blob: 2b3dde61029838521a51c9a967a2b9163a4bf1d6 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/system_state.h"
#if CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_MISMATCH_DEBUG
#include "av1/common/cfl.h"
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/global_motion.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/ml.h"
#include "av1/encoder/partition_model_weights.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int *rate);
static int ml_predict_breakout(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
const MACROBLOCK *const x,
const RD_STATS *const rd_stats,
unsigned int pb_source_variance);
// This is used as a reference when computing the source variance for the
// purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
};
static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16
};
#if CONFIG_FP_MB_STATS
static const uint8_t num_16x16_blocks_wide_lookup[BLOCK_SIZES_ALL] = {
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 8, 8, 1, 1, 1, 2, 2, 4
};
static const uint8_t num_16x16_blocks_high_lookup[BLOCK_SIZES_ALL] = {
1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4, 8, 4, 8, 1, 1, 2, 1, 4, 2
};
#endif // CONFIG_FP_MB_STATS
unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs) {
unsigned int sse;
const unsigned int var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi,
const struct buf_2d *ref,
BLOCK_SIZE bs, int bd) {
unsigned int var, sse;
switch (bd) {
case 10:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse);
break;
case 12:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse);
break;
case 8:
default:
var =
cpi->fn_ptr[bs].vf(ref->buf, ref->stride,
CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse);
break;
}
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi,
const struct buf_2d *ref,
int mi_row, int mi_col,
BLOCK_SIZE bs) {
unsigned int sse, var;
uint8_t *last_y;
const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME);
assert(last != NULL);
last_y =
&last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE];
var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse);
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]);
}
static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col) {
unsigned int var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64);
if (var < 8)
return BLOCK_64X64;
else if (var < 128)
return BLOCK_32X32;
else if (var < 2048)
return BLOCK_16X16;
else
return BLOCK_8X8;
}
// Lighter version of set_offsets that only sets the mode info
// pointers.
static void set_mode_info_offsets(const AV1_COMP *const cpi,
MACROBLOCK *const x, MACROBLOCKD *const xd,
int mi_row, int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
const int idx_str = xd->mi_stride * mi_row + mi_col;
xd->mi = cm->mi_grid_visible + idx_str;
xd->mi[0] = cm->mi + idx_str;
x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col);
}
static void set_offsets_without_segment_id(const AV1_COMP *const cpi,
const TileInfo *const tile,
MACROBLOCK *const x, int mi_row,
int mi_col, BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
set_mode_info_offsets(cpi, x, xd, mi_row, mi_col);
set_skip_context(xd, mi_row, mi_col, num_planes);
xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
// Set up destination pointers.
av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
mi_col, 0, num_planes);
// Set up limit values for MV components.
// Mv beyond the range do not produce new/different prediction block.
x->mv_limits.row_min =
-(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_limits.col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND);
x->mv_limits.row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND;
x->mv_limits.col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND;
set_plane_n4(xd, mi_width, mi_height, num_planes);
// Set up distance of MB to edge of frame in 1/8th pel units.
assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1)));
set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows,
cm->mi_cols);
// Set up source buffers.
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
// R/D setup.
x->rdmult = cpi->rd.RDMULT;
// required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs()
xd->tile = *tile;
}
static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile,
MACROBLOCK *const x, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
const struct segmentation *const seg = &cm->seg;
set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize);
mbmi = xd->mi[0];
xd->cfl.mi_row = mi_row;
xd->cfl.mi_col = mi_col;
mbmi->segment_id = 0;
// Setup segment ID.
if (seg->enabled) {
if (seg->enabled && !cpi->vaq_refresh) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mbmi->segment_id =
map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0;
}
av1_init_plane_quantizers(cpi, x, mbmi->segment_id);
}
}
static void reset_intmv_filter_type(MB_MODE_INFO *mbmi) {
InterpFilter filters[2];
for (int dir = 0; dir < 2; ++dir) {
filters[dir] = av1_extract_interp_filter(mbmi->interp_filters, dir);
}
mbmi->interp_filters = av1_make_interp_filters(filters[0], filters[1]);
}
static void update_filter_type_count(uint8_t allow_update_cdf,
FRAME_COUNTS *counts,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
int dir;
for (dir = 0; dir < 2; ++dir) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
++counts->switchable_interp[ctx][filter];
if (allow_update_cdf) {
update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter,
SWITCHABLE_FILTERS);
}
}
}
static void update_global_motion_used(PREDICTION_MODE mode, BLOCK_SIZE bsize,
const MB_MODE_INFO *mbmi,
RD_COUNTS *rdc) {
if (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) {
const int num_4x4s = mi_size_wide[bsize] * mi_size_high[bsize];
int ref;
for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s;
}
}
}
static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi,
const TX_MODE tx_mode) {
MACROBLOCKD *const xd = &x->e_mbd;
if (xd->lossless[mbmi->segment_id]) {
mbmi->tx_size = TX_4X4;
} else if (tx_mode != TX_MODE_SELECT) {
mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode);
} else {
BLOCK_SIZE bsize = mbmi->sb_type;
TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize);
mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size);
}
if (is_inter_block(mbmi)) {
memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
}
memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN);
av1_zero(x->blk_skip);
x->skip = 0;
}
static void update_state(const AV1_COMP *const cpi,
const TileDataEnc *const tile_data, ThreadData *td,
const PICK_MODE_CONTEXT *const ctx, int mi_row,
int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
int i, x_idx, y;
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
RD_COUNTS *const rdc = &td->rd_counts;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const MB_MODE_INFO *const mi = &ctx->mic;
MB_MODE_INFO *const mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
const int bw = mi_size_wide[mi->sb_type];
const int bh = mi_size_high[mi->sb_type];
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
assert(mi->sb_type == bsize);
*mi_addr = *mi;
*x->mbmi_ext = ctx->mbmi_ext;
reset_intmv_filter_type(mi_addr);
memcpy(x->blk_skip, ctx->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk);
x->skip = ctx->skip;
// If segmentation in use
if (seg->enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
mi_addr->segment_id =
map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0;
reset_tx_size(x, mi_addr, cm->tx_mode);
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) {
av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize,
ctx->rate, ctx->dist, x->skip);
reset_tx_size(x, mi_addr, cm->tx_mode);
}
if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
mi_addr->uv_mode = UV_DC_PRED;
}
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
for (y = 0; y < mi_height; y++)
for (x_idx = 0; x_idx < mi_width; x_idx++)
if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx &&
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) {
xd->mi[x_idx + y * mis] = mi_addr;
}
if (cpi->oxcf.aq_mode) av1_init_plane_quantizers(cpi, x, mi_addr->segment_id);
if (dry_run) return;
#if CONFIG_INTERNAL_STATS
{
unsigned int *const mode_chosen_counts =
(unsigned int *)cpi->mode_chosen_counts; // Cast const away.
