ctx->best_mode_index = mode_index; |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; |
| ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; |
| ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; |
| } |
| |
| static void setup_buffer_ref_mvs_inter( |
| const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, |
| BLOCK_SIZE block_size, int mi_row, int mi_col, |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, ref_frame); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, ref_frame); |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame); |
| assert(yv12 != NULL); |
| |
| if (scaled_ref_frame) { |
| // Setup pred block based on scaled reference, because av1_mv_pred() doesn't |
| // support scaling. |
| av1_setup_pred_block(xd, yv12_mb[ref_frame], scaled_ref_frame, mi_row, |
| mi_col, NULL, NULL, num_planes); |
| } else { |
| av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf, |
| num_planes); |
| } |
| |
| // Gets an initial list of candidate vectors from neighbours and orders them |
| av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, |
| mbmi_ext->ref_mv_stack, mbmi_ext->weight, NULL, |
| mbmi_ext->global_mvs, mi_row, mi_col, |
| mbmi_ext->mode_context); |
| |
| // Further refinement that is encode side only to test the top few candidates |
| // in full and choose the best as the center point for subsequent searches. |
| // The current implementation doesn't support scaling. |
| av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12_mb[ref_frame][0].stride, |
| ref_frame, block_size); |
| |
| // Go back to unscaled reference. |
| if (scaled_ref_frame) { |
| // We had temporarily setup pred block based on scaled reference above. Go |
| // back to unscaled reference now, for subsequent use. |
| av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf, |
| num_planes); |
| } |
| } |
| |
| static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int ref_idx, int *rate_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; |
| int bestsme = INT_MAX; |
| int step_param; |
| int sadpb = x->sadperbit16; |
| MV mvp_full; |
| int ref = mbmi->ref_frame[ref_idx]; |
| MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv; |
| |
| MvLimits tmp_mv_limits = x->mv_limits; |
| int cost_list[5]; |
| |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, ref); |
| |
| if (scaled_ref_frame) { |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // full-pixel motion search code to be used without additional |
| // modifications. |
| for (int i = 0; i < num_planes; i++) { |
| backup_yv12[i] = xd->plane[i].pre[ref_idx]; |
| } |
| av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, |
| num_planes); |
| } |
| |
| // Work out the size of the first step in the mv step search. |
| // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc. |
| if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { |
| // Take the weighted average of the step_params based on the last frame's |
| // max mv magnitude and that based on the best ref mvs of the current |
| // block for the given reference. |
| step_param = |
| (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / |
| 2; |
| } else { |
| step_param = cpi->mv_step_param; |
| } |
| |
| if (cpi->sf.adaptive_motion_search && bsize < cm->seq_params.sb_size) { |
| int boffset = |
| 2 * (mi_size_wide_log2[cm->seq_params.sb_size] - |
| AOMMIN(mi_size_high_log2[bsize], mi_size_wide_log2[bsize])); |
| step_param = AOMMAX(step_param, boffset); |
| } |
| |
| if (cpi->sf.adaptive_motion_search) { |
| int bwl = mi_size_wide_log2[bsize]; |
| int bhl = mi_size_high_log2[bsize]; |
| int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); |
| |
| if (tlevel < 5) { |
| step_param += 2; |
| step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 1); |
| } |
| |
| // prev_mv_sad is not setup for dynamically scaled frames. |
| if (cpi->oxcf.resize_mode != RESIZE_RANDOM) { |
| int i; |
| for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { |
| if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { |
| x->pred_mv[ref].row = 0; |
| x->pred_mv[ref].col = 0; |
| x->best_mv.as_int = INVALID_MV; |
| |
| if (scaled_ref_frame) { |
| // Swap back the original buffers before returning. |
| for (int j = 0; j < num_planes; ++j) |
| xd->plane[j].pre[ref_idx] = backup_yv12[j]; |
| } |
| return; |
| } |
| } |
| } |
| } |
| |
| // Note: MV limits are modified here. Always restore the original values |
| // after full-pixel motion search. |
| av1_set_mv_search_range(&x->mv_limits, &ref_mv); |
| |
| if (mbmi->motion_mode != SIMPLE_TRANSLATION) |
| mvp_full = mbmi->mv[0].as_mv; |
| else |
| mvp_full = ref_mv; |
| |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| |
| x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV; |
| |
| switch (mbmi->motion_mode) { |
| case SIMPLE_TRANSLATION: |
| bestsme = av1_full_pixel_search( |
| cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, 0, |
| sadpb, cond_cost_list(cpi, cost_list), &ref_mv, INT_MAX, 1, |
| (MI_SIZE * mi_col), (MI_SIZE * mi_row), 0, &cpi->ss_cfg[SS_CFG_SRC]); |
| break; |
| case OBMC_CAUSAL: |
| bestsme = av1_obmc_full_pixel_search( |
| cpi, x, &mvp_full, step_param, sadpb, |
| MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv, |
| &(x->best_mv.as_mv), 0, &cpi->ss_cfg[SS_CFG_SRC]); |
| break; |
| default: assert(0 && "Invalid motion mode!\n"); |
| } |
| |
| if (scaled_ref_frame) { |
| // Swap back the original buffers for subpel motion search. |
| for (int i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[ref_idx] = backup_yv12[i]; |
| } |
| } |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| if (cpi->common.cur_frame_force_integer_mv) { |
| x->best_mv.as_mv.row *= 8; |
| x->best_mv.as_mv.col *= 8; |
| } |
| const int use_fractional_mv = |
| bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0; |
| if (use_fractional_mv) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| switch (mbmi->motion_mode) { |
| case SIMPLE_TRANSLATION: |
| if (cpi->sf.use_accurate_subpel_search) { |
| int best_mv_var; |
| const int try_second = x->second_best_mv.as_int != INVALID_MV && |
| x->second_best_mv.as_int != x->best_mv.as_int; |
| const int pw = block_size_wide[bsize]; |
| const int ph = block_size_high[bsize]; |
| best_mv_var = cpi->find_fractional_mv_step( |
| x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv, |
| x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), |
| x->nmv_vec_cost, x->mv_cost_stack, &dis, &x->pred_sse[ref], NULL, |
| NULL, 0, 0, pw, ph, cpi->sf.use_accurate_subpel_search, 1); |
| |
| if (try_second) { |
| const int minc = |
| AOMMAX(x->mv_limits.col_min * 8, ref_mv.col - MV_MAX); |
| const int maxc = |
| AOMMIN(x->mv_limits.col_max * 8, ref_mv.col + MV_MAX); |
| const int minr = |
| AOMMAX(x->mv_limits.row_min * 8, ref_mv.row - MV_MAX); |
| const int maxr = |
| AOMMIN(x->mv_limits.row_max * 8, ref_mv.row + MV_MAX); |
| int this_var; |
| MV best_mv = x->best_mv.as_mv; |
| |
| x->best_mv = x->second_best_mv; |
| if (x->best_mv.as_mv.row * 8 <= maxr && |
| x->best_mv.as_mv.row * 8 >= minr && |
| x->best_mv.as_mv.col * 8 <= maxc && |
| x->best_mv.as_mv.col * 8 >= minc) { |
| this_var = cpi->find_fractional_mv_step( |
| x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv, |
| x->errorperbit, &cpi->fn_ptr[bsize], |
| cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, |
| cond_cost_list(cpi, cost_list), x->nmv_vec_cost, |
| x->mv_cost_stack, &dis, &x->pred_sse[ref], NULL, NULL, 0, 0, |
| pw, ph, cpi->sf.use_accurate_subpel_search, 0); |
| if (this_var < best_mv_var) best_mv = x->best_mv.as_mv; |
| x->best_mv.as_mv = best_mv; |
| } |
| } |
| } else { |
| cpi->find_fractional_mv_step( |
| x, cm, mi_row, mi_col, &ref_mv, cm->allow_high_precision_mv, |
| x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), |
| x->nmv_vec_cost, x->mv_cost_stack, &dis, &x->pred_sse[ref], NULL, |
| NULL, 0, 0, 0, 0, 0, 1); |
| } |
| break; |
| case OBMC_CAUSAL: |
| av1_find_best_obmc_sub_pixel_tree_up( |
| x, cm, mi_row, mi_col, &x->best_mv.as_mv, &ref_mv, |
| cm->allow_high_precision_mv, x->errorperbit, &cpi->fn_ptr[bsize], |
| cpi->sf.mv.subpel_force_stop, cpi->sf.mv.subpel_iters_per_step, |
| x->nmv_vec_cost, x->mv_cost_stack, &dis, &x->pred_sse[ref], 0, |
| cpi->sf.use_accurate_subpel_search); |
| break; |
| default: assert(0 && "Invalid motion mode!\n"); |
| } |
| } |
| *rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmv_vec_cost, |
| x->mv_cost_stack, MV_COST_WEIGHT); |
| |
| if (cpi->sf.adaptive_motion_search && mbmi->motion_mode == SIMPLE_TRANSLATION) |
| x->pred_mv[ref] = x->best_mv.as_mv; |
| } |
| |
| static INLINE void restore_dst_buf(MACROBLOCKD *xd, const BUFFER_SET dst, |
| const int num_planes) { |
| for (int i = 0; i < num_planes; i++) { |
| xd->plane[i].dst.buf = dst.plane[i]; |
| xd->plane[i].dst.stride = dst.stride[i]; |
| } |
| } |
| |
| static void build_second_inter_pred(const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, const MV *other_mv, |
| int mi_row, int mi_col, const int block, |
| int ref_idx, uint8_t *second_pred) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int pw = block_size_wide[bsize]; |
| const int ph = block_size_high[bsize]; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int other_ref = mbmi->ref_frame[!ref_idx]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| // ic and ir are the 4x4 coordinates of the sub8x8 at index "block" |
| const int ic = block & 1; |
| const int ir = (block - ic) >> 1; |
| const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; |
| const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; |
| const WarpedMotionParams *const wm = &xd->global_motion[other_ref]; |
| int is_global = is_global_mv_block(xd->mi[0], wm->wmtype); |
| |
| // This function should only ever be called for compound modes |
| assert(has_second_ref(mbmi)); |
| |
| const int plane = 0; |
| struct buf_2d ref_yv12 = xd->plane[plane].pre[!ref_idx]; |
| |
| struct scale_factors sf; |
| av1_setup_scale_factors_for_frame(&sf, ref_yv12.width, ref_yv12.height, |
| cm->width, cm->height); |
| |
| ConvolveParams conv_params = get_conv_params(0, plane, xd->bd); |
| WarpTypesAllowed warp_types; |
| warp_types.global_warp_allowed = is_global; |
| warp_types.local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL; |
| |
| // Get the prediction block from the 'other' reference frame. |
| av1_build_inter_predictor(ref_yv12.buf, ref_yv12.stride, second_pred, pw, |
| other_mv, &sf, pw, ph, &conv_params, |
| mbmi->interp_filters, &warp_types, p_col, p_row, |
| plane, !ref_idx, MV_PRECISION_Q3, mi_col * MI_SIZE, |
| mi_row * MI_SIZE, xd, cm->allow_warped_motion); |
| |
| av1_dist_wtd_comp_weight_assign(cm, mbmi, 0, &xd->jcp_param.fwd_offset, |
| &xd->jcp_param.bck_offset, |
| &xd->jcp_param.use_dist_wtd_comp_avg, 1); |
| } |
| |
| // Search for the best mv for one component of a compound, |
| // given that the other component is fixed. |
| static void compound_single_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, MV *this_mv, |
| int mi_row, int mi_col, |
| const uint8_t *second_pred, |
| const uint8_t *mask, int mask_stride, |
| int *rate_mv, int ref_idx) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int pw = block_size_wide[bsize]; |
| const int ph = block_size_high[bsize]; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int ref = mbmi->ref_frame[ref_idx]; |
| const int_mv ref_mv = av1_get_ref_mv(x, ref_idx); |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| |
| struct buf_2d backup_yv12[MAX_MB_PLANE]; |
| const YV12_BUFFER_CONFIG *const scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, ref); |
| |
| // Check that this is either an interinter or an interintra block |
| assert(has_second_ref(mbmi) || (ref_idx == 0 && is_interintra_mode(mbmi))); |
| |
| // Store the first prediction buffer. |
| struct buf_2d orig_yv12; |
| if (ref_idx) { |
| orig_yv12 = pd->pre[0]; |
| pd->pre[0] = pd->pre[ref_idx]; |
| } |
| |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // full-pixel motion search code to be used without additional |
| // modifications. |
| for (i = 0; i < num_planes; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx]; |
| av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, |
| num_planes); |
| } |
| |
| int bestsme = INT_MAX; |
| int sadpb = x->sadperbit16; |
| MV *const best_mv = &x->best_mv.as_mv; |
| int search_range = SEARCH_RANGE_8P; |
| |
| MvLimits tmp_mv_limits = x->mv_limits; |
| |
| // Do compound motion search on the current reference frame. |
| av1_set_mv_search_range(&x->mv_limits, &ref_mv.as_mv); |
| |
| // Use the mv result from the single mode as mv predictor. |
| *best_mv = *this_mv; |
| |
| best_mv->col >>= 3; |
| best_mv->row >>= 3; |
| |
| // Small-range full-pixel motion search. |
| bestsme = av1_refining_search_8p_c(x, sadpb, search_range, |
| &cpi->fn_ptr[bsize], mask, mask_stride, |
| ref_idx, &ref_mv.as_mv, second_pred); |
| if (bestsme < INT_MAX) { |
| if (mask) |
| bestsme = |
| av1_get_mvpred_mask_var(x, best_mv, &ref_mv.as_mv, second_pred, mask, |
| mask_stride, ref_idx, &cpi->fn_ptr[bsize], 1); |
| else |
| bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv.as_mv, second_pred, |
| &cpi->fn_ptr[bsize], 1); |
| } |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| if (scaled_ref_frame) { |
| // Swap back the original buffers for subpel motion search. |
| for (int i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[ref_idx] = backup_yv12[i]; |
| } |
| } |
| |
| if (cpi->common.cur_frame_force_integer_mv) { |
| x->best_mv.as_mv.row *= 8; |
| x->best_mv.as_mv.col *= 8; |
| } |
| const int use_fractional_mv = |
| bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0; |
| if (use_fractional_mv) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| unsigned int sse; |
| bestsme = cpi->find_fractional_mv_step( |
| x, cm, mi_row, mi_col, &ref_mv.as_mv, |
| cpi->common.allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL, |
| x->nmv_vec_cost, x->mv_cost_stack, &dis, &sse, second_pred, mask, |
| mask_stride, ref_idx, pw, ph, cpi->sf.use_accurate_subpel_search, 1); |
| } |
| |
| // Restore the pointer to the first unscaled prediction buffer. |
| if (ref_idx) pd->pre[0] = orig_yv12; |
| |
| if (bestsme < INT_MAX) *this_mv = *best_mv; |
| |
| *rate_mv = 0; |
| |
| *rate_mv += av1_mv_bit_cost(this_mv, &ref_mv.as_mv, x->nmv_vec_cost, |
| x->mv_cost_stack, MV_COST_WEIGHT); |
| } |
| |
| // Wrapper for compound_single_motion_search, for the common case |
| // where the second prediction is also an inter mode. |
| static void compound_single_motion_search_interinter( |
| const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *cur_mv, |
| int mi_row, int mi_col, const uint8_t *mask, int mask_stride, int *rate_mv, |
| const int block, int ref_idx) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| // This function should only ever be called for compound modes |
| assert(has_second_ref(xd->mi[0])); |
| |
| // Prediction buffer from second frame. |
| DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]); |
| uint8_t *second_pred; |
| if (is_cur_buf_hbd(xd)) |
| second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); |
| else |
| second_pred = (uint8_t *)second_pred_alloc_16; |
| |
| MV *this_mv = &cur_mv[ref_idx].as_mv; |
| const MV *other_mv = &cur_mv[!ref_idx].as_mv; |
| |
| build_second_inter_pred(cpi, x, bsize, other_mv, mi_row, mi_col, block, |
| ref_idx, second_pred); |
| |
| compound_single_motion_search(cpi, x, bsize, this_mv, mi_row, mi_col, |
| second_pred, mask, mask_stride, rate_mv, |
| ref_idx); |
| } |
| |
| static void do_masked_motion_search_indexed( |
| const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int which) { |
| // NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| BLOCK_SIZE sb_type = mbmi->sb_type; |
| const uint8_t *mask; |
| const int mask_stride = block_size_wide[bsize]; |
| |
| mask = av1_get_compound_type_mask(comp_data, sb_type); |
| |
| tmp_mv[0].as_int = cur_mv[0].as_int; |
| tmp_mv[1].as_int = cur_mv[1].as_int; |
| if (which == 0 || which == 1) { |
| compound_single_motion_search_interinter(cpi, x, bsize, tmp_mv, mi_row, |
| mi_col, mask, mask_stride, rate_mv, |
| 0, which); |
| } else if (which == 2) { |
| joint_motion_search(cpi, x, bsize, tmp_mv, mi_row, mi_col, NULL, mask, |
| mask_stride, rate_mv, 0); |
| } |
| } |
| |
| #define USE_DISCOUNT_NEWMV_TEST 0 |
| #if USE_DISCOUNT_NEWMV_TEST |
| // In some situations we want to discount the apparent cost of a new motion |
| // vector. Where there is a subtle motion field and especially where there is |
| // low spatial complexity then it can be hard to cover the cost of a new motion |
| // vector in a single block, even if that motion vector reduces distortion. |
| // However, once established that vector may be usable through the nearest and |
| // near mv modes to reduce distortion in subsequent blocks and also improve |
| // visual quality. |
| #define NEW_MV_DISCOUNT_FACTOR 8 |
| static INLINE void get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode, |
| int ref_idx, int ref_mv_idx, |
| const MV_REFERENCE_FRAME *ref_frame, |
| const MB_MODE_INFO_EXT *mbmi_ext); |
| static int discount_newmv_test(const AV1_COMP *const cpi, const MACROBLOCK *x, |
| PREDICTION_MODE this_mode, int_mv this_mv) { |
| if (this_mode == NEWMV && this_mv.as_int != 0 && |
| !cpi->rc.is_src_frame_alt_ref) { |
| // Only discount new_mv when nearst_mv and all near_mv are zero, and the |
| // new_mv is not equal to global_mv |
| const AV1_COMMON *const cm = &cpi->common; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const MV_REFERENCE_FRAME tmp_ref_frames[2] = { mbmi->ref_frame[0], |
| NONE_FRAME }; |
| const uint8_t ref_frame_type = av1_ref_frame_type(tmp_ref_frames); |
| int_mv nearest_mv; |
| get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext); |
| int ret = nearest_mv.as_int == 0; |
| for (int ref_mv_idx = 0; |
| ref_mv_idx < x->mbmi_ext->ref_mv_count[ref_frame_type]; ++ref_mv_idx) { |
| int_mv near_mv; |
| get_this_mv(&near_mv, NEARMV, 0, ref_mv_idx, tmp_ref_frames, x->mbmi_ext); |
| ret &= near_mv.as_int == 0; |
| } |
| if (cm->global_motion[tmp_ref_frames[0]].wmtype <= TRANSLATION) { |
| int_mv global_mv; |
| get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext); |
| ret &= global_mv.as_int != this_mv.as_int; |
| } |
| return ret; |
| } |
| return 0; |
| } |
| #endif |
| |
| #define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) |
| #define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) |
| |
| // TODO(jingning): this mv clamping function should be block size dependent. |
| static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) { |
| clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN, |
| xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, |
| xd->mb_to_top_edge - LEFT_TOP_MARGIN, |
| xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); |
| } |
| |
| static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x, |
| const BLOCK_SIZE bsize, const uint8_t *pred0, |
| int stride0, const uint8_t *pred1, int stride1) { |
| static const BLOCK_SIZE split_qtr[BLOCK_SIZES_ALL] = { |
| // 4X4 |
| BLOCK_INVALID, |
| // 4X8, 8X4, 8X8 |
| BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X4, |
| // 8X16, 16X8, 16X16 |
| BLOCK_4X8, BLOCK_8X4, BLOCK_8X8, |
| // 16X32, 32X16, 32X32 |
| BLOCK_8X16, BLOCK_16X8, BLOCK_16X16, |
| // 32X64, 64X32, 64X64 |
| BLOCK_16X32, BLOCK_32X16, BLOCK_32X32, |
| // 64x128, 128x64, 128x128 |
| BLOCK_32X64, BLOCK_64X32, BLOCK_64X64, |
| // 4X16, 16X4, 8X32 |
| BLOCK_INVALID, BLOCK_INVALID, BLOCK_4X16, |
| // 32X8, 16X64, 64X16 |
| BLOCK_16X4, BLOCK_8X32, BLOCK_32X8 |
| }; |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const uint8_t *src = p->src.buf; |
| int src_stride = p->src.stride; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| uint32_t esq[2][4]; |
| int64_t tl, br; |
| |
| const BLOCK_SIZE f_index = split_qtr[bsize]; |
| assert(f_index != BLOCK_INVALID); |
| |
| if (is_cur_buf_hbd(&x->e_mbd)) { |
| pred0 = CONVERT_TO_BYTEPTR(pred0); |
| pred1 = CONVERT_TO_BYTEPTR(pred1); |
| } |
| |
| cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]); |
| cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2, stride0, |
| &esq[0][1]); |
| cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, |
| pred0 + bh / 2 * stride0, stride0, &esq[0][2]); |
| cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, |
| pred0 + bh / 2 * stride0 + bw / 2, stride0, |
| &esq[0][3]); |
| cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]); |
| cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2, stride1, |
| &esq[1][1]); |
| cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, |
| pred1 + bh / 2 * stride1, stride0, &esq[1][2]); |
| cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, |
| pred1 + bh / 2 * stride1 + bw / 2, stride0, |
| &esq[1][3]); |
| |
| tl = ((int64_t)esq[0][0] + esq[0][1] + esq[0][2]) - |
| ((int64_t)esq[1][0] + esq[1][1] + esq[1][2]); |
| br = ((int64_t)esq[1][3] + esq[1][1] + esq[1][2]) - |
| ((int64_t)esq[0][3] + esq[0][1] + esq[0][2]); |
| return (tl + br > 0); |
| } |
| |
| // Choose the best wedge index and sign |
| static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, const uint8_t *const p0, |
| const int16_t *const residual1, |
| const int16_t *const diff10, |
| int *const best_wedge_sign, |
| int *const best_wedge_index) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const struct buf_2d *const src = &x->plane[0].src; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const int N = bw * bh; |
| assert(N >= 64); |
| int rate; |
| int64_t dist; |
| int64_t rd, best_rd = INT64_MAX; |
| int wedge_index; |
| int wedge_sign; |
| int wedge_types = (1 << get_wedge_bits_lookup(bsize)); |
| const uint8_t *mask; |
| uint64_t sse; |
| const int hbd = is_cur_buf_hbd(xd); |
| const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; |
| |
| DECLARE_ALIGNED(32, int16_t, residual0[MAX_SB_SQUARE]); // src - pred0 |
| if (hbd) { |
| aom_highbd_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, |
| CONVERT_TO_BYTEPTR(p0), bw, xd->bd); |
| } else { |
| aom_subtract_block(bh, bw, residual0, bw, src->buf, src->stride, p0, bw); |
| } |
| |
| int64_t sign_limit = ((int64_t)aom_sum_squares_i16(residual0, N) - |
| (int64_t)aom_sum_squares_i16(residual1, N)) * |
| (1 << WEDGE_WEIGHT_BITS) / 2; |
| int16_t *ds = residual0; |
| |
| av1_wedge_compute_delta_squares(ds, residual0, residual1, N); |
| |
| for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { |
| mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize); |
| |
| wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit); |
| |
| mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N); |
| sse = ROUND_POWER_OF_TWO(sse, bd_round); |
| |
| model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N, |
| &rate, &dist); |
| // int rate2; |
| // int64_t dist2; |
| // model_rd_with_curvfit(cpi, x, bsize, 0, sse, N, &rate2, &dist2); |
| // printf("sse %"PRId64": leagacy: %d %"PRId64", curvfit %d %"PRId64"\n", |
| // sse, rate, dist, rate2, dist2); dist = dist2; |
| // rate = rate2; |
| |
| rate += x->wedge_idx_cost[bsize][wedge_index]; |
| rd = RDCOST(x->rdmult, rate, dist); |
| |
| if (rd < best_rd) { |
| *best_wedge_index = wedge_index; |
| *best_wedge_sign = wedge_sign; |
| best_rd = rd; |
| } |
| } |
| |
| return best_rd - |
| RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0); |
| } |
| |
| // Choose the best wedge index the specified sign |
| static int64_t pick_wedge_fixed_sign(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, |
| const int16_t *const residual1, |
| const int16_t *const diff10, |
| const int wedge_sign, |
| int *const best_wedge_index) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const int N = bw * bh; |
| assert(N >= 64); |
| int rate; |
| int64_t dist; |
| int64_t rd, best_rd = INT64_MAX; |
| int wedge_index; |
| int wedge_types = (1 << get_wedge_bits_lookup(bsize)); |
| const uint8_t *mask; |
| uint64_t sse; |
| const int hbd = is_cur_buf_hbd(xd); |
| const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; |
| for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { |
| mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| sse = av1_wedge_sse_from_residuals(residual1, diff10, mask, N); |
| sse = ROUND_POWER_OF_TWO(sse, bd_round); |
| |
| model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N, |
| &rate, &dist); |
| rate += x->wedge_idx_cost[bsize][wedge_index]; |
| rd = RDCOST(x->rdmult, rate, dist); |
| |
| if (rd < best_rd) { |
| *best_wedge_index = wedge_index; |
| best_rd = rd; |
| } |
| } |
| return best_rd - |
| RDCOST(x->rdmult, x->wedge_idx_cost[bsize][*best_wedge_index], 0); |
| } |
| |
| static int64_t pick_interinter_wedge( |
| const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, |
| const uint8_t *const p0, const uint8_t *const p1, |
| const int16_t *const residual1, const int16_t *const diff10) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int bw = block_size_wide[bsize]; |
| |
| int64_t rd; |
| int wedge_index = -1; |
| int wedge_sign = 0; |
| |
| assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); |
| assert(cpi->common.seq_params.enable_masked_compound); |
| |
| if (cpi->sf.fast_wedge_sign_estimate) { |
| wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw); |
| rd = pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, wedge_sign, |
| &wedge_index); |
| } else { |
| rd = pick_wedge(cpi, x, bsize, p0, residual1, diff10, &wedge_sign, |
| &wedge_index); |
| } |
| |
| mbmi->interinter_comp.wedge_sign = wedge_sign; |
| mbmi->interinter_comp.wedge_index = wedge_index; |
| return rd; |
| } |
| |
| static int64_t pick_interinter_seg(const AV1_COMP *const cpi, |
| MACROBLOCK *const x, const BLOCK_SIZE bsize, |
| const uint8_t *const p0, |
| const uint8_t *const p1, |
| const int16_t *const residual1, |
| const int16_t *const diff10) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const int N = 1 << num_pels_log2_lookup[bsize]; |
| int rate; |
| int64_t dist; |
| DIFFWTD_MASK_TYPE cur_mask_type; |
| int64_t best_rd = INT64_MAX; |
| DIFFWTD_MASK_TYPE best_mask_type = 0; |
| const int hbd = is_cur_buf_hbd(xd); |
| const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; |
| DECLARE_ALIGNED(16, uint8_t, seg_mask[2 * MAX_SB_SQUARE]); |
| uint8_t *tmp_mask[2] = { xd->seg_mask, seg_mask }; |
| // try each mask type and its inverse |
| for (cur_mask_type = 0; cur_mask_type < DIFFWTD_MASK_TYPES; cur_mask_type++) { |
| // build mask and inverse |
| if (hbd) |
| av1_build_compound_diffwtd_mask_highbd( |
| tmp_mask[cur_mask_type], cur_mask_type, CONVERT_TO_BYTEPTR(p0), bw, |
| CONVERT_TO_BYTEPTR(p1), bw, bh, bw, xd->bd); |
| else |
| av1_build_compound_diffwtd_mask(tmp_mask[cur_mask_type], cur_mask_type, |
| p0, bw, p1, bw, bh, bw); |
| |
| // compute rd for mask |
| uint64_t sse = av1_wedge_sse_from_residuals(residual1, diff10, |
| tmp_mask[cur_mask_type], N); |
| sse = ROUND_POWER_OF_TWO(sse, bd_round); |
| |
| model_rd_sse_fn[MODELRD_TYPE_MASKED_COMPOUND](cpi, x, bsize, 0, sse, N, |
| &rate, &dist); |
| const int64_t rd0 = RDCOST(x->rdmult, rate, dist); |
| |
| if (rd0 < best_rd) { |
| best_mask_type = cur_mask_type; |
| best_rd = rd0; |
| } |
| } |
| mbmi->interinter_comp.mask_type = best_mask_type; |
| if (best_mask_type == DIFFWTD_38_INV) { |
| memcpy(xd->seg_mask, seg_mask, N * 2); |
| } |
| return best_rd; |
| } |
| |
| static int64_t pick_interintra_wedge(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, |
| const uint8_t *const p0, |
| const uint8_t *const p1) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(is_interintra_wedge_used(bsize)); |
| assert(cpi->common.seq_params.enable_interintra_compound); |
| |
| const struct buf_2d *const src = &x->plane[0].src; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| DECLARE_ALIGNED(32, int16_t, residual1[MAX_SB_SQUARE]); // src - pred1 |
| DECLARE_ALIGNED(32, int16_t, diff10[MAX_SB_SQUARE]); // pred1 - pred0 |
| if (is_cur_buf_hbd(xd)) { |
| aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, |
| CONVERT_TO_BYTEPTR(p1), bw, xd->bd); |
| aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(p1), bw, |
| CONVERT_TO_BYTEPTR(p0), bw, xd->bd); |
| } else { |
| aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, p1, bw); |
| aom_subtract_block(bh, bw, diff10, bw, p1, bw, p0, bw); |
| } |
| int wedge_index = -1; |
| int64_t rd = |
| pick_wedge_fixed_sign(cpi, x, bsize, residual1, diff10, 0, &wedge_index); |
| |
| mbmi->interintra_wedge_sign = 0; |
| mbmi->interintra_wedge_index = wedge_index; |
| return rd; |
| } |
| |
| static int64_t pick_interinter_mask(const AV1_COMP *const cpi, MACROBLOCK *x, |
| const BLOCK_SIZE bsize, |
| const uint8_t *const p0, |
| const uint8_t *const p1, |
| const int16_t *const residual1, |
| const int16_t *const diff10) { |
| const COMPOUND_TYPE compound_type = x->e_mbd.mi[0]->interinter_comp.type; |
| switch (compound_type) { |
| case COMPOUND_WEDGE: |
| return pick_interinter_wedge(cpi, x, bsize, p0, p1, residual1, diff10); |
| case COMPOUND_DIFFWTD: |
| return pick_interinter_seg(cpi, x, bsize, p0, p1, residual1, diff10); |
| default: assert(0); return 0; |
| } |
| } |
| |
| static int interinter_compound_motion_search(const AV1_COMP *const cpi, |
| MACROBLOCK *x, |
| const int_mv *const cur_mv, |
| const BLOCK_SIZE bsize, |
| const PREDICTION_MODE this_mode, |
| int mi_row, int mi_col) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| int_mv tmp_mv[2]; |
| int tmp_rate_mv = 0; |
| mbmi->interinter_comp.seg_mask = xd->seg_mask; |
| const INTERINTER_COMPOUND_DATA *compound_data = &mbmi->interinter_comp; |
| |
| if (this_mode == NEW_NEWMV) { |
| do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, |
| mi_row, mi_col, tmp_mv, &tmp_rate_mv, 2); |
| mbmi->mv[0].as_int = tmp_mv[0].as_int; |
| mbmi->mv[1].as_int = tmp_mv[1].as_int; |
| } else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) { |
| do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, |
| mi_row, mi_col, tmp_mv, &tmp_rate_mv, 0); |
| mbmi->mv[0].as_int = tmp_mv[0].as_int; |
| } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { |
| do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, |
| mi_row, mi_col, tmp_mv, &tmp_rate_mv, 1); |
| mbmi->mv[1].as_int = tmp_mv[1].as_int; |
| } |
| return tmp_rate_mv; |
| } |
| |
| static void get_inter_predictors_masked_compound( |
| const AV1_COMP *const cpi, MACROBLOCK *x, const BLOCK_SIZE bsize, |
| int mi_row, int mi_col, uint8_t **preds0, uint8_t **preds1, |
| int16_t *residual1, int16_t *diff10, int *strides) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| int can_use_previous = cm->allow_warped_motion; |
| // get inter predictors to use for masked compound modes |
| av1_build_inter_predictors_for_planes_single_buf( |
| xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides, can_use_previous); |
| av1_build_inter_predictors_for_planes_single_buf( |
| xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides, can_use_previous); |
| const struct buf_2d *const src = &x->plane[0].src; |
| if (is_cur_buf_hbd(xd)) { |
| aom_highbd_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, |
| CONVERT_TO_BYTEPTR(*preds1), bw, xd->bd); |
| aom_highbd_subtract_block(bh, bw, diff10, bw, CONVERT_TO_BYTEPTR(*preds1), |
| bw, CONVERT_TO_BYTEPTR(*preds0), bw, xd->bd); |
| } else { |
| aom_subtract_block(bh, bw, residual1, bw, src->buf, src->stride, *preds1, |
| bw); |
| aom_subtract_block(bh, bw, diff10, bw, *preds1, bw, *preds0, bw); |
| } |
| } |
| |
| static int64_t build_and_cost_compound_type( |
| const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, |
| const BLOCK_SIZE bsize, const PREDICTION_MODE this_mode, int *rs2, |
| int rate_mv, const BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0, |
| uint8_t **preds1, int16_t *residual1, int16_t *diff10, int *strides, |
| int mi_row, int mi_col, int mode_rate, int64_t rd_thresh, |
| int *calc_pred_masked_compound, int32_t *comp_rate, int64_t *comp_dist, |
| int64_t *const comp_model_rd, const int64_t comp_best_model_rd, |
| int64_t *const comp_model_rd_cur) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| int64_t best_rd_cur = INT64_MAX; |
| int64_t rd = INT64_MAX; |
| const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type; |
| int rate_sum, tmp_skip_txfm_sb; |
| int64_t dist_sum, tmp_skip_sse_sb; |
| |
| // TODO(any): Save pred and mask calculation as well into records. However |
| // this may increase memory requirements as compound segment mask needs to be |
| // stored in each record. |
| if (*calc_pred_masked_compound) { |
| get_inter_predictors_masked_compound(cpi, x, bsize, mi_row, mi_col, preds0, |
| preds1, residual1, diff10, strides); |
| *calc_pred_masked_compound = 0; |
| } |
| if (cpi->sf.prune_wedge_pred_diff_based && compound_type == COMPOUND_WEDGE) { |
| unsigned int sse; |
| if (is_cur_buf_hbd(xd)) |
| (void)cpi->fn_ptr[bsize].vf(CONVERT_TO_BYTEPTR(*preds0), *strides, |