if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D113_PRED /*D113_PRED*/,
THR_D157_PRED /*D157_PRED*/,
THR_D203_PRED /*D203_PRED*/,
THR_D67_PRED /*D67_PRED*/,
THR_SMOOTH, /*SMOOTH_PRED*/
THR_SMOOTH_V, /*SMOOTH_V_PRED*/
THR_SMOOTH_H, /*SMOOTH_H_PRED*/
THR_PAETH /*PAETH_PRED*/,
};
++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
} else {
// Note how often each mode chosen as best
++mode_chosen_counts[ctx->best_mode_index];
}
}
#endif
if (!frame_is_intra_only(cm)) {
if (is_inter_block(mi_addr)) {
// TODO(sarahparker): global motion stats need to be handled per-tile
// to be compatible with tile-based threading.
update_global_motion_used(mi_addr->mode, bsize, mi_addr, rdc);
}
if (cm->interp_filter == SWITCHABLE &&
mi_addr->motion_mode != WARPED_CAUSAL &&
!is_nontrans_global_motion(xd, xd->mi[0])) {
update_filter_type_count(tile_data->allow_update_cdf, td->counts, xd,
mi_addr);
}
rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff;
rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff;
rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff;
}
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
}
void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col, const int num_planes,
BLOCK_SIZE bsize) {
// Set current frame pointer.
x->e_mbd.cur_buf = src;
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) {
const int is_uv = i > 0;
setup_pred_plane(
&x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL,
x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y);
}
}
static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
int8_t segment_id) {
const AV1_COMMON *const cm = &cpi->common;
av1_init_plane_quantizers(cpi, x, segment_id);
aom_clear_system_state();
int segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex);
return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q);
}
static int set_deltaq_rdmult(const AV1_COMP *const cpi, MACROBLOCKD *const xd) {
const AV1_COMMON *const cm = &cpi->common;
return av1_compute_rd_mult(
cpi, cm->base_qindex + xd->delta_qindex + cm->y_dc_delta_q);
}
static void rd_pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data,
MACROBLOCK *const x, int mi_row, int mi_col,
RD_STATS *rd_cost, PARTITION_TYPE partition,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi;
MB_MODE_INFO *ctx_mbmi = &ctx->mic;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const AQ_MODE aq_mode = cpi->oxcf.aq_mode;
const DELTAQ_MODE deltaq_mode = cpi->oxcf.deltaq_mode;
int i, orig_rdmult;
if (best_rd < 0) {
ctx->rdcost = INT64_MAX;
ctx->skip = 0;
av1_invalid_rd_stats(rd_cost);
return;
}
aom_clear_system_state();
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
mbmi = xd->mi[0];
if (ctx->rd_mode_is_ready) {
assert(ctx_mbmi->sb_type == bsize);
assert(ctx_mbmi->partition == partition);
*mbmi = *ctx_mbmi;
rd_cost->rate = ctx->rate;
rd_cost->dist = ctx->dist;
rd_cost->rdcost = ctx->rdcost;
} else {
mbmi->sb_type = bsize;
mbmi->partition = partition;
}
#if CONFIG_RD_DEBUG
mbmi->mi_row = mi_row;
mbmi->mi_col = mi_col;
#endif
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
pd[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
if (!ctx->rd_mode_is_ready) {
ctx->skippable = 0;
// Set to zero to make sure we do not use the previous encoded frame stats
mbmi->skip = 0;
// Reset skip mode flag.
mbmi->skip_mode = 0;
}
x->skip_chroma_rd =
!is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x,
xd->plane[1].subsampling_y);
if (ctx->rd_mode_is_ready) {
x->skip = ctx->skip;
*x->mbmi_ext = ctx->mbmi_ext;
return;
}
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
x->source_variance = av1_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
} else {
x->source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
// Save rdmult before it might be changed, so it can be restored later.
orig_rdmult = x->rdmult;
if (aq_mode == VARIANCE_AQ) {
if (cpi->vaq_refresh) {
const int energy = bsize <= BLOCK_16X16
? x->mb_energy
: av1_log_block_var(cpi, x, bsize);
mbmi->segment_id = energy;
}
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == COMPLEXITY_AQ) {
x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id);
} else if (aq_mode == CYCLIC_REFRESH_AQ) {
// If segment is boosted, use rdmult for that segment.
if (cyclic_refresh_segment_id_boosted(mbmi->segment_id))
x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh);
} else if (cpi->oxcf.enable_tpl_model) {
x->rdmult = x->cb_rdmult;
}
if (deltaq_mode > 0) x->rdmult = set_deltaq_rdmult(cpi, xd);
// Find best coding mode & reconstruct the MB so it is available
// as a predictor for MBs that follow in the SB
if (frame_is_intra_only(cm)) {
av1_rd_pick_intra_mode_sb(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx,
best_rd);
} else {
if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col,
rd_cost, bsize, ctx, best_rd);
#if CONFIG_ONE_PASS_SVM
ctx->seg_feat = 1;
#endif
} else {
av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost,
bsize, ctx, best_rd);
#if CONFIG_ONE_PASS_SVM
ctx->seg_feat = 0;
#endif
}
}
// Examine the resulting rate and for AQ mode 2 make a segment choice.
if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) &&
(bsize >= BLOCK_16X16) &&
(cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame ||
cpi->refresh_alt2_ref_frame ||
(cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) {
av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate);
}
x->rdmult = orig_rdmult;
// TODO(jingning) The rate-distortion optimization flow needs to be
// refactored to provide proper exit/return handle.
if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX;
ctx->rate = rd_cost->rate;
ctx->dist = rd_cost->dist;
ctx->rdcost = rd_cost->rdcost;
}
static void update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
PREDICTION_MODE mode, int16_t mode_context,
uint8_t allow_update_cdf) {
(void)counts;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
if (mode == NEWMV) {
#if CONFIG_ENTROPY_STATS
++counts->newmv_mode[mode_ctx][0];
#endif
if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
return;
} else {
#if CONFIG_ENTROPY_STATS
++counts->newmv_mode[mode_ctx][1];
#endif
if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
#if CONFIG_ENTROPY_STATS
++counts->zeromv_mode[mode_ctx][0];
#endif
if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
return;
} else {
#if CONFIG_ENTROPY_STATS
++counts->zeromv_mode[mode_ctx][1];
#endif
if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
#if CONFIG_ENTROPY_STATS
++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
#endif
if (allow_update_cdf)
update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
}
}
}
static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
FRAME_COUNTS *counts, uint8_t allow_update_cdf) {
FRAME_CONTEXT *fc = xd->tile_ctx;
const BLOCK_SIZE bsize = mbmi->sb_type;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
(void)counts;
if (mbmi->mode == DC_PRED) {
const int n = pmi->palette_size[0];
const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
#if CONFIG_ENTROPY_STATS
++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
#endif
if (allow_update_cdf)
update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
n > 0, 2);
if (n > 0) {
#if CONFIG_ENTROPY_STATS
++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
if (allow_update_cdf) {
update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
n - PALETTE_MIN_SIZE, PALETTE_SIZES);
}
}
}
if (mbmi->uv_mode == UV_DC_PRED) {
const int n = pmi->palette_size[1];
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
#if CONFIG_ENTROPY_STATS
++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
#endif
if (allow_update_cdf)
update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
if (n > 0) {
#if CONFIG_ENTROPY_STATS
++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
if (allow_update_cdf) {
update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
n - PALETTE_MIN_SIZE, PALETTE_SIZES);
}
}
}
}
static void sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
const MB_MODE_INFO *above_mi,
const MB_MODE_INFO *left_mi, const int intraonly,
const int mi_row, const int mi_col,
uint8_t allow_update_cdf) {
FRAME_CONTEXT *fc = xd->tile_ctx;
const PREDICTION_MODE y_mode = mbmi->mode;
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
(void)counts;
const BLOCK_SIZE bsize = mbmi->sb_type;
if (intraonly) {
#if CONFIG_ENTROPY_STATS
const PREDICTION_MODE above = av1_above_block_mode(above_mi);
const PREDICTION_MODE left = av1_left_block_mode(left_mi);
const int above_ctx = intra_mode_context[above];
const int left_ctx = intra_mode_context[left];
++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
} else {
#if CONFIG_ENTROPY_STATS
++counts->y_mode[size_group_lookup[bsize]][y_mode];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf)
update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
}
if (av1_filter_intra_allowed(cm, mbmi)) {
const int use_filter_intra_mode =
mbmi->filter_intra_mode_info.use_filter_intra;
#if CONFIG_ENTROPY_STATS
++counts->filter_intra[mbmi->sb_type][use_filter_intra_mode];
if (use_filter_intra_mode) {
++counts
->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
}
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(fc->filter_intra_cdfs[mbmi->sb_type], use_filter_intra_mode,
2);
if (use_filter_intra_mode) {
update_cdf(fc->filter_intra_mode_cdf,
mbmi->filter_intra_mode_info.filter_intra_mode,
FILTER_INTRA_MODES);
}
}
}
if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[mbmi->mode - V_PRED]
[mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
#endif
if (allow_update_cdf) {
update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
}
if (!is_chroma_reference(mi_row, mi_col, bsize,
xd->plane[AOM_PLANE_U].subsampling_x,
xd->plane[AOM_PLANE_U].subsampling_y))
return;
#if CONFIG_ENTROPY_STATS
++counts->uv_mode[is_cfl_allowed(xd)][y_mode][uv_mode];
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
UV_INTRA_MODES - !cfl_allowed);
}
if (uv_mode == UV_CFL_PRED) {
const int joint_sign = mbmi->cfl_alpha_signs;
const int idx = mbmi->cfl_alpha_idx;
#if CONFIG_ENTROPY_STATS
++counts->cfl_sign[joint_sign];
#endif
if (allow_update_cdf)
update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
#if CONFIG_ENTROPY_STATS
++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
#endif
if (allow_update_cdf)
update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
#if CONFIG_ENTROPY_STATS
++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
#endif
if (allow_update_cdf)
update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
}
}
if (av1_is_directional_mode(get_uv_mode(uv_mode)) &&
av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[uv_mode - UV_V_PRED]
[mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
#endif
if (allow_update_cdf) {
update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED],
mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
}
if (av1_allow_palette(cm->allow_screen_content_tools, bsize))
update_palette_cdf(xd, mbmi, counts, allow_update_cdf);
}
static void update_stats(const AV1_COMMON *const cm, TileDataEnc *tile_data,
ThreadData *td, int mi_row, int mi_col) {
MACROBLOCK *x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext;
const BLOCK_SIZE bsize = mbmi->sb_type;
FRAME_CONTEXT *fc = xd->tile_ctx;
const uint8_t allow_update_cdf = tile_data->allow_update_cdf;
// delta quant applies to both intra and inter
const int super_block_upper_left =
((mi_row & (cm->seq_params.mib_size - 1)) == 0) &&
((mi_col & (cm->seq_params.mib_size - 1)) == 0);
const int seg_ref_active =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME);
if (cm->skip_mode_flag && !seg_ref_active && is_comp_ref_allowed(bsize)) {
const int skip_mode_ctx = av1_get_skip_mode_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++;
#endif
if (allow_update_cdf)
update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2);
}
if (!mbmi->skip_mode) {
if (!seg_ref_active) {
const int skip_ctx = av1_get_skip_context(xd);
#if CONFIG_ENTROPY_STATS
td->counts->skip[skip_ctx][mbmi->skip]++;
#endif
if (allow_update_cdf) update_cdf(fc->skip_cdfs[skip_ctx], mbmi->skip, 2);
}
}
if (cm->delta_q_present_flag &&
(bsize != cm->seq_params.sb_size || !mbmi->skip) &&
super_block_upper_left) {
#if CONFIG_ENTROPY_STATS
const int dq =
(mbmi->current_qindex - xd->current_qindex) / cm->delta_q_res;
const int absdq = abs(dq);