| CONVERT_TO_BYTEPTR(*preds1), *strides, &sse); |
| else |
| (void)cpi->fn_ptr[bsize].vf(*preds0, *strides, *preds1, *strides, &sse); |
| const unsigned int mse = |
| ROUND_POWER_OF_TWO(sse, num_pels_log2_lookup[bsize]); |
| // If two predictors are very similar, skip wedge compound mode search |
| if (mse < 8 || (!have_newmv_in_inter_mode(this_mode) && mse < 64)) { |
| *comp_model_rd_cur = INT64_MAX; |
| return INT64_MAX; |
| } |
| } |
| |
| best_rd_cur = |
| pick_interinter_mask(cpi, x, bsize, *preds0, *preds1, residual1, diff10); |
| *rs2 += get_interinter_compound_mask_rate(x, mbmi); |
| best_rd_cur += RDCOST(x->rdmult, *rs2 + rate_mv, 0); |
| |
| // Although the true rate_mv might be different after motion search, but it |
| // is unlikely to be the best mode considering the transform rd cost and other |
| // mode overhead cost |
| int64_t mode_rd = RDCOST(x->rdmult, *rs2 + mode_rate, 0); |
| if (mode_rd > rd_thresh) { |
| *comp_model_rd_cur = INT64_MAX; |
| return INT64_MAX; |
| } |
| |
| // Reuse data if matching record is found |
| if (comp_rate[compound_type] == INT_MAX) { |
| if (have_newmv_in_inter_mode(this_mode) && |
| compound_type == COMPOUND_WEDGE && |
| !cpi->sf.disable_interinter_wedge_newmv_search) { |
| *out_rate_mv = interinter_compound_motion_search( |
| cpi, x, cur_mv, bsize, this_mode, mi_row, mi_col); |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, ctx, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| |
| model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); |
| rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum); |
| *comp_model_rd_cur = rd; |
| if (rd >= best_rd_cur) { |
| mbmi->mv[0].as_int = cur_mv[0].as_int; |
| mbmi->mv[1].as_int = cur_mv[1].as_int; |
| *out_rate_mv = rate_mv; |
| av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, |
| strides, preds1, strides); |
| *comp_model_rd_cur = best_rd_cur; |
| } |
| } else { |
| *out_rate_mv = rate_mv; |
| av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides, |
| preds1, strides); |
| model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); |
| *comp_model_rd_cur = |
| RDCOST(x->rdmult, *rs2 + *out_rate_mv + rate_sum, dist_sum); |
| } |
| |
| RD_STATS rd_stats; |
| |
| if (cpi->sf.prune_comp_type_by_model_rd && |
| (*comp_model_rd_cur > comp_best_model_rd) && |
| comp_best_model_rd != INT64_MAX) { |
| *comp_model_rd_cur = INT64_MAX; |
| return INT64_MAX; |
| } |
| const int64_t tmp_mode_rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv, 0); |
| const int64_t tmp_rd_thresh = rd_thresh - tmp_mode_rd; |
| rd = estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh, &rd_stats); |
| if (rd != INT64_MAX) { |
| rd = |
| RDCOST(x->rdmult, *rs2 + *out_rate_mv + rd_stats.rate, rd_stats.dist); |
| // Backup rate and distortion for future reuse |
| comp_rate[compound_type] = rd_stats.rate; |
| comp_dist[compound_type] = rd_stats.dist; |
| comp_model_rd[compound_type] = *comp_model_rd_cur; |
| } |
| } else { |
| assert(comp_dist[compound_type] != INT64_MAX); |
| // When disable_interinter_wedge_newmv_search is set, motion refinement is |
| // disabled. Hence rate and distortion can be reused in this case as well |
| assert(IMPLIES(have_newmv_in_inter_mode(this_mode), |
| cpi->sf.disable_interinter_wedge_newmv_search)); |
| assert(mbmi->mv[0].as_int == cur_mv[0].as_int); |
| assert(mbmi->mv[1].as_int == cur_mv[1].as_int); |
| *out_rate_mv = rate_mv; |
| // Calculate RD cost based on stored stats |
| rd = RDCOST(x->rdmult, *rs2 + *out_rate_mv + comp_rate[compound_type], |
| comp_dist[compound_type]); |
| *comp_model_rd_cur = comp_model_rd[compound_type]; |
| } |
| return rd; |
| } |
| |
| typedef struct { |
| // OBMC secondary prediction buffers and respective strides |
| uint8_t *above_pred_buf[MAX_MB_PLANE]; |
| int above_pred_stride[MAX_MB_PLANE]; |
| uint8_t *left_pred_buf[MAX_MB_PLANE]; |
| int left_pred_stride[MAX_MB_PLANE]; |
| int_mv (*single_newmv)[REF_FRAMES]; |
| // Pointer to array of motion vectors to use for each ref and their rates |
| // Should point to first of 2 arrays in 2D array |
| int (*single_newmv_rate)[REF_FRAMES]; |
| int (*single_newmv_valid)[REF_FRAMES]; |
| // Pointer to array of predicted rate-distortion |
| // Should point to first of 2 arrays in 2D array |
| int64_t (*modelled_rd)[MAX_REF_MV_SEARCH][REF_FRAMES]; |
| InterpFilter single_filter[MB_MODE_COUNT][REF_FRAMES]; |
| int ref_frame_cost; |
| int single_comp_cost; |
| int64_t (*simple_rd)[MAX_REF_MV_SEARCH][REF_FRAMES]; |
| int skip_motion_mode; |
| INTERINTRA_MODE *inter_intra_mode; |
| int single_ref_first_pass; |
| SimpleRDState *simple_rd_state; |
| } HandleInterModeArgs; |
| |
| /* If the current mode shares the same mv with other modes with higher cost, |
| * skip this mode. */ |
| static int skip_repeated_mv(const AV1_COMMON *const cm, |
| const MACROBLOCK *const x, |
| PREDICTION_MODE this_mode, |
| const MV_REFERENCE_FRAME ref_frames[2], |
| InterModeSearchState *search_state) { |
| const int is_comp_pred = ref_frames[1] > INTRA_FRAME; |
| const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames); |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; |
| PREDICTION_MODE compare_mode = MB_MODE_COUNT; |
| if (!is_comp_pred) { |
| if (this_mode == NEARMV) { |
| if (ref_mv_count == 0) { |
| // NEARMV has the same motion vector as NEARESTMV |
| compare_mode = NEARESTMV; |
| } |
| if (ref_mv_count == 1 && |
| cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { |
| // NEARMV has the same motion vector as GLOBALMV |
| compare_mode = GLOBALMV; |
| } |
| } |
| if (this_mode == GLOBALMV) { |
| if (ref_mv_count == 0 && |
| cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { |
| // GLOBALMV has the same motion vector as NEARESTMV |
| compare_mode = NEARESTMV; |
| } |
| if (ref_mv_count == 1) { |
| // GLOBALMV has the same motion vector as NEARMV |
| compare_mode = NEARMV; |
| } |
| } |
| |
| if (compare_mode != MB_MODE_COUNT) { |
| // Use modelled_rd to check whether compare mode was searched |
| if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] != |
| INT64_MAX) { |
| const int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames); |
| const int compare_cost = cost_mv_ref(x, compare_mode, mode_ctx); |
| const int this_cost = cost_mv_ref(x, this_mode, mode_ctx); |
| |
| // Only skip if the mode cost is larger than compare mode cost |
| if (this_cost > compare_cost) { |
| search_state->modelled_rd[this_mode][0][ref_frames[0]] = |
| search_state->modelled_rd[compare_mode][0][ref_frames[0]]; |
| return 1; |
| } |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv, |
| const AV1_COMMON *cm, |
| const MACROBLOCK *x) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| *out_mv = in_mv; |
| lower_mv_precision(&out_mv->as_mv, cm->allow_high_precision_mv, |
| cm->cur_frame_force_integer_mv); |
| clamp_mv2(&out_mv->as_mv, xd); |
| return !mv_check_bounds(&x->mv_limits, &out_mv->as_mv); |
| } |
| |
| static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, int_mv *cur_mv, |
| const int mi_row, const int mi_col, |
| int *const rate_mv, |
| HandleInterModeArgs *const args) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| const int refs[2] = { mbmi->ref_frame[0], |
| mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] }; |
| const int ref_mv_idx = mbmi->ref_mv_idx; |
| int i; |
| |
| (void)args; |
| |
| if (is_comp_pred) { |
| if (this_mode == NEW_NEWMV) { |
| cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; |
| cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; |
| |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| joint_motion_search(cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, NULL, |
| 0, rate_mv, 0); |
| } else { |
| *rate_mv = 0; |
| for (i = 0; i < 2; ++i) { |
| const int_mv ref_mv = av1_get_ref_mv(x, i); |
| *rate_mv += |
| av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv, x->nmv_vec_cost, |
| x->mv_cost_stack, MV_COST_WEIGHT); |
| } |
| } |
| } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { |
| cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| compound_single_motion_search_interinter( |
| cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 1); |
| } else { |
| const int_mv ref_mv = av1_get_ref_mv(x, 1); |
| *rate_mv = |
| av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv, x->nmv_vec_cost, |
| x->mv_cost_stack, MV_COST_WEIGHT); |
| } |
| } else { |
| assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV); |
| cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| compound_single_motion_search_interinter( |
| cpi, x, bsize, cur_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 0); |
| } else { |
| const int_mv ref_mv = av1_get_ref_mv(x, 0); |
| *rate_mv = |
| av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv, x->nmv_vec_cost, |
| x->mv_cost_stack, MV_COST_WEIGHT); |
| } |
| } |
| } else { |
| single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, rate_mv); |
| if (x->best_mv.as_int == INVALID_MV) return INT64_MAX; |
| |
| args->single_newmv[ref_mv_idx][refs[0]] = x->best_mv; |
| args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv; |
| args->single_newmv_valid[ref_mv_idx][refs[0]] = 1; |
| |
| cur_mv[0].as_int = x->best_mv.as_int; |
| |
| #if USE_DISCOUNT_NEWMV_TEST |
| // Estimate the rate implications of a new mv but discount this |
| // under certain circumstances where we want to help initiate a weak |
| // motion field, where the distortion gain for a single block may not |
| // be enough to overcome the cost of a new mv. |
| if (discount_newmv_test(cpi, x, this_mode, x->best_mv)) { |
| *rate_mv = AOMMAX(*rate_mv / NEW_MV_DISCOUNT_FACTOR, 1); |
| } |
| #endif |
| } |
| |
| return 0; |
| } |
| |
| static INLINE void swap_dst_buf(MACROBLOCKD *xd, const BUFFER_SET *dst_bufs[2], |
| int num_planes) { |
| const BUFFER_SET *buf0 = dst_bufs[0]; |
| dst_bufs[0] = dst_bufs[1]; |
| dst_bufs[1] = buf0; |
| restore_dst_buf(xd, *dst_bufs[0], num_planes); |
| } |
| |
| static INLINE int get_switchable_rate(MACROBLOCK *const x, |
| const InterpFilters filters, |
| const int ctx[2]) { |
| int inter_filter_cost; |
| const InterpFilter filter0 = av1_extract_interp_filter(filters, 0); |
| const InterpFilter filter1 = av1_extract_interp_filter(filters, 1); |
| inter_filter_cost = x->switchable_interp_costs[ctx[0]][filter0]; |
| inter_filter_cost += x->switchable_interp_costs[ctx[1]][filter1]; |
| return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; |
| } |
| |
| // calculate the rdcost of given interpolation_filter |
| static INLINE int64_t interpolation_filter_rd( |
| MACROBLOCK *const x, const AV1_COMP *const cpi, |
| const TileDataEnc *tile_data, BLOCK_SIZE bsize, int mi_row, int mi_col, |
| const BUFFER_SET *const orig_dst, int64_t *const rd, |
| int *const switchable_rate, int *const skip_txfm_sb, |
| int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], int filter_idx, |
| const int switchable_ctx[2], const int skip_pred, int *rate, |
| int64_t *dist) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| int tmp_rate[2], tmp_skip_sb[2] = { 1, 1 }; |
| int64_t tmp_dist[2], tmp_skip_sse[2] = { 0, 0 }; |
| |
| const InterpFilters last_best = mbmi->interp_filters; |
| mbmi->interp_filters = filter_sets[filter_idx]; |
| const int tmp_rs = |
| get_switchable_rate(x, mbmi->interp_filters, switchable_ctx); |
| |
| int64_t min_rd = RDCOST(x->rdmult, tmp_rs, 0); |
| if (min_rd > *rd) { |
| mbmi->interp_filters = last_best; |
| return 0; |
| } |
| |
| (void)tile_data; |
| |
| assert(skip_pred != 2); |
| assert((skip_pred >= 0) && (skip_pred <= cpi->default_interp_skip_flags)); |
| assert(rate[0] >= 0); |
| assert(dist[0] >= 0); |
| assert((skip_txfm_sb[0] == 0) || (skip_txfm_sb[0] == 1)); |
| assert(skip_sse_sb[0] >= 0); |
| assert(rate[1] >= 0); |
| assert(dist[1] >= 0); |
| assert((skip_txfm_sb[1] == 0) || (skip_txfm_sb[1] == 1)); |
| assert(skip_sse_sb[1] >= 0); |
| |
| if (skip_pred != cpi->default_interp_skip_flags) { |
| if (skip_pred != DEFAULT_LUMA_INTERP_SKIP_FLAG) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| #if CONFIG_COLLECT_RD_STATS == 3 |
| RD_STATS rd_stats_y; |
| pick_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, |
| INT64_MAX); |
| PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize); |
| #endif // CONFIG_COLLECT_RD_STATS == 3 |
| model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &tmp_rate[0], &tmp_dist[0], |
| &tmp_skip_sb[0], &tmp_skip_sse[0], NULL, NULL, NULL); |
| tmp_rate[1] = tmp_rate[0]; |
| tmp_dist[1] = tmp_dist[0]; |
| } else { |
| // only luma MC is skipped |
| tmp_rate[1] = rate[0]; |
| tmp_dist[1] = dist[0]; |
| } |
| if (num_planes > 1) { |
| for (int plane = 1; plane < num_planes; ++plane) { |
| int tmp_rate_uv, tmp_skip_sb_uv; |
| int64_t tmp_dist_uv, tmp_skip_sse_uv; |
| int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate[1], tmp_dist[1]); |
| if (tmp_rd >= *rd) { |
| mbmi->interp_filters = last_best; |
| return 0; |
| } |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| plane, plane); |
| model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( |
| cpi, bsize, x, xd, plane, plane, mi_row, mi_col, &tmp_rate_uv, |
| &tmp_dist_uv, &tmp_skip_sb_uv, &tmp_skip_sse_uv, NULL, NULL, NULL); |
| tmp_rate[1] = |
| (int)AOMMIN(((int64_t)tmp_rate[1] + (int64_t)tmp_rate_uv), INT_MAX); |
| tmp_dist[1] += tmp_dist_uv; |
| tmp_skip_sb[1] &= tmp_skip_sb_uv; |
| tmp_skip_sse[1] += tmp_skip_sse_uv; |
| } |
| } |
| } else { |
| // both luma and chroma MC is skipped |
| tmp_rate[1] = rate[1]; |
| tmp_dist[1] = dist[1]; |
| } |
| int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate[1], tmp_dist[1]); |
| |
| if (tmp_rd < *rd) { |
| *rd = tmp_rd; |
| *switchable_rate = tmp_rs; |
| if (skip_pred != cpi->default_interp_skip_flags) { |
| if (skip_pred == 0) { |
| // Overwrite the data as current filter is the best one |
| tmp_skip_sb[1] = tmp_skip_sb[0] & tmp_skip_sb[1]; |
| tmp_skip_sse[1] = tmp_skip_sse[0] + tmp_skip_sse[1]; |
| memcpy(rate, tmp_rate, sizeof(*rate) * 2); |
| memcpy(dist, tmp_dist, sizeof(*dist) * 2); |
| memcpy(skip_txfm_sb, tmp_skip_sb, sizeof(*skip_txfm_sb) * 2); |
| memcpy(skip_sse_sb, tmp_skip_sse, sizeof(*skip_sse_sb) * 2); |
| // As luma MC data is computed, no need to recompute after the search |
| x->recalc_luma_mc_data = 0; |
| } else if (skip_pred == DEFAULT_LUMA_INTERP_SKIP_FLAG) { |
| // As luma MC data is not computed, update of luma data can be skipped |
| rate[1] = tmp_rate[1]; |
| dist[1] = tmp_dist[1]; |
| skip_txfm_sb[1] = skip_txfm_sb[0] & tmp_skip_sb[1]; |
| skip_sse_sb[1] = skip_sse_sb[0] + tmp_skip_sse[1]; |
| // As luma MC data is not recomputed and current filter is the best, |
| // indicate the possibility of recomputing MC data |
| // If current buffer contains valid MC data, toggle to indicate that |
| // luma MC data needs to be recomputed |
| x->recalc_luma_mc_data ^= 1; |
| } |
| swap_dst_buf(xd, dst_bufs, num_planes); |
| } |
| return 1; |
| } |
| mbmi->interp_filters = last_best; |
| return 0; |
| } |
| |
| static INLINE int is_pred_filter_search_allowed( |
| const AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, |
| InterpFilters af_horiz, InterpFilters af_vert, InterpFilters lf_horiz, |
| InterpFilters lf_vert) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int bsl = mi_size_wide_log2[bsize]; |
| int pred_filter_search = |
| cpi->sf.cb_pred_filter_search |
| ? (((mi_row + mi_col) >> bsl) + |
| get_chessboard_index(cm->current_frame.frame_number)) & |
| 0x1 |
| : 0; |
| pred_filter_search &= ((af_horiz == lf_horiz) && (af_horiz != SWITCHABLE)) || |
| ((af_vert == lf_vert) && (af_vert != SWITCHABLE)); |
| return pred_filter_search; |
| } |
| |
| static INLINE void pred_dual_interp_filter_rd( |
| MACROBLOCK *const x, const AV1_COMP *const cpi, |
| const TileDataEnc *tile_data, BLOCK_SIZE bsize, int mi_row, int mi_col, |
| const BUFFER_SET *const orig_dst, int64_t *const rd, |
| int *const switchable_rate, int *const skip_txfm_sb, |
| int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], |
| InterpFilters filter_idx, const int switchable_ctx[2], const int skip_pred, |
| int *rate, int64_t *dist, InterpFilters af_horiz, InterpFilters af_vert, |
| InterpFilters lf_horiz, InterpFilters lf_vert) { |
| if ((af_horiz == lf_horiz) && (af_horiz != SWITCHABLE)) { |
| if (((af_vert == lf_vert) && (af_vert != SWITCHABLE))) { |
| filter_idx = af_horiz + (af_vert * SWITCHABLE_FILTERS); |
| if (filter_idx) { |
| interpolation_filter_rd(x, cpi, tile_data, bsize, mi_row, mi_col, |
| orig_dst, rd, switchable_rate, skip_txfm_sb, |
| skip_sse_sb, dst_bufs, filter_idx, |
| switchable_ctx, skip_pred, rate, dist); |
| } |
| } else { |
| for (filter_idx = af_horiz; filter_idx < (DUAL_FILTER_SET_SIZE); |
| filter_idx += SWITCHABLE_FILTERS) { |
| if (filter_idx) { |
| interpolation_filter_rd(x, cpi, tile_data, bsize, mi_row, mi_col, |
| orig_dst, rd, switchable_rate, skip_txfm_sb, |
| skip_sse_sb, dst_bufs, filter_idx, |
| switchable_ctx, skip_pred, rate, dist); |
| } |
| } |
| } |
| } else if ((af_vert == lf_vert) && (af_vert != SWITCHABLE)) { |
| for (filter_idx = (af_vert * SWITCHABLE_FILTERS); |
| filter_idx <= ((af_vert * SWITCHABLE_FILTERS) + 2); filter_idx += 1) { |
| if (filter_idx) { |
| interpolation_filter_rd(x, cpi, tile_data, bsize, mi_row, mi_col, |
| orig_dst, rd, switchable_rate, skip_txfm_sb, |
| skip_sse_sb, dst_bufs, filter_idx, |
| switchable_ctx, skip_pred, rate, dist); |
| } |
| } |
| } |
| } |
| |
| // Find the best interp filter if dual_interp_filter = 0 |
| static INLINE void find_best_non_dual_interp_filter( |
| MACROBLOCK *const x, const AV1_COMP *const cpi, |
| const TileDataEnc *tile_data, BLOCK_SIZE bsize, int mi_row, int mi_col, |
| const BUFFER_SET *const orig_dst, int64_t *const rd, |
| int *const switchable_rate, int *const skip_txfm_sb, |
| int64_t *const skip_sse_sb, const BUFFER_SET *dst_bufs[2], |
| const int switchable_ctx[2], const int skip_ver, const int skip_hor, |
| int *rate, int64_t *dist, int filter_set_size) { |
| int16_t i; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| // Regular filter evaluation should have been done and hence the same should |
| // be the winner |
| assert(x->e_mbd.mi[0]->interp_filters == filter_sets[0]); |
| assert(filter_set_size == DUAL_FILTER_SET_SIZE); |
| if ((skip_hor & skip_ver) != cpi->default_interp_skip_flags) { |
| int pred_filter_search; |
| InterpFilters af = SWITCHABLE, lf = SWITCHABLE, filter_idx = 0; |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| if (above_mbmi && is_inter_block(above_mbmi)) { |
| af = above_mbmi->interp_filters; |
| } |
| if (left_mbmi && is_inter_block(left_mbmi)) { |
| lf = left_mbmi->interp_filters; |
| } |
| pred_filter_search = is_pred_filter_search_allowed(cpi, bsize, mi_row, |
| mi_col, af, af, lf, lf); |
| if (pred_filter_search) { |
| assert(af != SWITCHABLE); |
| filter_idx = SWITCHABLE * (af & 0xf); |
| // This assert tells that (filter_x == filter_y) for non-dual filter case |
| assert((filter_sets[filter_idx] & 0xffff) == |
| (filter_sets[filter_idx] >> 16)); |
| if (cpi->sf.adaptive_interp_filter_search && |
| (cpi->sf.interp_filter_search_mask & (1 << (filter_idx >> 2)))) { |
| return; |
| } |
| if (filter_idx) { |
| interpolation_filter_rd( |
| x, cpi, tile_data, bsize, mi_row, mi_col, orig_dst, rd, |
| switchable_rate, skip_txfm_sb, skip_sse_sb, dst_bufs, filter_idx, |
| switchable_ctx, (skip_hor & skip_ver), rate, dist); |
| } |
| return; |
| } |
| } |
| // Reuse regular filter's modeled rd data for sharp filter for following |
| // cases |
| // 1) When bsize is 4x4 |
| // 2) When block width is 4 (i.e. 4x8/4x16 blocks) and MV in vertical |
| // direction is full-pel |
| // 3) When block height is 4 (i.e. 8x4/16x4 blocks) and MV in horizontal |
| // direction is full-pel |
| // TODO(any): Optimize cases 2 and 3 further if luma MV in relavant direction |
| // alone is full-pel |
| |
| if ((bsize == BLOCK_4X4) || |
| (block_size_wide[bsize] == 4 && |
| skip_ver == cpi->default_interp_skip_flags) || |
| (block_size_high[bsize] == 4 && |
| skip_hor == cpi->default_interp_skip_flags)) { |
| int skip_pred = cpi->default_interp_skip_flags; |
| for (i = filter_set_size - 1; i > 0; i -= (SWITCHABLE_FILTERS + 1)) { |
| // This assert tells that (filter_x == filter_y) for non-dual filter case |
| assert((filter_sets[i] & 0xffff) == (filter_sets[i] >> 16)); |
| if (cpi->sf.adaptive_interp_filter_search && |
| (cpi->sf.interp_filter_search_mask & (1 << (i >> 2)))) { |
| continue; |
| } |
| interpolation_filter_rd(x, cpi, tile_data, bsize, mi_row, mi_col, |
| orig_dst, rd, switchable_rate, skip_txfm_sb, |
| skip_sse_sb, dst_bufs, i, switchable_ctx, |
| skip_pred, rate, dist); |
| skip_pred = (skip_hor & skip_ver); |
| } |
| } else { |
| int skip_pred = (skip_hor & skip_ver); |
| for (i = (SWITCHABLE_FILTERS + 1); i < filter_set_size; |
| i += (SWITCHABLE_FILTERS + 1)) { |
| // This assert tells that (filter_x == filter_y) for non-dual filter case |
| assert((filter_sets[i] & 0xffff) == (filter_sets[i] >> 16)); |
| if (cpi->sf.adaptive_interp_filter_search && |
| (cpi->sf.interp_filter_search_mask & (1 << (i >> 2)))) { |
| continue; |
| } |
| interpolation_filter_rd(x, cpi, tile_data, bsize, mi_row, mi_col, |
| orig_dst, rd, switchable_rate, skip_txfm_sb, |
| skip_sse_sb, dst_bufs, i, switchable_ctx, |
| skip_pred, rate, dist); |
| // In first iteration, smooth filter is evaluated. If smooth filter |
| // (which is less sharper) is the winner among regular and smooth filters, |
| // sharp filter evaluation is skipped |
| // TODO(any): Refine this gating based on modelled rd only (i.e., by not |
| // accounting switchable filter rate) |
| if (cpi->sf.skip_sharp_interp_filter_search && |
| skip_pred != cpi->default_interp_skip_flags) { |
| if (mbmi->interp_filters == filter_sets[(SWITCHABLE_FILTERS + 1)]) |
| break; |
| } |
| } |
| } |
| } |
| |
| // check if there is saved result match with this search |
| static INLINE int is_interp_filter_match(const INTERPOLATION_FILTER_STATS *st, |
| MB_MODE_INFO *const mi) { |
| for (int i = 0; i < 2; ++i) { |
| if ((st->ref_frames[i] != mi->ref_frame[i]) || |
| (st->mv[i].as_int != mi->mv[i].as_int)) { |
| return 0; |
| } |
| } |
| if (has_second_ref(mi) && st->comp_type != mi->interinter_comp.type) return 0; |
| return 1; |
| } |
| |
| // Checks if characteristics of search match |
| static INLINE int is_comp_rd_match(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| const COMP_RD_STATS *st, |
| const MB_MODE_INFO *const mi, |
| int32_t *comp_rate, int64_t *comp_dist, |
| int64_t *comp_model_rd) { |
| // TODO(ranjit): Ensure that compound type search use regular filter always |
| // and check if following check can be removed |
| // Check if interp filter matches with previous case |
| if (st->filter != mi->interp_filters) return 0; |
| |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| // Match MV and reference indices |
| for (int i = 0; i < 2; ++i) { |
| if ((st->ref_frames[i] != mi->ref_frame[i]) || |
| (st->mv[i].as_int != mi->mv[i].as_int)) { |
| return 0; |
| } |
| const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[i]]; |
| if (is_global_mv_block(mi, wm->wmtype) != st->is_global[i]) return 0; |
| } |
| |
| // Store the stats for compound average |
| comp_rate[COMPOUND_AVERAGE] = st->rate[COMPOUND_AVERAGE]; |
| comp_dist[COMPOUND_AVERAGE] = st->dist[COMPOUND_AVERAGE]; |
| comp_model_rd[COMPOUND_AVERAGE] = st->comp_model_rd[COMPOUND_AVERAGE]; |
| comp_rate[COMPOUND_DISTWTD] = st->rate[COMPOUND_DISTWTD]; |
| comp_dist[COMPOUND_DISTWTD] = st->dist[COMPOUND_DISTWTD]; |
| comp_model_rd[COMPOUND_DISTWTD] = st->comp_model_rd[COMPOUND_DISTWTD]; |
| |
| // For compound wedge/segment, reuse data only if NEWMV is not present in |
| // either of the directions |
| if ((!have_newmv_in_inter_mode(mi->mode) && |
| !have_newmv_in_inter_mode(st->mode)) || |
| (cpi->sf.disable_interinter_wedge_newmv_search)) { |
| memcpy(&comp_rate[COMPOUND_WEDGE], &st->rate[COMPOUND_WEDGE], |
| sizeof(comp_rate[COMPOUND_WEDGE]) * 2); |
| memcpy(&comp_dist[COMPOUND_WEDGE], &st->dist[COMPOUND_WEDGE], |
| sizeof(comp_dist[COMPOUND_WEDGE]) * 2); |
| memcpy(&comp_model_rd[COMPOUND_WEDGE], &st->comp_model_rd[COMPOUND_WEDGE], |
| sizeof(comp_model_rd[COMPOUND_WEDGE]) * 2); |
| } |
| return 1; |
| } |
| |
| static INLINE int find_interp_filter_in_stats(MACROBLOCK *x, |
| MB_MODE_INFO *const mbmi) { |
| const int comp_idx = mbmi->compound_idx; |
| const int offset = x->interp_filter_stats_idx[comp_idx]; |
| for (int j = 0; j < offset; ++j) { |
| const INTERPOLATION_FILTER_STATS *st = &x->interp_filter_stats[comp_idx][j]; |
| if (is_interp_filter_match(st, mbmi)) { |
| mbmi->interp_filters = st->filters; |
| return j; |
| } |
| } |
| return -1; // no match result found |
| } |
| // Checks if similar compound type search case is accounted earlier |
| // If found, returns relevant rd data |
| static INLINE int find_comp_rd_in_stats(const AV1_COMP *const cpi, |
| const MACROBLOCK *x, |
| const MB_MODE_INFO *const mbmi, |
| int32_t *comp_rate, int64_t *comp_dist, |
| int64_t *comp_model_rd) { |
| for (int j = 0; j < x->comp_rd_stats_idx; ++j) { |
| if (is_comp_rd_match(cpi, x, &x->comp_rd_stats[j], mbmi, comp_rate, |
| comp_dist, comp_model_rd)) { |
| return 1; |
| } |
| } |
| return 0; // no match result found |
| } |
| |
| static INLINE void save_interp_filter_search_stat(MACROBLOCK *x, |
| MB_MODE_INFO *const mbmi, |
| int64_t rd, int skip_txfm_sb, |
| int64_t skip_sse_sb, |
| unsigned int pred_sse) { |
| const int comp_idx = mbmi->compound_idx; |
| const int offset = x->interp_filter_stats_idx[comp_idx]; |
| if (offset < MAX_INTERP_FILTER_STATS) { |
| INTERPOLATION_FILTER_STATS stat = { mbmi->interp_filters, |
| { mbmi->mv[0], mbmi->mv[1] }, |
| { mbmi->ref_frame[0], |
| mbmi->ref_frame[1] }, |
| mbmi->interinter_comp.type, |
| rd, |
| skip_txfm_sb, |
| skip_sse_sb, |
| pred_sse }; |
| x->interp_filter_stats[comp_idx][offset] = stat; |
| x->interp_filter_stats_idx[comp_idx]++; |
| } |
| } |
| |
| static INLINE void save_comp_rd_search_stat(MACROBLOCK *x, |
| const MB_MODE_INFO *const mbmi, |
| const int32_t *comp_rate, |
| const int64_t *comp_dist, |
| const int64_t *comp_model_rd, |
| const int_mv *cur_mv) { |
| const int offset = x->comp_rd_stats_idx; |
| if (offset < MAX_COMP_RD_STATS) { |
| COMP_RD_STATS *const rd_stats = x->comp_rd_stats + offset; |
| memcpy(rd_stats->rate, comp_rate, sizeof(rd_stats->rate)); |
| memcpy(rd_stats->dist, comp_dist, sizeof(rd_stats->dist)); |
| memcpy(rd_stats->comp_model_rd, comp_model_rd, |
| sizeof(rd_stats->comp_model_rd)); |
| memcpy(rd_stats->mv, cur_mv, sizeof(rd_stats->mv)); |
| memcpy(rd_stats->ref_frames, mbmi->ref_frame, sizeof(rd_stats->ref_frames)); |
| rd_stats->mode = mbmi->mode; |
| rd_stats->filter = mbmi->interp_filters; |
| rd_stats->ref_mv_idx = mbmi->ref_mv_idx; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| for (int i = 0; i < 2; ++i) { |
| const WarpedMotionParams *const wm = |
| &xd->global_motion[mbmi->ref_frame[i]]; |
| rd_stats->is_global[i] = is_global_mv_block(mbmi, wm->wmtype); |
| } |
| ++x->comp_rd_stats_idx; |
| } |
| } |
| |
| static int64_t interpolation_filter_search( |
| MACROBLOCK *const x, const AV1_COMP *const cpi, |
| const TileDataEnc *tile_data, BLOCK_SIZE bsize, int mi_row, int mi_col, |
| const BUFFER_SET *const tmp_dst, const BUFFER_SET *const orig_dst, |
| InterpFilter (*const single_filter)[REF_FRAMES], int64_t *const rd, |
| int *const switchable_rate, int *const skip_txfm_sb, |
| int64_t *const skip_sse_sb, int *skip_build_pred, HandleInterModeArgs *args, |
| int64_t ref_best_rd) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int need_search = |
| av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd); |
| int i; |
| // Index 0 corresponds to luma rd data and index 1 corresponds to cummulative |
| // data of all planes |
| int tmp_rate[2] = { 0, 0 }; |
| int64_t tmp_dist[2] = { 0, 0 }; |
| int best_skip_txfm_sb[2] = { 1, 1 }; |
| int64_t best_skip_sse_sb[2] = { 0, 0 }; |
| const int ref_frame = xd->mi[0]->ref_frame[0]; |
| |
| (void)single_filter; |
| int match_found_idx = -1; |
| const InterpFilter assign_filter = cm->interp_filter; |
| if (cpi->sf.skip_repeat_interpolation_filter_search && need_search) { |
| match_found_idx = find_interp_filter_in_stats(x, mbmi); |
| } |
| if (match_found_idx != -1) { |
| const int comp_idx = mbmi->compound_idx; |
| *rd = x->interp_filter_stats[comp_idx][match_found_idx].rd; |
| *skip_txfm_sb = |
| x->interp_filter_stats[comp_idx][match_found_idx].skip_txfm_sb; |
| *skip_sse_sb = |
| x->interp_filter_stats[comp_idx][match_found_idx].skip_sse_sb; |
| x->pred_sse[ref_frame] = |
| x->interp_filter_stats[comp_idx][match_found_idx].pred_sse; |
| return 0; |
| } |
| if (!need_search || match_found_idx == -1) { |
| set_default_interp_filters(mbmi, assign_filter); |
| } |
| int switchable_ctx[2]; |
| switchable_ctx[0] = av1_get_pred_context_switchable_interp(xd, 0); |
| switchable_ctx[1] = av1_get_pred_context_switchable_interp(xd, 1); |
| *switchable_rate = |
| get_switchable_rate(x, mbmi->interp_filters, switchable_ctx); |
| if (!(*skip_build_pred)) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, 0, |
| av1_num_planes(cm) - 1); |
| *skip_build_pred = 1; |
| } |
| |
| #if CONFIG_COLLECT_RD_STATS == 3 |
| RD_STATS rd_stats_y; |
| pick_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, INT64_MAX); |
| PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize); |
| #endif // CONFIG_COLLECT_RD_STATS == 3 |
| model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &tmp_rate[0], &tmp_dist[0], |
| &best_skip_txfm_sb[0], &best_skip_sse_sb[0], NULL, NULL, NULL); |
| if (num_planes > 1) |
| model_rd_sb_fn[MODELRD_TYPE_INTERP_FILTER]( |
| cpi, bsize, x, xd, 1, num_planes - 1, mi_row, mi_col, &tmp_rate[1], |
| &tmp_dist[1], &best_skip_txfm_sb[1], &best_skip_sse_sb[1], NULL, NULL, |
| NULL); |
| tmp_rate[1] = |
| (int)AOMMIN((int64_t)tmp_rate[0] + (int64_t)tmp_rate[1], INT_MAX); |
| assert(tmp_rate[1] >= 0); |
| tmp_dist[1] = tmp_dist[0] + tmp_dist[1]; |
| best_skip_txfm_sb[1] = best_skip_txfm_sb[0] & best_skip_txfm_sb[1]; |
| best_skip_sse_sb[1] = best_skip_sse_sb[0] + best_skip_sse_sb[1]; |
| *rd = RDCOST(x->rdmult, (*switchable_rate + tmp_rate[1]), tmp_dist[1]); |
| *skip_txfm_sb = best_skip_txfm_sb[1]; |
| *skip_sse_sb = best_skip_sse_sb[1]; |
| x->pred_sse[ref_frame] = (unsigned int)(best_skip_sse_sb[0] >> 4); |
| |
| if (assign_filter != SWITCHABLE || match_found_idx != -1) { |
| return 0; |
| } |
| if (!need_search) { |
| assert(mbmi->interp_filters == |
| av1_broadcast_interp_filter(EIGHTTAP_REGULAR)); |
| return 0; |
| } |
| if (args->modelled_rd != NULL) { |
| if (has_second_ref(mbmi)) { |
| const int ref_mv_idx = mbmi->ref_mv_idx; |
| int refs[2] = { mbmi->ref_frame[0], |
| (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; |
| const int mode0 = compound_ref0_mode(mbmi->mode); |
| const int mode1 = compound_ref1_mode(mbmi->mode); |
| const int64_t mrd = AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]], |
| args->modelled_rd[mode1][ref_mv_idx][refs[1]]); |
| if ((*rd >> 1) > mrd && ref_best_rd < INT64_MAX) { |
| return INT64_MAX; |
| } |
| } |
| } |
| |
| x->recalc_luma_mc_data = 0; |
| // skip_flag=xx (in binary form) |
| // Setting 0th flag corresonds to skipping luma MC and setting 1st bt |
| // corresponds to skipping chroma MC skip_flag=0 corresponds to "Don't skip |
| // luma and chroma MC" Skip flag=1 corresponds to "Skip Luma MC only" |
| // Skip_flag=2 is not a valid case |
| // skip_flag=3 corresponds to "Skip both luma and chroma MC" |
| int skip_hor = cpi->default_interp_skip_flags; |
| int skip_ver = cpi->default_interp_skip_flags; |
| const int is_compound = has_second_ref(mbmi); |
| assert(is_intrabc_block(mbmi) == 0); |
| for (int j = 0; j < 1 + is_compound; ++j) { |
| const struct scale_factors *const sf = |
| get_ref_scale_factors_const(cm, mbmi->ref_frame[j]); |
| // TODO(any): Refine skip flag calculation considering scaling |
| if (av1_is_scaled(sf)) { |
| skip_hor = 0; |
| skip_ver = 0; |
| break; |
| } |
| const MV mv = mbmi->mv[j].as_mv; |
| int skip_hor_plane = 0; |
| int skip_ver_plane = 0; |
| for (int k = 0; k < AOMMAX(1, (num_planes - 1)); ++k) { |
| struct macroblockd_plane *const pd = &xd->plane[k]; |
| const int bw = pd->width; |
| const int bh = pd->height; |
| const MV mv_q4 = clamp_mv_to_umv_border_sb( |
| xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); |
| const int sub_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| const int sub_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; |
| skip_hor_plane |= ((sub_x == 0) << k); |
| skip_ver_plane |= ((sub_y == 0) << k); |
| } |
| skip_hor = skip_hor & skip_hor_plane; |
| skip_ver = skip_ver & skip_ver_plane; |
| // It is not valid that "luma MV is sub-pel, whereas chroma MV is not" |
| assert(skip_hor != 2); |
| assert(skip_ver != 2); |
| } |
| // When compond prediction type is compound segment wedge, luma MC and chroma |