for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) {
td->counts->delta_q[i][1]++;
}
if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++;
#endif
xd->current_qindex = mbmi->current_qindex;
if (cm->delta_lf_present_flag) {
if (cm->delta_lf_multi) {
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
#if CONFIG_ENTROPY_STATS
const int delta_lf =
(mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / cm->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf_multi[lf_id][i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++;
#endif
xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id];
}
} else {
#if CONFIG_ENTROPY_STATS
const int delta_lf =
(mbmi->delta_lf_from_base - xd->delta_lf_from_base) /
cm->delta_lf_res;
const int abs_delta_lf = abs(delta_lf);
for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) {
td->counts->delta_lf[i][1]++;
}
if (abs_delta_lf < DELTA_LF_SMALL)
td->counts->delta_lf[abs_delta_lf][0]++;
#endif
xd->delta_lf_from_base = mbmi->delta_lf_from_base;
}
}
}
if (!is_inter_block(mbmi)) {
sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi,
frame_is_intra_only(cm), mi_row, mi_col,
tile_data->allow_update_cdf);
}
if (av1_allow_intrabc(cm)) {
if (allow_update_cdf)
update_cdf(fc->intrabc_cdf, is_intrabc_block(mbmi), 2);
#if CONFIG_ENTROPY_STATS
++td->counts->intrabc[is_intrabc_block(mbmi)];
#endif // CONFIG_ENTROPY_STATS
}
if (!frame_is_intra_only(cm)) {
RD_COUNTS *rdc = &td->rd_counts;
FRAME_COUNTS *const counts = td->counts;
if (mbmi->skip_mode) {
rdc->skip_mode_used_flag = 1;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
assert(has_second_ref(mbmi));
rdc->compound_ref_used_flag = 1;
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
return;
}
const int inter_block = is_inter_block(mbmi);
if (!seg_ref_active) {
#if CONFIG_ENTROPY_STATS
counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++;
#endif
if (allow_update_cdf) {
update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)],
inter_block, 2);
}
// If the segment reference feature is enabled we have only a single
// reference frame allowed for the segment so exclude it from
// the reference frame counts used to work out probabilities.
if (inter_block) {
const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0];
const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1];
av1_collect_neighbors_ref_counts(xd);
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
if (has_second_ref(mbmi))
// This flag is also updated for 4x4 blocks
rdc->compound_ref_used_flag = 1;
if (is_comp_ref_allowed(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->comp_inter[av1_get_reference_mode_context(xd)]
[has_second_ref(mbmi)]++;
#endif // CONFIG_ENTROPY_STATS
if (allow_update_cdf) {
update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi),
2);
}
}
}
if (has_second_ref(mbmi)) {
const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi)
? UNIDIR_COMP_REFERENCE
: BIDIR_COMP_REFERENCE;
if (allow_update_cdf) {
update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type,
COMP_REFERENCE_TYPES);
}
#if CONFIG_ENTROPY_STATS
counts->comp_ref_type[av1_get_comp_reference_type_context(xd)]
[comp_ref_type]++;
#endif // CONFIG_ENTROPY_STATS
if (comp_ref_type == UNIDIR_COMP_REFERENCE) {
const int bit = (ref0 == BWDREF_FRAME);
if (allow_update_cdf)
update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0]
[bit]++;
#endif // CONFIG_ENTROPY_STATS
if (!bit) {
const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME);
if (allow_update_cdf)
update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2);
#if CONFIG_ENTROPY_STATS
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1]
[bit1]++;
#endif // CONFIG_ENTROPY_STATS
if (bit1) {
if (allow_update_cdf) {
update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd),
ref1 == GOLDEN_FRAME, 2);
}
#if CONFIG_ENTROPY_STATS
counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)]
[2][ref1 == GOLDEN_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
}
} else {
const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME);
if (allow_update_cdf)
update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (!bit) {
if (allow_update_cdf) {
update_cdf(av1_get_pred_cdf_comp_ref_p1(xd),
ref0 == LAST2_FRAME, 2);
}
#if CONFIG_ENTROPY_STATS
counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1]
[ref0 == LAST2_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
} else {
if (allow_update_cdf) {
update_cdf(av1_get_pred_cdf_comp_ref_p2(xd),
ref0 == GOLDEN_FRAME, 2);
}
#if CONFIG_ENTROPY_STATS
counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2]
[ref0 == GOLDEN_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
if (allow_update_cdf) {
update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd),
ref1 == ALTREF_FRAME, 2);
}
#if CONFIG_ENTROPY_STATS
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0]
[ref1 == ALTREF_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
if (ref1 != ALTREF_FRAME) {
if (allow_update_cdf) {
update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd),
ref1 == ALTREF2_FRAME, 2);
}
#if CONFIG_ENTROPY_STATS
counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1]
[ref1 == ALTREF2_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
}
} else {
const int bit = (ref0 >= BWDREF_FRAME);
if (allow_update_cdf)
update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2);
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++;
#endif // CONFIG_ENTROPY_STATS
if (bit) {
assert(ref0 <= ALTREF_FRAME);
if (allow_update_cdf) {
update_cdf(av1_get_pred_cdf_single_ref_p2(xd),
ref0 == ALTREF_FRAME, 2);
}
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1]
[ref0 == ALTREF_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
if (ref0 != ALTREF_FRAME) {
if (allow_update_cdf) {
update_cdf(av1_get_pred_cdf_single_ref_p6(xd),
ref0 == ALTREF2_FRAME, 2);
}
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5]
[ref0 == ALTREF2_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
} else {
const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME);
if (allow_update_cdf)
update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2);
#if CONFIG_ENTROPY_STATS
counts
->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++;
#endif // CONFIG_ENTROPY_STATS
if (!bit1) {
if (allow_update_cdf) {
update_cdf(av1_get_pred_cdf_single_ref_p4(xd),
ref0 != LAST_FRAME, 2);
}
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3]
[ref0 != LAST_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
} else {
if (allow_update_cdf) {
update_cdf(av1_get_pred_cdf_single_ref_p5(xd),
ref0 != LAST3_FRAME, 2);
}
#if CONFIG_ENTROPY_STATS
counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4]
[ref0 != LAST3_FRAME]++;
#endif // CONFIG_ENTROPY_STATS
}
}
}
if (cm->seq_params.enable_interintra_compound &&
is_interintra_allowed(mbmi)) {