| // MC need to go hand in hand as mask generated during luma MC is reuired for |
| // chroma MC. If skip_hor = 0 and skip_ver = 1, mask used for chroma MC during |
| // vertical filter decision may be incorrect as temporary MC evaluation |
| // overwrites the mask. Make skip_ver as 0 for this case so that mask is |
| // populated during luma MC |
| if (is_compound && mbmi->compound_idx == 1 && |
| mbmi->interinter_comp.type == COMPOUND_DIFFWTD) { |
| assert(mbmi->comp_group_idx == 1); |
| if (skip_hor == 0 && skip_ver == 1) skip_ver = 0; |
| } |
| // do interp_filter search |
| const int filter_set_size = DUAL_FILTER_SET_SIZE; |
| restore_dst_buf(xd, *tmp_dst, num_planes); |
| const BUFFER_SET *dst_bufs[2] = { tmp_dst, orig_dst }; |
| if (cpi->sf.use_fast_interpolation_filter_search && |
| cm->seq_params.enable_dual_filter) { |
| // default to (R,R): EIGHTTAP_REGULARxEIGHTTAP_REGULAR |
| int best_dual_mode = 0; |
| // Find best of {R}x{R,Sm,Sh} |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| int skip_pred; |
| int pred_filter_search = 0; |
| InterpFilters af_horiz = SWITCHABLE, af_vert = SWITCHABLE, |
| lf_horiz = SWITCHABLE, lf_vert = SWITCHABLE, filter_idx = 0; |
| if (!have_newmv_in_inter_mode(mbmi->mode)) { |
| const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; |
| if (above_mbmi && is_inter_block(above_mbmi)) { |
| af_horiz = av1_extract_interp_filter(above_mbmi->interp_filters, 1); |
| af_vert = av1_extract_interp_filter(above_mbmi->interp_filters, 0); |
| } |
| if (left_mbmi && is_inter_block(left_mbmi)) { |
| lf_horiz = av1_extract_interp_filter(left_mbmi->interp_filters, 1); |
| lf_vert = av1_extract_interp_filter(left_mbmi->interp_filters, 0); |
| } |
| pred_filter_search = is_pred_filter_search_allowed( |
| cpi, bsize, mi_row, mi_col, af_horiz, af_vert, lf_horiz, lf_vert); |
| } |
| if (pred_filter_search) { |
| pred_dual_interp_filter_rd( |
| x, cpi, tile_data, bsize, mi_row, mi_col, orig_dst, rd, |
| switchable_rate, best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, |
| filter_idx, switchable_ctx, (skip_hor & skip_ver), tmp_rate, tmp_dist, |
| af_horiz, af_vert, lf_horiz, lf_vert); |
| } else { |
| skip_pred = bw <= 4 ? cpi->default_interp_skip_flags : skip_hor; |
| for (i = (SWITCHABLE_FILTERS - 1); i >= 1; --i) { |
| if (interpolation_filter_rd( |
| x, cpi, tile_data, bsize, mi_row, mi_col, orig_dst, rd, |
| switchable_rate, best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, |
| i, switchable_ctx, skip_pred, tmp_rate, tmp_dist)) { |
| best_dual_mode = i; |
| } |
| skip_pred = skip_hor; |
| } |
| // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes |
| skip_pred = bh <= 4 ? cpi->default_interp_skip_flags : skip_ver; |
| assert(filter_set_size == DUAL_FILTER_SET_SIZE); |
| for (i = (best_dual_mode + (SWITCHABLE_FILTERS * 2)); |
| i >= (best_dual_mode + SWITCHABLE_FILTERS); |
| i -= SWITCHABLE_FILTERS) { |
| interpolation_filter_rd( |
| x, cpi, tile_data, bsize, mi_row, mi_col, orig_dst, rd, |
| switchable_rate, best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, i, |
| switchable_ctx, skip_pred, tmp_rate, tmp_dist); |
| skip_pred = skip_ver; |
| } |
| } |
| } else if (cm->seq_params.enable_dual_filter == 0) { |
| find_best_non_dual_interp_filter( |
| x, cpi, tile_data, bsize, mi_row, mi_col, orig_dst, rd, switchable_rate, |
| best_skip_txfm_sb, best_skip_sse_sb, dst_bufs, switchable_ctx, skip_ver, |
| skip_hor, tmp_rate, tmp_dist, filter_set_size); |
| } else { |
| // EIGHTTAP_REGULAR mode is calculated beforehand |
| for (i = 1; i < filter_set_size; ++i) { |
| interpolation_filter_rd(x, cpi, tile_data, bsize, mi_row, mi_col, |
| orig_dst, rd, switchable_rate, best_skip_txfm_sb, |
| best_skip_sse_sb, dst_bufs, i, switchable_ctx, |
| (skip_hor & skip_ver), tmp_rate, tmp_dist); |
| } |
| } |
| swap_dst_buf(xd, dst_bufs, num_planes); |
| // Recompute final MC data if required |
| if (x->recalc_luma_mc_data == 1) { |
| // Recomputing final luma MC data is required only if the same was skipped |
| // in either of the directions Condition below is necessary, but not |
| // sufficient |
| assert((skip_hor == 1) || (skip_ver == 1)); |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| } |
| *skip_txfm_sb = best_skip_txfm_sb[1]; |
| *skip_sse_sb = best_skip_sse_sb[1]; |
| x->pred_sse[ref_frame] = (unsigned int)(best_skip_sse_sb[0] >> 4); |
| |
| // save search results |
| if (cpi->sf.skip_repeat_interpolation_filter_search) { |
| assert(match_found_idx == -1); |
| save_interp_filter_search_stat(x, mbmi, *rd, *skip_txfm_sb, *skip_sse_sb, |
| x->pred_sse[ref_frame]); |
| } |
| return 0; |
| } |
| |
| static int txfm_search(const AV1_COMP *cpi, const TileDataEnc *tile_data, |
| MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, |
| RD_STATS *rd_stats, RD_STATS *rd_stats_y, |
| RD_STATS *rd_stats_uv, int mode_rate, |
| int64_t ref_best_rd) { |
| /* |
| * This function combines y and uv planes' transform search processes |
| * together, when the prediction is generated. It first does subtraction to |
| * obtain the prediction error. Then it calls |
| * pick_tx_size_type_yrd/super_block_yrd and super_block_uvrd sequentially and |
| * handles the early terminations happening in those functions. At the end, it |
| * computes the rd_stats/_y/_uv accordingly. |
| */ |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int ref_frame_1 = mbmi->ref_frame[1]; |
| const int64_t mode_rd = RDCOST(x->rdmult, mode_rate, 0); |
| const int64_t rd_thresh = |
| ref_best_rd == INT64_MAX ? INT64_MAX : ref_best_rd - mode_rd; |
| const int skip_ctx = av1_get_skip_context(xd); |
| const int skip_flag_cost[2] = { x->skip_cost[skip_ctx][0], |
| x->skip_cost[skip_ctx][1] }; |
| const int64_t min_header_rate = |
| mode_rate + AOMMIN(skip_flag_cost[0], skip_flag_cost[1]); |
| // Account for minimum skip and non_skip rd. |
| // Eventually either one of them will be added to mode_rate |
| const int64_t min_header_rd_possible = RDCOST(x->rdmult, min_header_rate, 0); |
| (void)tile_data; |
| |
| if (min_header_rd_possible > ref_best_rd) { |
| av1_invalid_rd_stats(rd_stats_y); |
| return 0; |
| } |
| |
| av1_init_rd_stats(rd_stats); |
| av1_init_rd_stats(rd_stats_y); |
| rd_stats->rate = mode_rate; |
| |
| // cost and distortion |
| av1_subtract_plane(x, bsize, 0); |
| if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { |
| pick_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, mi_row, mi_col, rd_thresh); |
| #if CONFIG_COLLECT_RD_STATS == 2 |
| PrintPredictionUnitStats(cpi, tile_data, x, rd_stats_y, bsize); |
| #endif // CONFIG_COLLECT_RD_STATS == 2 |
| } else { |
| super_block_yrd(cpi, x, rd_stats_y, bsize, rd_thresh); |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| for (int i = 0; i < xd->n4_h * xd->n4_w; ++i) |
| set_blk_skip(x, 0, i, rd_stats_y->skip); |
| } |
| |
| if (rd_stats_y->rate == INT_MAX) { |
| // TODO(angiebird): check if we need this |
| // restore_dst_buf(xd, *orig_dst, num_planes); |
| mbmi->ref_frame[1] = ref_frame_1; |
| return 0; |
| } |
| |
| av1_merge_rd_stats(rd_stats, rd_stats_y); |
| |
| const int64_t non_skip_rdcosty = |
| RDCOST(x->rdmult, rd_stats->rate + skip_flag_cost[0], rd_stats->dist); |
| const int64_t skip_rdcosty = |
| RDCOST(x->rdmult, mode_rate + skip_flag_cost[1], rd_stats->sse); |
| const int64_t min_rdcosty = AOMMIN(non_skip_rdcosty, skip_rdcosty); |
| if (min_rdcosty > ref_best_rd) { |
| const int64_t tokenonly_rdy = |
| AOMMIN(RDCOST(x->rdmult, rd_stats_y->rate, rd_stats_y->dist), |
| RDCOST(x->rdmult, 0, rd_stats_y->sse)); |
| // Invalidate rd_stats_y to skip the rest of the motion modes search |
| if (tokenonly_rdy - (tokenonly_rdy >> cpi->sf.prune_motion_mode_level) > |
| rd_thresh) |
| av1_invalid_rd_stats(rd_stats_y); |
| mbmi->ref_frame[1] = ref_frame_1; |
| return 0; |
| } |
| |
| av1_init_rd_stats(rd_stats_uv); |
| const int num_planes = av1_num_planes(cm); |
| if (num_planes > 1) { |
| int64_t ref_best_chroma_rd = ref_best_rd; |
| // Calculate best rd cost possible for chroma |
| if (cpi->sf.perform_best_rd_based_gating_for_chroma && |
| (ref_best_chroma_rd != INT64_MAX)) { |
| ref_best_chroma_rd = |
| (ref_best_chroma_rd - AOMMIN(non_skip_rdcosty, skip_rdcosty)); |
| } |
| const int is_cost_valid_uv = |
| super_block_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_chroma_rd); |
| if (!is_cost_valid_uv) { |
| mbmi->ref_frame[1] = ref_frame_1; |
| return 0; |
| } |
| av1_merge_rd_stats(rd_stats, rd_stats_uv); |
| } |
| |
| if (rd_stats->skip) { |
| rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; |
| rd_stats_y->rate = 0; |
| rd_stats_uv->rate = 0; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats_y->dist = rd_stats_y->sse; |
| rd_stats_uv->dist = rd_stats_uv->sse; |
| rd_stats->rate += skip_flag_cost[1]; |
| mbmi->skip = 1; |
| // here mbmi->skip temporarily plays a role as what this_skip2 does |
| |
| const int64_t tmprd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| if (tmprd > ref_best_rd) { |
| mbmi->ref_frame[1] = ref_frame_1; |
| return 0; |
| } |
| } else if (!xd->lossless[mbmi->segment_id] && |
| (RDCOST(x->rdmult, |
| rd_stats_y->rate + rd_stats_uv->rate + skip_flag_cost[0], |
| rd_stats->dist) >= |
| RDCOST(x->rdmult, skip_flag_cost[1], rd_stats->sse))) { |
| rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; |
| rd_stats->rate += skip_flag_cost[1]; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats_y->dist = rd_stats_y->sse; |
| rd_stats_uv->dist = rd_stats_uv->sse; |
| rd_stats_y->rate = 0; |
| rd_stats_uv->rate = 0; |
| mbmi->skip = 1; |
| } else { |
| rd_stats->rate += skip_flag_cost[0]; |
| mbmi->skip = 0; |
| } |
| |
| return 1; |
| } |
| |
| static INLINE bool enable_wedge_search(MACROBLOCK *const x, |
| const AV1_COMP *const cpi) { |
| // Enable wedge search if source variance and edge strength are above |
| // the thresholds. |
| return x->source_variance > cpi->sf.disable_wedge_search_var_thresh && |
| x->edge_strength > cpi->sf.disable_wedge_search_edge_thresh; |
| } |
| |
| static INLINE bool enable_wedge_interinter_search(MACROBLOCK *const x, |
| const AV1_COMP *const cpi) { |
| return enable_wedge_search(x, cpi) && cpi->oxcf.enable_interinter_wedge; |
| } |
| |
| static INLINE bool enable_wedge_interintra_search(MACROBLOCK *const x, |
| const AV1_COMP *const cpi) { |
| return enable_wedge_search(x, cpi) && cpi->oxcf.enable_interintra_wedge && |
| !cpi->sf.disable_wedge_interintra_search; |
| } |
| |
| static int handle_inter_intra_mode(const AV1_COMP *const cpi, |
| MACROBLOCK *const x, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, MB_MODE_INFO *mbmi, |
| HandleInterModeArgs *args, |
| int64_t ref_best_rd, int *rate_mv, |
| int *tmp_rate2, const BUFFER_SET *orig_dst) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *xd = &x->e_mbd; |
| |
| INTERINTRA_MODE best_interintra_mode = II_DC_PRED; |
| int64_t rd = INT64_MAX; |
| int64_t best_interintra_rd = INT64_MAX; |
| int rmode, rate_sum; |
| int64_t dist_sum; |
| int tmp_rate_mv = 0; |
| int tmp_skip_txfm_sb; |
| int bw = block_size_wide[bsize]; |
| int64_t tmp_skip_sse_sb; |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_INTERINTRA_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_INTERINTRA_SB_SQUARE]); |
| uint8_t *tmp_buf = get_buf_by_bd(xd, tmp_buf_); |
| uint8_t *intrapred = get_buf_by_bd(xd, intrapred_); |
| const int *const interintra_mode_cost = |
| x->interintra_mode_cost[size_group_lookup[bsize]]; |
| const int_mv mv0 = mbmi->mv[0]; |
| const int is_wedge_used = is_interintra_wedge_used(bsize); |
| int rwedge = is_wedge_used ? x->wedge_interintra_cost[bsize][0] : 0; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| xd->plane[0].dst.buf = tmp_buf; |
| xd->plane[0].dst.stride = bw; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| mbmi->ref_frame[1] = INTRA_FRAME; |
| best_interintra_mode = args->inter_intra_mode[mbmi->ref_frame[0]]; |
| |
| if (cpi->oxcf.enable_smooth_interintra && |
| !cpi->sf.disable_smooth_interintra) { |
| mbmi->use_wedge_interintra = 0; |
| int j = 0; |
| if (cpi->sf.reuse_inter_intra_mode == 0 || |
| best_interintra_mode == INTERINTRA_MODES) { |
| for (j = 0; j < INTERINTRA_MODES; ++j) { |
| if ((!cpi->oxcf.enable_smooth_intra || cpi->sf.disable_smooth_intra) && |
| (INTERINTRA_MODE)j == II_SMOOTH_PRED) |
| continue; |
| mbmi->interintra_mode = (INTERINTRA_MODE)j; |
| rmode = interintra_mode_cost[mbmi->interintra_mode]; |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, |
| intrapred, bw); |
| av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); |
| model_rd_sb_fn[MODELRD_TYPE_INTERINTRA]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); |
| rd = RDCOST(x->rdmult, tmp_rate_mv + rate_sum + rmode, dist_sum); |
| if (rd < best_interintra_rd) { |
| best_interintra_rd = rd; |
| best_interintra_mode = mbmi->interintra_mode; |
| } |
| } |
| args->inter_intra_mode[mbmi->ref_frame[0]] = best_interintra_mode; |
| } |
| assert(IMPLIES(!cpi->oxcf.enable_smooth_interintra || |
| cpi->sf.disable_smooth_interintra, |
| best_interintra_mode != II_SMOOTH_PRED)); |
| rmode = interintra_mode_cost[best_interintra_mode]; |
| if (j == 0 || best_interintra_mode != II_SMOOTH_PRED) { |
| mbmi->interintra_mode = best_interintra_mode; |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, |
| intrapred, bw); |
| av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); |
| } |
| |
| RD_STATS rd_stats; |
| const int64_t rd_thresh = get_rd_thresh_from_best_rd( |
| ref_best_rd, (1 << INTER_INTRA_RD_THRESH_SHIFT), |
| INTER_INTRA_RD_THRESH_SCALE); |
| const int64_t mode_rd = RDCOST(x->rdmult, *rate_mv + rmode + rwedge, 0); |
| const int64_t tmp_rd_thresh = rd_thresh - mode_rd; |
| rd = estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh, &rd_stats); |
| if (rd != INT64_MAX) { |
| rd = RDCOST(x->rdmult, *rate_mv + rmode + rd_stats.rate + rwedge, |
| rd_stats.dist); |
| } |
| best_interintra_rd = rd; |
| if (ref_best_rd < INT64_MAX && |
| ((((best_interintra_rd >> INTER_INTRA_RD_THRESH_SHIFT) * |
| INTER_INTRA_RD_THRESH_SCALE) > ref_best_rd) || |
| (best_interintra_rd == INT64_MAX))) { |
| return -1; |
| } |
| } |
| if (is_wedge_used) { |
| int64_t best_interintra_rd_nowedge = rd; |
| int64_t best_interintra_rd_wedge = INT64_MAX; |
| int_mv tmp_mv; |
| if (enable_wedge_interintra_search(x, cpi)) { |
| mbmi->use_wedge_interintra = 1; |
| |
| rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) + |
| x->wedge_interintra_cost[bsize][1]; |
| |
| if (!cpi->oxcf.enable_smooth_interintra || |
| cpi->sf.disable_smooth_interintra) { |
| if (best_interintra_mode == INTERINTRA_MODES) { |
| mbmi->interintra_mode = II_SMOOTH_PRED; |
| best_interintra_mode = II_SMOOTH_PRED; |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, |
| intrapred, bw); |
| best_interintra_rd_wedge = |
| pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_); |
| |
| int j = 0; |
| for (j = 0; j < INTERINTRA_MODES; ++j) { |
| mbmi->interintra_mode = (INTERINTRA_MODE)j; |
| rmode = interintra_mode_cost[mbmi->interintra_mode]; |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, |
| orig_dst, intrapred, bw); |
| av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); |
| model_rd_sb_fn[MODELRD_TYPE_INTERINTRA]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); |
| rd = RDCOST(x->rdmult, tmp_rate_mv + rate_sum + rmode, dist_sum); |
| if (rd < best_interintra_rd) { |
| best_interintra_rd_wedge = rd; |
| best_interintra_mode = mbmi->interintra_mode; |
| } |
| } |
| args->inter_intra_mode[mbmi->ref_frame[0]] = best_interintra_mode; |
| mbmi->interintra_mode = best_interintra_mode; |
| |
| if (best_interintra_mode != II_SMOOTH_PRED) { |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, |
| orig_dst, intrapred, bw); |
| } |
| } else { |
| mbmi->interintra_mode = best_interintra_mode; |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, |
| intrapred, bw); |
| best_interintra_rd_wedge = |
| pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_); |
| } |
| } else { |
| best_interintra_rd_wedge = |
| pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_); |
| } |
| |
| rmode = interintra_mode_cost[mbmi->interintra_mode]; |
| best_interintra_rd_wedge += |
| RDCOST(x->rdmult, rmode + *rate_mv + rwedge, 0); |
| rd = INT64_MAX; |
| // Refine motion vector. |
| if (have_newmv_in_inter_mode(mbmi->mode)) { |
| // get negative of mask |
| const uint8_t *mask = av1_get_contiguous_soft_mask( |
| mbmi->interintra_wedge_index, 1, bsize); |
| tmp_mv = mbmi->mv[0]; |
| compound_single_motion_search(cpi, x, bsize, &tmp_mv.as_mv, mi_row, |
| mi_col, intrapred, mask, bw, &tmp_rate_mv, |
| 0); |
| if (mbmi->mv[0].as_int != tmp_mv.as_int) { |
| mbmi->mv[0].as_int = tmp_mv.as_int; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); |
| rd = RDCOST(x->rdmult, tmp_rate_mv + rmode + rate_sum + rwedge, |
| dist_sum); |
| } |
| } |
| if (rd >= best_interintra_rd_wedge) { |
| tmp_mv.as_int = mv0.as_int; |
| tmp_rate_mv = *rate_mv; |
| av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); |
| } |
| // Evaluate closer to true rd |
| RD_STATS rd_stats; |
| const int64_t mode_rd = |
| RDCOST(x->rdmult, rmode + tmp_rate_mv + rwedge, 0); |
| const int64_t tmp_rd_thresh = best_interintra_rd_nowedge - mode_rd; |
| rd = estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh, &rd_stats); |
| if (rd != INT64_MAX) { |
| rd = RDCOST(x->rdmult, rmode + tmp_rate_mv + rwedge + rd_stats.rate, |
| rd_stats.dist); |
| } |
| best_interintra_rd_wedge = rd; |
| if ((!cpi->oxcf.enable_smooth_interintra || |
| cpi->sf.disable_smooth_interintra || |
| best_interintra_rd_nowedge == INT64_MAX) && |
| best_interintra_rd_wedge == INT64_MAX) |
| return -1; |
| if (best_interintra_rd_wedge < best_interintra_rd_nowedge) { |
| mbmi->use_wedge_interintra = 1; |
| mbmi->mv[0].as_int = tmp_mv.as_int; |
| *tmp_rate2 += tmp_rate_mv - *rate_mv; |
| *rate_mv = tmp_rate_mv; |
| } else { |
| mbmi->use_wedge_interintra = 0; |
| mbmi->mv[0].as_int = mv0.as_int; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| } |
| } else { |
| if (!cpi->oxcf.enable_smooth_interintra || |
| cpi->sf.disable_smooth_interintra) |
| return -1; |
| mbmi->use_wedge_interintra = 0; |
| } |
| } else { |
| if (best_interintra_rd == INT64_MAX) return -1; |
| } |
| if (num_planes > 1) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| AOM_PLANE_U, num_planes - 1); |
| } |
| return 0; |
| } |
| |
| // If number of valid neighbours is 1, |
| // 1) ROTZOOM parameters can be obtained reliably (2 parameters from |
| // one neighbouring MV) |
| // 2) For IDENTITY/TRANSLATION cases, warp can perform better due to |
| // a different interpolation filter being used. However the quality |
| // gains (due to the same) may not be much |
| // For above 2 cases warp evaluation is skipped |
| |
| static int check_if_optimal_warp(const AV1_COMP *cpi, |
| WarpedMotionParams *wm_params, |
| int num_proj_ref) { |
| int is_valid_warp = 1; |
| if (cpi->sf.prune_warp_using_wmtype) { |
| TransformationType wmtype = get_wmtype(wm_params); |
| if (num_proj_ref == 1) { |
| if (wmtype != ROTZOOM) is_valid_warp = 0; |
| } else { |
| if (wmtype < ROTZOOM) is_valid_warp = 0; |
| } |
| } |
| return is_valid_warp; |
| } |
| |
| struct obmc_check_mv_field_ctxt { |
| MB_MODE_INFO *current_mi; |
| int mv_field_check_result; |
| }; |
| |
| static INLINE void obmc_check_identical_mv(MACROBLOCKD *xd, int rel_mi_col, |
| uint8_t nb_mi_width, |
| MB_MODE_INFO *nb_mi, void *fun_ctxt, |
| const int num_planes) { |
| (void)xd; |
| (void)rel_mi_col; |
| (void)nb_mi_width; |
| (void)num_planes; |
| struct obmc_check_mv_field_ctxt *ctxt = |
| (struct obmc_check_mv_field_ctxt *)fun_ctxt; |
| const MB_MODE_INFO *current_mi = ctxt->current_mi; |
| |
| if (ctxt->mv_field_check_result == 0) return; |
| |
| if (nb_mi->ref_frame[0] != current_mi->ref_frame[0] || |
| nb_mi->mv[0].as_int != current_mi->mv[0].as_int || |
| nb_mi->interp_filters != current_mi->interp_filters) { |
| ctxt->mv_field_check_result = 0; |
| } |
| } |
| |
| // Check if the neighbors' motions used by obmc have same parameters as for |
| // the current block. If all the parameters are identical, obmc will produce |
| // the same prediction as from regular bmc, therefore we can skip the |
| // overlapping operations for less complexity. The parameters checked include |
| // reference frame, motion vector, and interpolation filter. |
| static int check_identical_obmc_mv_field(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| int mi_row, int mi_col) { |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| struct obmc_check_mv_field_ctxt mv_field_check_ctxt = { xd->mi[0], 1 }; |
| |
| foreach_overlappable_nb_above(cm, xd, mi_col, |
| max_neighbor_obmc[mi_size_wide_log2[bsize]], |
| obmc_check_identical_mv, &mv_field_check_ctxt); |
| foreach_overlappable_nb_left(cm, xd, mi_row, |
| max_neighbor_obmc[mi_size_high_log2[bsize]], |
| obmc_check_identical_mv, &mv_field_check_ctxt); |
| |
| return mv_field_check_ctxt.mv_field_check_result; |
| } |
| |
| // TODO(afergs): Refactor the MBMI references in here - there's four |
| // TODO(afergs): Refactor optional args - add them to a struct or remove |
| static int64_t motion_mode_rd( |
| const AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y, |
| RD_STATS *rd_stats_uv, int *disable_skip, int mi_row, int mi_col, |
| HandleInterModeArgs *const args, int64_t ref_best_rd, const int *refs, |
| int *rate_mv, const BUFFER_SET *orig_dst, int64_t *best_est_rd, |
| int do_tx_search, InterModesInfo *inter_modes_info) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| const int rate2_nocoeff = rd_stats->rate; |
| int best_xskip = 0, best_disable_skip = 0; |
| RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| const int rate_mv0 = *rate_mv; |
| const int interintra_allowed = cm->seq_params.enable_interintra_compound && |
| is_interintra_allowed(mbmi) && |
| mbmi->compound_idx; |
| int pts0[SAMPLES_ARRAY_SIZE], pts_inref0[SAMPLES_ARRAY_SIZE]; |
| |
| assert(mbmi->ref_frame[1] != INTRA_FRAME); |
| const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1]; |
| (void)tile_data; |
| av1_invalid_rd_stats(&best_rd_stats); |
| aom_clear_system_state(); |
| mbmi->num_proj_ref = 1; // assume num_proj_ref >=1 |
| MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; |
| if (cm->switchable_motion_mode) { |
| last_motion_mode_allowed = motion_mode_allowed(xd->global_motion, xd, mbmi, |
| cm->allow_warped_motion); |
| } |
| if (last_motion_mode_allowed == WARPED_CAUSAL) { |
| mbmi->num_proj_ref = |
| av1_findSamples(cm, xd, mi_row, mi_col, pts0, pts_inref0); |
| } |
| const int total_samples = mbmi->num_proj_ref; |
| if (total_samples == 0) { |
| last_motion_mode_allowed = OBMC_CAUSAL; |
| } |
| |
| const MB_MODE_INFO base_mbmi = *mbmi; |
| MB_MODE_INFO best_mbmi; |
| SimpleRDState *const simple_states = &args->simple_rd_state[mbmi->ref_mv_idx]; |
| const int switchable_rate = |
| av1_is_interp_needed(xd) ? av1_get_switchable_rate(cm, x, xd) : 0; |
| int64_t best_rd = INT64_MAX; |
| int best_rate_mv = rate_mv0; |
| const int identical_obmc_mv_field_detected = |
| (cpi->sf.skip_obmc_in_uniform_mv_field || |
| cpi->sf.skip_wm_in_uniform_mv_field) |
| ? check_identical_obmc_mv_field(cm, xd, mi_row, mi_col) |
| : 0; |
| for (int mode_index = (int)SIMPLE_TRANSLATION; |
| mode_index <= (int)last_motion_mode_allowed + interintra_allowed; |
| mode_index++) { |
| if (args->skip_motion_mode && mode_index) continue; |
| if (cpi->sf.prune_single_motion_modes_by_simple_trans && |
| args->single_ref_first_pass && mode_index) |
| break; |
| int tmp_rate2 = rate2_nocoeff; |
| const int is_interintra_mode = mode_index > (int)last_motion_mode_allowed; |
| int tmp_rate_mv = rate_mv0; |
| |
| *mbmi = base_mbmi; |
| if (is_interintra_mode) { |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| } else { |
| mbmi->motion_mode = (MOTION_MODE)mode_index; |
| assert(mbmi->ref_frame[1] != INTRA_FRAME); |
| } |
| |
| if ((cpi->oxcf.enable_obmc == 0 || cpi->sf.use_fast_nonrd_pick_mode) && |
| mbmi->motion_mode == OBMC_CAUSAL) |
| continue; |
| |
| if (identical_obmc_mv_field_detected) { |
| if (cpi->sf.skip_obmc_in_uniform_mv_field && |
| mbmi->motion_mode == OBMC_CAUSAL) |
| continue; |
| if (cpi->sf.skip_wm_in_uniform_mv_field && |
| mbmi->motion_mode == WARPED_CAUSAL) |
| continue; |
| } |
| |
| if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) { |
| // SIMPLE_TRANSLATION mode: no need to recalculate. |
| // The prediction is calculated before motion_mode_rd() is called in |
| // handle_inter_mode() |
| if (cpi->sf.prune_single_motion_modes_by_simple_trans && !is_comp_pred) { |
| if (args->single_ref_first_pass == 0) { |
| if (simple_states->early_skipped) { |
| assert(simple_states->rd_stats.rdcost == INT64_MAX); |
| return INT64_MAX; |
| } |
| if (simple_states->rd_stats.rdcost != INT64_MAX) { |
| best_rd = simple_states->rd_stats.rdcost; |
| best_rd_stats = simple_states->rd_stats; |
| best_rd_stats_y = simple_states->rd_stats_y; |
| best_rd_stats_uv = simple_states->rd_stats_uv; |
| memcpy(best_blk_skip, simple_states->blk_skip, |
| sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); |
| best_xskip = simple_states->skip; |
| best_disable_skip = simple_states->disable_skip; |
| best_mbmi = *mbmi; |
| } |
| continue; |
| } |
| simple_states->early_skipped = 0; |
| } |
| } else if (mbmi->motion_mode == OBMC_CAUSAL) { |
| const uint32_t cur_mv = mbmi->mv[0].as_int; |
| assert(!is_comp_pred); |
| if (have_newmv_in_inter_mode(this_mode)) { |
| single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, &tmp_rate_mv); |
| mbmi->mv[0].as_int = x->best_mv.as_int; |
| #if USE_DISCOUNT_NEWMV_TEST |
| if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) { |
| tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); |
| } |
| #endif |
| tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; |
| } |
| if (mbmi->mv[0].as_int != cur_mv) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| 0, av1_num_planes(cm) - 1); |
| } |
| av1_build_obmc_inter_prediction( |
| cm, xd, mi_row, mi_col, args->above_pred_buf, args->above_pred_stride, |
| args->left_pred_buf, args->left_pred_stride); |
| } else if (mbmi->motion_mode == WARPED_CAUSAL) { |
| int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; |
| mbmi->motion_mode = WARPED_CAUSAL; |
| mbmi->wm_params.wmtype = DEFAULT_WMTYPE; |
| mbmi->interp_filters = av1_broadcast_interp_filter( |
| av1_unswitchable_filter(cm->interp_filter)); |
| |
| memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); |
| memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); |
| // Select the samples according to motion vector difference |
| if (mbmi->num_proj_ref > 1) { |
| mbmi->num_proj_ref = av1_selectSamples( |
| &mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref, bsize); |
| } |
| |
| if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, |
| mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, |
| &mbmi->wm_params, mi_row, mi_col)) { |
| // Refine MV for NEWMV mode |
| assert(!is_comp_pred); |
| if (have_newmv_in_inter_mode(this_mode)) { |
| const int_mv mv0 = mbmi->mv[0]; |
| const WarpedMotionParams wm_params0 = mbmi->wm_params; |
| const int num_proj_ref0 = mbmi->num_proj_ref; |
| |
| if (cpi->sf.prune_warp_using_wmtype) { |
| TransformationType wmtype = get_wmtype(&mbmi->wm_params); |
| if (wmtype < ROTZOOM) continue; |
| } |
| |
| // Refine MV in a small range. |
| av1_refine_warped_mv(cpi, x, bsize, mi_row, mi_col, pts0, pts_inref0, |
| total_samples); |
| |
| // Keep the refined MV and WM parameters. |
| if (mv0.as_int != mbmi->mv[0].as_int) { |
| const int ref = refs[0]; |
| const int_mv ref_mv = av1_get_ref_mv(x, 0); |
| tmp_rate_mv = av1_mv_bit_cost(&mbmi->mv[0].as_mv, &ref_mv.as_mv, |
| x->nmv_vec_cost, x->mv_cost_stack, |
| MV_COST_WEIGHT); |
| |
| if (cpi->sf.adaptive_motion_search) |
| x->pred_mv[ref] = mbmi->mv[0].as_mv; |
| |
| #if USE_DISCOUNT_NEWMV_TEST |
| if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) { |
| tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); |
| } |
| #endif |
| tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; |
| } else { |
| // Restore the old MV and WM parameters. |
| mbmi->mv[0] = mv0; |
| mbmi->wm_params = wm_params0; |
| mbmi->num_proj_ref = num_proj_ref0; |
| } |
| } else { |
| if (!check_if_optimal_warp(cpi, &mbmi->wm_params, mbmi->num_proj_ref)) |
| continue; |
| } |
| |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| av1_num_planes(cm) - 1); |
| } else { |
| continue; |
| } |
| } else if (is_interintra_mode) { |
| const int ret = handle_inter_intra_mode( |
| cpi, x, bsize, mi_row, mi_col, mbmi, args, ref_best_rd, &tmp_rate_mv, |
| &tmp_rate2, orig_dst); |
| if (ret < 0) continue; |
| } |
| |
| x->skip = 0; |
| rd_stats->dist = 0; |
| rd_stats->sse = 0; |
| rd_stats->skip = 1; |
| rd_stats->rate = tmp_rate2; |
| if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate; |
| if (interintra_allowed) { |
| rd_stats->rate += x->interintra_cost[size_group_lookup[bsize]] |
| [mbmi->ref_frame[1] == INTRA_FRAME]; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| rd_stats->rate += x->interintra_mode_cost[size_group_lookup[bsize]] |
| [mbmi->interintra_mode]; |
| if (is_interintra_wedge_used(bsize)) { |
| rd_stats->rate += |
| x->wedge_interintra_cost[bsize][mbmi->use_wedge_interintra]; |
| if (mbmi->use_wedge_interintra) { |
| rd_stats->rate += |
| av1_cost_literal(get_interintra_wedge_bits(bsize)); |
| } |
| } |
| } |
| } |
| if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) && |
| (mbmi->ref_frame[1] != INTRA_FRAME)) { |
| if (last_motion_mode_allowed == WARPED_CAUSAL) { |
| rd_stats->rate += x->motion_mode_cost[bsize][mbmi->motion_mode]; |
| } else { |
| rd_stats->rate += x->motion_mode_cost1[bsize][mbmi->motion_mode]; |
| } |
| } |
| |
| if (!do_tx_search) { |
| int64_t curr_sse = -1; |
| int est_residue_cost = 0; |
| int64_t est_dist = 0; |
| int64_t est_rd = 0; |
| if (cpi->sf.inter_mode_rd_model_estimation == 1) { |
| curr_sse = get_sse(cpi, x); |
| const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse, |
| &est_residue_cost, &est_dist); |
| (void)has_est_rd; |
| assert(has_est_rd); |
| } else if (cpi->sf.inter_mode_rd_model_estimation == 2 || |
| cpi->sf.use_nonrd_pick_mode) { |
| model_rd_sb_fn[MODELRD_TYPE_MOTION_MODE_RD]( |
| cpi, bsize, x, xd, 0, num_planes - 1, mi_row, mi_col, |
| &est_residue_cost, &est_dist, NULL, &curr_sse, NULL, NULL, NULL); |
| } |
| est_rd = RDCOST(x->rdmult, rd_stats->rate + est_residue_cost, est_dist); |
| if (est_rd * 0.80 > *best_est_rd) { |
| mbmi->ref_frame[1] = ref_frame_1; |
| continue; |
| } |
| const int mode_rate = rd_stats->rate; |
| rd_stats->rate += est_residue_cost; |
| rd_stats->dist = est_dist; |
| rd_stats->rdcost = est_rd; |
| *best_est_rd = AOMMIN(*best_est_rd, rd_stats->rdcost); |
| if (cm->current_frame.reference_mode == SINGLE_REFERENCE) { |
| if (!is_comp_pred) { |
| assert(curr_sse >= 0); |
| inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, |
| rd_stats->rdcost, false, NULL, rd_stats, |
| rd_stats_y, rd_stats_uv, mbmi); |
| } |
| } else { |
| assert(curr_sse >= 0); |
| inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, |
| rd_stats->rdcost, false, NULL, rd_stats, |
| rd_stats_y, rd_stats_uv, mbmi); |
| } |
| } else { |
| if (!txfm_search(cpi, tile_data, x, bsize, mi_row, mi_col, rd_stats, |
| rd_stats_y, rd_stats_uv, rd_stats->rate, ref_best_rd)) { |
| if (rd_stats_y->rate == INT_MAX && mode_index == 0) { |
| if (cpi->sf.prune_single_motion_modes_by_simple_trans && |
| !is_comp_pred) { |
| simple_states->early_skipped = 1; |
| } |
| return INT64_MAX; |
| } |
| continue; |
| } |
| |
| const int64_t curr_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| ref_best_rd = AOMMIN(ref_best_rd, curr_rd); |
| *disable_skip = 0; |
| if (cpi->sf.inter_mode_rd_model_estimation == 1) { |
| const int skip_ctx = av1_get_skip_context(xd); |
| inter_mode_data_push(tile_data, mbmi->sb_type, rd_stats->sse, |
| rd_stats->dist, |
| rd_stats_y->rate + rd_stats_uv->rate + |
| x->skip_cost[skip_ctx][mbmi->skip]); |
| } |
| |
| // 2 means to both do the tx search and also update the inter_modes_info |
| // structure, since some modes will be conditionally TX searched. |
| if (do_tx_search == 2) { |
| rd_stats->rdcost = curr_rd; |
| inter_modes_info_push(inter_modes_info, rd_stats->rate, rd_stats->sse, |
| curr_rd, true, x->blk_skip, rd_stats, rd_stats_y, |
| rd_stats_uv, mbmi); |
| } |
| } |
| |
| if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) { |
| if (is_nontrans_global_motion(xd, xd->mi[0])) { |
| mbmi->interp_filters = av1_broadcast_interp_filter( |
| av1_unswitchable_filter(cm->interp_filter)); |
| } |
| } |
| |
| const int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| if (mode_index == 0) { |
| args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd; |
| if (!is_comp_pred) { |
| simple_states->rd_stats = *rd_stats; |
| simple_states->rd_stats.rdcost = tmp_rd; |