const int bsize_group = size_group_lookup[bsize];
if (mbmi->ref_frame[1] == INTRA_FRAME) {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][1]++;
#endif
if (allow_update_cdf)
update_cdf(fc->interintra_cdf[bsize_group], 1, 2);
#if CONFIG_ENTROPY_STATS
counts->interintra_mode[bsize_group][mbmi->interintra_mode]++;
#endif
if (allow_update_cdf) {
update_cdf(fc->interintra_mode_cdf[bsize_group],
mbmi->interintra_mode, INTERINTRA_MODES);
}
if (is_interintra_wedge_used(bsize)) {
#if CONFIG_ENTROPY_STATS
counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++;
#endif
if (allow_update_cdf) {
update_cdf(fc->wedge_interintra_cdf[bsize],
mbmi->use_wedge_interintra, 2);
}
if (mbmi->use_wedge_interintra) {
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++;
#endif
if (allow_update_cdf) {
update_cdf(fc->wedge_idx_cdf[bsize],
mbmi->interintra_wedge_index, 16);
}
}
}
} else {
#if CONFIG_ENTROPY_STATS
counts->interintra[bsize_group][0]++;
#endif
if (allow_update_cdf)
update_cdf(fc->interintra_cdf[bsize_group], 0, 2);
}
}
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
const MOTION_MODE motion_allowed =
cm->switchable_motion_mode
? motion_mode_allowed(xd->global_motion, xd, mbmi,
cm->allow_warped_motion)
: SIMPLE_TRANSLATION;
if (mbmi->ref_frame[1] != INTRA_FRAME) {
if (motion_allowed == WARPED_CAUSAL) {
#if CONFIG_ENTROPY_STATS
counts->motion_mode[bsize][mbmi->motion_mode]++;
#endif
if (allow_update_cdf) {
update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode,
MOTION_MODES);
}
} else if (motion_allowed == OBMC_CAUSAL) {
#if CONFIG_ENTROPY_STATS
counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++;
#endif
if (allow_update_cdf) {
update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL,
2);
}
}
}
if (has_second_ref(mbmi)) {
assert(cm->reference_mode != SINGLE_REFERENCE &&
is_inter_compound_mode(mbmi->mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION);
const int masked_compound_used =
is_any_masked_compound_used(bsize) &&
cm->seq_params.enable_masked_compound;
if (masked_compound_used) {
const int comp_group_idx_ctx = get_comp_group_idx_context(xd);
#if CONFIG_ENTROPY_STATS
++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx];
#endif
if (allow_update_cdf) {
update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx],
mbmi->comp_group_idx, 2);
}
}
if (mbmi->comp_group_idx == 0) {
const int comp_index_ctx = get_comp_index_context(cm, xd);
#if CONFIG_ENTROPY_STATS
++counts->compound_index[comp_index_ctx][mbmi->compound_idx];
#endif
if (allow_update_cdf) {
update_cdf(fc->compound_index_cdf[comp_index_ctx],
mbmi->compound_idx, 2);
}
} else {
assert(masked_compound_used);
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->compound_type[bsize][mbmi->interinter_comp.type - 1];
#endif
if (allow_update_cdf) {
update_cdf(fc->compound_type_cdf[bsize],
mbmi->interinter_comp.type - 1, COMPOUND_TYPES - 1);
}
}
}
}
if (mbmi->interinter_comp.type == COMPOUND_WEDGE) {
if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) {
#if CONFIG_ENTROPY_STATS
counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++;
#endif
if (allow_update_cdf) {
update_cdf(fc->wedge_idx_cdf[bsize],
mbmi->interinter_comp.wedge_index, 16);
}
}
}
}
}
if (inter_block &&
!segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) {
int16_t mode_ctx;
const PREDICTION_MODE mode = mbmi->mode;
mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
if (has_second_ref(mbmi)) {
#if CONFIG_ENTROPY_STATS
++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)];
#endif
if (allow_update_cdf)
update_cdf(fc->inter_compound_mode_cdf[mode_ctx],
INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES);
} else {
update_inter_mode_stats(fc, counts, mode, mode_ctx, allow_update_cdf);
}
int mode_allowed = (mbmi->mode == NEWMV);
mode_allowed |= (mbmi->mode == NEW_NEWMV);
if (mode_allowed) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
int idx;
for (idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
#if CONFIG_ENTROPY_STATS
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx];
#endif
if (mbmi->ref_mv_idx == idx) break;
}
}
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
int idx;
for (idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
#if CONFIG_ENTROPY_STATS
uint8_t drl_ctx =
av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx);
++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1];
#endif
if (mbmi->ref_mv_idx == idx - 1) break;
}
}
}
}
}
}
typedef struct {
ENTROPY_CONTEXT a[MAX_MIB_SIZE * MAX_MB_PLANE];
ENTROPY_CONTEXT l[MAX_MIB_SIZE * MAX_MB_PLANE];
PARTITION_CONTEXT sa[MAX_MIB_SIZE];
PARTITION_CONTEXT sl[MAX_MIB_SIZE];
TXFM_CONTEXT *p_ta;
TXFM_CONTEXT *p_tl;
TXFM_CONTEXT ta[MAX_MIB_SIZE];
TXFM_CONTEXT tl[MAX_MIB_SIZE];
} RD_SEARCH_MACROBLOCK_CONTEXT;
static void restore_context(MACROBLOCK *x,
const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row,
int mi_col, BLOCK_SIZE bsize,
const int num_planes) {
MACROBLOCKD *xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide =
block_size_wide[bsize] >> tx_size_wide_log2[0];
const int num_4x4_blocks_high =
block_size_high[bsize] >> tx_size_high_log2[0];
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
for (p = 0; p < num_planes; p++) {
int tx_col = mi_col;
int tx_row = mi_row & MAX_MIB_MASK;
memcpy(xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x),
ctx->a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y),
ctx->l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(xd->above_seg_context + mi_col, ctx->sa,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl,
sizeof(xd->left_seg_context[0]) * mi_height);
xd->above_txfm_context = ctx->p_ta;
xd->left_txfm_context = ctx->p_tl;
memcpy(xd->above_txfm_context, ctx->ta,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(xd->left_txfm_context, ctx->tl,
sizeof(*xd->left_txfm_context) * mi_height);
}
static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
const int num_planes) {
const MACROBLOCKD *xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide =
block_size_wide[bsize] >> tx_size_wide_log2[0];
const int num_4x4_blocks_high =
block_size_high[bsize] >> tx_size_high_log2[0];
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < num_planes; ++p) {
int tx_col = mi_col;
int tx_row = mi_row & MAX_MIB_MASK;
memcpy(ctx->a + num_4x4_blocks_wide * p,
xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(ctx->l + num_4x4_blocks_high * p,
xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(ctx->sa, xd->above_seg_context + mi_col,
sizeof(*xd->above_seg_context) * mi_width);
memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK),
sizeof(xd->left_seg_context[0]) * mi_height);
memcpy(ctx->ta, xd->above_txfm_context,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(ctx->tl, xd->left_txfm_context,
sizeof(*xd->left_txfm_context) * mi_height);
ctx->p_ta = xd->above_txfm_context;
ctx->p_tl = xd->left_txfm_context;
}
static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col,
RUN_TYPE dry_run, BLOCK_SIZE bsize,
PARTITION_TYPE partition,
const PICK_MODE_CONTEXT *const ctx, int *rate) {
TileInfo *const tile = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
set_offsets(cpi, tile, x, mi_row, mi_col, bsize);
MB_MODE_INFO *mbmi = xd->mi[0];
mbmi->partition = partition;
update_state(cpi, tile_data, td, ctx, mi_row, mi_col, bsize, dry_run);
if (cpi->oxcf.enable_tpl_model && cpi->oxcf.aq_mode == NO_AQ &&
cpi->oxcf.deltaq_mode == 0) {
x->rdmult = x->cb_rdmult;
}
if (!dry_run) av1_set_coeff_buffer(cpi, x, mi_row, mi_col);
encode_superblock(cpi, tile_data, td, tp, dry_run, mi_row, mi_col, bsize,
rate);
if (dry_run == 0)
x->cb_offset += block_size_wide[bsize] * block_size_high[bsize];
if (!dry_run) {
if (bsize == cpi->common.seq_params.sb_size && mbmi->skip == 1 &&
cpi->common.delta_lf_present_flag) {
const int frame_lf_count = av1_num_planes(&cpi->common) > 1
? FRAME_LF_COUNT
: FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id];
mbmi->delta_lf_from_base = xd->delta_lf_from_base;
}
if (has_second_ref(mbmi)) {
if (mbmi->compound_idx == 0 ||
mbmi->interinter_comp.type == COMPOUND_AVERAGE)
mbmi->comp_group_idx = 0;
else
mbmi->comp_group_idx = 1;
}
update_stats(&cpi->common, tile_data, td, mi_row, mi_col);
}
}
static void encode_sb(const AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row,
int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize,
PC_TREE *pc_tree, int *rate) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int hbs = mi_size_wide[bsize] / 2;
const int is_partition_root = bsize >= BLOCK_8X8;
const int ctx = is_partition_root
? partition_plane_context(xd, mi_row, mi_col, bsize)
: -1;
const PARTITION_TYPE partition = pc_tree->partitioning;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
int quarter_step = mi_size_wide[bsize] / 4;
int i;
BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
if (!dry_run && ctx >= 0) {
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (has_rows && has_cols) {
#if CONFIG_ENTROPY_STATS
td->counts->partition[ctx][partition]++;
#endif
if (tile_data->allow_update_cdf) {
FRAME_CONTEXT *fc = xd->tile_ctx;
update_cdf(fc->partition_cdf[ctx], partition,
partition_cdf_length(bsize));
}
}
}
switch (partition) {
case PARTITION_NONE:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->none, rate);
break;
case PARTITION_VERT:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->vertical[0], rate);
if (mi_col + hbs < cm->mi_cols) {
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
partition, &pc_tree->vertical[1], rate);
}
break;
case PARTITION_HORZ:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->horizontal[0], rate);
if (mi_row + hbs < cm->mi_rows) {
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
partition, &pc_tree->horizontal[1], rate);
}
break;
case PARTITION_SPLIT:
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize,
pc_tree->split[0], rate);
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize,
pc_tree->split[1], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize,
pc_tree->split[2], rate);
encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run,
subsize, pc_tree->split[3], rate);
break;
case PARTITION_HORZ_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, &pc_tree->horizontala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->horizontala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize,
partition, &pc_tree->horizontala[2], rate);
break;
case PARTITION_HORZ_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->horizontalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, &pc_tree->horizontalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
bsize2, partition, &pc_tree->horizontalb[2], rate);
break;
case PARTITION_VERT_A:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2,
partition, &pc_tree->verticala[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2,
partition, &pc_tree->verticala[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize,
partition, &pc_tree->verticala[2], rate);
break;
case PARTITION_VERT_B:
encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->verticalb[0], rate);
encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2,
partition, &pc_tree->verticalb[1], rate);
encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run,
bsize2, partition, &pc_tree->verticalb[2], rate);
break;
case PARTITION_HORZ_4:
for (i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize,
partition, &pc_tree->horizontal4[i], rate);
}
break;
case PARTITION_VERT_4:
for (i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize,
partition, &pc_tree->vertical4[i], rate);
}
break;
default: assert(0 && "Invalid partition type."); break;
}
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
// Check to see if the given partition size is allowed for a specified number
// of mi block rows and columns remaining in the image.
// If not then return the largest allowed partition size
static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left,
int cols_left, int *bh, int *bw) {
if (rows_left <= 0 || cols_left <= 0) {
return AOMMIN(bsize, BLOCK_8X8);
} else {
for (; bsize > 0; bsize -= 3) {
*bh = mi_size_high[bsize];
*bw = mi_size_wide[bsize];
if ((*bh <= rows_left) && (*bw <= cols_left)) {
break;
}
}
}
return bsize;
}
static void set_partial_sb_partition(const AV1_COMMON *const cm,
MB_MODE_INFO *mi, int bh_in, int bw_in,
int mi_rows_remaining,
int mi_cols_remaining, BLOCK_SIZE bsize,
MB_MODE_INFO **mib) {
int bh = bh_in;
int r, c;
for (r = 0; r < cm->seq_params.mib_size; r += bh) {
int bw = bw_in;
for (c = 0; c < cm->seq_params.mib_size; c += bw) {
const int index = r * cm->mi_stride + c;
mib[index] = mi + index;
mib[index]->sb_type = find_partition_size(
bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given superblock
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
MB_MODE_INFO **mib, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
const int mi_rows_remaining = tile->mi_row_end - mi_row;
const int mi_cols_remaining = tile->mi_col_end - mi_col;
int block_row, block_col;
MB_MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col;
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
// Apply the requested partition size to the SB if it is all "in image"
if ((mi_cols_remaining >= cm->seq_params.mib_size) &&
(mi_rows_remaining >= cm->seq_params.mib_size)) {
for (block_row = 0; block_row < cm->seq_params.mib_size; block_row += bh) {
for (block_col = 0; block_col < cm->seq_params.mib_size;
block_col += bw) {
int index = block_row * cm->mi_stride + block_col;
mib[index] = mi_upper_left + index;
mib[index]->sb_type = bsize;
}
}
} else {
// Else this is a partial SB.