| simple_states->rd_stats_y = *rd_stats_y; |
| simple_states->rd_stats_uv = *rd_stats_uv; |
| memcpy(simple_states->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); |
| simple_states->skip = x->skip; |
| simple_states->disable_skip = *disable_skip; |
| } |
| } |
| if (mode_index == 0 || tmp_rd < best_rd) { |
| best_mbmi = *mbmi; |
| best_rd = tmp_rd; |
| best_rd_stats = *rd_stats; |
| best_rd_stats_y = *rd_stats_y; |
| best_rate_mv = tmp_rate_mv; |
| if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv; |
| memcpy(best_blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); |
| best_xskip = x->skip; |
| best_disable_skip = *disable_skip; |
| if (best_xskip) break; |
| } |
| } |
| mbmi->ref_frame[1] = ref_frame_1; |
| *rate_mv = best_rate_mv; |
| if (best_rd == INT64_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return INT64_MAX; |
| } |
| *mbmi = best_mbmi; |
| *rd_stats = best_rd_stats; |
| *rd_stats_y = best_rd_stats_y; |
| if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv; |
| memcpy(x->blk_skip, best_blk_skip, |
| sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); |
| x->skip = best_xskip; |
| *disable_skip = best_disable_skip; |
| |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return 0; |
| } |
| |
| static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi, |
| MACROBLOCK *const x, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, const BUFFER_SET *const orig_dst) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| assert(bsize < BLOCK_SIZES_ALL); |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, 0, |
| av1_num_planes(cm) - 1); |
| |
| int64_t total_sse = 0; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| av1_subtract_plane(x, bsize, plane); |
| int64_t sse = aom_sum_squares_2d_i16(p->src_diff, bw, bw, bh) << 4; |
| total_sse += sse; |
| } |
| const int skip_mode_ctx = av1_get_skip_mode_context(xd); |
| rd_stats->dist = rd_stats->sse = total_sse; |
| rd_stats->rate = x->skip_mode_cost[skip_mode_ctx][1]; |
| rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return 0; |
| } |
| |
| static INLINE int get_ref_mv_offset(PREDICTION_MODE single_mode, |
| uint8_t ref_mv_idx) { |
| assert(is_inter_singleref_mode(single_mode)); |
| int ref_mv_offset; |
| if (single_mode == NEARESTMV) { |
| ref_mv_offset = 0; |
| } else if (single_mode == NEARMV) { |
| ref_mv_offset = ref_mv_idx + 1; |
| } else { |
| ref_mv_offset = -1; |
| } |
| return ref_mv_offset; |
| } |
| |
| static INLINE void get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode, |
| int ref_idx, int ref_mv_idx, |
| const MV_REFERENCE_FRAME *ref_frame, |
| const MB_MODE_INFO_EXT *mbmi_ext) { |
| const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame); |
| const int is_comp_pred = ref_frame[1] > INTRA_FRAME; |
| const PREDICTION_MODE single_mode = |
| get_single_mode(this_mode, ref_idx, is_comp_pred); |
| assert(is_inter_singleref_mode(single_mode)); |
| if (single_mode == NEWMV) { |
| this_mv->as_int = INVALID_MV; |
| } else if (single_mode == GLOBALMV) { |
| *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; |
| } else { |
| assert(single_mode == NEARMV || single_mode == NEARESTMV); |
| const int ref_mv_offset = get_ref_mv_offset(single_mode, ref_mv_idx); |
| if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) { |
| assert(ref_mv_offset >= 0); |
| if (ref_idx == 0) { |
| *this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv; |
| } else { |
| *this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv; |
| } |
| } else { |
| *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; |
| } |
| } |
| } |
| |
| // This function update the non-new mv for the current prediction mode |
| static INLINE int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode, |
| const AV1_COMMON *cm, const MACROBLOCK *x) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int is_comp_pred = has_second_ref(mbmi); |
| int ret = 1; |
| for (int i = 0; i < is_comp_pred + 1; ++i) { |
| int_mv this_mv; |
| get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx, mbmi->ref_frame, |
| x->mbmi_ext); |
| const PREDICTION_MODE single_mode = |
| get_single_mode(this_mode, i, is_comp_pred); |
| if (single_mode == NEWMV) { |
| cur_mv[i] = this_mv; |
| } else { |
| ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x); |
| } |
| } |
| return ret; |
| } |
| |
| static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT *mbmi_ext, |
| const int (*const drl_mode_cost0)[2], |
| int8_t ref_frame_type) { |
| int cost = 0; |
| if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) { |
| for (int idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx]; |
| if (mbmi->ref_mv_idx == idx) return cost; |
| } |
| } |
| return cost; |
| } |
| |
| if (have_nearmv_in_inter_mode(mbmi->mode)) { |
| for (int idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); |
| cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)]; |
| if (mbmi->ref_mv_idx == (idx - 1)) return cost; |
| } |
| } |
| return cost; |
| } |
| return cost; |
| } |
| |
| // Struct for buffers used by compound_type_rd() function. |
| // For sizes and alignment of these arrays, refer to |
| // alloc_compound_type_rd_buffers() function. |
| typedef struct { |
| uint8_t *pred0; |
| uint8_t *pred1; |
| int16_t *residual1; // src - pred1 |
| int16_t *diff10; // pred1 - pred0 |
| uint8_t *tmp_best_mask_buf; // backup of the best segmentation mask |
| } CompoundTypeRdBuffers; |
| |
| static int compound_type_rd( |
| const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_col, |
| int mi_row, int_mv *cur_mv, int mode_search_mask, int masked_compound_used, |
| const BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst, |
| CompoundTypeRdBuffers *buffers, int *rate_mv, int64_t *rd, |
| RD_STATS *rd_stats, int64_t ref_best_rd, int *is_luma_interp_done, |
| int64_t rd_thresh) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| const int bw = block_size_wide[bsize]; |
| int rs2; |
| int_mv best_mv[2]; |
| int best_tmp_rate_mv = *rate_mv; |
| INTERINTER_COMPOUND_DATA best_compound_data; |
| best_compound_data.type = COMPOUND_AVERAGE; |
| uint8_t *preds0[1] = { buffers->pred0 }; |
| uint8_t *preds1[1] = { buffers->pred1 }; |
| int strides[1] = { bw }; |
| int tmp_rate_mv; |
| const int num_pix = 1 << num_pels_log2_lookup[bsize]; |
| const int mask_len = 2 * num_pix * sizeof(uint8_t); |
| COMPOUND_TYPE cur_type; |
| int best_compmode_interinter_cost = 0; |
| int calc_pred_masked_compound = 1; |
| int64_t comp_dist[COMPOUND_TYPES] = { INT64_MAX, INT64_MAX, INT64_MAX, |
| INT64_MAX }; |
| int32_t comp_rate[COMPOUND_TYPES] = { INT_MAX, INT_MAX, INT_MAX, INT_MAX }; |
| int64_t comp_model_rd[COMPOUND_TYPES] = { INT64_MAX, INT64_MAX, INT64_MAX, |
| INT64_MAX }; |
| const int match_found = |
| find_comp_rd_in_stats(cpi, x, mbmi, comp_rate, comp_dist, comp_model_rd); |
| |
| best_mv[0].as_int = cur_mv[0].as_int; |
| best_mv[1].as_int = cur_mv[1].as_int; |
| *rd = INT64_MAX; |
| int rate_sum, tmp_skip_txfm_sb; |
| int64_t dist_sum, tmp_skip_sse_sb; |
| int64_t comp_best_model_rd = INT64_MAX; |
| // Special handling if both compound_average and compound_distwtd |
| // are to be searched. In this case, first estimate between the two |
| // modes and then call estimate_yrd_for_sb() only for the better of |
| // the two. |
| const int try_average_comp = (mode_search_mask & (1 << COMPOUND_AVERAGE)); |
| const int try_distwtd_comp = |
| ((mode_search_mask & (1 << COMPOUND_DISTWTD)) && |
| cm->seq_params.order_hint_info.enable_dist_wtd_comp == 1 && |
| cpi->sf.use_dist_wtd_comp_flag != DIST_WTD_COMP_DISABLED); |
| const int try_average_and_distwtd_comp = |
| try_average_comp && try_distwtd_comp && |
| comp_rate[COMPOUND_AVERAGE] == INT_MAX && |
| comp_rate[COMPOUND_DISTWTD] == INT_MAX; |
| for (cur_type = COMPOUND_AVERAGE; cur_type < COMPOUND_TYPES; cur_type++) { |
| if (((1 << cur_type) & mode_search_mask) == 0) { |
| if (cur_type == COMPOUND_AVERAGE) restore_dst_buf(xd, *tmp_dst, 1); |
| continue; |
| } |
| if (!is_interinter_compound_used(cur_type, bsize)) continue; |
| if (cur_type >= COMPOUND_WEDGE && !masked_compound_used) break; |
| if (cur_type == COMPOUND_DISTWTD && !try_distwtd_comp) continue; |
| if (cur_type == COMPOUND_AVERAGE && try_average_and_distwtd_comp) continue; |
| |
| int64_t comp_model_rd_cur = INT64_MAX; |
| tmp_rate_mv = *rate_mv; |
| int64_t best_rd_cur = INT64_MAX; |
| const int comp_group_idx_ctx = get_comp_group_idx_context(xd); |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| |
| if (cur_type == COMPOUND_DISTWTD && try_average_and_distwtd_comp) { |
| int est_rate[2]; |
| int64_t est_dist[2], est_rd[2]; |
| |
| int masked_type_cost[2] = { 0, 0 }; |
| mbmi->comp_group_idx = 0; |
| |
| // First find the modeled rd cost for COMPOUND_AVERAGE |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi->compound_idx = 1; |
| if (masked_compound_used) { |
| masked_type_cost[COMPOUND_AVERAGE] += |
| x->comp_group_idx_cost[comp_group_idx_ctx][mbmi->comp_group_idx]; |
| } |
| masked_type_cost[COMPOUND_AVERAGE] += |
| x->comp_idx_cost[comp_index_ctx][mbmi->compound_idx]; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| *is_luma_interp_done = 1; |
| model_rd_sb_fn[MODELRD_CURVFIT]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &est_rate[COMPOUND_AVERAGE], |
| &est_dist[COMPOUND_AVERAGE], NULL, NULL, NULL, NULL, NULL); |
| est_rate[COMPOUND_AVERAGE] += masked_type_cost[COMPOUND_AVERAGE]; |
| est_rd[COMPOUND_AVERAGE] = |
| RDCOST(x->rdmult, est_rate[COMPOUND_AVERAGE] + *rate_mv, |
| est_dist[COMPOUND_AVERAGE]); |
| restore_dst_buf(xd, *tmp_dst, 1); |
| |
| // Next find the modeled rd cost for COMPOUND_DISTWTD |
| mbmi->interinter_comp.type = COMPOUND_DISTWTD; |
| mbmi->compound_idx = 0; |
| if (masked_compound_used) { |
| masked_type_cost[COMPOUND_DISTWTD] += |
| x->comp_group_idx_cost[comp_group_idx_ctx][mbmi->comp_group_idx]; |
| } |
| masked_type_cost[COMPOUND_DISTWTD] += |
| x->comp_idx_cost[comp_index_ctx][mbmi->compound_idx]; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| model_rd_sb_fn[MODELRD_CURVFIT]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &est_rate[COMPOUND_DISTWTD], |
| &est_dist[COMPOUND_DISTWTD], NULL, NULL, NULL, NULL, NULL); |
| est_rate[COMPOUND_DISTWTD] += masked_type_cost[COMPOUND_DISTWTD]; |
| est_rd[COMPOUND_DISTWTD] = |
| RDCOST(x->rdmult, est_rate[COMPOUND_DISTWTD] + *rate_mv, |
| est_dist[COMPOUND_DISTWTD]); |
| |
| // Choose the better of the two based on modeled cost and call |
| // estimate_yrd_for_sb() for that one. |
| if (est_rd[COMPOUND_AVERAGE] <= est_rd[COMPOUND_DISTWTD]) { |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi->compound_idx = 1; |
| restore_dst_buf(xd, *orig_dst, 1); |
| rs2 = masked_type_cost[COMPOUND_AVERAGE]; |
| RD_STATS est_rd_stats; |
| const int64_t mode_rd = RDCOST(x->rdmult, rs2 + *rate_mv, 0); |
| const int64_t tmp_rd_thresh = AOMMIN(*rd, rd_thresh) - mode_rd; |
| const int64_t est_rd_ = |
| estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh, &est_rd_stats); |
| if (est_rd_ != INT64_MAX) { |
| best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + est_rd_stats.rate, |
| est_rd_stats.dist); |
| restore_dst_buf(xd, *tmp_dst, 1); |
| comp_rate[COMPOUND_AVERAGE] = est_rd_stats.rate; |
| comp_dist[COMPOUND_AVERAGE] = est_rd_stats.dist; |
| comp_model_rd[COMPOUND_AVERAGE] = est_rd[COMPOUND_AVERAGE]; |
| comp_model_rd_cur = est_rd[COMPOUND_AVERAGE]; |
| } |
| restore_dst_buf(xd, *tmp_dst, 1); |
| } else { |
| rs2 = masked_type_cost[COMPOUND_DISTWTD]; |
| RD_STATS est_rd_stats; |
| const int64_t mode_rd = RDCOST(x->rdmult, rs2 + *rate_mv, 0); |
| const int64_t tmp_rd_thresh = AOMMIN(*rd, rd_thresh) - mode_rd; |
| const int64_t est_rd_ = |
| estimate_yrd_for_sb(cpi, bsize, x, tmp_rd_thresh, &est_rd_stats); |
| |
| if (est_rd_ != INT64_MAX) { |
| best_rd_cur = RDCOST(x->rdmult, rs2 + *rate_mv + est_rd_stats.rate, |
| est_rd_stats.dist); |
| comp_rate[COMPOUND_DISTWTD] = est_rd_stats.rate; |
| comp_dist[COMPOUND_DISTWTD] = est_rd_stats.dist; |
| comp_model_rd[COMPOUND_DISTWTD] = est_rd[COMPOUND_DISTWTD]; |
| comp_model_rd_cur = est_rd[COMPOUND_DISTWTD]; |
| } |
| } |
| } else { |
| mbmi->interinter_comp.type = cur_type; |
| int masked_type_cost = 0; |
| if (cur_type == COMPOUND_AVERAGE || cur_type == COMPOUND_DISTWTD) { |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = (cur_type == COMPOUND_AVERAGE); |
| if (masked_compound_used) { |
| masked_type_cost += |
| x->comp_group_idx_cost[comp_group_idx_ctx][mbmi->comp_group_idx]; |
| } |
| masked_type_cost += |
| x->comp_idx_cost[comp_index_ctx][mbmi->compound_idx]; |
| rs2 = masked_type_cost; |
| const int64_t mode_rd = RDCOST(x->rdmult, rs2 + rd_stats->rate, 0); |
| if (mode_rd < ref_best_rd) { |
| // Reuse data if matching record is found |
| if (comp_rate[cur_type] == INT_MAX) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, |
| bsize, AOM_PLANE_Y, AOM_PLANE_Y); |
| if (cur_type == COMPOUND_AVERAGE) *is_luma_interp_done = 1; |
| RD_STATS est_rd_stats; |
| const int64_t tmp_rd_thresh = AOMMIN(*rd, rd_thresh) - mode_rd; |
| const int64_t est_rd = estimate_yrd_for_sb( |
| cpi, bsize, x, tmp_rd_thresh, &est_rd_stats); |
| if (comp_rate[cur_type] != INT_MAX) { |
| assert(comp_rate[cur_type] == est_rd_stats.rate); |
| assert(comp_dist[cur_type] == est_rd_stats.dist); |
| } |
| if (est_rd != INT64_MAX) { |
| best_rd_cur = |
| RDCOST(x->rdmult, rs2 + *rate_mv + est_rd_stats.rate, |
| est_rd_stats.dist); |
| model_rd_sb_fn[MODELRD_TYPE_MASKED_COMPOUND]( |
| cpi, bsize, x, xd, 0, 0, mi_row, mi_col, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, NULL, NULL, NULL); |
| comp_model_rd_cur = |
| RDCOST(x->rdmult, rs2 + *rate_mv + rate_sum, dist_sum); |
| |
| // Backup rate and distortion for future reuse |
| comp_rate[cur_type] = est_rd_stats.rate; |
| comp_dist[cur_type] = est_rd_stats.dist; |
| comp_model_rd[cur_type] = comp_model_rd_cur; |
| } |
| } else { |
| // Calculate RD cost based on stored stats |
| assert(comp_dist[cur_type] != INT64_MAX); |
| best_rd_cur = |
| RDCOST(x->rdmult, rs2 + *rate_mv + comp_rate[cur_type], |
| comp_dist[cur_type]); |
| comp_model_rd_cur = comp_model_rd[cur_type]; |
| } |
| } |
| // use spare buffer for following compound type try |
| if (cur_type == COMPOUND_AVERAGE) restore_dst_buf(xd, *tmp_dst, 1); |
| } else { |
| mbmi->comp_group_idx = 1; |
| mbmi->compound_idx = 1; |
| masked_type_cost += |
| x->comp_group_idx_cost[comp_group_idx_ctx][mbmi->comp_group_idx]; |
| masked_type_cost += |
| x->compound_type_cost[bsize][cur_type - COMPOUND_WEDGE]; |
| rs2 = masked_type_cost; |
| |
| if (((*rd / cpi->max_comp_type_rd_threshold_div) * |
| cpi->max_comp_type_rd_threshold_mul) < ref_best_rd) { |
| const COMPOUND_TYPE compound_type = mbmi->interinter_comp.type; |
| const int64_t tmp_rd_thresh = AOMMIN(*rd, rd_thresh); |
| |
| if (!((compound_type == COMPOUND_WEDGE && |
| !enable_wedge_interinter_search(x, cpi)) || |
| (compound_type == COMPOUND_DIFFWTD && |
| !cpi->oxcf.enable_diff_wtd_comp))) |
| best_rd_cur = build_and_cost_compound_type( |
| cpi, x, cur_mv, bsize, this_mode, &rs2, *rate_mv, orig_dst, |
| &tmp_rate_mv, preds0, preds1, buffers->residual1, |
| buffers->diff10, strides, mi_row, mi_col, rd_stats->rate, |
| tmp_rd_thresh, &calc_pred_masked_compound, comp_rate, comp_dist, |
| comp_model_rd, comp_best_model_rd, &comp_model_rd_cur); |
| } |
| } |
| } |
| if (best_rd_cur < *rd) { |
| *rd = best_rd_cur; |
| comp_best_model_rd = comp_model_rd_cur; |
| best_compound_data = mbmi->interinter_comp; |
| if (masked_compound_used && cur_type >= COMPOUND_WEDGE) { |
| memcpy(buffers->tmp_best_mask_buf, xd->seg_mask, mask_len); |
| } |
| best_compmode_interinter_cost = rs2; |
| if (have_newmv_in_inter_mode(this_mode)) { |
| if (cur_type == COMPOUND_WEDGE) { |
| best_tmp_rate_mv = tmp_rate_mv; |
| best_mv[0].as_int = mbmi->mv[0].as_int; |
| best_mv[1].as_int = mbmi->mv[1].as_int; |
| } else { |
| best_mv[0].as_int = cur_mv[0].as_int; |
| best_mv[1].as_int = cur_mv[1].as_int; |
| } |
| } |
| } |
| // reset to original mvs for next iteration |
| mbmi->mv[0].as_int = cur_mv[0].as_int; |
| mbmi->mv[1].as_int = cur_mv[1].as_int; |
| } |
| if (mbmi->interinter_comp.type != best_compound_data.type) { |
| mbmi->comp_group_idx = (best_compound_data.type < COMPOUND_WEDGE) ? 0 : 1; |
| mbmi->compound_idx = !(best_compound_data.type == COMPOUND_DISTWTD); |
| mbmi->interinter_comp = best_compound_data; |
| memcpy(xd->seg_mask, buffers->tmp_best_mask_buf, mask_len); |
| } |
| if (have_newmv_in_inter_mode(this_mode)) { |
| mbmi->mv[0].as_int = best_mv[0].as_int; |
| mbmi->mv[1].as_int = best_mv[1].as_int; |
| if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { |
| rd_stats->rate += best_tmp_rate_mv - *rate_mv; |
| *rate_mv = best_tmp_rate_mv; |
| } |
| } |
| restore_dst_buf(xd, *orig_dst, 1); |
| if (!match_found) |
| save_comp_rd_search_stat(x, mbmi, comp_rate, comp_dist, comp_model_rd, |
| cur_mv); |
| return best_compmode_interinter_cost; |
| } |
| |
| static INLINE int is_single_newmv_valid(const HandleInterModeArgs *const args, |
| const MB_MODE_INFO *const mbmi, |
| PREDICTION_MODE this_mode) { |
| for (int ref_idx = 0; ref_idx < 2; ++ref_idx) { |
| const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx, 1); |
| const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx]; |
| if (single_mode == NEWMV && |
| args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static int get_drl_refmv_count(const MACROBLOCK *const x, |
| const MV_REFERENCE_FRAME *ref_frame, |
| PREDICTION_MODE mode) { |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); |
| const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0; |
| const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; |
| const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV); |
| const int has_drl = |
| (has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1); |
| const int ref_set = |
| has_drl ? AOMMIN(MAX_REF_MV_SEARCH, ref_mv_count - has_nearmv) : 1; |
| |
| return ref_set; |
| } |
| |
| // Whether this reference motion vector can be skipped, based on initial |
| // heuristics. |
| static bool ref_mv_idx_early_breakout(MACROBLOCK *x, |
| const SPEED_FEATURES *const sf, |
| const HandleInterModeArgs *const args, |
| int64_t ref_best_rd, int ref_mv_idx) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| if (sf->reduce_inter_modes && ref_mv_idx > 0) { |
| if (mbmi->ref_frame[0] == LAST2_FRAME || |
| mbmi->ref_frame[0] == LAST3_FRAME || |
| mbmi->ref_frame[1] == LAST2_FRAME || |
| mbmi->ref_frame[1] == LAST3_FRAME) { |
| const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0; |
| if (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] < |
| REF_CAT_LEVEL) { |
| return true; |
| } |
| } |
| } |
| const int is_comp_pred = has_second_ref(mbmi); |
| if (sf->prune_single_motion_modes_by_simple_trans && !is_comp_pred && |
| args->single_ref_first_pass == 0) { |
| if (args->simple_rd_state[ref_mv_idx].early_skipped) { |
| return true; |
| } |
| } |
| mbmi->ref_mv_idx = ref_mv_idx; |
| if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, mbmi->mode))) { |
| return true; |
| } |
| size_t est_rd_rate = args->ref_frame_cost + args->single_comp_cost; |
| const int drl_cost = |
| get_drl_cost(mbmi, mbmi_ext, x->drl_mode_cost0, ref_frame_type); |
| est_rd_rate += drl_cost; |
| if (RDCOST(x->rdmult, est_rd_rate, 0) > ref_best_rd && |
| mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { |
| return true; |
| } |
| return false; |
| } |
| |
| typedef struct { |
| int64_t rd; |
| int drl_cost; |
| int rate_mv; |
| int_mv mv; |
| } inter_mode_info; |
| |
| // Compute the estimated RD cost for the motion vector with simple translation. |
| static int64_t simple_translation_pred_rd( |
| AV1_COMP *const cpi, MACROBLOCK *x, RD_STATS *rd_stats, |
| HandleInterModeArgs *args, int ref_mv_idx, inter_mode_info *mode_info, |
| int64_t ref_best_rd, BLOCK_SIZE bsize, int mi_row, int mi_col) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| const AV1_COMMON *cm = &cpi->common; |
| const int is_comp_pred = has_second_ref(mbmi); |
| |
| struct macroblockd_plane *p = xd->plane; |
| const BUFFER_SET orig_dst = { |
| { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf }, |
| { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride }, |
| }; |
| av1_init_rd_stats(rd_stats); |
| |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 1; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| mbmi->ref_frame[1] = NONE_FRAME; |
| } |
| int16_t mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| |
| mbmi->num_proj_ref = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->ref_mv_idx = ref_mv_idx; |
| |
| rd_stats->rate += args->ref_frame_cost + args->single_comp_cost; |
| const int drl_cost = |
| get_drl_cost(mbmi, mbmi_ext, x->drl_mode_cost0, ref_frame_type); |
| rd_stats->rate += drl_cost; |
| mode_info[ref_mv_idx].drl_cost = drl_cost; |
| |
| int_mv cur_mv[2]; |
| if (!build_cur_mv(cur_mv, mbmi->mode, cm, x)) { |
| return INT64_MAX; |
| } |
| assert(have_nearmv_in_inter_mode(mbmi->mode)); |
| for (int i = 0; i < is_comp_pred + 1; ++i) { |
| mbmi->mv[i].as_int = cur_mv[i].as_int; |
| } |
| const int ref_mv_cost = cost_mv_ref(x, mbmi->mode, mode_ctx); |
| rd_stats->rate += ref_mv_cost; |
| |
| if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd) { |
| return INT64_MAX; |
| } |
| |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->num_proj_ref = 0; |
| if (is_comp_pred) { |
| // Only compound_average |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 1; |
| } |
| set_default_interp_filters(mbmi, cm->interp_filter); |
| |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, |
| AOM_PLANE_Y, AOM_PLANE_Y); |
| int est_rate; |
| int64_t est_dist; |
| model_rd_sb_fn[MODELRD_CURVFIT](cpi, bsize, x, xd, 0, 0, mi_row, mi_col, |
| &est_rate, &est_dist, NULL, NULL, NULL, NULL, |
| NULL); |
| return RDCOST(x->rdmult, rd_stats->rate + est_rate, est_dist); |
| } |
| |
| // Represents a set of integers, from 0 to sizeof(int) * 8, as bits in |
| // an integer. 0 for the i-th bit means that integer is excluded, 1 means |
| // it is included. |
| static INLINE void mask_set_bit(int *mask, int index) { *mask |= (1 << index); } |
| |
| static INLINE bool mask_check_bit(int mask, int index) { |
| return (mask >> index) & 0x1; |
| } |
| |
| // Before performing the full MV search in handle_inter_mode, do a simple |
| // translation search and see if we can eliminate any motion vectors. |
| // Returns an integer where, if the i-th bit is set, it means that the i-th |
| // motion vector should be searched. This is only set for NEAR_MV. |
| static int ref_mv_idx_to_search(AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, |
| HandleInterModeArgs *const args, |
| int64_t ref_best_rd, inter_mode_info *mode_info, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| const int ref_set) { |
| AV1_COMMON *const cm = &cpi->common; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| |
| // Only search indices if they have some chance of being good. |
| int good_indices = 0; |
| for (int i = 0; i < ref_set; ++i) { |
| if (ref_mv_idx_early_breakout(x, &cpi->sf, args, ref_best_rd, i)) { |
| continue; |
| } |
| mask_set_bit(&good_indices, i); |
| } |
| |
| // Only prune in NEARMV mode, if the speed feature is set, and the block size |
| // is large enough. If these conditions are not met, return all good indices |
| // found so far. |
| if (!cpi->sf.prune_mode_search_simple_translation) return good_indices; |
| if (!have_nearmv_in_inter_mode(this_mode)) return good_indices; |
| if (num_pels_log2_lookup[bsize] <= 6) return good_indices; |
| // Do not prune when there is internal resizing. TODO(elliottk) fix this |
| // so b/2384 can be resolved. |
| if (av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[0])) || |
| (mbmi->ref_frame[1] > 0 && |
| av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[1])))) { |
| return good_indices; |
| } |
| |
| // Calculate the RD cost for the motion vectors using simple translation. |
| int64_t idx_rdcost[] = { INT64_MAX, INT64_MAX, INT64_MAX }; |
| for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) { |
| // If this index is bad, ignore it. |
| if (!mask_check_bit(good_indices, ref_mv_idx)) { |
| continue; |
| } |
| idx_rdcost[ref_mv_idx] = simple_translation_pred_rd( |
| cpi, x, rd_stats, args, ref_mv_idx, mode_info, ref_best_rd, bsize, |
| mi_row, mi_col); |
| } |
| // Find the index with the best RD cost. |
| int best_idx = 0; |
| for (int i = 1; i < MAX_REF_MV_SEARCH; ++i) { |
| if (idx_rdcost[i] < idx_rdcost[best_idx]) { |
| best_idx = i; |
| } |
| } |
| // Only include indices that are good and within a % of the best. |
| const double dth = has_second_ref(mbmi) ? 1.05 : 1.001; |
| int result = 0; |
| for (int i = 0; i < ref_set; ++i) { |
| if (mask_check_bit(good_indices, i) && |
| (1.0 * idx_rdcost[i]) / idx_rdcost[best_idx] < dth) { |
| mask_set_bit(&result, i); |
| } |
| } |
| return result; |
| } |
| |
| static int64_t handle_inter_mode( |
| AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *x, |
| BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y, |
| RD_STATS *rd_stats_uv, int *disable_skip, int mi_row, int mi_col, |
| HandleInterModeArgs *args, int64_t ref_best_rd, uint8_t *const tmp_buf, |
| CompoundTypeRdBuffers *rd_buffers, int64_t *best_est_rd, |
| const int do_tx_search, InterModesInfo *inter_modes_info) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| int i; |
| int refs[2] = { mbmi->ref_frame[0], |
| (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; |
| int rate_mv = 0; |
| int64_t rd = INT64_MAX; |
| |
| // do first prediction into the destination buffer. Do the next |
| // prediction into a temporary buffer. Then keep track of which one |
| // of these currently holds the best predictor, and use the other |
| // one for future predictions. In the end, copy from tmp_buf to |
| // dst if necessary. |
| struct macroblockd_plane *p = xd->plane; |
| const BUFFER_SET orig_dst = { |
| { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf }, |
| { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride }, |
| }; |
| const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE, |
| tmp_buf + 2 * MAX_SB_SQUARE }, |
| { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } }; |
| |
| int skip_txfm_sb = 0; |
| int64_t skip_sse_sb = INT64_MAX; |
| int16_t mode_ctx; |
| const int masked_compound_used = is_any_masked_compound_used(bsize) && |
| cm->seq_params.enable_masked_compound; |
| int64_t ret_val = INT64_MAX; |
| const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; |
| int64_t best_rd = INT64_MAX; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| MB_MODE_INFO best_mbmi = *mbmi; |
| int best_disable_skip; |
| int best_xskip; |
| int64_t newmv_ret_val = INT64_MAX; |
| int_mv backup_mv[2] = { { 0 } }; |
| int backup_rate_mv = 0; |
| inter_mode_info mode_info[MAX_REF_MV_SEARCH]; |
| |
| int mode_search_mask[2]; |
| const int do_two_loop_comp_search = |
| is_comp_pred && cpi->sf.two_loop_comp_search; |
| if (do_two_loop_comp_search) { |
| // TODO(debargha): Change this to try alternate ways of splitting |
| // modes while doing two pass compound_mode search. |
| mode_search_mask[0] = (1 << COMPOUND_AVERAGE); |
| } else { |
| mode_search_mask[0] = (1 << COMPOUND_AVERAGE) | (1 << COMPOUND_DISTWTD) | |
| (1 << COMPOUND_WEDGE) | (1 << COMPOUND_DIFFWTD); |
| } |
| mode_search_mask[1] = ((1 << COMPOUND_AVERAGE) | (1 << COMPOUND_DISTWTD) | |
| (1 << COMPOUND_WEDGE) | (1 << COMPOUND_DIFFWTD)) - |
| mode_search_mask[0]; |
| |
| // First, perform a simple translation search for each of the indices. If |
| // an index performs well, it will be fully searched here. |
| const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode); |
| int idx_mask = |
| ref_mv_idx_to_search(cpi, x, rd_stats, args, ref_best_rd, mode_info, |
| bsize, mi_row, mi_col, ref_set); |
| for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) { |
| mode_info[ref_mv_idx].mv.as_int = INVALID_MV; |
| mode_info[ref_mv_idx].rd = INT64_MAX; |
| if (!mask_check_bit(idx_mask, ref_mv_idx)) { |
| // MV did not perform well in simple translation search. Skip it. |
| continue; |
| } |
| av1_init_rd_stats(rd_stats); |
| |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 1; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME; |
| |
| mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| |
| mbmi->num_proj_ref = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->ref_mv_idx = ref_mv_idx; |
| |
| rd_stats->rate += args->ref_frame_cost + args->single_comp_cost; |
| const int drl_cost = |
| get_drl_cost(mbmi, mbmi_ext, x->drl_mode_cost0, ref_frame_type); |
| rd_stats->rate += drl_cost; |
| mode_info[ref_mv_idx].drl_cost = drl_cost; |
| |
| const RD_STATS backup_rd_stats = *rd_stats; |
| |
| for (int comp_loop_idx = 0; comp_loop_idx <= do_two_loop_comp_search; |
| ++comp_loop_idx) { |
| int rs = 0; |
| int compmode_interinter_cost = 0; |
| |
| if (is_comp_pred && comp_loop_idx == 1) *rd_stats = backup_rd_stats; |
| |
| int_mv cur_mv[2]; |
| if (!build_cur_mv(cur_mv, this_mode, cm, x)) { |
| continue; |
| } |
| if (have_newmv_in_inter_mode(this_mode)) { |
| if (comp_loop_idx == 1) { |
| cur_mv[0] = backup_mv[0]; |
| cur_mv[1] = backup_mv[1]; |
| rate_mv = backup_rate_mv; |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, handle_newmv_time); |
| #endif |
| if (cpi->sf.prune_single_motion_modes_by_simple_trans && |
| args->single_ref_first_pass == 0 && !is_comp_pred) { |
| const int ref0 = mbmi->ref_frame[0]; |
| newmv_ret_val = args->single_newmv_valid[ref_mv_idx][ref0] ? 0 : 1; |
| cur_mv[0] = args->single_newmv[ref_mv_idx][ref0]; |
| rate_mv = args->single_newmv_rate[ref_mv_idx][ref0]; |
| } else if (comp_loop_idx == 0) { |
| newmv_ret_val = handle_newmv(cpi, x, bsize, cur_mv, mi_row, mi_col, |
| &rate_mv, args); |
| |
| // Store cur_mv and rate_mv so that they can be restored in the next |
| // iteration of the loop |
| backup_mv[0] = cur_mv[0]; |
| backup_mv[1] = cur_mv[1]; |
| backup_rate_mv = rate_mv; |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, handle_newmv_time); |
| #endif |
| |
| if (newmv_ret_val != 0) { |
| continue; |
| } else { |
| rd_stats->rate += rate_mv; |
| } |
| |
| if (cpi->sf.skip_repeated_newmv) { |
| if (!is_comp_pred && this_mode == NEWMV && ref_mv_idx > 0) { |
| int skip = 0; |
| int this_rate_mv = 0; |
| for (i = 0; i < ref_mv_idx; ++i) { |
| // Check if the motion search result same as previous results |
| if (cur_mv[0].as_int == args->single_newmv[i][refs[0]].as_int) { |
| // If the compared mode has no valid rd, it is unlikely this |
| // mode will be the best mode |
| if (mode_info[i].rd == INT64_MAX) { |
| skip = 1; |
| break; |
| } |
| // Compare the cost difference including drl cost and mv cost |
| if (mode_info[i].mv.as_int != INVALID_MV) { |
| const int compare_cost = |
| mode_info[i].rate_mv + mode_info[i].drl_cost; |
| const int_mv ref_mv = av1_get_ref_mv(x, 0); |
| this_rate_mv = av1_mv_bit_cost( |
| &mode_info[i].mv.as_mv, &ref_mv.as_mv, x->nmv_vec_cost, |
| x->mv_cost_stack, MV_COST_WEIGHT); |
| const int this_cost = this_rate_mv + drl_cost; |
| |
| if (compare_cost < this_cost) { |
| skip = 1; |
| break; |
| } else { |
| // If the cost is less than current best result, make this |
| // the best and update corresponding variables |
| if (best_mbmi.ref_mv_idx == i) { |
| assert(best_rd != INT64_MAX); |
| best_mbmi.ref_mv_idx = ref_mv_idx; |
| best_rd_stats.rate += this_cost - compare_cost; |
| best_rd = RDCOST(x->rdmult, best_rd_stats.rate, |
| best_rd_stats.dist); |
| if (best_rd < ref_best_rd) ref_best_rd = best_rd; |
| skip = 1; |
| break; |
| } |
| } |
| } |
| } |
| } |
| if (skip) { |
| args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = |
| args->modelled_rd[this_mode][i][refs[0]]; |
| args->simple_rd[this_mode][ref_mv_idx][refs[0]] = |
| args->simple_rd[this_mode][i][refs[0]]; |
| mode_info[ref_mv_idx].rd = mode_info[i].rd; |
| mode_info[ref_mv_idx].rate_mv = this_rate_mv; |
| mode_info[ref_mv_idx].mv.as_int = mode_info[i].mv.as_int; |
| |
| restore_dst_buf(xd, orig_dst, num_planes); |
| continue; |
| } |
| } |
| } |
| } |
| for (i = 0; i < is_comp_pred + 1; ++i) { |
| mbmi->mv[i].as_int = cur_mv[i].as_int; |
| } |
| const int ref_mv_cost = cost_mv_ref(x, this_mode, mode_ctx); |
| #if USE_DISCOUNT_NEWMV_TEST |
| // We don't include the cost of the second reference here, because there |
| // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in |
| // other words if you present them in that order, the second one is always |
| // known if the first is known. |
| // |
| // Under some circumstances we discount the cost of new mv mode to |
| // encourage initiation of a motion field. |
| if (discount_newmv_test(cpi, x, this_mode, mbmi->mv[0])) { |
| // discount_newmv_test only applies discount on NEWMV mode. |
| assert(this_mode == NEWMV); |
| rd_stats->rate += AOMMIN(cost_mv_ref(x, this_mode, mode_ctx), |