set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
mi_cols_remaining, bsize, mib);
}
}
static void rd_use_partition(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, MB_MODE_INFO **mib,
TOKENEXTRA **tp, int mi_row, int mi_col,
BLOCK_SIZE bsize, int *rate, int64_t *dist,
int do_recon, PC_TREE *pc_tree) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
int i;
const int pl = (bsize >= BLOCK_8X8)
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const PARTITION_TYPE partition =
(bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize)
: PARTITION_NONE;
const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition);
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
RD_STATS last_part_rdc, none_rdc, chosen_rdc;
BLOCK_SIZE sub_subsize = BLOCK_4X4;
int splits_below = 0;
BLOCK_SIZE bs_type = mib[0]->sb_type;
int do_partition_search = 1;
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
av1_invalid_rd_stats(&last_part_rdc);
av1_invalid_rd_stats(&none_rdc);
av1_invalid_rd_stats(&chosen_rdc);
pc_tree->partitioning = partition;
xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
x->mb_energy = av1_log_block_var(cpi, x, bsize);
}
if (do_partition_search &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
cpi->sf.adjust_partitioning_from_last_frame) {
// Check if any of the sub blocks are further split.
if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) {
sub_subsize = get_partition_subsize(subsize, PARTITION_SPLIT);
splits_below = 1;
for (i = 0; i < 4; i++) {
int jj = i >> 1, ii = i & 0x01;
MB_MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs];
if (this_mi && this_mi->sb_type >= sub_subsize) {
splits_below = 0;
}
}
}
// If partition is not none try none unless each of the 4 splits are split
// even further..
if (partition != PARTITION_NONE && !splits_below &&
mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) {
pc_tree->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc,
PARTITION_NONE, bsize, ctx_none, INT64_MAX);
if (none_rdc.rate < INT_MAX) {
none_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist);
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
mib[0]->sb_type = bs_type;
pc_tree->partitioning = partition;
}
}
for (int b = 0; b < 2; ++b) {
pc_tree->horizontal[b].skip_ref_frame_mask = 0;
pc_tree->vertical[b].skip_ref_frame_mask = 0;
}
for (int b = 0; b < 3; ++b) {
pc_tree->horizontala[b].skip_ref_frame_mask = 0;
pc_tree->horizontalb[b].skip_ref_frame_mask = 0;
pc_tree->verticala[b].skip_ref_frame_mask = 0;
pc_tree->verticalb[b].skip_ref_frame_mask = 0;
}
for (int b = 0; b < 4; ++b) {
pc_tree->horizontal4[b].skip_ref_frame_mask = 0;
pc_tree->vertical4[b].skip_ref_frame_mask = 0;
}
switch (partition) {
case PARTITION_NONE:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_NONE, bsize, ctx_none, INT64_MAX);
break;
case PARTITION_HORZ:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_HORZ, subsize, &pc_tree->horizontal[0],
INT64_MAX);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_row + hbs < cm->mi_rows) {
RD_STATS tmp_rdc;
const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0];
av1_init_rd_stats(&tmp_rdc);
update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row,
mi_col, subsize, NULL);
rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc,
PARTITION_HORZ, subsize, &pc_tree->horizontal[1],
INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_VERT:
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc,
PARTITION_VERT, subsize, &pc_tree->vertical[0],
INT64_MAX);
if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 &&
mi_col + hbs < cm->mi_cols) {
RD_STATS tmp_rdc;
const PICK_MODE_CONTEXT *const ctx_v = &pc_tree->vertical[0];
av1_init_rd_stats(&tmp_rdc);
update_state(cpi, tile_data, td, ctx_v, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row,
mi_col, subsize, NULL);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc,
PARTITION_VERT, subsize,
&pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
last_part_rdc.rdcost += tmp_rdc.rdcost;
}
break;
case PARTITION_SPLIT:
last_part_rdc.rate = 0;
last_part_rdc.dist = 0;
last_part_rdc.rdcost = 0;
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
int jj = i >> 1, ii = i & 0x01;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
av1_init_rd_stats(&tmp_rdc);
rd_use_partition(cpi, td, tile_data,
mib + jj * hbs * cm->mi_stride + ii * hbs, tp,
mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate,
&tmp_rdc.dist, i != 3, pc_tree->split[i]);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&last_part_rdc);
break;
}
last_part_rdc.rate += tmp_rdc.rate;
last_part_rdc.dist += tmp_rdc.dist;
}
break;
case PARTITION_VERT_A:
case PARTITION_VERT_B:
case PARTITION_HORZ_A:
case PARTITION_HORZ_B:
case PARTITION_HORZ_4:
case PARTITION_VERT_4:
assert(0 && "Cannot handle extended partition types");
default: assert(0); break;
}
if (last_part_rdc.rate < INT_MAX) {
last_part_rdc.rate += x->partition_cost[pl][partition];
last_part_rdc.rdcost =
RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist);
}
if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame &&
cpi->sf.partition_search_type == SEARCH_PARTITION &&
partition != PARTITION_SPLIT && bsize > BLOCK_8X8 &&
(mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) &&
(mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) {
BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
chosen_rdc.rate = 0;
chosen_rdc.dist = 0;
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
pc_tree->partitioning = PARTITION_SPLIT;
// Split partition.