| cost_mv_ref(x, NEARESTMV, mode_ctx)); |
| } else { |
| rd_stats->rate += ref_mv_cost; |
| } |
| #else |
| rd_stats->rate += ref_mv_cost; |
| #endif |
| |
| if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd && |
| mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { |
| continue; |
| } |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, compound_type_rd_time); |
| #endif |
| int skip_build_pred = 0; |
| if (is_comp_pred) { |
| if (mode_search_mask[comp_loop_idx] == (1 << COMPOUND_AVERAGE)) { |
| // Only compound_average |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi->num_proj_ref = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 1; |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| compmode_interinter_cost += |
| x->comp_idx_cost[comp_index_ctx][mbmi->compound_idx]; |
| } else if (mode_search_mask[comp_loop_idx] == (1 << COMPOUND_DISTWTD)) { |
| // Only compound_distwtd |
| if (!cm->seq_params.order_hint_info.enable_dist_wtd_comp || |
| cpi->sf.use_dist_wtd_comp_flag == DIST_WTD_COMP_DISABLED || |
| (do_two_loop_comp_search && mbmi->mode == GLOBAL_GLOBALMV)) |
| continue; |
| mbmi->interinter_comp.type = COMPOUND_DISTWTD; |
| mbmi->num_proj_ref = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 0; |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| compmode_interinter_cost += |
| x->comp_idx_cost[comp_index_ctx][mbmi->compound_idx]; |
| } else { |
| // Find matching interp filter or set to default interp filter |
| const int need_search = |
| av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd); |
| int match_found = -1; |
| const InterpFilter assign_filter = cm->interp_filter; |
| int is_luma_interp_done = 0; |
| if (cpi->sf.skip_repeat_interpolation_filter_search && need_search) { |
| match_found = find_interp_filter_in_stats(x, mbmi); |
| } |
| if (!need_search || match_found == -1) { |
| set_default_interp_filters(mbmi, assign_filter); |
| } |
| |
| int64_t best_rd_compound; |
| int64_t rd_thresh; |
| const int comp_type_rd_shift = COMP_TYPE_RD_THRESH_SHIFT; |
| const int comp_type_rd_scale = |
| COMP_TYPE_RD_THRESH_SCALE + 2 * do_two_loop_comp_search; |
| rd_thresh = get_rd_thresh_from_best_rd( |
| ref_best_rd, (1 << comp_type_rd_shift), comp_type_rd_scale); |
| compmode_interinter_cost = compound_type_rd( |
| cpi, x, bsize, mi_col, mi_row, cur_mv, |
| mode_search_mask[comp_loop_idx], masked_compound_used, &orig_dst, |
| &tmp_dst, rd_buffers, &rate_mv, &best_rd_compound, rd_stats, |
| ref_best_rd, &is_luma_interp_done, rd_thresh); |
| if (ref_best_rd < INT64_MAX && |
| (best_rd_compound >> comp_type_rd_shift) * comp_type_rd_scale > |
| ref_best_rd) { |
| restore_dst_buf(xd, orig_dst, num_planes); |
| continue; |
| } |
| // No need to call av1_enc_build_inter_predictor for luma if |
| // COMPOUND_AVERAGE is selected because it is the first |
| // candidate in compound_type_rd, and the following |
| // compound types searching uses tmp_dst buffer |
| |
| if (mbmi->interinter_comp.type == COMPOUND_AVERAGE && |
| is_luma_interp_done) { |
| if (num_planes > 1) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, |
| bsize, AOM_PLANE_U, num_planes - 1); |
| } |
| skip_build_pred = 1; |
| } |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, compound_type_rd_time); |
| #endif |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, interpolation_filter_search_time); |
| #endif |
| ret_val = interpolation_filter_search( |
| x, cpi, tile_data, bsize, mi_row, mi_col, &tmp_dst, &orig_dst, |
| args->single_filter, &rd, &rs, &skip_txfm_sb, &skip_sse_sb, |
| &skip_build_pred, args, ref_best_rd); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, interpolation_filter_search_time); |
| #endif |
| if (args->modelled_rd != NULL && !is_comp_pred) { |
| args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = rd; |
| } |
| if (ret_val != 0) { |
| restore_dst_buf(xd, orig_dst, num_planes); |
| continue; |
| } else if (cpi->sf.model_based_post_interp_filter_breakout && |
| ref_best_rd != INT64_MAX && (rd >> 3) * 3 > ref_best_rd) { |
| restore_dst_buf(xd, orig_dst, num_planes); |
| break; |
| } |
| |
| if (!is_comp_pred) |
| args->single_filter[this_mode][refs[0]] = |
| av1_extract_interp_filter(mbmi->interp_filters, 0); |
| |
| if (args->modelled_rd != NULL) { |
| if (is_comp_pred) { |
| const int mode0 = compound_ref0_mode(this_mode); |
| const int mode1 = compound_ref1_mode(this_mode); |
| const int64_t mrd = |
| AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]], |
| args->modelled_rd[mode1][ref_mv_idx][refs[1]]); |
| if ((rd >> 3) * 6 > mrd && ref_best_rd < INT64_MAX) { |
| restore_dst_buf(xd, orig_dst, num_planes); |
| continue; |
| } |
| } |
| } |
| rd_stats->rate += compmode_interinter_cost; |
| if (skip_build_pred != 1) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, |
| 0, av1_num_planes(cm) - 1); |
| } |
| |
| if (cpi->sf.second_loop_comp_fast_tx_search && comp_loop_idx == 1) { |
| // TODO(chengchen): this speed feature introduces big loss. |
| // Need better estimation of rate distortion. |
| int dummy_rate; |
| int64_t dummy_dist; |
| int plane_rate[MAX_MB_PLANE] = { 0 }; |
| int64_t plane_sse[MAX_MB_PLANE] = { 0 }; |
| int64_t plane_dist[MAX_MB_PLANE] = { 0 }; |
| |
| model_rd_sb_fn[MODELRD_TYPE_DIST_WTD_COMPOUND]( |
| cpi, bsize, x, xd, 0, num_planes - 1, mi_row, mi_col, &dummy_rate, |
| &dummy_dist, &skip_txfm_sb, &skip_sse_sb, plane_rate, plane_sse, |
| plane_dist); |
| |
| rd_stats->rate += rs; |
| rd_stats->rate += plane_rate[0] + plane_rate[1] + plane_rate[2]; |
| rd_stats_y->rate = plane_rate[0]; |
| rd_stats_uv->rate = plane_rate[1] + plane_rate[2]; |
| rd_stats->sse = plane_sse[0] + plane_sse[1] + plane_sse[2]; |
| rd_stats_y->sse = plane_sse[0]; |
| rd_stats_uv->sse = plane_sse[1] + plane_sse[2]; |
| rd_stats->dist = plane_dist[0] + plane_dist[1] + plane_dist[2]; |
| rd_stats_y->dist = plane_dist[0]; |
| rd_stats_uv->dist = plane_dist[1] + plane_dist[2]; |
| } else { |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, motion_mode_rd_time); |
| #endif |
| ret_val = motion_mode_rd(cpi, tile_data, x, bsize, rd_stats, rd_stats_y, |
| rd_stats_uv, disable_skip, mi_row, mi_col, |
| args, ref_best_rd, refs, &rate_mv, &orig_dst, |
| best_est_rd, do_tx_search, inter_modes_info); |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, motion_mode_rd_time); |
| #endif |
| } |
| mode_info[ref_mv_idx].mv.as_int = mbmi->mv[0].as_int; |
| mode_info[ref_mv_idx].rate_mv = rate_mv; |
| if (ret_val != INT64_MAX) { |
| int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| mode_info[ref_mv_idx].rd = tmp_rd; |
| if (tmp_rd < best_rd) { |
| best_rd_stats = *rd_stats; |
| best_rd_stats_y = *rd_stats_y; |
| best_rd_stats_uv = *rd_stats_uv; |
| best_rd = tmp_rd; |
| best_mbmi = *mbmi; |
| best_disable_skip = *disable_skip; |
| best_xskip = x->skip; |
| memcpy(best_blk_skip, x->blk_skip, |
| sizeof(best_blk_skip[0]) * xd->n4_h * xd->n4_w); |
| } |
| |
| if (tmp_rd < ref_best_rd) { |
| ref_best_rd = tmp_rd; |
| } |
| } |
| restore_dst_buf(xd, orig_dst, num_planes); |
| } |
| } |
| |
| if (best_rd == INT64_MAX) return INT64_MAX; |
| |
| // re-instate status of the best choice |
| *rd_stats = best_rd_stats; |
| *rd_stats_y = best_rd_stats_y; |
| *rd_stats_uv = best_rd_stats_uv; |
| *mbmi = best_mbmi; |
| *disable_skip = best_disable_skip; |
| x->skip = best_xskip; |
| assert(IMPLIES(mbmi->comp_group_idx == 1, |
| mbmi->interinter_comp.type != COMPOUND_AVERAGE)); |
| memcpy(x->blk_skip, best_blk_skip, |
| sizeof(best_blk_skip[0]) * xd->n4_h * xd->n4_w); |
| |
| return RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| } |
| |
| static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t best_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| if (!av1_allow_intrabc(cm) || !cpi->oxcf.enable_intrabc) return INT64_MAX; |
| const int num_planes = av1_num_planes(cm); |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const TileInfo *tile = &xd->tile; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int mi_row = -xd->mb_to_top_edge / (8 * MI_SIZE); |
| const int mi_col = -xd->mb_to_left_edge / (8 * MI_SIZE); |
| const int w = block_size_wide[bsize]; |
| const int h = block_size_high[bsize]; |
| const int sb_row = mi_row >> cm->seq_params.mib_size_log2; |
| const int sb_col = mi_col >> cm->seq_params.mib_size_log2; |
| |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| MV_REFERENCE_FRAME ref_frame = INTRA_FRAME; |
| av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, |
| mbmi_ext->ref_mv_stack, mbmi_ext->weight, NULL, |
| mbmi_ext->global_mvs, mi_row, mi_col, |
| mbmi_ext->mode_context); |
| |
| int_mv nearestmv, nearmv; |
| av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv, |
| 0); |
| |
| if (nearestmv.as_int == INVALID_MV) { |
| nearestmv.as_int = 0; |
| } |
| if (nearmv.as_int == INVALID_MV) { |
| nearmv.as_int = 0; |
| } |
| |
| int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv; |
| if (dv_ref.as_int == 0) |
| av1_find_ref_dv(&dv_ref, tile, cm->seq_params.mib_size, mi_row, mi_col); |
| // Ref DV should not have sub-pel. |
| assert((dv_ref.as_mv.col & 7) == 0); |
| assert((dv_ref.as_mv.row & 7) == 0); |
| mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref; |
| |
| struct buf_2d yv12_mb[MAX_MB_PLANE]; |
| av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, mi_row, mi_col, NULL, NULL, |
| num_planes); |
| for (int i = 0; i < num_planes; ++i) { |
| xd->plane[i].pre[0] = yv12_mb[i]; |
| } |
| |
| enum IntrabcMotionDirection { |
| IBC_MOTION_ABOVE, |
| IBC_MOTION_LEFT, |
| IBC_MOTION_DIRECTIONS |
| }; |
| |
| MB_MODE_INFO best_mbmi = *mbmi; |
| RD_STATS best_rdstats = *rd_stats; |
| int best_skip = x->skip; |
| |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 }; |
| for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE; |
| dir < IBC_MOTION_DIRECTIONS; ++dir) { |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| switch (dir) { |
| case IBC_MOTION_ABOVE: |
| x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; |
| x->mv_limits.col_max = (tile->mi_col_end - mi_col) * MI_SIZE - w; |
| x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; |
| x->mv_limits.row_max = |
| (sb_row * cm->seq_params.mib_size - mi_row) * MI_SIZE - h; |
| break; |
| case IBC_MOTION_LEFT: |
| x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; |
| x->mv_limits.col_max = |
| (sb_col * cm->seq_params.mib_size - mi_col) * MI_SIZE - w; |
| // TODO(aconverse@google.com): Minimize the overlap between above and |
| // left areas. |
| x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; |
| int bottom_coded_mi_edge = |
| AOMMIN((sb_row + 1) * cm->seq_params.mib_size, tile->mi_row_end); |
| x->mv_limits.row_max = (bottom_coded_mi_edge - mi_row) * MI_SIZE - h; |
| break; |
| default: assert(0); |
| } |
| assert(x->mv_limits.col_min >= tmp_mv_limits.col_min); |
| assert(x->mv_limits.col_max <= tmp_mv_limits.col_max); |
| assert(x->mv_limits.row_min >= tmp_mv_limits.row_min); |
| assert(x->mv_limits.row_max <= tmp_mv_limits.row_max); |
| av1_set_mv_search_range(&x->mv_limits, &dv_ref.as_mv); |
| |
| if (x->mv_limits.col_max < x->mv_limits.col_min || |
| x->mv_limits.row_max < x->mv_limits.row_min) { |
| x->mv_limits = tmp_mv_limits; |
| continue; |
| } |
| |
| int step_param = cpi->mv_step_param; |
| MV mvp_full = dv_ref.as_mv; |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| const int sadpb = x->sadperbit16; |
| int cost_list[5]; |
| const int bestsme = av1_full_pixel_search( |
| cpi, x, bsize, &mvp_full, step_param, cpi->sf.mv.search_method, 0, |
| sadpb, cond_cost_list(cpi, cost_list), &dv_ref.as_mv, INT_MAX, 1, |
| (MI_SIZE * mi_col), (MI_SIZE * mi_row), 1, |
| &cpi->ss_cfg[SS_CFG_LOOKAHEAD]); |
| |
| x->mv_limits = tmp_mv_limits; |
| if (bestsme == INT_MAX) continue; |
| mvp_full = x->best_mv.as_mv; |
| const MV dv = { .row = mvp_full.row * 8, .col = mvp_full.col * 8 }; |
| if (mv_check_bounds(&x->mv_limits, &dv)) continue; |
| if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize, |
| cm->seq_params.mib_size_log2)) |
| continue; |
| |
| // DV should not have sub-pel. |
| assert((dv.col & 7) == 0); |
| assert((dv.row & 7) == 0); |
| memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info)); |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->use_intrabc = 1; |
| mbmi->mode = DC_PRED; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->mv[0].as_mv = dv; |
| mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR); |
| mbmi->skip = 0; |
| x->skip = 0; |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| av1_num_planes(cm) - 1); |
| |
| int *dvcost[2] = { (int *)&cpi->dv_cost[0][MV_MAX], |
| (int *)&cpi->dv_cost[1][MV_MAX] }; |
| // TODO(aconverse@google.com): The full motion field defining discount |
| // in MV_COST_WEIGHT is too large. Explore other values. |
| const int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, cpi->dv_joint_cost, |
| dvcost, MV_COST_WEIGHT_SUB); |
| const int rate_mode = x->intrabc_cost[1]; |
| RD_STATS rd_stats_yuv, rd_stats_y, rd_stats_uv; |
| if (!txfm_search(cpi, NULL, x, bsize, mi_row, mi_col, &rd_stats_yuv, |
| &rd_stats_y, &rd_stats_uv, rate_mode + rate_mv, INT64_MAX)) |
| continue; |
| rd_stats_yuv.rdcost = |
| RDCOST(x->rdmult, rd_stats_yuv.rate, rd_stats_yuv.dist); |
| if (rd_stats_yuv.rdcost < best_rd) { |
| best_rd = rd_stats_yuv.rdcost; |
| best_mbmi = *mbmi; |
| best_skip = mbmi->skip; |
| best_rdstats = rd_stats_yuv; |
| memcpy(best_blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); |
| } |
| } |
| *mbmi = best_mbmi; |
| *rd_stats = best_rdstats; |
| x->skip = best_skip; |
| memcpy(x->blk_skip, best_blk_skip, |
| sizeof(x->blk_skip[0]) * xd->n4_h * xd->n4_w); |
| #if CONFIG_RD_DEBUG |
| mbmi->rd_stats = *rd_stats; |
| #endif |
| return best_rd; |
| } |
| |
| void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, |
| int mi_col, RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int64_t best_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int num_planes = av1_num_planes(cm); |
| int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; |
| int y_skip = 0, uv_skip = 0; |
| int64_t dist_y = 0, dist_uv = 0; |
| TX_SIZE max_uv_tx_size; |
| |
| ctx->rd_stats.skip = 0; |
| mbmi->ref_frame[0] = INTRA_FRAME; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| mbmi->use_intrabc = 0; |
| mbmi->mv[0].as_int = 0; |
| |
| const int64_t intra_yrd = |
| rd_pick_intra_sby_mode(cpi, x, mi_row, mi_col, &rate_y, &rate_y_tokenonly, |
| &dist_y, &y_skip, bsize, best_rd, ctx); |
| |
| if (intra_yrd < best_rd) { |
| // Only store reconstructed luma when there's chroma RDO. When there's no |
| // chroma RDO, the reconstructed luma will be stored in encode_superblock(). |
| xd->cfl.is_chroma_reference = |
| is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y); |
| xd->cfl.store_y = store_cfl_required_rdo(cm, x); |
| if (xd->cfl.store_y) { |
| // Restore reconstructed luma values. |
| memcpy(x->blk_skip, ctx->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| av1_encode_intra_block_plane(cpi, x, bsize, AOM_PLANE_Y, |
| cpi->optimize_seg_arr[mbmi->segment_id], |
| mi_row, mi_col); |
| xd->cfl.store_y = 0; |
| } |
| if (num_planes > 1) { |
| max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); |
| init_sbuv_mode(mbmi); |
| if (!x->skip_chroma_rd) |
| rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, |
| &uv_skip, bsize, max_uv_tx_size); |
| } |
| |
| if (y_skip && (uv_skip || x->skip_chroma_rd)) { |
| rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + |
| x->skip_cost[av1_get_skip_context(xd)][1]; |
| rd_cost->dist = dist_y + dist_uv; |
| } else { |
| rd_cost->rate = |
| rate_y + rate_uv + x->skip_cost[av1_get_skip_context(xd)][0]; |
| rd_cost->dist = dist_y + dist_uv; |
| } |
| rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); |
| } else { |
| rd_cost->rate = INT_MAX; |
| } |
| |
| if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd) |
| best_rd = rd_cost->rdcost; |
| if (rd_pick_intrabc_mode_sb(cpi, x, rd_cost, bsize, best_rd) < best_rd) { |
| ctx->rd_stats.skip = x->skip; |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| assert(rd_cost->rate != INT_MAX); |
| } |
| if (rd_cost->rate == INT_MAX) return; |
| |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| } |
| |
| static void restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| int src_stride = x->plane[1].src.stride; |
| const uint8_t *const src_u = x->plane[1].src.buf; |
| const uint8_t *const src_v = x->plane[2].src.buf; |
| int *const data = x->palette_buffer->kmeans_data_buf; |
| int centroids[2 * PALETTE_MAX_SIZE]; |
| uint8_t *const color_map = xd->plane[1].color_index_map; |
| int r, c; |
| const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u); |
| const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v); |
| int plane_block_width, plane_block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, |
| &plane_block_height, &rows, &cols); |
| |
| for (r = 0; r < rows; ++r) { |
| for (c = 0; c < cols; ++c) { |
| if (cpi->common.seq_params.use_highbitdepth) { |
| data[(r * cols + c) * 2] = src_u16[r * src_stride + c]; |
| data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c]; |
| } else { |
| data[(r * cols + c) * 2] = src_u[r * src_stride + c]; |
| data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c]; |
| } |
| } |
| } |
| |
| for (r = 1; r < 3; ++r) { |
| for (c = 0; c < pmi->palette_size[1]; ++c) { |
| centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c]; |
| } |
| } |
| |
| av1_calc_indices(data, centroids, color_map, rows * cols, |
| pmi->palette_size[1], 2); |
| extend_palette_color_map(color_map, cols, rows, plane_block_width, |
| plane_block_height); |
| } |
| |
| static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, |
| const MACROBLOCKD *xd, int mi_row, |
| int mi_col, const uint8_t *above, |
| int above_stride, const uint8_t *left, |
| int left_stride); |
| |
| static void rd_pick_skip_mode(RD_STATS *rd_cost, |
| InterModeSearchState *search_state, |
| const AV1_COMP *const cpi, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| x->compound_idx = 1; // COMPOUND_AVERAGE |
| RD_STATS skip_mode_rd_stats; |
| av1_invalid_rd_stats(&skip_mode_rd_stats); |
| |
| if (skip_mode_info->ref_frame_idx_0 == INVALID_IDX || |
| skip_mode_info->ref_frame_idx_1 == INVALID_IDX) { |
| return; |
| } |
| |
| const MV_REFERENCE_FRAME ref_frame = |
| LAST_FRAME + skip_mode_info->ref_frame_idx_0; |
| const MV_REFERENCE_FRAME second_ref_frame = |
| LAST_FRAME + skip_mode_info->ref_frame_idx_1; |
| const PREDICTION_MODE this_mode = NEAREST_NEARESTMV; |
| const int mode_index = |
| get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame); |
| |
| if (mode_index == -1) { |
| return; |
| } |
| |
| if (!cpi->oxcf.enable_onesided_comp && cpi->all_one_sided_refs) { |
| return; |
| } |
| |
| mbmi->mode = this_mode; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = ref_frame; |
| mbmi->ref_frame[1] = second_ref_frame; |
| const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| if (x->mbmi_ext->ref_mv_count[ref_frame_type] == UINT8_MAX) { |
| if (x->mbmi_ext->ref_mv_count[ref_frame] == UINT8_MAX || |
| x->mbmi_ext->ref_mv_count[second_ref_frame] == UINT8_MAX) { |
| return; |
| } |
| MB_MODE_INFO_EXT *mbmi_ext = x->mbmi_ext; |
| av1_find_mv_refs(cm, xd, mbmi, ref_frame_type, mbmi_ext->ref_mv_count, |
| mbmi_ext->ref_mv_stack, mbmi_ext->weight, NULL, |
| mbmi_ext->global_mvs, mi_row, mi_col, |
| mbmi_ext->mode_context); |
| } |
| |
| assert(this_mode == NEAREST_NEARESTMV); |
| if (!build_cur_mv(mbmi->mv, this_mode, cm, x)) { |
| return; |
| } |
| |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = x->compound_idx; |
| mbmi->interinter_comp.type = COMPOUND_AVERAGE; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->ref_mv_idx = 0; |
| mbmi->skip_mode = mbmi->skip = 1; |
| |
| set_default_interp_filters(mbmi, cm->interp_filter); |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| for (int i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; |
| xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; |
| } |
| |
| BUFFER_SET orig_dst; |
| for (int i = 0; i < num_planes; i++) { |
| orig_dst.plane[i] = xd->plane[i].dst.buf; |
| orig_dst.stride[i] = xd->plane[i].dst.stride; |
| } |
| |
| // Obtain the rdcost for skip_mode. |
| skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, mi_row, mi_col, &orig_dst); |
| |
| // Compare the use of skip_mode with the best intra/inter mode obtained. |
| const int skip_mode_ctx = av1_get_skip_mode_context(xd); |
| const int64_t best_intra_inter_mode_cost = |
| (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX) |
| ? RDCOST(x->rdmult, |
| rd_cost->rate + x->skip_mode_cost[skip_mode_ctx][0], |
| rd_cost->dist) |
| : INT64_MAX; |
| |
| if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost && |
| (!xd->lossless[mbmi->segment_id] || skip_mode_rd_stats.dist == 0)) { |
| assert(mode_index != -1); |
| search_state->best_mbmode.skip_mode = 1; |
| search_state->best_mbmode = *mbmi; |
| |
| search_state->best_mbmode.skip_mode = search_state->best_mbmode.skip = 1; |
| search_state->best_mbmode.mode = NEAREST_NEARESTMV; |
| search_state->best_mbmode.ref_frame[0] = mbmi->ref_frame[0]; |
| search_state->best_mbmode.ref_frame[1] = mbmi->ref_frame[1]; |
| search_state->best_mbmode.mv[0].as_int = mbmi->mv[0].as_int; |
| search_state->best_mbmode.mv[1].as_int = mbmi->mv[1].as_int; |
| search_state->best_mbmode.ref_mv_idx = 0; |
| |
| // Set up tx_size related variables for skip-specific loop filtering. |
| search_state->best_mbmode.tx_size = |
| block_signals_txsize(bsize) ? tx_size_from_tx_mode(bsize, cm->tx_mode) |
| : max_txsize_rect_lookup[bsize]; |
| memset(search_state->best_mbmode.inter_tx_size, |
| search_state->best_mbmode.tx_size, |
| sizeof(search_state->best_mbmode.inter_tx_size)); |
| set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->n4_w, xd->n4_h, |
| search_state->best_mbmode.skip && is_inter_block(mbmi), xd); |
| |
| // Set up color-related variables for skip mode. |
| search_state->best_mbmode.uv_mode = UV_DC_PRED; |
| search_state->best_mbmode.palette_mode_info.palette_size[0] = 0; |
| search_state->best_mbmode.palette_mode_info.palette_size[1] = 0; |
| |
| search_state->best_mbmode.comp_group_idx = 0; |
| search_state->best_mbmode.compound_idx = x->compound_idx; |
| search_state->best_mbmode.interinter_comp.type = COMPOUND_AVERAGE; |
| search_state->best_mbmode.motion_mode = SIMPLE_TRANSLATION; |
| |
| search_state->best_mbmode.interintra_mode = |
| (INTERINTRA_MODE)(II_DC_PRED - 1); |
| search_state->best_mbmode.filter_intra_mode_info.use_filter_intra = 0; |
| |
| set_default_interp_filters(&search_state->best_mbmode, cm->interp_filter); |
| |
| search_state->best_mode_index = mode_index; |
| |
| // Update rd_cost |
| rd_cost->rate = skip_mode_rd_stats.rate; |
| rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist; |
| rd_cost->rdcost = skip_mode_rd_stats.rdcost; |
| |
| search_state->best_rd = rd_cost->rdcost; |
| search_state->best_skip2 = 1; |
| search_state->best_mode_skippable = 1; |
| |
| x->skip = 1; |
| } |
| } |
| |
| // speed feature: fast intra/inter transform type search |
| // Used for speed >= 2 |
| // When this speed feature is on, in rd mode search, only DCT is used. |
| // After the mode is determined, this function is called, to select |
| // transform types and get accurate rdcost. |
| static void sf_refine_fast_tx_type_search( |
| const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, |
| RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, |
| int best_mode_index, MB_MODE_INFO *best_mbmode, |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int best_rate_y, |
| int best_rate_uv, int *best_skip2) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int num_planes = av1_num_planes(cm); |
| |
| if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 && |
| ((sf->tx_type_search.fast_inter_tx_type_search && |
| !cpi->oxcf.use_inter_dct_only && is_inter_mode(best_mbmode->mode)) || |
| (sf->tx_type_search.fast_intra_tx_type_search && |
| !cpi->oxcf.use_intra_default_tx_only && !cpi->oxcf.use_intra_dct_only && |
| !is_inter_mode(best_mbmode->mode)))) { |
| int skip_blk = 0; |
| RD_STATS rd_stats_y, rd_stats_uv; |
| const int skip_ctx = av1_get_skip_context(xd); |
| |
| x->use_default_inter_tx_type = 0; |
| x->use_default_intra_tx_type = 0; |
| |
| *mbmi = *best_mbmode; |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| |
| // Select prediction reference frames. |
| for (int i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; |
| if (has_second_ref(mbmi)) |
| xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; |
| } |
| |
| if (is_inter_mode(mbmi->mode)) { |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| av1_num_planes(cm) - 1); |
| if (mbmi->motion_mode == OBMC_CAUSAL) |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| |
| av1_subtract_plane(x, bsize, 0); |
| if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { |
| pick_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, |
| INT64_MAX); |
| assert(rd_stats_y.rate != INT_MAX); |
| } else { |
| super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| for (int i = 0; i < xd->n4_h * xd->n4_w; ++i) |
| set_blk_skip(x, 0, i, rd_stats_y.skip); |
| } |
| } else { |
| super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); |
| } |
| |
| if (num_planes > 1) { |
| super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); |
| } else { |
| av1_init_rd_stats(&rd_stats_uv); |
| } |
| |
| if (RDCOST(x->rdmult, |
| x->skip_cost[skip_ctx][0] + rd_stats_y.rate + rd_stats_uv.rate, |
| (rd_stats_y.dist + rd_stats_uv.dist)) > |
| RDCOST(x->rdmult, x->skip_cost[skip_ctx][1], |
| (rd_stats_y.sse + rd_stats_uv.sse))) { |
| skip_blk = 1; |
| rd_stats_y.rate = x->skip_cost[skip_ctx][1]; |
| rd_stats_uv.rate = 0; |
| rd_stats_y.dist = rd_stats_y.sse; |
| rd_stats_uv.dist = rd_stats_uv.sse; |
| } else { |
| skip_blk = 0; |
| rd_stats_y.rate += x->skip_cost[skip_ctx][0]; |
| } |
| |
| if (RDCOST(x->rdmult, best_rate_y + best_rate_uv, rd_cost->dist) > |
| RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate, |
| (rd_stats_y.dist + rd_stats_uv.dist))) { |
| best_mbmode->tx_size = mbmi->tx_size; |
| av1_copy(best_mbmode->inter_tx_size, mbmi->inter_tx_size); |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| av1_copy(best_mbmode->txk_type, mbmi->txk_type); |
| rd_cost->rate += |
| (rd_stats_y.rate + rd_stats_uv.rate - best_rate_y - best_rate_uv); |
| rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist; |
| rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); |
| *best_skip2 = skip_blk; |
| } |
| } |
| } |
| |
| typedef struct { |
| // Mask for each reference frame, specifying which prediction modes to NOT try |
| // during search. |
| uint32_t pred_modes[REF_FRAMES]; |
| // If ref_combo[i][j + 1] is true, do NOT try prediction using combination of |
| // reference frames (i, j). |
| // Note: indexing with 'j + 1' is due to the fact that 2nd reference can be -1 |
| // (NONE_FRAME). |
| bool ref_combo[REF_FRAMES][REF_FRAMES + 1]; |
| } mode_skip_mask_t; |
| |
| // Update 'ref_combo' mask to disable given 'ref' in single and compound modes. |
| static void disable_reference(MV_REFERENCE_FRAME ref, |
| bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) { |
| for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) { |
| ref_combo[ref][ref2 + 1] = true; |
| } |
| } |
| |
| // Update 'ref_combo' mask to disable all inter references except ALTREF. |
| static void disable_inter_references_except_altref( |
| bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) { |
| disable_reference(LAST_FRAME, ref_combo); |
| disable_reference(LAST2_FRAME, ref_combo); |
| disable_reference(LAST3_FRAME, ref_combo); |
| disable_reference(GOLDEN_FRAME, ref_combo); |
| disable_reference(BWDREF_FRAME, ref_combo); |
| disable_reference(ALTREF2_FRAME, ref_combo); |
| } |
| |
| static const MV_REFERENCE_FRAME reduced_ref_combos[][2] = { |
| { LAST_FRAME, NONE_FRAME }, { ALTREF_FRAME, NONE_FRAME }, |
| { LAST_FRAME, ALTREF_FRAME }, { GOLDEN_FRAME, NONE_FRAME }, |
| { INTRA_FRAME, NONE_FRAME }, { GOLDEN_FRAME, ALTREF_FRAME }, |
| { LAST_FRAME, GOLDEN_FRAME }, { LAST_FRAME, INTRA_FRAME }, |
| { LAST_FRAME, BWDREF_FRAME }, { LAST_FRAME, LAST3_FRAME }, |
| { GOLDEN_FRAME, BWDREF_FRAME }, { GOLDEN_FRAME, INTRA_FRAME }, |
| { BWDREF_FRAME, NONE_FRAME }, { BWDREF_FRAME, ALTREF_FRAME }, |
| { ALTREF_FRAME, INTRA_FRAME }, { BWDREF_FRAME, INTRA_FRAME }, |
| }; |
| |
| static const MV_REFERENCE_FRAME real_time_ref_combos[][2] = { |
| { LAST_FRAME, NONE_FRAME }, |
| { ALTREF_FRAME, NONE_FRAME }, |
| { GOLDEN_FRAME, NONE_FRAME }, |
| { INTRA_FRAME, NONE_FRAME } |
| }; |
| |
| typedef enum { REF_SET_FULL, REF_SET_REDUCED, REF_SET_REALTIME } REF_SET; |
| |
| static void default_skip_mask(mode_skip_mask_t *mask, REF_SET ref_set) { |
| if (ref_set == REF_SET_FULL) { |
| // Everything available by default. |
| memset(mask, 0, sizeof(*mask)); |
| } else { |
| // All modes available by default. |
| memset(mask->pred_modes, 0, sizeof(mask->pred_modes)); |
| // All references disabled first. |
| for (MV_REFERENCE_FRAME ref1 = INTRA_FRAME; ref1 < REF_FRAMES; ++ref1) { |
| for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) { |
| mask->ref_combo[ref1][ref2 + 1] = true; |
| } |
| } |
| const MV_REFERENCE_FRAME(*ref_set_combos)[2]; |
| int num_ref_combos; |
| |
| // Then enable reduced set of references explicitly. |
| switch (ref_set) { |
| case REF_SET_REDUCED: |
| ref_set_combos = reduced_ref_combos; |
| num_ref_combos = |
| (int)sizeof(reduced_ref_combos) / sizeof(reduced_ref_combos[0]); |
| break; |
| case REF_SET_REALTIME: |
| ref_set_combos = real_time_ref_combos; |
| num_ref_combos = |
| (int)sizeof(real_time_ref_combos) / sizeof(real_time_ref_combos[0]); |
| break; |
| default: assert(0); num_ref_combos = 0; |
| } |
| |
| for (int i = 0; i < num_ref_combos; ++i) { |
| const MV_REFERENCE_FRAME *const this_combo = ref_set_combos[i]; |
| mask->ref_combo[this_combo[0]][this_combo[1] + 1] = false; |
| } |
| } |
| } |
| |
| static void init_mode_skip_mask(mode_skip_mask_t *mask, const AV1_COMP *cpi, |
| MACROBLOCK *x, BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| unsigned char segment_id = mbmi->segment_id; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| REF_SET ref_set = REF_SET_FULL; |
| |
| if (sf->use_real_time_ref_set) |
| ref_set = REF_SET_REALTIME; |
| else if (cpi->oxcf.enable_reduced_reference_set) |
| ref_set = REF_SET_REDUCED; |
| |
| default_skip_mask(mask, ref_set); |
| |
| int min_pred_mv_sad = INT_MAX; |
| MV_REFERENCE_FRAME ref_frame; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) |
| min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]); |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame])) { |
| // Skip checking missing reference in both single and compound reference |
| // modes. |
| disable_reference(ref_frame, mask->ref_combo); |
| } else { |
| // Skip fixed mv modes for poor references |
| if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) { |
| mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO; |
| } |
| } |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { |
| // Reference not used for the segment. |
| disable_reference(ref_frame, mask->ref_combo); |
| } |
| } |
| // Note: We use the following drop-out only if the SEG_LVL_REF_FRAME feature |
| // is disabled for this segment. This is to prevent the possibility that we |
| // end up unable to pick any mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { |
| // Only consider GLOBALMV/ALTREF_FRAME for alt ref frame, |
| // unless ARNR filtering is enabled in which case we want |
| // an unfiltered alternative. We allow near/nearest as well |
| // because they may result in zero-zero MVs but be cheaper. |
| if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { |
| disable_inter_references_except_altref(mask->ref_combo); |
| |
| mask->pred_modes[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; |
| const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME }; |
| int_mv near_mv, nearest_mv, global_mv; |
| get_this_mv(&nearest_mv, NEARESTMV, 0, 0, tmp_ref_frames, x->mbmi_ext); |
| get_this_mv(&near_mv, NEARMV, 0, 0, tmp_ref_frames, x->mbmi_ext); |
| get_this_mv(&global_mv, GLOBALMV, 0, 0, tmp_ref_frames, x->mbmi_ext); |
| |
| if (near_mv.as_int != global_mv.as_int) |
| mask->pred_modes[ALTREF_FRAME] |= (1 << NEARMV); |
| if (nearest_mv.as_int != global_mv.as_int) |
| mask->pred_modes[ALTREF_FRAME] |= (1 << NEARESTMV); |
| } |
| } |
| |
| if (cpi->rc.is_src_frame_alt_ref) { |
| if (sf->alt_ref_search_fp) { |
| assert(cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME]); |
| mask->pred_modes[ALTREF_FRAME] = 0; |
| disable_inter_references_except_altref(mask->ref_combo); |
| disable_reference(INTRA_FRAME, mask->ref_combo); |
| } |
| } |
| |
| if (sf->alt_ref_search_fp) |
| if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) |
| if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) |
| mask->pred_modes[ALTREF_FRAME] |= INTER_ALL; |
| |
| if (sf->adaptive_mode_search) { |
| if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && |
| cpi->rc.frames_since_golden >= 3) |
| if ((x->pred_mv_sad[GOLDEN_FRAME] >> 1) > x->pred_mv_sad[LAST_FRAME]) |
| mask->pred_modes[GOLDEN_FRAME] |= INTER_ALL; |
| } |
| |
| if (bsize > sf->max_intra_bsize) { |
| disable_reference(INTRA_FRAME, mask->ref_combo); |
| } |
| |
| mask->pred_modes[INTRA_FRAME] |= |
| ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); |
| } |
| |
| // Please add/modify parameter setting in this function, making it consistent |
| // and easy to read and maintain. |
| static void set_params_rd_pick_inter_mode( |
| const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, mode_skip_mask_t *mode_skip_mask, |
| int skip_ref_frame_mask, unsigned int ref_costs_single[REF_FRAMES], |
| unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES], |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| unsigned char segment_id = mbmi->segment_id; |
| int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, |
| MAX_SB_SIZE >> 1 }; |
| int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, |
| MAX_SB_SIZE >> 1 }; |
| int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| |
| for (int i = 0; i < MB_MODE_COUNT; ++i) |
| for (int k = 0; k < REF_FRAMES; ++k) args->single_filter[i][k] = SWITCHABLE; |
| |
| if (is_cur_buf_hbd(xd)) { |
| int len = sizeof(uint16_t); |
| args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(x->above_pred_buf); |
| args->above_pred_buf[1] = |
| CONVERT_TO_BYTEPTR(x->above_pred_buf + (MAX_SB_SQUARE >> 1) * len); |
| args->above_pred_buf[2] = |
| CONVERT_TO_BYTEPTR(x->above_pred_buf + MAX_SB_SQUARE * len); |
| args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(x->left_pred_buf); |
| args->left_pred_buf[1] = |
| CONVERT_TO_BYTEPTR(x->left_pred_buf + (MAX_SB_SQUARE >> 1) * len); |
| args->left_pred_buf[2] = |
| CONVERT_TO_BYTEPTR(x->left_pred_buf + MAX_SB_SQUARE * len); |
| } else { |
| args->above_pred_buf[0] = x->above_pred_buf; |
| args->above_pred_buf[1] = x->above_pred_buf + (MAX_SB_SQUARE >> 1); |
| args->above_pred_buf[2] = x->above_pred_buf + MAX_SB_SQUARE; |
| args->left_pred_buf[0] = x->left_pred_buf; |
| args->left_pred_buf[1] = x->left_pred_buf + (MAX_SB_SQUARE >> 1); |
| args->left_pred_buf[2] = x->left_pred_buf + MAX_SB_SQUARE; |
| } |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single, |
| ref_costs_comp); |
| |
| MV_REFERENCE_FRAME ref_frame; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| x->mbmi_ext->mode_context[ref_frame] = 0; |
| mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX; |
| if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { |
| if (mbmi->partition != PARTITION_NONE && |
| mbmi->partition != PARTITION_SPLIT) { |
| if (skip_ref_frame_mask & (1 << ref_frame)) { |
| int skip = 1; |
| for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) { |
| if (!(skip_ref_frame_mask & (1 << r))) { |
| const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES]; |
| if (rf[0] == ref_frame || rf[1] == ref_frame) { |
| skip = 0; |
| break; |
| } |
| } |
| } |
| if (skip) continue; |
| } |
| } |
| assert(get_ref_frame_yv12_buf(cm, ref_frame) != NULL); |
| setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, |
| yv12_mb); |
| } |
| } |
| // ref_frame = ALTREF_FRAME |
| for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) { |
| x->mbmi_ext->mode_context[ref_frame] = 0; |
| mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX; |
| const MV_REFERENCE_FRAME *rf = ref_frame_map[ref_frame - REF_FRAMES]; |
| if (!((cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) && |
| (cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]]))) { |
| continue; |
| } |
| |
| if (mbmi->partition != PARTITION_NONE && |
| mbmi->partition != PARTITION_SPLIT) { |
| if (skip_ref_frame_mask & (1 << ref_frame)) { |
| continue; |
| } |
| } |
| av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, |
| mbmi_ext->ref_mv_stack, mbmi_ext->weight, NULL, |
| mbmi_ext->global_mvs, mi_row, mi_col, |
| mbmi_ext->mode_context); |
| } |
| |
| av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); |
| |
| if (check_num_overlappable_neighbors(mbmi) && |
| is_motion_variation_allowed_bsize(bsize)) { |
| av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, |
| args->above_pred_buf, dst_width1, |
| dst_height1, args->above_pred_stride); |
| av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, |
| args->left_pred_buf, dst_width2, |
| dst_height2, args->left_pred_stride); |
| av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, |
| 0, num_planes); |
| calc_target_weighted_pred( |
| cm, x, xd, mi_row, mi_col, args->above_pred_buf[0], |
| args->above_pred_stride[0], args->left_pred_buf[0], |
| args->left_pred_stride[0]); |
| } |
| |
| init_mode_skip_mask(mode_skip_mask, cpi, x, bsize); |
| |
| if (cpi->sf.tx_type_search.fast_intra_tx_type_search || |
| cpi->oxcf.use_intra_default_tx_only) |
| x->use_default_intra_tx_type = 1; |
| else |
| x->use_default_intra_tx_type = 0; |
| |
| if (cpi->sf.tx_type_search.fast_inter_tx_type_search) |
| x->use_default_inter_tx_type = 1; |
| else |
| x->use_default_inter_tx_type = 0; |
| if (cpi->sf.skip_repeat_interpolation_filter_search) { |
| x->interp_filter_stats_idx[0] = 0; |
| x->interp_filter_stats_idx[1] = 0; |
| } |
| x->comp_rd_stats_idx = 0; |
| } |
| |
| static void search_palette_mode(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, |
| int mi_col, RD_STATS *rd_cost, |
| PICK_MODE_CONTEXT *ctx, BLOCK_SIZE bsize, |
| MB_MODE_INFO *const mbmi, |
| PALETTE_MODE_INFO *const pmi, |
| unsigned int *ref_costs_single, |
| InterModeSearchState *search_state) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int rate2 = 0; |
| int64_t distortion2 = 0, best_rd_palette = search_state->best_rd, this_rd, |
| best_model_rd_palette = INT64_MAX; |
| int skippable = 0, rate_overhead_palette = 0; |
| RD_STATS rd_stats_y; |
| TX_SIZE uv_tx = TX_4X4; |
| uint8_t *const best_palette_color_map = |
| x->palette_buffer->best_palette_color_map; |
| uint8_t *const color_map = xd->plane[0].color_index_map; |
| MB_MODE_INFO best_mbmi_palette = *mbmi; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]]; |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| |
| mbmi->mode = DC_PRED; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = INTRA_FRAME; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| rate_overhead_palette = rd_pick_palette_intra_sby( |
| cpi, x, bsize, mi_row, mi_col, intra_mode_cost[DC_PRED], |
| &best_mbmi_palette, best_palette_color_map, &best_rd_palette, |
| &best_model_rd_palette, NULL, NULL, NULL, NULL, ctx, best_blk_skip); |
| if (pmi->palette_size[0] == 0) return; |
| |
| memcpy(x->blk_skip, best_blk_skip, |
| sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); |
| |
| memcpy(color_map, best_palette_color_map, |
| rows * cols * sizeof(best_palette_color_map[0])); |
| super_block_yrd(cpi, x, &rd_stats_y, bsize, search_state->best_rd); |
| if (rd_stats_y.rate == INT_MAX) return; |
| |
| skippable = rd_stats_y.skip; |
| distortion2 = rd_stats_y.dist; |
| rate2 = rd_stats_y.rate + rate_overhead_palette; |
| rate2 += ref_costs_single[INTRA_FRAME]; |
| if (num_planes > 1) { |
| uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); |
| if (search_state->rate_uv_intra[uv_tx] == INT_MAX) { |
| choose_intra_uv_mode( |
| cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx], |
| &search_state->rate_uv_tokenonly[uv_tx], |
| &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx], |
| &search_state->mode_uv[uv_tx]); |
| search_state->pmi_uv[uv_tx] = *pmi; |
| search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV]; |
| } |
| mbmi->uv_mode = search_state->mode_uv[uv_tx]; |
| pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1]; |
| if (pmi->palette_size[1] > 0) { |
| memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, |
| search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, |
| 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); |
| } |
| mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx]; |
| skippable = skippable && search_state->skip_uvs[uv_tx]; |
| distortion2 += search_state->dist_uvs[uv_tx]; |
| rate2 += search_state->rate_uv_intra[uv_tx]; |
| } |
| |
| if (skippable) { |
| rate2 -= rd_stats_y.rate; |
| if (num_planes > 1) rate2 -= search_state->rate_uv_tokenonly[uv_tx]; |
| rate2 += x->skip_cost[av1_get_skip_context(xd)][1]; |
| } else { |
| rate2 += x->skip_cost[av1_get_skip_context(xd)][0]; |
| } |
| this_rd = RDCOST(x->rdmult, rate2, distortion2); |
| if (this_rd < search_state->best_rd) { |
| search_state->best_mode_index = 3; |
| mbmi->mv[0].as_int = 0; |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| search_state->best_rd = this_rd; |
| search_state->best_mbmode = *mbmi; |
| search_state->best_skip2 = 0; |
| search_state->best_mode_skippable = skippable; |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| |
| static void init_inter_mode_search_state(InterModeSearchState *search_state, |
| const AV1_COMP *cpi, |
| const TileDataEnc *tile_data, |
| const MACROBLOCK *x, BLOCK_SIZE bsize, |
| int64_t best_rd_so_far) { |
| search_state->best_rd = best_rd_so_far; |
| |
| av1_zero(search_state->best_mbmode); |
| |
| search_state->best_rate_y = INT_MAX; |
| |
| search_state->best_rate_uv = INT_MAX; |
| |
| search_state->best_mode_skippable = 0; |
| |
| search_state->best_skip2 = 0; |
| |
| search_state->best_mode_index = -1; |
| |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const unsigned char segment_id = mbmi->segment_id; |
| |
| search_state->skip_intra_modes = 0; |
| |
| search_state->num_available_refs = 0; |
| memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs)); |
| memset(search_state->dist_order_refs, -1, |
| sizeof(search_state->dist_order_refs)); |
| |
| for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i) |
| search_state->mode_threshold[i] = 0; |
| const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; |
| for (int i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) |
| search_state->mode_threshold[i] = |
| ((int64_t)rd_threshes[i] * tile_data->thresh_freq_fact[bsize][i]) >> 5; |
| |
| search_state->best_intra_mode = DC_PRED; |
| search_state->best_intra_rd = INT64_MAX; |
| |
| search_state->angle_stats_ready = 0; |
| av1_zero(search_state->directional_mode_skip_mask); |
| |
| search_state->best_pred_sse = UINT_MAX; |
| |
| for (int i = 0; i < TX_SIZES_ALL; i++) |
| search_state->rate_uv_intra[i] = INT_MAX; |
| |
| av1_zero(search_state->pmi_uv); |
| |
| for (int i = 0; i < REFERENCE_MODES; ++i) |
| search_state->best_pred_rd[i] = INT64_MAX; |
| |
| av1_zero(search_state->single_newmv); |
| av1_zero(search_state->single_newmv_rate); |
| av1_zero(search_state->single_newmv_valid); |
| for (int i = 0; i < MB_MODE_COUNT; ++i) { |
| for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) { |
| for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) { |
| search_state->modelled_rd[i][j][ref_frame] = INT64_MAX; |
| search_state->simple_rd[i][j][ref_frame] = INT64_MAX; |
| } |
| } |
| } |
| |
| for (int dir = 0; dir < 2; ++dir) { |
| for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { |
| for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) { |
| SingleInterModeState *state; |
| |
| state = &search_state->single_state[dir][mode][ref_frame]; |
| state->ref_frame = NONE_FRAME; |
| state->rd = INT64_MAX; |
| |
| state = &search_state->single_state_modelled[dir][mode][ref_frame]; |
| state->ref_frame = NONE_FRAME; |
| state->rd = INT64_MAX; |
| } |
| } |
| } |
| for (int dir = 0; dir < 2; ++dir) { |
| for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { |
| for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) { |
| search_state->single_rd_order[dir][mode][ref_frame] = NONE_FRAME; |
| } |
| } |
| } |
| av1_zero(search_state->single_state_cnt); |
| av1_zero(search_state->single_state_modelled_cnt); |
| } |
| |
| static bool mask_says_skip(const mode_skip_mask_t *mode_skip_mask, |
| const MV_REFERENCE_FRAME *ref_frame, |
| const PREDICTION_MODE this_mode) { |
| if (mode_skip_mask->pred_modes[ref_frame[0]] & (1 << this_mode)) { |
| return true; |
| } |
| |
| return mode_skip_mask->ref_combo[ref_frame[0]][ref_frame[1] + 1]; |
| } |
| |
| static int inter_mode_compatible_skip(const AV1_COMP *cpi, const MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mode_index) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const struct segmentation *const seg = &cm->seg; |
| const MV_REFERENCE_FRAME *ref_frame = av1_mode_order[mode_index].ref_frame; |
| const PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const unsigned char segment_id = mbmi->segment_id; |
| const int comp_pred = ref_frame[1] > INTRA_FRAME; |
| |
| if (comp_pred) { |
| if (frame_is_intra_only(cm)) return 1; |
| |
| if (current_frame->reference_mode == SINGLE_REFERENCE) return 1; |
| |
| // Skip compound inter modes if ARF is not available. |
| if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame[1]])) |
| return 1; |
| |
| // Do not allow compound prediction if the segment level reference frame |
| // feature is in use as in this case there can only be one reference. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1; |
| |
| if (!is_comp_ref_allowed(bsize)) return 1; |
| } |
| |
| if (ref_frame[0] > INTRA_FRAME && ref_frame[1] == INTRA_FRAME) { |
| // Mode must be compatible |
| if (!is_interintra_allowed_mode(this_mode)) return 1; |
| if (!is_interintra_allowed_bsize(bsize)) return 1; |
| } |
| |
| return 0; |
| } |
| |
| static int fetch_picked_ref_frames_mask(const MACROBLOCK *const x, |
| BLOCK_SIZE bsize, int mib_size, |
| int mi_row, int mi_col) { |
| const int sb_size_mask = mib_size - 1; |
| const int mi_row_in_sb = mi_row & sb_size_mask; |
| const int mi_col_in_sb = mi_col & sb_size_mask; |
| const int mi_w = mi_size_wide[bsize]; |
| const int mi_h = mi_size_high[bsize]; |
| int picked_ref_frames_mask = 0; |
| for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_h; ++i) { |
| for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_w; ++j) { |
| picked_ref_frames_mask |= x->picked_ref_frames_mask[i * 32 + j]; |
| } |
| } |
| return picked_ref_frames_mask; |
| } |
| |
| // Case 1: return 0, means don't skip this mode |
| // Case 2: return 1, means skip this mode completely |
| // Case 3: return 2, means skip compound only, but still try single motion modes |
| static int inter_mode_search_order_independent_skip( |
| const AV1_COMP *cpi, const MACROBLOCK *x, mode_skip_mask_t *mode_skip_mask, |
| InterModeSearchState *search_state, int skip_ref_frame_mask) { |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| const AV1_COMMON *const cm = &cpi->common; |
| const OrderHintInfo *const order_hint_info = &cm->seq_params.order_hint_info; |
| const CurrentFrame *const current_frame = &cm->current_frame; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const MV_REFERENCE_FRAME *ref_frame = mbmi->ref_frame; |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| const int comp_pred = ref_frame[1] > INTRA_FRAME; |
| int skip_motion_mode = 0; |
| |
| if (mask_says_skip(mode_skip_mask, ref_frame, this_mode)) { |
| return 1; |
| } |
| |
| // If no valid mode has been found so far in PARTITION_NONE when finding a |
| // valid partition is required, do not skip mode. |
| if (search_state->best_rd == INT64_MAX && mbmi->partition == PARTITION_NONE && |
| x->must_find_valid_partition) |
| return 0; |
| |
| if (mbmi->partition != PARTITION_NONE && mbmi->partition != PARTITION_SPLIT) { |
| const int ref_type = av1_ref_frame_type(ref_frame); |
| int skip_ref = skip_ref_frame_mask & (1 << ref_type); |
| if (ref_type <= ALTREF_FRAME && skip_ref) { |
| // Since the compound ref modes depends on the motion estimation result of |
| // two single ref modes( best mv of single ref modes as the start point ) |
| // If current single ref mode is marked skip, we need to check if it will |
| // be used in compound ref modes. |
| for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) { |
| if (!(skip_ref_frame_mask & (1 << r))) { |
| const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES]; |
| if (rf[0] == ref_type || rf[1] == ref_type) { |
| // Found a not skipped compound ref mode which contains current |
| // single ref. So this single ref can't be skipped completly |
| // Just skip it's motion mode search, still try it's simple |
| // transition mode. |
| skip_motion_mode = 1; |
| skip_ref = 0; |
| break; |
| } |
| } |
| } |
| } |
| if (skip_ref) return 1; |
| } |
| |
| // This is only used in motion vector unit test. |
| if (cpi->oxcf.motion_vector_unit_test && ref_frame[0] == INTRA_FRAME) |
| return 1; |
| |
| if (ref_frame[0] == INTRA_FRAME) { |
| if (this_mode != DC_PRED) { |
| // Disable intra modes other than DC_PRED for blocks with low variance |
| // Threshold for intra skipping based on source variance |
| // TODO(debargha): Specialize the threshold for super block sizes |
| const unsigned int skip_intra_var_thresh = 64; |
| if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && |
| x->source_variance < skip_intra_var_thresh) |
| return 1; |
| } |
| } |
| |
| if (sf->selective_ref_frame) { |
| if (sf->selective_ref_frame >= 3) { |
| if (ref_frame[0] == ALTREF2_FRAME || ref_frame[1] == ALTREF2_FRAME) |
| if (get_relative_dist( |
| order_hint_info, |
| cm->cur_frame->ref_order_hints[ALTREF2_FRAME - LAST_FRAME], |
| current_frame->order_hint) < 0) |
| return 1; |
| if (ref_frame[0] == BWDREF_FRAME || ref_frame[1] == BWDREF_FRAME) |
| if (get_relative_dist( |
| order_hint_info, |
| cm->cur_frame->ref_order_hints[BWDREF_FRAME - LAST_FRAME], |
| current_frame->order_hint) < 0) |
| return 1; |
| } |
| |
| if (sf->selective_ref_frame >= 2 || |
| (sf->selective_ref_frame == 1 && comp_pred)) { |
| if (ref_frame[0] == LAST3_FRAME || ref_frame[1] == LAST3_FRAME) |
| if (get_relative_dist( |
| order_hint_info, |
| cm->cur_frame->ref_order_hints[LAST3_FRAME - LAST_FRAME], |
| cm->cur_frame->ref_order_hints[GOLDEN_FRAME - LAST_FRAME]) <= 0) |
| return 1; |
| if (ref_frame[0] == LAST2_FRAME || ref_frame[1] == LAST2_FRAME) |
| if (get_relative_dist( |
| order_hint_info, |
| cm->cur_frame->ref_order_hints[LAST2_FRAME - LAST_FRAME], |
| cm->cur_frame->ref_order_hints[GOLDEN_FRAME - LAST_FRAME]) <= 0) |
| return 1; |
| } |
| } |
| |
| // One-sided compound is used only when all reference frames are one-sided. |
| if ((sf->selective_ref_frame >= 2) && comp_pred && !cpi->all_one_sided_refs) { |
| unsigned int ref_offsets[2]; |
| for (int i = 0; i < 2; ++i) { |
| const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref_frame[i]); |
| assert(buf != NULL); |
| ref_offsets[i] = buf->order_hint; |
| } |
| if ((get_relative_dist(order_hint_info, ref_offsets[0], |
| current_frame->order_hint) <= 0 && |
| get_relative_dist(order_hint_info, ref_offsets[1], |
| current_frame->order_hint) <= 0) || |
| (get_relative_dist(order_hint_info, ref_offsets[0], |
| current_frame->order_hint) > 0 && |
| get_relative_dist(order_hint_info, ref_offsets[1], |
| current_frame->order_hint) > 0)) |
| return 1; |
| } |
| |
| if (sf->selective_ref_frame >= 4 && comp_pred) { |
| // Check if one of the reference is ALTREF2_FRAME and BWDREF_FRAME is a |
| // valid reference. |
| if ((ref_frame[0] == ALTREF2_FRAME || ref_frame[1] == ALTREF2_FRAME) && |
| (cpi->ref_frame_flags & av1_ref_frame_flag_list[BWDREF_FRAME])) { |
| // Check if both ALTREF2_FRAME and BWDREF_FRAME are future references. |
| if ((get_relative_dist( |
| order_hint_info, |
| cm->cur_frame->ref_order_hints[ALTREF2_FRAME - LAST_FRAME], |
| current_frame->order_hint) > 0) && |
| (get_relative_dist( |
| order_hint_info, |
| cm->cur_frame->ref_order_hints[BWDREF_FRAME - LAST_FRAME], |
| current_frame->order_hint) > 0)) { |
| // Drop ALTREF2_FRAME as a reference if BWDREF_FRAME is a closer |
| // reference to the current frame than ALTREF2_FRAME |
| if (get_relative_dist( |
| order_hint_info, |
| cm->cur_frame->ref_order_hints[ALTREF2_FRAME - LAST_FRAME], |
| cm->cur_frame->ref_order_hints[BWDREF_FRAME - LAST_FRAME]) >= |
| 0) { |
| const RefCntBuffer *const buf_arf2 = |
| get_ref_frame_buf(cm, ALTREF2_FRAME); |
| assert(buf_arf2 != NULL); |
| const RefCntBuffer *const buf_bwd = |
| get_ref_frame_buf(cm, BWDREF_FRAME); |
| assert(buf_bwd != NULL); |
| (void)buf_arf2; |
| (void)buf_bwd; |
| return 1; |
| } |
| } |
| } |
| } |
| |
| if (skip_repeated_mv(cm, x, this_mode, ref_frame, search_state)) { |
| return 1; |
| } |
| if (skip_motion_mode) { |
| return 2; |
| } |
| |
| if (!cpi->oxcf.enable_onesided_comp && comp_pred && cpi->all_one_sided_refs) { |
| return 1; |
| } |
| |
| return 0; |
| } |
| |
| static INLINE void init_mbmi(MB_MODE_INFO *mbmi, int mode_index, |
| const AV1_COMMON *cm) { |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode; |
| mbmi->ref_mv_idx = 0; |
| mbmi->mode = this_mode; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = av1_mode_order[mode_index].ref_frame[0]; |
| mbmi->ref_frame[1] = av1_mode_order[mode_index].ref_frame[1]; |
| pmi->palette_size[0] = 0; |
| pmi->palette_size[1] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); |
| set_default_interp_filters(mbmi, cm->interp_filter); |
| } |
| |
| static int64_t handle_intra_mode(InterModeSearchState *search_state, |
| const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int ref_frame_cost, |
| const PICK_MODE_CONTEXT *ctx, int disable_skip, |
| RD_STATS *rd_stats, RD_STATS *rd_stats_y, |
| RD_STATS *rd_stats_uv) { |
| const AV1_COMMON *cm = &cpi->common; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| assert(mbmi->ref_frame[0] == INTRA_FRAME); |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int try_palette = |
| cpi->oxcf.enable_palette && |
| av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type); |
| const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]]; |
| const int intra_cost_penalty = av1_get_intra_cost_penalty( |
| cm->base_qindex, cm->y_dc_delta_q, cm->seq_params.bit_depth); |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| const int num_planes = av1_num_planes(cm); |
| const int skip_ctx = av1_get_skip_context(xd); |
| |
| int known_rate = intra_mode_cost[mbmi->mode]; |
| known_rate += ref_frame_cost; |
| if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED) |
| known_rate += intra_cost_penalty; |
| known_rate += AOMMIN(x->skip_cost[skip_ctx][0], x->skip_cost[skip_ctx][1]); |
| const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0); |
| if (known_rd > search_state->best_rd) { |
| search_state->skip_intra_modes = 1; |
| return INT64_MAX; |
| } |
| |
| TX_SIZE uv_tx; |
| int is_directional_mode = av1_is_directional_mode(mbmi->mode); |
| if (is_directional_mode && av1_use_angle_delta(bsize) && |
| cpi->oxcf.enable_angle_delta) { |
| int rate_dummy; |
| int64_t model_rd = INT64_MAX; |
| if (sf->intra_angle_estimation && !search_state->angle_stats_ready) { |
| const int src_stride = x->plane[0].src.stride; |
| const uint8_t *src = x->plane[0].src.buf; |
| angle_estimation(src, src_stride, rows, cols, bsize, is_cur_buf_hbd(xd), |
| search_state->directional_mode_skip_mask); |
| search_state->angle_stats_ready = 1; |
| } |
| if (search_state->directional_mode_skip_mask[mbmi->mode]) return INT64_MAX; |
| av1_init_rd_stats(rd_stats_y); |
| rd_stats_y->rate = INT_MAX; |
| rd_pick_intra_angle_sby(cpi, x, mi_row, mi_col, &rate_dummy, rd_stats_y, |
| bsize, intra_mode_cost[mbmi->mode], |
| search_state->best_rd, &model_rd); |
| } else { |
| av1_init_rd_stats(rd_stats_y); |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| super_block_yrd(cpi, x, rd_stats_y, bsize, search_state->best_rd); |
| } |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| memcpy(best_blk_skip, x->blk_skip, |
| sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); |
| int try_filter_intra = 0; |
| int64_t best_rd_tmp = INT64_MAX; |
| if (mbmi->mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { |
| if (rd_stats_y->rate != INT_MAX) { |
| const int tmp_rate = rd_stats_y->rate + x->filter_intra_cost[bsize][0] + |
| intra_mode_cost[mbmi->mode]; |
| best_rd_tmp = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist); |
| try_filter_intra = !((best_rd_tmp / 2) > search_state->best_rd); |
| } else { |
| try_filter_intra = !(search_state->best_mbmode.skip); |
| } |
| } |
| if (try_filter_intra) { |
| RD_STATS rd_stats_y_fi; |
| int filter_intra_selected_flag = 0; |
| TX_SIZE best_tx_size = mbmi->tx_size; |
| TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED; |
| |
| mbmi->filter_intra_mode_info.use_filter_intra = 1; |
| for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; |
| fi_mode < FILTER_INTRA_MODES; ++fi_mode) { |
| int64_t this_rd_tmp; |
| mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode; |
| super_block_yrd(cpi, x, &rd_stats_y_fi, bsize, search_state->best_rd); |
| if (rd_stats_y_fi.rate == INT_MAX) { |
| continue; |
| } |
| const int this_rate_tmp = |
| rd_stats_y_fi.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, |
| intra_mode_cost[mbmi->mode]); |
| this_rd_tmp = RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist); |
| |
| if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > search_state->best_rd) { |
| break; |
| } |
| if (this_rd_tmp < best_rd_tmp) { |
| best_tx_size = mbmi->tx_size; |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| memcpy(best_blk_skip, x->blk_skip, |
| sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); |
| best_fi_mode = fi_mode; |
| *rd_stats_y = rd_stats_y_fi; |
| filter_intra_selected_flag = 1; |
| best_rd_tmp = this_rd_tmp; |
| } |
| } |
| |
| mbmi->tx_size = best_tx_size; |
| memcpy(mbmi->txk_type, best_txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| memcpy(x->blk_skip, best_blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| |
| if (filter_intra_selected_flag) { |
| mbmi->filter_intra_mode_info.use_filter_intra = 1; |
| mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode; |
| } else { |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| } |
| } |
| if (rd_stats_y->rate == INT_MAX) return INT64_MAX; |
| const int mode_cost_y = |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, intra_mode_cost[mbmi->mode]); |
| av1_init_rd_stats(rd_stats); |
| av1_init_rd_stats(rd_stats_uv); |
| if (num_planes > 1) { |
| uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); |
| if (search_state->rate_uv_intra[uv_tx] == INT_MAX) { |
| int rate_y = |
| rd_stats_y->skip ? x->skip_cost[skip_ctx][1] : rd_stats_y->rate; |
| const int64_t rdy = |
| RDCOST(x->rdmult, rate_y + mode_cost_y, rd_stats_y->dist); |
| if (search_state->best_rd < (INT64_MAX / 2) && |
| rdy > (search_state->best_rd + (search_state->best_rd >> 2))) { |
| search_state->skip_intra_modes = 1; |
| return INT64_MAX; |
| } |
| choose_intra_uv_mode( |
| cpi, x, bsize, uv_tx, &search_state->rate_uv_intra[uv_tx], |
| &search_state->rate_uv_tokenonly[uv_tx], |
| &search_state->dist_uvs[uv_tx], &search_state->skip_uvs[uv_tx], |
| &search_state->mode_uv[uv_tx]); |
| if (try_palette) search_state->pmi_uv[uv_tx] = *pmi; |
| search_state->uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV]; |
| |
| const int uv_rate = search_state->rate_uv_tokenonly[uv_tx]; |
| const int64_t uv_dist = search_state->dist_uvs[uv_tx]; |
| const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist); |
| if (uv_rd > search_state->best_rd) { |
| search_state->skip_intra_modes = 1; |
| return INT64_MAX; |
| } |
| } |
| |
| rd_stats_uv->rate = search_state->rate_uv_tokenonly[uv_tx]; |
| rd_stats_uv->dist = search_state->dist_uvs[uv_tx]; |
| rd_stats_uv->skip = search_state->skip_uvs[uv_tx]; |
| rd_stats->skip = rd_stats_y->skip && rd_stats_uv->skip; |
| mbmi->uv_mode = search_state->mode_uv[uv_tx]; |
| if (try_palette) { |
| pmi->palette_size[1] = search_state->pmi_uv[uv_tx].palette_size[1]; |
| memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, |
| search_state->pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, |
| 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); |
| } |
| mbmi->angle_delta[PLANE_TYPE_UV] = search_state->uv_angle_delta[uv_tx]; |
| } |
| rd_stats->rate = rd_stats_y->rate + mode_cost_y; |
| if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) { |
| // super_block_yrd above includes the cost of the tx_size in the |
| // tokenonly rate, but for intra blocks, tx_size is always coded |
| // (prediction granularity), so we account for it in the full rate, |
| // not the tokenonly rate. |
| rd_stats_y->rate -= tx_size_cost(cm, x, bsize, mbmi->tx_size); |
| } |
| if (num_planes > 1 && !x->skip_chroma_rd) { |
| const int uv_mode_cost = |
| x->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mbmi->uv_mode]; |
| rd_stats->rate += |
| rd_stats_uv->rate + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost); |
| } |
| if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED) |
| rd_stats->rate += intra_cost_penalty; |
| rd_stats->dist = rd_stats_y->dist + rd_stats_uv->dist; |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| rd_stats->rate += ref_frame_cost; |
| if (rd_stats->skip) { |
| // Back out the coefficient coding costs |
| rd_stats->rate -= (rd_stats_y->rate + rd_stats_uv->rate); |
| rd_stats_y->rate = 0; |
| rd_stats_uv->rate = 0; |
| // Cost the skip mb case |
| rd_stats->rate += x->skip_cost[skip_ctx][1]; |
| } else { |
| // Add in the cost of the no skip flag. |
| rd_stats->rate += x->skip_cost[skip_ctx][0]; |
| } |
| // Calculate the final RD estimate for this mode. |
| const int64_t this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| // Keep record of best intra rd |
| if (this_rd < search_state->best_intra_rd) { |
| search_state->best_intra_rd = this_rd; |
| search_state->best_intra_mode = mbmi->mode; |
| } |
| |
| if (sf->skip_intra_in_interframe) { |
| if (search_state->best_rd < (INT64_MAX / 2) && |
| this_rd > (search_state->best_rd + (search_state->best_rd >> 1))) |
| search_state->skip_intra_modes = 1; |
| } |
| |
| if (!disable_skip) { |
| for (int i = 0; i < REFERENCE_MODES; ++i) |
| search_state->best_pred_rd[i] = |
| AOMMIN(search_state->best_pred_rd[i], this_rd); |
| } |
| return this_rd; |
| } |
| |
| static void collect_single_states(MACROBLOCK *x, |
| InterModeSearchState *search_state, |
| const MB_MODE_INFO *const mbmi) { |
| int i, j; |
| const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0]; |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| const int dir = ref_frame <= GOLDEN_FRAME ? 0 : 1; |
| const int mode_offset = INTER_OFFSET(this_mode); |
| const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode); |
| |
| // Simple rd |
| int64_t simple_rd = search_state->simple_rd[this_mode][0][ref_frame]; |
| for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) { |
| int64_t rd = search_state->simple_rd[this_mode][ref_mv_idx][ref_frame]; |
| if (rd < simple_rd) simple_rd = rd; |
| } |
| |
| // Insertion sort of single_state |
| SingleInterModeState this_state_s = { simple_rd, ref_frame, 1 }; |
| SingleInterModeState *state_s = search_state->single_state[dir][mode_offset]; |
| i = search_state->single_state_cnt[dir][mode_offset]; |
| for (j = i; j > 0 && state_s[j - 1].rd > this_state_s.rd; --j) |
| state_s[j] = state_s[j - 1]; |
| state_s[j] = this_state_s; |
| search_state->single_state_cnt[dir][mode_offset]++; |
| |
| // Modelled rd |
| int64_t modelled_rd = search_state->modelled_rd[this_mode][0][ref_frame]; |
| for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) { |
| int64_t rd = search_state->modelled_rd[this_mode][ref_mv_idx][ref_frame]; |
| if (rd < modelled_rd) modelled_rd = rd; |
| } |
| |
| // Insertion sort of single_state_modelled |
| SingleInterModeState this_state_m = { modelled_rd, ref_frame, 1 }; |
| SingleInterModeState *state_m = |
| search_state->single_state_modelled[dir][mode_offset]; |
| i = search_state->single_state_modelled_cnt[dir][mode_offset]; |
| for (j = i; j > 0 && state_m[j - 1].rd > this_state_m.rd; --j) |
| state_m[j] = state_m[j - 1]; |
| state_m[j] = this_state_m; |
| search_state->single_state_modelled_cnt[dir][mode_offset]++; |
| } |
| |
| static void analyze_single_states(const AV1_COMP *cpi, |
| InterModeSearchState *search_state) { |
| int i, j, dir, mode; |
| if (cpi->sf.prune_comp_search_by_single_result >= 1) { |
| for (dir = 0; dir < 2; ++dir) { |
| int64_t best_rd; |
| SingleInterModeState(*state)[FWD_REFS]; |
| const int prune_factor = |
| cpi->sf.prune_comp_search_by_single_result >= 2 ? 6 : 5; |
| |
| // Use the best rd of GLOBALMV or NEWMV to prune the unlikely |
| // reference frames for all the modes (NEARESTMV and NEARMV may not |
| // have same motion vectors). Always keep the best of each mode |
| // because it might form the best possible combination with other mode. |
| state = search_state->single_state[dir]; |
| best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd, |
| state[INTER_OFFSET(GLOBALMV)][0].rd); |
| for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { |
| for (i = 1; i < search_state->single_state_cnt[dir][mode]; ++i) { |
| if (state[mode][i].rd != INT64_MAX && |
| (state[mode][i].rd >> 3) * prune_factor > best_rd) { |
| state[mode][i].valid = 0; |
| } |
| } |
| } |
| |
| state = search_state->single_state_modelled[dir]; |
| best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd, |
| state[INTER_OFFSET(GLOBALMV)][0].rd); |
| for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { |
| for (i = 1; i < search_state->single_state_modelled_cnt[dir][mode]; |
| ++i) { |
| if (state[mode][i].rd != INT64_MAX && |
| (state[mode][i].rd >> 3) * prune_factor > best_rd) { |
| state[mode][i].valid = 0; |
| } |
| } |
| } |
| } |
| } |
| |
| // Ordering by simple rd first, then by modelled rd |
| for (dir = 0; dir < 2; ++dir) { |
| for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { |
| const int state_cnt_s = search_state->single_state_cnt[dir][mode]; |
| const int state_cnt_m = |
| search_state->single_state_modelled_cnt[dir][mode]; |
| SingleInterModeState *state_s = search_state->single_state[dir][mode]; |
| SingleInterModeState *state_m = |
| search_state->single_state_modelled[dir][mode]; |
| int count = 0; |
| const int max_candidates = AOMMAX(state_cnt_s, state_cnt_m); |
| for (i = 0; i < state_cnt_s; ++i) { |
| if (state_s[i].rd == INT64_MAX) break; |
| if (state_s[i].valid) |
| search_state->single_rd_order[dir][mode][count++] = |
| state_s[i].ref_frame; |
| } |
| if (count < max_candidates) { |
| for (i = 0; i < state_cnt_m; ++i) { |
| if (state_m[i].rd == INT64_MAX) break; |
| if (state_m[i].valid) { |
| int ref_frame = state_m[i].ref_frame; |
| int match = 0; |
| // Check if existing already |
| for (j = 0; j < count; ++j) { |
| if (search_state->single_rd_order[dir][mode][j] == ref_frame) { |
| match = 1; |
| break; |
| } |
| } |
| if (!match) { |
| // Check if this ref_frame is removed in simple rd |
| int valid = 1; |
| for (j = 0; j < state_cnt_s; j++) { |
| if (ref_frame == state_s[j].ref_frame && !state_s[j].valid) { |
| valid = 0; |
| break; |
| } |
| } |
| if (valid) |
| search_state->single_rd_order[dir][mode][count++] = ref_frame; |
| } |
| if (count >= max_candidates) break; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static int compound_skip_get_candidates( |
| const AV1_COMP *cpi, const InterModeSearchState *search_state, |
| const int dir, const PREDICTION_MODE mode) { |
| const int mode_offset = INTER_OFFSET(mode); |
| const SingleInterModeState *state = |
| search_state->single_state[dir][mode_offset]; |
| const SingleInterModeState *state_modelled = |
| search_state->single_state_modelled[dir][mode_offset]; |
| int max_candidates = 0; |
| int candidates; |
| |
| for (int i = 0; i < FWD_REFS; ++i) { |
| if (search_state->single_rd_order[dir][mode_offset][i] == NONE_FRAME) break; |
| max_candidates++; |
| } |
| |
| candidates = max_candidates; |
| if (cpi->sf.prune_comp_search_by_single_result >= 2) { |
| candidates = AOMMIN(2, max_candidates); |
| } |
| if (cpi->sf.prune_comp_search_by_single_result >= 3) { |
| if (state[0].rd != INT64_MAX && state_modelled[0].rd != INT64_MAX && |
| state[0].ref_frame == state_modelled[0].ref_frame) |
| candidates = 1; |
| if (mode == NEARMV || mode == GLOBALMV) candidates = 1; |
| } |
| return candidates; |
| } |
| |
| static int compound_skip_by_single_states( |
| const AV1_COMP *cpi, const InterModeSearchState *search_state, |
| const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame, |
| const MV_REFERENCE_FRAME second_ref_frame, const MACROBLOCK *x) { |
| const MV_REFERENCE_FRAME refs[2] = { ref_frame, second_ref_frame }; |
| const int mode[2] = { compound_ref0_mode(this_mode), |
| compound_ref1_mode(this_mode) }; |
| const int mode_offset[2] = { INTER_OFFSET(mode[0]), INTER_OFFSET(mode[1]) }; |
| const int mode_dir[2] = { refs[0] <= GOLDEN_FRAME ? 0 : 1, |
| refs[1] <= GOLDEN_FRAME ? 0 : 1 }; |
| int ref_searched[2] = { 0, 0 }; |
| int ref_mv_match[2] = { 1, 1 }; |
| int i, j; |
| |
| for (i = 0; i < 2; ++i) { |
| const SingleInterModeState *state = |
| search_state->single_state[mode_dir[i]][mode_offset[i]]; |
| const int state_cnt = |
| search_state->single_state_cnt[mode_dir[i]][mode_offset[i]]; |
| for (j = 0; j < state_cnt; ++j) { |
| if (state[j].ref_frame == refs[i]) { |
| ref_searched[i] = 1; |
| break; |
| } |
| } |
| } |
| |
| const int ref_set = get_drl_refmv_count(x, refs, this_mode); |
| for (i = 0; i < 2; ++i) { |
| if (mode[i] == NEARESTMV || mode[i] == NEARMV) { |
| const MV_REFERENCE_FRAME single_refs[2] = { refs[i], NONE_FRAME }; |
| int idential = 1; |
| for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ref_mv_idx++) { |
| int_mv single_mv; |
| int_mv comp_mv; |
| get_this_mv(&single_mv, mode[i], 0, ref_mv_idx, single_refs, |
| x->mbmi_ext); |
| get_this_mv(&comp_mv, this_mode, i, ref_mv_idx, refs, x->mbmi_ext); |
| |
| idential &= (single_mv.as_int == comp_mv.as_int); |
| if (!idential) { |
| ref_mv_match[i] = 0; |
| break; |
| } |
| } |
| } |
| } |
| |
| for (i = 0; i < 2; ++i) { |
| if (ref_searched[i] && ref_mv_match[i]) { |
| const int candidates = |
| compound_skip_get_candidates(cpi, search_state, mode_dir[i], mode[i]); |
| const MV_REFERENCE_FRAME *ref_order = |
| search_state->single_rd_order[mode_dir[i]][mode_offset[i]]; |
| int match = 0; |
| for (j = 0; j < candidates; ++j) { |
| if (refs[i] == ref_order[j]) { |
| match = 1; |
| break; |
| } |
| } |
| if (!match) return 1; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static INLINE int sf_check_is_drop_ref(const MODE_DEFINITION *mode, |
| InterModeSearchState *search_state) { |
| const MV_REFERENCE_FRAME ref_frame = mode->ref_frame[0]; |
| const MV_REFERENCE_FRAME second_ref_frame = mode->ref_frame[1]; |
| if (search_state->num_available_refs > 2) { |
| if ((ref_frame == search_state->dist_order_refs[0] && |
| second_ref_frame == search_state->dist_order_refs[1]) || |
| (ref_frame == search_state->dist_order_refs[1] && |
| second_ref_frame == search_state->dist_order_refs[0])) |
| return 1; // drop this pair of refs |
| } |
| return 0; |
| } |
| |
| static INLINE void sf_drop_ref_analyze(InterModeSearchState *search_state, |
| const MODE_DEFINITION *mode, |
| int64_t distortion2) { |
| const PREDICTION_MODE this_mode = mode->mode; |
| MV_REFERENCE_FRAME ref_frame = mode->ref_frame[0]; |
| const int idx = ref_frame - LAST_FRAME; |
| if (idx && distortion2 > search_state->dist_refs[idx]) { |
| search_state->dist_refs[idx] = distortion2; |
| search_state->dist_order_refs[idx] = ref_frame; |
| } |
| |
| // Reach the last single ref prediction mode |
| if (ref_frame == ALTREF_FRAME && this_mode == GLOBALMV) { |
| // bubble sort dist_refs and the order index |
| for (int i = 0; i < REF_FRAMES; ++i) { |
| for (int k = i + 1; k < REF_FRAMES; ++k) { |
| if (search_state->dist_refs[i] < search_state->dist_refs[k]) { |
| int64_t tmp_dist = search_state->dist_refs[i]; |
| search_state->dist_refs[i] = search_state->dist_refs[k]; |
| search_state->dist_refs[k] = tmp_dist; |
| |
| int tmp_idx = search_state->dist_order_refs[i]; |
| search_state->dist_order_refs[i] = search_state->dist_order_refs[k]; |
| search_state->dist_order_refs[k] = tmp_idx; |
| } |
| } |
| } |
| for (int i = 0; i < REF_FRAMES; ++i) { |
| if (search_state->dist_refs[i] == -1) break; |
| search_state->num_available_refs = i; |
| } |
| search_state->num_available_refs++; |
| } |
| } |
| |
| // sf->prune_single_motion_modes_by_simple_trans |
| static int analyze_simple_trans_states(const AV1_COMP *cpi, MACROBLOCK *x) { |
| (void)cpi; |
| int64_t rdcosts[REF_FRAMES] = { INT64_MAX, INT64_MAX, INT64_MAX, INT64_MAX, |
| INT64_MAX, INT64_MAX, INT64_MAX, INT64_MAX }; |
| int skip_ref = 0; |
| int64_t min_rd = INT64_MAX; |
| for (int i = 0; i < SINGLE_REF_MODES; ++i) { |
| const MODE_DEFINITION *mode_order = &av1_mode_order[i]; |
| const MV_REFERENCE_FRAME ref_frame = mode_order->ref_frame[0]; |
| for (int k = 0; k < MAX_REF_MV_SEARCH; ++k) { |
| const int64_t rd = x->simple_rd_state[i][k].rd_stats.rdcost; |
| rdcosts[ref_frame] = AOMMIN(rdcosts[ref_frame], rd); |
| min_rd = AOMMIN(min_rd, rd); |
| } |
| } |
| int valid_cnt = 0; |
| for (int i = 1; i < REF_FRAMES; ++i) { |
| if (rdcosts[i] == INT64_MAX) { |
| skip_ref |= (1 << i); |
| } else { |
| valid_cnt++; |
| } |
| } |
| if (valid_cnt < 2) { |
| return 0; |
| } |
| min_rd += (min_rd >> 1); |
| if (valid_cnt > 2) { |
| for (int i = 1; i < REF_FRAMES; ++i) { |
| if (rdcosts[i] > min_rd) { |
| skip_ref |= (1 << i); |
| } |
| } |
| } |
| return skip_ref; |
| } |
| |
| static void alloc_compound_type_rd_buffers(AV1_COMMON *const cm, |
| CompoundTypeRdBuffers *const bufs) { |
| CHECK_MEM_ERROR( |
| cm, bufs->pred0, |
| (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred0))); |
| CHECK_MEM_ERROR( |
| cm, bufs->pred1, |
| (uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred1))); |
| CHECK_MEM_ERROR( |
| cm, bufs->residual1, |
| (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->residual1))); |
| CHECK_MEM_ERROR( |
| cm, bufs->diff10, |
| (int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->diff10))); |
| CHECK_MEM_ERROR(cm, bufs->tmp_best_mask_buf, |
| (uint8_t *)aom_malloc(2 * MAX_SB_SQUARE * |
| sizeof(*bufs->tmp_best_mask_buf))); |
| } |
| |
| static void release_compound_type_rd_buffers( |
| CompoundTypeRdBuffers *const bufs) { |
| aom_free(bufs->pred0); |
| aom_free(bufs->pred1); |
| aom_free(bufs->residual1); |
| aom_free(bufs->diff10); |
| aom_free(bufs->tmp_best_mask_buf); |
| av1_zero(*bufs); // Set all pointers to NULL for safety. |
| } |
| |
| // Enables do_tx_search on a per-mode basis. |
| static int do_tx_search_mode(int do_tx_search_global, int midx, int adaptive) { |
| if (!adaptive || do_tx_search_global) { |
| return do_tx_search_global; |
| } |
| // A value of 2 indicates it is being turned on conditionally |
| // for the mode. Turn it on for the first 7 modes. |
| return midx < 7 ? 2 : 0; |
| } |
| |
| static int compare_int64(const void *a, const void *b) { |
| int64_t a64 = *((int64_t *)a); |
| int64_t b64 = *((int64_t *)b); |
| if (a64 < b64) { |
| return -1; |
| } else if (a64 == b64) { |
| return 0; |
| } else { |
| return 1; |
| } |
| } |
| |
| // Find the 2nd best RD for a reference frame (among single reference modes) |
| // and store it in the 0-th element in ref_frame_rd. |
| static void find_top_2_ref(int64_t ref_frame_rd[REF_FRAMES]) { |
| assert(ref_frame_rd[0] == INT64_MAX); |
| int64_t ref_copy[REF_FRAMES - 1]; |
| memcpy(ref_copy, ref_frame_rd + 1, |
| sizeof(ref_frame_rd[0]) * (REF_FRAMES - 1)); |
| qsort(ref_copy, REF_FRAMES - 1, sizeof(int64_t), compare_int64); |
| int64_t second_best = ref_copy[1]; |
| ref_frame_rd[0] = second_best; |
| } |
| |
| // Check if either frame is one of the top two. |
| static INLINE bool in_top_2_ref(int64_t ref_frame_rd[REF_FRAMES], |
| MV_REFERENCE_FRAME frame1, |
| MV_REFERENCE_FRAME frame2) { |
| assert(frame2 > 0); |
| return ref_frame_rd[frame1] <= ref_frame_rd[0] || |
| ref_frame_rd[frame2] <= ref_frame_rd[0]; |
| } |
| |
| void av1_rd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *x, int mi_row, int mi_col, |
| RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int try_palette = |
| cpi->oxcf.enable_palette && |
| av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type); |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const struct segmentation *const seg = &cm->seg; |
| PREDICTION_MODE this_mode; |
| unsigned char segment_id = mbmi->segment_id; |
| int i; |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; |
| unsigned int ref_costs_single[REF_FRAMES]; |
| unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES]; |
| int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)]; |
| mode_skip_mask_t mode_skip_mask; |
| |
| InterModeSearchState search_state; |
| init_inter_mode_search_state(&search_state, cpi, tile_data, x, bsize, |
| best_rd_so_far); |
| INTERINTRA_MODE interintra_modes[REF_FRAMES] = { |
| INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, |
| INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES |
| }; |
| HandleInterModeArgs args = { |
| { NULL }, { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }, |
| { NULL }, { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 }, |
| NULL, NULL, |
| NULL, search_state.modelled_rd, |
| { { 0 } }, INT_MAX, |
| INT_MAX, search_state.simple_rd, |
| 0, interintra_modes, |
| 1, NULL |
| }; |
| for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; |
| |
| av1_invalid_rd_stats(rd_cost); |
| |
| // Ref frames that are selected by square partition blocks. |
| int picked_ref_frames_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions && |
| mbmi->partition != PARTITION_NONE && mbmi->partition != PARTITION_SPLIT) { |
| // prune_ref_frame_for_rect_partitions = 1 implies prune only extended |
| // partition blocks. prune_ref_frame_for_rect_partitions >=2 |
| // implies prune for vert, horiz and extended partition blocks. |
| if ((mbmi->partition != PARTITION_VERT && |
| mbmi->partition != PARTITION_HORZ) || |
| cpi->sf.prune_ref_frame_for_rect_partitions >= 2) { |
| picked_ref_frames_mask = fetch_picked_ref_frames_mask( |
| x, bsize, cm->seq_params.mib_size, mi_row, mi_col); |
| } |
| } |
| |
| // Skip ref frames that never selected by square blocks. |
| const int skip_ref_frame_mask = |
| picked_ref_frames_mask ? ~picked_ref_frames_mask : 0; |
| |
| // init params, set frame modes, speed features |
| set_params_rd_pick_inter_mode(cpi, x, &args, bsize, mi_row, mi_col, |
| &mode_skip_mask, skip_ref_frame_mask, |
| ref_costs_single, ref_costs_comp, yv12_mb); |
| |
| int64_t best_est_rd = INT64_MAX; |
| const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; |
| // If do_tx_search_global is 0, only estimated RD should be computed. |
| // If do_tx_search_global is 1, all modes have TX search performed. |
| // If do_tx_search_global is 2, some modes will have TX search performed. |
| const int do_tx_search_global = |
| !((cpi->sf.inter_mode_rd_model_estimation == 1 && md->ready) || |
| (cpi->sf.inter_mode_rd_model_estimation == 2 && |
| num_pels_log2_lookup[bsize] > 8)); |
| InterModesInfo *inter_modes_info = x->inter_modes_info; |
| inter_modes_info->num = 0; |
| |
| int intra_mode_num = 0; |
| int intra_mode_idx_ls[MAX_MODES]; |
| int reach_first_comp_mode = 0; |
| |
| // Temporary buffers used by handle_inter_mode(). |
| uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_obmc_bufs[0]); |
| |
| CompoundTypeRdBuffers rd_buffers; |
| alloc_compound_type_rd_buffers(cm, &rd_buffers); |
| |
| // The best RD found for the reference frame, among single reference modes. |
| // Note that the 0-th element will contain a cut-off that is later used |
| // to determine if we should skip a compound mode. |
| int64_t ref_frame_rd[REF_FRAMES] = { INT64_MAX, INT64_MAX, INT64_MAX, |
| INT64_MAX, INT64_MAX, INT64_MAX, |
| INT64_MAX, INT64_MAX }; |
| for (int midx = 0; midx < MAX_MODES; ++midx) { |
| const int do_tx_search = do_tx_search_mode( |
| do_tx_search_global, midx, sf->inter_mode_rd_model_estimation_adaptive); |
| const MODE_DEFINITION *mode_order = &av1_mode_order[midx]; |
| this_mode = mode_order->mode; |
| const MV_REFERENCE_FRAME ref_frame = mode_order->ref_frame[0]; |
| const MV_REFERENCE_FRAME second_ref_frame = mode_order->ref_frame[1]; |
| const int comp_pred = second_ref_frame > INTRA_FRAME; |
| |
| // After we done with single reference modes, find the 2nd best RD |
| // for a reference frame. Only search compound modes that have a reference |
| // frame at least as good as the 2nd best. |
| if (sf->prune_compound_using_single_ref && |
| midx == MAX_SINGLE_REF_MODES + 1) { |
| find_top_2_ref(ref_frame_rd); |
| } |
| if (sf->prune_compound_using_single_ref && midx > MAX_SINGLE_REF_MODES && |
| comp_pred && !in_top_2_ref(ref_frame_rd, ref_frame, second_ref_frame)) { |
| continue; |
| } |
| |
| // Reach the first compound prediction mode |
| if (sf->prune_comp_search_by_single_result > 0 && comp_pred && |
| reach_first_comp_mode == 0) { |
| analyze_single_states(cpi, &search_state); |
| reach_first_comp_mode = 1; |
| } |
| int64_t this_rd = INT64_MAX; |
| int disable_skip = 0; |
| int rate2 = 0, rate_y = 0, rate_uv = 0; |
| int64_t distortion2 = 0; |
| int skippable = 0; |
| int this_skip2 = 0; |
| |
| init_mbmi(mbmi, midx, cm); |
| |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| if (inter_mode_compatible_skip(cpi, x, bsize, midx)) continue; |
| |
| const int ret = inter_mode_search_order_independent_skip( |
| cpi, x, &mode_skip_mask, &search_state, skip_ref_frame_mask); |
| if (ret == 1) continue; |
| args.skip_motion_mode = (ret == 2); |
| |
| if (sf->drop_ref && comp_pred) { |
| if (sf_check_is_drop_ref(mode_order, &search_state)) { |
| continue; |
| } |
| } |
| |
| if (search_state.best_rd < search_state.mode_threshold[midx]) continue; |
| |
| if (sf->prune_comp_search_by_single_result > 0 && comp_pred) { |
| if (compound_skip_by_single_states(cpi, &search_state, this_mode, |
| ref_frame, second_ref_frame, x)) |
| continue; |
| } |
| |
| const int ref_frame_cost = comp_pred |
| ? ref_costs_comp[ref_frame][second_ref_frame] |
| : ref_costs_single[ref_frame]; |
| const int compmode_cost = |
| is_comp_ref_allowed(mbmi->sb_type) ? comp_inter_cost[comp_pred] : 0; |
| const int real_compmode_cost = |
| cm->current_frame.reference_mode == REFERENCE_MODE_SELECT |
| ? compmode_cost |
| : 0; |
| |
| if (comp_pred) { |
| if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && |
| search_state.best_mode_index >= 0 && |
| search_state.best_mbmode.ref_frame[0] == INTRA_FRAME) |
| continue; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| if ((!cpi->oxcf.enable_smooth_intra || sf->disable_smooth_intra) && |
| (mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED || |
| mbmi->mode == SMOOTH_V_PRED)) |
| continue; |
| if (!cpi->oxcf.enable_paeth_intra && mbmi->mode == PAETH_PRED) continue; |
| if (sf->adaptive_mode_search > 1) |
| if ((x->source_variance << num_pels_log2_lookup[bsize]) > |
| search_state.best_pred_sse) |
| continue; |
| |
| if (this_mode != DC_PRED) { |
| // Only search the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && |
| (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) { |
| if (search_state.best_mode_index >= 0 && |
| search_state.best_mbmode.ref_frame[0] > INTRA_FRAME) |
| continue; |
| } |
| if (sf->mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(this_mode, search_state.best_intra_mode)) |
| continue; |
| } |
| } |
| } |
| |
| // Select prediction reference frames. |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| intra_mode_idx_ls[intra_mode_num++] = midx; |
| continue; |
| } else { |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| mbmi->angle_delta[PLANE_TYPE_UV] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->ref_mv_idx = 0; |
| int64_t ref_best_rd = search_state.best_rd; |
| { |
| RD_STATS rd_stats, rd_stats_y, rd_stats_uv; |
| av1_init_rd_stats(&rd_stats); |
| rd_stats.rate = rate2; |
| |
| // Point to variables that are maintained between loop iterations |
| args.single_newmv = search_state.single_newmv; |
| args.single_newmv_rate = search_state.single_newmv_rate; |
| args.single_newmv_valid = search_state.single_newmv_valid; |
| args.single_comp_cost = real_compmode_cost; |
| args.ref_frame_cost = ref_frame_cost; |
| if (midx < MAX_SINGLE_REF_MODES) { |
| args.simple_rd_state = x->simple_rd_state[midx]; |
| } |
| |
| this_rd = handle_inter_mode( |
| cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, |
| &disable_skip, mi_row, mi_col, &args, ref_best_rd, tmp_buf, |
| &rd_buffers, &best_est_rd, do_tx_search, inter_modes_info); |
| |
| rate2 = rd_stats.rate; |
| skippable = rd_stats.skip; |
| distortion2 = rd_stats.dist; |
| rate_y = rd_stats_y.rate; |
| rate_uv = rd_stats_uv.rate; |
| } |
| |
| if (sf->prune_comp_search_by_single_result > 0 && |
| is_inter_singleref_mode(this_mode) && args.single_ref_first_pass) { |
| collect_single_states(x, &search_state, mbmi); |
| } |
| |
| if (this_rd == INT64_MAX) continue; |
| |
| this_skip2 = mbmi->skip; |
| this_rd = RDCOST(x->rdmult, rate2, distortion2); |
| if (this_skip2) { |
| rate_y = 0; |
| rate_uv = 0; |
| } |
| } |
| |
| if (sf->prune_compound_using_single_ref && midx <= MAX_SINGLE_REF_MODES && |
| this_rd < ref_frame_rd[ref_frame]) { |
| ref_frame_rd[ref_frame] = this_rd; |
| } |
| // Did this mode help, i.e., is it the new best mode |
| if (this_rd < search_state.best_rd || x->skip) { |
| int mode_excluded = 0; |
| if (comp_pred) { |
| mode_excluded = cm->current_frame.reference_mode == SINGLE_REFERENCE; |
| } |
| if (!mode_excluded) { |
| // Note index of best mode so far |
| search_state.best_mode_index = midx; |
| |
| if (ref_frame == INTRA_FRAME) { |
| /* required for left and above block mv */ |
| mbmi->mv[0].as_int = 0; |
| } else { |
| search_state.best_pred_sse = x->pred_sse[ref_frame]; |
| } |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| search_state.best_rd = this_rd; |
| search_state.best_mbmode = *mbmi; |
| search_state.best_skip2 = this_skip2; |
| search_state.best_mode_skippable = skippable; |
| if (do_tx_search) { |
| // When do_tx_search == 0, handle_inter_mode won't provide correct |
| // rate_y and rate_uv because txfm_search process is replaced by |
| // rd estimation. |
| // Therfore, we should avoid updating best_rate_y and best_rate_uv |
| // here. These two values will be updated when txfm_search is called |
| search_state.best_rate_y = |
| rate_y + |
| x->skip_cost[av1_get_skip_context(xd)][this_skip2 || skippable]; |
| search_state.best_rate_uv = rate_uv; |
| } |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| |
| /* keep record of best compound/single-only prediction */ |
| if (!disable_skip && ref_frame != INTRA_FRAME) { |
| int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; |
| |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| single_rate = rate2 - compmode_cost; |
| hybrid_rate = rate2; |
| } else { |
| single_rate = rate2; |
| hybrid_rate = rate2 + compmode_cost; |
| } |
| |
| single_rd = RDCOST(x->rdmult, single_rate, distortion2); |
| hybrid_rd = RDCOST(x->rdmult, hybrid_rate, distortion2); |
| |
| if (!comp_pred) { |
| if (single_rd < search_state.best_pred_rd[SINGLE_REFERENCE]) |
| search_state.best_pred_rd[SINGLE_REFERENCE] = single_rd; |
| } else { |
| if (single_rd < search_state.best_pred_rd[COMPOUND_REFERENCE]) |
| search_state.best_pred_rd[COMPOUND_REFERENCE] = single_rd; |
| } |
| if (hybrid_rd < search_state.best_pred_rd[REFERENCE_MODE_SELECT]) |
| search_state.best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; |
| } |
| if (sf->drop_ref && second_ref_frame == NONE_FRAME) { |
| // Collect data from single ref mode, and analyze data. |
| sf_drop_ref_analyze(&search_state, mode_order, distortion2); |
| } |
| |
| if (x->skip && !comp_pred) break; |
| } |
| |
| release_compound_type_rd_buffers(&rd_buffers); |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, do_tx_search_time); |
| #endif |
| if (do_tx_search_global != 1) { |
| inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr); |
| search_state.best_rd = INT64_MAX; |
| |
| int64_t top_est_rd = |
| inter_modes_info->num > 0 |
| ? inter_modes_info |
| ->est_rd_arr[inter_modes_info->rd_idx_pair_arr[0].idx] |
| : INT64_MAX; |
| for (int j = 0; j < inter_modes_info->num; ++j) { |
| const int data_idx = inter_modes_info->rd_idx_pair_arr[j].idx; |
| *mbmi = inter_modes_info->mbmi_arr[data_idx]; |
| int64_t curr_est_rd = inter_modes_info->est_rd_arr[data_idx]; |
| if (curr_est_rd * 0.80 > top_est_rd) break; |
| |
| RD_STATS rd_stats; |
| RD_STATS rd_stats_y; |
| RD_STATS rd_stats_uv; |
| |
| bool true_rd = inter_modes_info->true_rd_arr[data_idx]; |
| if (true_rd) { |
| rd_stats = inter_modes_info->rd_cost_arr[data_idx]; |
| rd_stats_y = inter_modes_info->rd_cost_y_arr[data_idx]; |
| rd_stats_uv = inter_modes_info->rd_cost_uv_arr[data_idx]; |
| memcpy(x->blk_skip, inter_modes_info->blk_skip_arr[data_idx], |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } else { |
| const int mode_rate = inter_modes_info->mode_rate_arr[data_idx]; |
| |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| |
| // Select prediction reference frames. |
| const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME; |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; |
| if (is_comp_pred) |
| xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; |
| } |
| |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| av1_num_planes(cm) - 1); |
| if (mbmi->motion_mode == OBMC_CAUSAL) |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| |
| if (!txfm_search(cpi, tile_data, x, bsize, mi_row, mi_col, &rd_stats, |
| &rd_stats_y, &rd_stats_uv, mode_rate, |
| search_state.best_rd)) { |
| continue; |
| } else if (cpi->sf.inter_mode_rd_model_estimation == 1) { |
| const int skip_ctx = av1_get_skip_context(xd); |
| inter_mode_data_push(tile_data, mbmi->sb_type, rd_stats.sse, |
| rd_stats.dist, |
| rd_stats_y.rate + rd_stats_uv.rate + |
| x->skip_cost[skip_ctx][mbmi->skip]); |
| } |
| rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist); |
| } |
| |
| if (rd_stats.rdcost < search_state.best_rd) { |
| search_state.best_rd = rd_stats.rdcost; |
| // Note index of best mode so far |
| const int mode_index = get_prediction_mode_idx( |
| mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| search_state.best_mode_index = mode_index; |
| *rd_cost = rd_stats; |
| search_state.best_rd = rd_stats.rdcost; |
| search_state.best_mbmode = *mbmi; |
| search_state.best_skip2 = mbmi->skip; |
| search_state.best_mode_skippable = rd_stats.skip; |
| search_state.best_rate_y = |
| rd_stats_y.rate + |
| x->skip_cost[av1_get_skip_context(xd)][rd_stats.skip || mbmi->skip]; |
| search_state.best_rate_uv = rd_stats_uv.rate; |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, do_tx_search_time); |
| #endif |
| |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| start_timing(cpi, handle_intra_mode_time); |
| #endif |
| for (int j = 0; j < intra_mode_num; ++j) { |
| const int mode_index = intra_mode_idx_ls[j]; |
| const MV_REFERENCE_FRAME ref_frame = |
| av1_mode_order[mode_index].ref_frame[0]; |
| assert(av1_mode_order[mode_index].ref_frame[1] == NONE_FRAME); |
| assert(ref_frame == INTRA_FRAME); |
| if (sf->skip_intra_in_interframe && search_state.skip_intra_modes) break; |
| init_mbmi(mbmi, mode_index, cm); |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, INTRA_FRAME, NONE_FRAME); |
| |
| // Select prediction reference frames. |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| } |
| |
| RD_STATS intra_rd_stats, intra_rd_stats_y, intra_rd_stats_uv; |
| |
| const int ref_frame_cost = ref_costs_single[ref_frame]; |
| intra_rd_stats.rdcost = handle_intra_mode( |
| &search_state, cpi, x, bsize, mi_row, mi_col, ref_frame_cost, ctx, 0, |
| &intra_rd_stats, &intra_rd_stats_y, &intra_rd_stats_uv); |
| if (intra_rd_stats.rdcost < search_state.best_rd) { |
| search_state.best_rd = intra_rd_stats.rdcost; |
| // Note index of best mode so far |
| search_state.best_mode_index = mode_index; |
| *rd_cost = intra_rd_stats; |
| search_state.best_rd = intra_rd_stats.rdcost; |
| search_state.best_mbmode = *mbmi; |
| search_state.best_skip2 = 0; |
| search_state.best_mode_skippable = intra_rd_stats.skip; |
| search_state.best_rate_y = |
| intra_rd_stats_y.rate + |
| x->skip_cost[av1_get_skip_context(xd)][intra_rd_stats.skip]; |
| search_state.best_rate_uv = intra_rd_stats_uv.rate; |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| #if CONFIG_COLLECT_COMPONENT_TIMING |
| end_timing(cpi, handle_intra_mode_time); |
| #endif |
| |
| // In effect only when speed >= 2. |
| sf_refine_fast_tx_type_search( |
| cpi, x, mi_row, mi_col, rd_cost, bsize, ctx, search_state.best_mode_index, |
| &search_state.best_mbmode, yv12_mb, search_state.best_rate_y, |
| search_state.best_rate_uv, &search_state.best_skip2); |
| |
| // Only try palette mode when the best mode so far is an intra mode. |
| if (try_palette && !is_inter_mode(search_state.best_mbmode.mode)) { |
| search_palette_mode(cpi, x, mi_row, mi_col, rd_cost, ctx, bsize, mbmi, pmi, |
| ref_costs_single, &search_state); |
| } |
| search_state.best_mbmode.skip_mode = 0; |
| if (cm->current_frame.skip_mode_info.skip_mode_flag && |
| !segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| is_comp_ref_allowed(bsize)) { |
| rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, mi_row, mi_col, |
| yv12_mb); |
| } |
| |
| // Make sure that the ref_mv_idx is only nonzero when we're |
| // using a mode which can support ref_mv_idx |
| if (search_state.best_mbmode.ref_mv_idx != 0 && |
| !(search_state.best_mbmode.mode == NEWMV || |
| search_state.best_mbmode.mode == NEW_NEWMV || |
| have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) { |
| search_state.best_mbmode.ref_mv_idx = 0; |
| } |
| |
| if (search_state.best_mode_index < 0 || |
| search_state.best_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| assert( |
| (cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == |
| av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 0)) || |
| !is_inter_block(&search_state.best_mbmode)); |
| assert( |
| (cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == |
| av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 1)) || |
| !is_inter_block(&search_state.best_mbmode)); |
| |
| if (!cpi->rc.is_src_frame_alt_ref) |
| av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, |
| sf->adaptive_rd_thresh, bsize, |
| search_state.best_mode_index); |
| |
| // macroblock modes |
| *mbmi = search_state.best_mbmode; |
| x->skip |= search_state.best_skip2; |
| |
| // Note: this section is needed since the mode may have been forced to |
| // GLOBALMV by the all-zero mode handling of ref-mv. |
| if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) { |
| // Correct the interp filters for GLOBALMV |
| if (is_nontrans_global_motion(xd, xd->mi[0])) { |
| assert(mbmi->interp_filters == |
| av1_broadcast_interp_filter( |
| av1_unswitchable_filter(cm->interp_filter))); |
| } |
| } |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) { |
| if (search_state.best_pred_rd[i] == INT64_MAX) |
| search_state.best_pred_diff[i] = INT_MIN; |
| else |
| search_state.best_pred_diff[i] = |
| search_state.best_rd - search_state.best_pred_rd[i]; |
| } |
| |
| x->skip |= search_state.best_mode_skippable; |
| |
| assert(search_state.best_mode_index >= 0); |
| |
| store_coding_context(x, ctx, search_state.best_mode_index, |
| search_state.best_pred_diff, |
| search_state.best_mode_skippable); |
| |
| if (pmi->palette_size[1] > 0) { |
| assert(try_palette); |
| restore_uv_color_map(cpi, x); |
| } |
| } |
| |
| // TODO(kyslov): now this is very similar to set_params_rd_pick_inter_mode |
| // (except that doesn't set ALTREF parameters) |
| // consider passing a flag to select non-rd path (similar to |
| // encode_sb_row) |
| static void set_params_nonrd_pick_inter_mode( |
| const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, mode_skip_mask_t *mode_skip_mask, |
| int skip_ref_frame_mask, unsigned int ref_costs_single[REF_FRAMES], |
| unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES], |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| unsigned char segment_id = mbmi->segment_id; |
| |
| for (int i = 0; i < MB_MODE_COUNT; ++i) |
| for (int k = 0; k < REF_FRAMES; ++k) args->single_filter[i][k] = SWITCHABLE; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int len = sizeof(uint16_t); |
| args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(x->above_pred_buf); |
| args->above_pred_buf[1] = |
| CONVERT_TO_BYTEPTR(x->above_pred_buf + (MAX_SB_SQUARE >> 1) * len); |
| args->above_pred_buf[2] = |
| CONVERT_TO_BYTEPTR(x->above_pred_buf + MAX_SB_SQUARE * len); |
| args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(x->left_pred_buf); |
| args->left_pred_buf[1] = |
| CONVERT_TO_BYTEPTR(x->left_pred_buf + (MAX_SB_SQUARE >> 1) * len); |
| args->left_pred_buf[2] = |
| CONVERT_TO_BYTEPTR(x->left_pred_buf + MAX_SB_SQUARE * len); |
| } else { |
| args->above_pred_buf[0] = x->above_pred_buf; |
| args->above_pred_buf[1] = x->above_pred_buf + (MAX_SB_SQUARE >> 1); |
| args->above_pred_buf[2] = x->above_pred_buf + MAX_SB_SQUARE; |
| args->left_pred_buf[0] = x->left_pred_buf; |
| args->left_pred_buf[1] = x->left_pred_buf + (MAX_SB_SQUARE >> 1); |
| args->left_pred_buf[2] = x->left_pred_buf + MAX_SB_SQUARE; |
| } |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single, |
| ref_costs_comp); |
| |
| MV_REFERENCE_FRAME ref_frame; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| x->mbmi_ext->mode_context[ref_frame] = 0; |
| mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX; |
| if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { |
| if (mbmi->partition != PARTITION_NONE && |
| mbmi->partition != PARTITION_SPLIT) { |
| if (skip_ref_frame_mask & (1 << ref_frame)) { |
| int skip = 1; |
| for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) { |
| if (!(skip_ref_frame_mask & (1 << r))) { |
| const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES]; |
| if (rf[0] == ref_frame || rf[1] == ref_frame) { |
| skip = 0; |
| break; |
| } |
| } |
| } |
| if (skip) continue; |
| } |
| } |
| assert(get_ref_frame_yv12_buf(cm, ref_frame) != NULL); |
| setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, |
| yv12_mb); |
| } |
| } |
| |
| av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); |
| init_mode_skip_mask(mode_skip_mask, cpi, x, bsize); |
| |
| if (cpi->sf.tx_type_search.fast_intra_tx_type_search) |
| x->use_default_intra_tx_type = 1; |
| else |
| x->use_default_intra_tx_type = 0; |
| |
| if (cpi->sf.tx_type_search.fast_inter_tx_type_search) |
| x->use_default_inter_tx_type = 1; |
| else |
| x->use_default_inter_tx_type = 0; |
| if (cpi->sf.skip_repeat_interpolation_filter_search) { |
| x->interp_filter_stats_idx[0] = 0; |
| x->interp_filter_stats_idx[1] = 0; |
| } |
| } |
| |
| // TODO(kyslov): now this is very similar to av1_rd_pick_inter_mode_sb except: |
| // it only checks non-compound mode and |
| // it doesn't check palette mode |
| // it doesn't refine tx search |
| // this function is likely to be heavily modified with nonrd mode |
| // decision |
| void av1_nonrd_pick_inter_mode_sb(AV1_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *x, int mi_row, int mi_col, |
| RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const struct segmentation *const seg = &cm->seg; |
| PREDICTION_MODE this_mode; |
| unsigned char segment_id = mbmi->segment_id; |
| int i; |
| struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; |
| unsigned int ref_costs_single[REF_FRAMES]; |
| unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES]; |
| int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)]; |
| mode_skip_mask_t mode_skip_mask; |
| uint8_t motion_mode_skip_mask = 0; // second pass of single ref modes |
| |
| InterModeSearchState search_state; |
| init_inter_mode_search_state(&search_state, cpi, tile_data, x, bsize, |
| best_rd_so_far); |
| HandleInterModeArgs args = { |
| { NULL }, { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }, |
| { NULL }, { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 }, |
| NULL, NULL, |
| NULL, search_state.modelled_rd, |
| { { 0 } }, INT_MAX, |
| INT_MAX, search_state.simple_rd, |
| 0, NULL, |
| 1, NULL |
| }; |
| for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; |
| |
| av1_invalid_rd_stats(rd_cost); |
| |
| // Ref frames that are selected by square partition blocks. |
| int picked_ref_frames_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions && |
| mbmi->partition != PARTITION_NONE && mbmi->partition != PARTITION_SPLIT) { |
| // Don't enable for vert and horz partition blocks if current frame |
| // will be used as bwd or arf2. |
| if ((!cpi->refresh_bwd_ref_frame && !cpi->refresh_alt2_ref_frame) || |
| (mbmi->partition != PARTITION_VERT && |
| mbmi->partition != PARTITION_HORZ)) { |
| picked_ref_frames_mask = fetch_picked_ref_frames_mask( |
| x, bsize, cm->seq_params.mib_size, mi_row, mi_col); |
| } |
| } |
| |
| // Skip ref frames that never selected by square blocks. |
| const int skip_ref_frame_mask = |
| picked_ref_frames_mask ? ~picked_ref_frames_mask : 0; |
| |
| // init params, set frame modes, speed features |
| set_params_nonrd_pick_inter_mode(cpi, x, &args, bsize, mi_row, mi_col, |
| &mode_skip_mask, skip_ref_frame_mask, |
| ref_costs_single, ref_costs_comp, yv12_mb); |
| |
| int64_t best_est_rd = INT64_MAX; |
| InterModesInfo *inter_modes_info = x->inter_modes_info; |
| inter_modes_info->num = 0; |
| |
| int intra_mode_num = 0; |
| int intra_mode_idx_ls[MAX_MODES]; |
| int reach_first_comp_mode = 0; |
| |
| // Temporary buffers used by handle_inter_mode(). |
| uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_obmc_bufs[0]); |
| |
| CompoundTypeRdBuffers rd_buffers; |
| alloc_compound_type_rd_buffers(cm, &rd_buffers); |
| |
| for (int midx = 0; midx < MAX_MODES; ++midx) { |
| const MODE_DEFINITION *mode_order = &av1_mode_order[midx]; |
| this_mode = mode_order->mode; |
| const MV_REFERENCE_FRAME ref_frame = mode_order->ref_frame[0]; |
| const MV_REFERENCE_FRAME second_ref_frame = mode_order->ref_frame[1]; |
| const int comp_pred = second_ref_frame > INTRA_FRAME; |
| |
| if (second_ref_frame != NONE_FRAME) continue; |
| |
| // When single ref motion search ends: |
| // 1st pass: To evaluate single ref RD results and rewind to the beginning; |
| // 2nd pass: To continue with compound ref search. |
| if (sf->prune_single_motion_modes_by_simple_trans) { |
| if (comp_pred && args.single_ref_first_pass) { |
| args.single_ref_first_pass = 0; |
| // Reach the first comp ref mode |
| // Reset midx to start the 2nd pass for single ref motion search |
| midx = -1; |
| motion_mode_skip_mask = analyze_simple_trans_states(cpi, x); |
| continue; |
| } |
| if (!comp_pred && ref_frame != INTRA_FRAME) { // single ref mode |
| if (args.single_ref_first_pass) { |
| // clear stats |
| for (int k = 0; k < MAX_REF_MV_SEARCH; ++k) { |
| x->simple_rd_state[midx][k].rd_stats.rdcost = INT64_MAX; |
| x->simple_rd_state[midx][k].early_skipped = 0; |
| } |
| } else { |
| if (motion_mode_skip_mask & (1 << ref_frame)) { |
| continue; |
| } |
| } |
| } |
| } |
| |
| // Reach the first compound prediction mode |
| if (sf->prune_comp_search_by_single_result > 0 && comp_pred && |
| reach_first_comp_mode == 0) { |
| analyze_single_states(cpi, &search_state); |
| reach_first_comp_mode = 1; |
| } |
| int64_t this_rd = INT64_MAX; |
| int disable_skip = 0; |
| int rate2 = 0; |
| int64_t distortion2 = 0; |
| int skippable = 0; |
| int this_skip2 = 0; |
| |
| init_mbmi(mbmi, midx, cm); |
| |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| if (inter_mode_compatible_skip(cpi, x, bsize, midx)) continue; |
| |
| const int ret = inter_mode_search_order_independent_skip( |
| cpi, x, &mode_skip_mask, &search_state, skip_ref_frame_mask); |
| if (ret == 1) continue; |
| args.skip_motion_mode = (ret == 2); |
| |
| if (sf->drop_ref && comp_pred) { |
| if (sf_check_is_drop_ref(mode_order, &search_state)) { |
| continue; |
| } |
| } |
| |
| if (search_state.best_rd < search_state.mode_threshold[midx]) continue; |
| |
| if (sf->prune_comp_search_by_single_result > 0 && comp_pred) { |
| if (compound_skip_by_single_states(cpi, &search_state, this_mode, |
| ref_frame, second_ref_frame, x)) |
| continue; |
| } |
| |
| const int ref_frame_cost = comp_pred |
| ? ref_costs_comp[ref_frame][second_ref_frame] |
| : ref_costs_single[ref_frame]; |
| const int compmode_cost = |
| is_comp_ref_allowed(mbmi->sb_type) ? comp_inter_cost[comp_pred] : 0; |
| const int real_compmode_cost = |
| cm->current_frame.reference_mode == REFERENCE_MODE_SELECT |
| ? compmode_cost |
| : 0; |
| |
| if (comp_pred) { |
| if ((sf->mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && |
| search_state.best_mode_index >= 0 && |
| search_state.best_mbmode.ref_frame[0] == INTRA_FRAME) |
| continue; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| if (!cpi->oxcf.enable_smooth_intra && |
| (mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED || |
| mbmi->mode == SMOOTH_V_PRED)) |
| continue; |
| if (!cpi->oxcf.enable_paeth_intra && mbmi->mode == PAETH_PRED) continue; |
| if (sf->adaptive_mode_search > 1) |
| if ((x->source_variance << num_pels_log2_lookup[bsize]) > |
| search_state.best_pred_sse) |
| continue; |
| |
| if (this_mode != DC_PRED) { |
| // Only search the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if ((sf->mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && |
| (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) { |
| if (search_state.best_mode_index >= 0 && |
| search_state.best_mbmode.ref_frame[0] > INTRA_FRAME) |
| continue; |
| } |
| if (sf->mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(this_mode, search_state.best_intra_mode)) |
| continue; |
| } |
| } |
| } |
| |
| // Select prediction reference frames. |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| intra_mode_idx_ls[intra_mode_num++] = midx; |
| continue; |
| } else { |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| mbmi->angle_delta[PLANE_TYPE_UV] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->ref_mv_idx = 0; |
| int64_t ref_best_rd = search_state.best_rd; |
| { |
| RD_STATS rd_stats, rd_stats_y, rd_stats_uv; |
| av1_init_rd_stats(&rd_stats); |
| rd_stats.rate = rate2; |
| |
| // Point to variables that are maintained between loop iterations |
| args.single_newmv = search_state.single_newmv; |
| args.single_newmv_rate = search_state.single_newmv_rate; |
| args.single_newmv_valid = search_state.single_newmv_valid; |
| args.single_comp_cost = real_compmode_cost; |
| args.ref_frame_cost = ref_frame_cost; |
| if (midx < MAX_SINGLE_REF_MODES) { |
| args.simple_rd_state = x->simple_rd_state[midx]; |
| } |
| this_rd = handle_inter_mode( |
| cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, |
| &disable_skip, mi_row, mi_col, &args, ref_best_rd, tmp_buf, |
| &rd_buffers, &best_est_rd, 0, inter_modes_info); |
| rate2 = rd_stats.rate; |
| skippable = rd_stats.skip; |
| distortion2 = rd_stats.dist; |
| } |
| |
| if (sf->prune_comp_search_by_single_result > 0 && |
| is_inter_singleref_mode(this_mode) && args.single_ref_first_pass) { |
| collect_single_states(x, &search_state, mbmi); |
| } |
| |
| if (this_rd == INT64_MAX) continue; |
| |
| this_skip2 = mbmi->skip; |
| this_rd = RDCOST(x->rdmult, rate2, distortion2); |
| } |
| |
| // Did this mode help.. i.e. is it the new best mode |
| if (this_rd < search_state.best_rd || x->skip) { |
| int mode_excluded = 0; |
| if (comp_pred) { |
| mode_excluded = cm->current_frame.reference_mode == SINGLE_REFERENCE; |
| } |
| if (!mode_excluded) { |
| // Note index of best mode so far |
| search_state.best_mode_index = midx; |
| |
| if (ref_frame == INTRA_FRAME) { |
| /* required for left and above block mv */ |
| mbmi->mv[0].as_int = 0; |
| } else { |
| search_state.best_pred_sse = x->pred_sse[ref_frame]; |
| } |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| search_state.best_rd = this_rd; |
| search_state.best_mbmode = *mbmi; |
| search_state.best_skip2 = this_skip2; |
| search_state.best_mode_skippable = skippable; |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| |
| /* keep record of best compound/single-only prediction */ |
| if (!disable_skip && ref_frame != INTRA_FRAME) { |
| int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; |
| |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { |
| single_rate = rate2 - compmode_cost; |
| hybrid_rate = rate2; |
| } else { |
| single_rate = rate2; |
| hybrid_rate = rate2 + compmode_cost; |
| } |
| |
| single_rd = RDCOST(x->rdmult, single_rate, distortion2); |
| hybrid_rd = RDCOST(x->rdmult, hybrid_rate, distortion2); |
| |
| if (!comp_pred) { |
| if (single_rd < search_state.best_pred_rd[SINGLE_REFERENCE]) |
| search_state.best_pred_rd[SINGLE_REFERENCE] = single_rd; |
| } else { |
| if (single_rd < search_state.best_pred_rd[COMPOUND_REFERENCE]) |
| search_state.best_pred_rd[COMPOUND_REFERENCE] = single_rd; |
| } |
| if (hybrid_rd < search_state.best_pred_rd[REFERENCE_MODE_SELECT]) |
| search_state.best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; |
| } |
| if (sf->drop_ref && second_ref_frame == NONE_FRAME) { |
| // Collect data from single ref mode, and analyze data. |
| sf_drop_ref_analyze(&search_state, mode_order, distortion2); |
| } |
| |
| if (x->skip && !comp_pred) break; |
| } |
| |
| release_compound_type_rd_buffers(&rd_buffers); |
| |
| inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr); |
| search_state.best_rd = INT64_MAX; |
| |
| if (inter_modes_info->num > 0) { |
| const int data_idx = inter_modes_info->rd_idx_pair_arr[0].idx; |
| *mbmi = inter_modes_info->mbmi_arr[data_idx]; |
| const int mode_rate = inter_modes_info->mode_rate_arr[data_idx]; |
| |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| |
| // Select prediction reference frames. |
| const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME; |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; |
| if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; |
| } |
| |
| RD_STATS rd_stats; |
| RD_STATS rd_stats_y; |
| RD_STATS rd_stats_uv; |
| |
| av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, |
| av1_num_planes(cm) - 1); |
| if (mbmi->motion_mode == OBMC_CAUSAL) |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| |
| if (txfm_search(cpi, tile_data, x, bsize, mi_row, mi_col, &rd_stats, |
| &rd_stats_y, &rd_stats_uv, mode_rate, |
| search_state.best_rd)) { |
| if (cpi->sf.inter_mode_rd_model_estimation == 1) { |
| const int skip_ctx = av1_get_skip_context(xd); |
| inter_mode_data_push(tile_data, mbmi->sb_type, rd_stats.sse, |
| rd_stats.dist, |
| rd_stats_y.rate + rd_stats_uv.rate + |
| x->skip_cost[skip_ctx][mbmi->skip]); |
| } |
| rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist); |
| |
| if (rd_stats.rdcost < search_state.best_rd) { |
| search_state.best_rd = rd_stats.rdcost; |
| // Note index of best mode so far |
| const int mode_index = get_prediction_mode_idx( |
| mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| search_state.best_mode_index = mode_index; |
| *rd_cost = rd_stats; |
| search_state.best_rd = rd_stats.rdcost; |
| search_state.best_mbmode = *mbmi; |
| search_state.best_skip2 = mbmi->skip; |
| search_state.best_mode_skippable = rd_stats.skip; |
| search_state.best_rate_y = |
| rd_stats_y.rate + |
| x->skip_cost[av1_get_skip_context(xd)][rd_stats.skip || mbmi->skip]; |
| search_state.best_rate_uv = rd_stats_uv.rate; |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| } |
| |
| for (int j = 0; j < intra_mode_num; ++j) { |
| const int mode_index = intra_mode_idx_ls[j]; |
| const MV_REFERENCE_FRAME ref_frame = |
| av1_mode_order[mode_index].ref_frame[0]; |
| assert(av1_mode_order[mode_index].ref_frame[1] == NONE_FRAME); |
| assert(ref_frame == INTRA_FRAME); |
| if (sf->skip_intra_in_interframe && search_state.skip_intra_modes) break; |
| init_mbmi(mbmi, mode_index, cm); |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, INTRA_FRAME, NONE_FRAME); |
| |
| // Select prediction reference frames. |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| } |
| |
| RD_STATS intra_rd_stats, intra_rd_stats_y, intra_rd_stats_uv; |
| |
| const int ref_frame_cost = ref_costs_single[ref_frame]; |
| intra_rd_stats.rdcost = handle_intra_mode( |
| &search_state, cpi, x, bsize, mi_row, mi_col, ref_frame_cost, ctx, 0, |
| &intra_rd_stats, &intra_rd_stats_y, &intra_rd_stats_uv); |
| if (intra_rd_stats.rdcost < search_state.best_rd) { |
| search_state.best_rd = intra_rd_stats.rdcost; |
| // Note index of best mode so far |
| search_state.best_mode_index = mode_index; |
| *rd_cost = intra_rd_stats; |
| search_state.best_rd = intra_rd_stats.rdcost; |
| search_state.best_mbmode = *mbmi; |
| search_state.best_skip2 = 0; |
| search_state.best_mode_skippable = intra_rd_stats.skip; |
| search_state.best_rate_y = |
| intra_rd_stats_y.rate + |
| x->skip_cost[av1_get_skip_context(xd)][intra_rd_stats.skip]; |
| search_state.best_rate_uv = intra_rd_stats_uv.rate; |
| memcpy(ctx->blk_skip, x->blk_skip, |
| sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| } |
| } |
| |
| search_state.best_mbmode.skip_mode = 0; |
| if (cm->current_frame.skip_mode_info.skip_mode_flag && |
| !segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| is_comp_ref_allowed(bsize)) { |
| rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, mi_row, mi_col, |
| yv12_mb); |
| } |
| |
| // Make sure that the ref_mv_idx is only nonzero when we're |
| // using a mode which can support ref_mv_idx |
| if (search_state.best_mbmode.ref_mv_idx != 0 && |
| !(search_state.best_mbmode.mode == NEWMV || |
| search_state.best_mbmode.mode == NEW_NEWMV || |
| have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) { |
| search_state.best_mbmode.ref_mv_idx = 0; |
| } |
| |
| if (search_state.best_mode_index < 0 || |
| search_state.best_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| assert( |
| (cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == |
| av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 0)) || |
| !is_inter_block(&search_state.best_mbmode)); |
| assert( |
| (cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == |
| av1_extract_interp_filter(search_state.best_mbmode.interp_filters, 1)) || |
| !is_inter_block(&search_state.best_mbmode)); |
| |
| if (!cpi->rc.is_src_frame_alt_ref) |
| av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, |
| sf->adaptive_rd_thresh, bsize, |
| search_state.best_mode_index); |
| |
| // macroblock modes |
| *mbmi = search_state.best_mbmode; |
| x->skip |= search_state.best_skip2; |
| |
| // Note: this section is needed since the mode may have been forced to |
| // GLOBALMV by the all-zero mode handling of ref-mv. |
| if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) { |
| // Correct the interp filters for GLOBALMV |
| if (is_nontrans_global_motion(xd, xd->mi[0])) { |
| assert(mbmi->interp_filters == |
| av1_broadcast_interp_filter( |
| av1_unswitchable_filter(cm->interp_filter))); |
| } |
| } |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) { |
| if (search_state.best_pred_rd[i] == INT64_MAX) |
| search_state.best_pred_diff[i] = INT_MIN; |
| else |
| search_state.best_pred_diff[i] = |
| search_state.best_rd - search_state.best_pred_rd[i]; |
| } |
| |
| x->skip |= search_state.best_mode_skippable; |
| |
| assert(search_state.best_mode_index >= 0); |
| |
| store_coding_context(x, ctx, search_state.best_mode_index, |
| search_state.best_pred_diff, |
| search_state.best_mode_skippable); |
| } |
| |
| void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi, |
| TileDataEnc *tile_data, MACROBLOCK *x, |
| int mi_row, int mi_col, |
| RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = xd->mi[0]; |
| unsigned char segment_id = mbmi->segment_id; |
| const int comp_pred = 0; |
| int i; |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| unsigned int ref_costs_single[REF_FRAMES]; |
| unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES]; |
| int *comp_inter_cost = x->comp_inter_cost[av1_get_reference_mode_context(xd)]; |
| InterpFilter best_filter = SWITCHABLE; |
| int64_t this_rd = INT64_MAX; |
| int rate2 = 0; |
| const int64_t distortion2 = 0; |
| (void)mi_row; |
| (void)mi_col; |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single, |
| ref_costs_comp); |
| |
| for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; |
| for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX; |
| |
| rd_cost->rate = INT_MAX; |
| |
| assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); |
| |
| mbmi->palette_mode_info.palette_size[0] = 0; |
| mbmi->palette_mode_info.palette_size[1] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->mode = GLOBALMV; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->uv_mode = UV_DC_PRED; |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) |
| mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); |
| else |
| mbmi->ref_frame[0] = LAST_FRAME; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| mbmi->mv[0].as_int = |
| gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]], |
| cm->allow_high_precision_mv, bsize, mi_col, mi_row, |
| cm->cur_frame_force_integer_mv) |
| .as_int; |
| mbmi->tx_size = max_txsize_lookup[bsize]; |
| x->skip = 1; |
| |
| mbmi->ref_mv_idx = 0; |
| |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); |
| if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) { |
| int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; |
| mbmi->num_proj_ref = |
| av1_findSamples(cm, xd, mi_row, mi_col, pts, pts_inref); |
| // Select the samples according to motion vector difference |
| if (mbmi->num_proj_ref > 1) |
| mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref, |
| mbmi->num_proj_ref, bsize); |
| } |
| |
| set_default_interp_filters(mbmi, cm->interp_filter); |
| |
| if (cm->interp_filter != SWITCHABLE) { |
| best_filter = cm->interp_filter; |
| } else { |
| best_filter = EIGHTTAP_REGULAR; |
| if (av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd) && |
| x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { |
| int rs; |
| int best_rs = INT_MAX; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| mbmi->interp_filters = av1_broadcast_interp_filter(i); |
| rs = av1_get_switchable_rate(cm, x, xd); |
| if (rs < best_rs) { |
| best_rs = rs; |
| best_filter = av1_extract_interp_filter(mbmi->interp_filters, 0); |
| } |
| } |
| } |
| } |
| // Set the appropriate filter |
| mbmi->interp_filters = av1_broadcast_interp_filter(best_filter); |
| rate2 += av1_get_switchable_rate(cm, x, xd); |
| |
| if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) |
| rate2 += comp_inter_cost[comp_pred]; |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| rate2 += ref_costs_single[LAST_FRAME]; |
| this_rd = RDCOST(x->rdmult, rate2, distortion2); |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| |
| if (this_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == |
| av1_extract_interp_filter(mbmi->interp_filters, 0))); |
| |
| av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, |
| cpi->sf.adaptive_rd_thresh, bsize, THR_GLOBALMV); |
| |
| av1_zero(best_pred_diff); |
| |
| store_coding_context(x, ctx, THR_GLOBALMV, best_pred_diff, 0); |
| } |
| |
| struct calc_target_weighted_pred_ctxt { |
| const MACROBLOCK *x; |
| const uint8_t *tmp; |
| int tmp_stride; |
| int overlap; |
| }; |
| |
| static INLINE void calc_target_weighted_pred_above( |
| MACROBLOCKD *xd, int rel_mi_col, uint8_t nb_mi_width, MB_MODE_INFO *nb_mi, |
| void *fun_ctxt, const int num_planes) { |
| (void)nb_mi; |
| (void)num_planes; |
| |
| struct calc_target_weighted_pred_ctxt *ctxt = |
| (struct calc_target_weighted_pred_ctxt *)fun_ctxt; |
| |
| const int bw = xd->n4_w << MI_SIZE_LOG2; |
| const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); |
| |
| int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_col * MI_SIZE); |
| int32_t *mask = ctxt->x->mask_buf + (rel_mi_col * MI_SIZE); |
| const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE; |
| const int is_hbd = is_cur_buf_hbd(xd); |
| |
| if (!is_hbd) { |
| for (int row = 0; row < ctxt->overlap; ++row) { |
| const uint8_t m0 = mask1d[row]; |
| const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; |
| for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) { |
| wsrc[col] = m1 * tmp[col]; |
| mask[col] = m0; |
| } |
| wsrc += bw; |
| mask += bw; |
| tmp += ctxt->tmp_stride; |
| } |
| } else { |
| const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); |
| |
| for (int row = 0; row < ctxt->overlap; ++row) { |
| const uint8_t m0 = mask1d[row]; |
| const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; |
| for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) { |
| wsrc[col] = m1 * tmp16[col]; |
| mask[col] = m0; |
| } |
| wsrc += bw; |
| mask += bw; |
| tmp16 += ctxt->tmp_stride; |
| } |
| } |
| } |
| |
| static INLINE void calc_target_weighted_pred_left( |
| MACROBLOCKD *xd, int rel_mi_row, uint8_t nb_mi_height, MB_MODE_INFO *nb_mi, |
| void *fun_ctxt, const int num_planes) { |
| (void)nb_mi; |
| (void)num_planes; |
| |
| struct calc_target_weighted_pred_ctxt *ctxt = |
| (struct calc_target_weighted_pred_ctxt *)fun_ctxt; |
| |
| const int bw = xd->n4_w << MI_SIZE_LOG2; |
| const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); |
| |
| int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_row * MI_SIZE * bw); |
| int32_t *mask = ctxt->x->mask_buf + (rel_mi_row * MI_SIZE * bw); |
| const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride); |
| const int is_hbd = is_cur_buf_hbd(xd); |
| |
| if (!is_hbd) { |
| for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) { |
| for (int col = 0; col < ctxt->overlap; ++col) { |
| const uint8_t m0 = mask1d[col]; |
| const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; |
| wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + |
| (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1; |
| mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; |
| } |
| wsrc += bw; |
| mask += bw; |
| tmp += ctxt->tmp_stride; |
| } |
| } else { |
| const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); |
| |
| for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) { |
| for (int col = 0; col < ctxt->overlap; ++col) { |
| const uint8_t m0 = mask1d[col]; |
| const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; |
| wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + |
| (tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1; |
| mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; |
| } |
| wsrc += bw; |
| mask += bw; |
| tmp16 += ctxt->tmp_stride; |
| } |
| } |
| } |
| |
| // This function has a structure similar to av1_build_obmc_inter_prediction |
| // |
| // The OBMC predictor is computed as: |
| // |
| // PObmc(x,y) = |
| // AOM_BLEND_A64(Mh(x), |
| // AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)), |
| // PLeft(x, y)) |
| // |
| // Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate |
| // rounding, this can be written as: |
| // |
| // AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) = |
| // Mh(x) * Mv(y) * P(x,y) + |
| // Mh(x) * Cv(y) * Pabove(x,y) + |
| // AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) |
| // |
| // Where : |
| // |
| // Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y) |
| // Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y) |
| // |
| // This function computes 'wsrc' and 'mask' as: |
| // |
| // wsrc(x, y) = |
| // AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) - |
| // Mh(x) * Cv(y) * Pabove(x,y) + |
| // AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) |
| // |
| // mask(x, y) = Mh(x) * Mv(y) |
| // |
| // These can then be used to efficiently approximate the error for any |
| // predictor P in the context of the provided neighbouring predictors by |
| // computing: |
| // |
| // error(x, y) = |
| // wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2) |
| // |
| static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, |
| const MACROBLOCKD *xd, int mi_row, |
| int mi_col, const uint8_t *above, |
| int above_stride, const uint8_t *left, |
| int left_stride) { |
| const BLOCK_SIZE bsize = xd->mi[0]->sb_type; |
| const int bw = xd->n4_w << MI_SIZE_LOG2; |
| const int bh = xd->n4_h << MI_SIZE_LOG2; |
| int32_t *mask_buf = x->mask_buf; |
| int32_t *wsrc_buf = x->wsrc_buf; |
| |
| const int is_hbd = is_cur_buf_hbd(xd); |
| const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA; |
| |
| // plane 0 should not be subsampled |
| assert(xd->plane[0].subsampling_x == 0); |
| assert(xd->plane[0].subsampling_y == 0); |
| |
| av1_zero_array(wsrc_buf, bw * bh); |
| for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA; |
| |
| // handle above row |
| if (xd->up_available) { |
| const int overlap = |
| AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; |
| struct calc_target_weighted_pred_ctxt ctxt = { x, above, above_stride, |
| overlap }; |
| foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd, mi_col, |
| max_neighbor_obmc[mi_size_wide_log2[bsize]], |
| calc_target_weighted_pred_above, &ctxt); |
| } |
| |
| for (int i = 0; i < bw * bh; ++i) { |
| wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; |
| mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; |
| } |
| |
| // handle left column |
| if (xd->left_available) { |
| const int overlap = |
| AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; |
| struct calc_target_weighted_pred_ctxt ctxt = { x, left, left_stride, |
| overlap }; |
| foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd, mi_row, |
| max_neighbor_obmc[mi_size_high_log2[bsize]], |
| calc_target_weighted_pred_left, &ctxt); |
| } |
| |
| if (!is_hbd) { |
| const uint8_t *src = x->plane[0].src.buf; |
| |
| for (int row = 0; row < bh; ++row) { |
| for (int col = 0; col < bw; ++col) { |
| wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; |
| } |
| wsrc_buf += bw; |
| src += x->plane[0].src.stride; |
| } |
| } else { |
| const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf); |
| |
| for (int row = 0; row < bh; ++row) { |
| for (int col = 0; col < bw; ++col) { |
| wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; |
| } |
| wsrc_buf += bw; |
| src += x->plane[0].src.stride; |
| } |
| } |
| } |
| |
| /* Use standard 3x3 Sobel matrix. Macro so it can be used for either high or |
| low bit-depth arrays. */ |
| #define SOBEL_X(src, stride, i, j) \ |
| ((src)[((i)-1) + (stride) * ((j)-1)] - \ |
| (src)[((i) + 1) + (stride) * ((j)-1)] + /* NOLINT */ \ |
| 2 * (src)[((i)-1) + (stride) * (j)] - /* NOLINT */ \ |
| 2 * (src)[((i) + 1) + (stride) * (j)] + /* NOLINT */ \ |
| (src)[((i)-1) + (stride) * ((j) + 1)] - /* NOLINT */ \ |
| (src)[((i) + 1) + (stride) * ((j) + 1)]) /* NOLINT */ |
| #define SOBEL_Y(src, stride, i, j) \ |
| ((src)[((i)-1) + (stride) * ((j)-1)] + \ |
| 2 * (src)[(i) + (stride) * ((j)-1)] + /* NOLINT */ \ |
| (src)[((i) + 1) + (stride) * ((j)-1)] - /* NOLINT */ \ |
| (src)[((i)-1) + (stride) * ((j) + 1)] - /* NOLINT */ \ |
| 2 * (src)[(i) + (stride) * ((j) + 1)] - /* NOLINT */ \ |
| (src)[((i) + 1) + (stride) * ((j) + 1)]) /* NOLINT */ |
| |
| sobel_xy av1_sobel(const uint8_t *input, int stride, int i, int j, |
| bool high_bd) { |
| int16_t s_x; |
| int16_t s_y; |
| if (high_bd) { |
| const uint16_t *src = CONVERT_TO_SHORTPTR(input); |
| s_x = SOBEL_X(src, stride, i, j); |
| s_y = SOBEL_Y(src, stride, i, j); |
| } else { |
| s_x = SOBEL_X(input, stride, i, j); |
| s_y = SOBEL_Y(input, stride, i, j); |
| } |
| sobel_xy r = { .x = s_x, .y = s_y }; |
| return r; |
| } |
| |
| // 8-tap Gaussian convolution filter with sigma = 1.3, sums to 128, |
| // all co-efficients must be even. |
| DECLARE_ALIGNED(16, static const int16_t, gauss_filter[8]) = { 2, 12, 30, 40, |
| 30, 12, 2, 0 }; |
| |
| void av1_gaussian_blur(const uint8_t *src, int src_stride, int w, int h, |
| uint8_t *dst, bool high_bd, int bd) { |
| ConvolveParams conv_params = get_conv_params(0, 0, bd); |
| InterpFilterParams filter = { .filter_ptr = gauss_filter, |
| .taps = 8, |
| .subpel_shifts = 0, |
| .interp_filter = EIGHTTAP_REGULAR }; |
| // Requirements from the vector-optimized implementations. |
| assert(h % 4 == 0); |
| assert(w % 8 == 0); |
| // Because we use an eight tap filter, the stride should be at least 7 + w. |
| assert(src_stride >= w + 7); |
| if (high_bd) { |
| av1_highbd_convolve_2d_sr(CONVERT_TO_SHORTPTR(src), src_stride, |
| CONVERT_TO_SHORTPTR(dst), w, w, h, &filter, |
| &filter, 0, 0, &conv_params, bd); |
| } else { |
| av1_convolve_2d_sr(src, src_stride, dst, w, w, h, &filter, &filter, 0, 0, |
| &conv_params); |
| } |
| } |
| |
| static EdgeInfo edge_probability(const uint8_t *input, int w, int h, |
| bool high_bd, int bd) { |
| // The probability of an edge in the whole image is the same as the highest |
| // probability of an edge for any individual pixel. Use Sobel as the metric |
| // for finding an edge. |
| uint16_t highest = 0; |
| uint16_t highest_x = 0; |
| uint16_t highest_y = 0; |
| // Ignore the 1 pixel border around the image for the computation. |
| for (int j = 1; j < h - 1; ++j) { |
| for (int i = 1; i < w - 1; ++i) { |
| sobel_xy g = av1_sobel(input, w, i, j, high_bd); |
| // Scale down to 8-bit to get same output regardless of bit depth. |
| int16_t g_x = g.x >> (bd - 8); |
| int16_t g_y = g.y >> (bd - 8); |
| uint16_t magnitude = (uint16_t)sqrt(g_x * g_x + g_y * g_y); |
| highest = AOMMAX(highest, magnitude); |
| highest_x = AOMMAX(highest_x, g_x); |
| highest_y = AOMMAX(highest_y, g_y); |
| } |
| } |
| EdgeInfo ei = { .magnitude = highest, .x = highest_x, .y = highest_y }; |
| return ei; |
| } |
| |
| /* Uses most of the Canny edge detection algorithm to find if there are any |
| * edges in the image. |
| */ |
| EdgeInfo av1_edge_exists(const uint8_t *src, int src_stride, int w, int h, |
| bool high_bd, int bd) { |
| if (w < 3 || h < 3) { |
| EdgeInfo n = { .magnitude = 0, .x = 0, .y = 0 }; |
| return n; |
| } |
| uint8_t *blurred; |
| if (high_bd) { |
| blurred = CONVERT_TO_BYTEPTR(aom_memalign(32, sizeof(uint16_t) * w * h)); |
| } else { |
| blurred = (uint8_t *)aom_memalign(32, sizeof(uint8_t) * w * h); |
| } |
| av1_gaussian_blur(src, src_stride, w, h, blurred, high_bd, bd); |
| // Skip the non-maximum suppression step in Canny edge detection. We just |
| // want a probability of an edge existing in the buffer, which is determined |
| // by the strongest edge in it -- we don't need to eliminate the weaker |
| // edges. Use Sobel for the edge detection. |
| EdgeInfo prob = edge_probability(blurred, w, h, high_bd, bd); |
| if (high_bd) { |
| aom_free(CONVERT_TO_SHORTPTR(blurred)); |
| } else { |
| aom_free(blurred); |
| } |
| return prob; |
| } |