for (i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
RD_STATS tmp_rdc;
if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols))
continue;
save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
pc_tree->split[i]->partitioning = PARTITION_NONE;
rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx,
&tmp_rdc, PARTITION_SPLIT, split_subsize,
&pc_tree->split[i]->none, INT64_MAX);
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) {
av1_invalid_rd_stats(&chosen_rdc);
break;
}
chosen_rdc.rate += tmp_rdc.rate;
chosen_rdc.dist += tmp_rdc.dist;
if (i != 3)
encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx,
OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL);
chosen_rdc.rate += x->partition_cost[pl][PARTITION_NONE];
}
if (chosen_rdc.rate < INT_MAX) {
chosen_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT];
chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist);
}
}
// If last_part is better set the partitioning to that.
if (last_part_rdc.rdcost < chosen_rdc.rdcost) {
mib[0]->sb_type = bsize;
if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition;
chosen_rdc = last_part_rdc;
}
// If none was better set the partitioning to that.
if (none_rdc.rdcost < chosen_rdc.rdcost) {
if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE;
chosen_rdc = none_rdc;
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
// We must have chosen a partitioning and encoding or we'll fail later on.
// No other opportunities for success.
if (bsize == cm->seq_params.sb_size)
assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX);
if (do_recon) {
if (bsize == cm->seq_params.sb_size) {
// NOTE: To get estimate for rate due to the tokens, use:
// int rate_coeffs = 0;
// encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS,
// bsize, pc_tree, &rate_coeffs);
x->cb_offset = 0;
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
*rate = chosen_rdc.rate;
*dist = chosen_rdc.dist;
}
/* clang-format off */
static const BLOCK_SIZE min_partition_size[BLOCK_SIZES_ALL] = {
BLOCK_4X4, // 4x4
BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 4x8, 8x4, 8x8
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 8x16, 16x8, 16x16
BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 16x32, 32x16, 32x32
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 32x64, 64x32, 64x64
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 64x128, 128x64, 128x128
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16
};
static const BLOCK_SIZE max_partition_size[BLOCK_SIZES_ALL] = {
BLOCK_8X8, // 4x4
BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 4x8, 8x4, 8x8
BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, // 8x16, 16x8, 16x16
BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, // 16x32, 32x16, 32x32
BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 32x64, 64x32, 64x64
BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 64x128, 128x64, 128x128
BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 4x16, 16x4, 8x32
BLOCK_32X32, BLOCK_LARGEST, BLOCK_LARGEST, // 32x8, 16x64, 64x16
};
// Next square block size less or equal than current block size.
static const BLOCK_SIZE next_square_size[BLOCK_SIZES_ALL] = {
BLOCK_4X4, // 4x4
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x8, 8x4, 8x8
BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 8x16, 16x8, 16x16
BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 16x32, 32x16, 32x32
BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, // 32x64, 64x32, 64x64
BLOCK_64X64, BLOCK_64X64, BLOCK_128X128, // 64x128, 128x64, 128x128
BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32
BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16
};
/* clang-format on */
// Look at all the mode_info entries for blocks that are part of this
// partition and find the min and max values for sb_type.
// At the moment this is designed to work on a superblock but could be
// adjusted to use a size parameter.
//
// The min and max are assumed to have been initialized prior to calling this
// function so repeat calls can accumulate a min and max of more than one
// superblock.
static void get_sb_partition_size_range(const AV1_COMMON *const cm,
MACROBLOCKD *xd, MB_MODE_INFO **mib,
BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
int i, j;
int index = 0;
// Check the sb_type for each block that belongs to this region.
for (i = 0; i < cm->seq_params.mib_size; ++i) {
for (j = 0; j < cm->seq_params.mib_size; ++j) {
MB_MODE_INFO *mi = mib[index + j];
BLOCK_SIZE sb_type = mi ? mi->sb_type : BLOCK_4X4;
*min_block_size = AOMMIN(*min_block_size, sb_type);
*max_block_size = AOMMAX(*max_block_size, sb_type);
}
index += xd->mi_stride;
}
}
// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
static int active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
int top_edge = 0;
int bottom_edge = cpi->common.mi_rows;
int is_active_h_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
const TWO_PASS *const twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2);
bottom_edge = AOMMAX(top_edge, bottom_edge);
}
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
is_active_h_edge = 1;
}
return is_active_h_edge;
}
// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
static int active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
int left_edge = 0;
int right_edge = cpi->common.mi_cols;
int is_active_v_edge = 0;
// For two pass account for any formatting bars detected.
if (cpi->oxcf.pass == 2) {
const TWO_PASS *const twopass = &cpi->twopass;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2);
right_edge = AOMMAX(left_edge, right_edge);
}
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
is_active_v_edge = 1;
}
return is_active_v_edge;
}
// Checks to see if a super block is at the edge of the active image.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
static int active_edge_sb(const AV1_COMP *cpi, int mi_row, int mi_col) {
return active_h_edge(cpi, mi_row, cpi->common.seq_params.mib_size) ||
active_v_edge(cpi, mi_col, cpi->common.seq_params.mib_size);
}
// Look at neighboring blocks and set a min and max partition size based on
// what they chose.
static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile,
MACROBLOCKD *const xd, int mi_row,
int mi_col, BLOCK_SIZE *min_block_size,
BLOCK_SIZE *max_block_size) {
AV1_COMMON *const cm = &cpi->common;
MB_MODE_INFO **mi = xd->mi;
const int left_in_image = xd->left_available && mi[-1];
const int above_in_image = xd->up_available && mi[-xd->mi_stride];
const int mi_rows_remaining = tile->mi_row_end - mi_row;
const int mi_cols_remaining = tile->mi_col_end - mi_col;
int bh, bw;
BLOCK_SIZE min_size = BLOCK_4X4;
BLOCK_SIZE max_size = BLOCK_LARGEST;
// Trap case where we do not have a prediction.
if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) {
// Default "min to max" and "max to min"
min_size = BLOCK_LARGEST;
max_size = BLOCK_4X4;
// NOTE: each call to get_sb_partition_size_range() uses the previous
// passed in values for min and max as a starting point.
// Find the min and max partition used in previous frame at this location
if (cm->frame_type != KEY_FRAME) {
MB_MODE_INFO **prev_mi =
&cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col];
get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size);
}
// Find the min and max partition sizes used in the left superblock
if (left_in_image) {
MB_MODE_INFO **left_sb_mi = &mi[-cm->seq_params.mib_size];
get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size);
}
// Find the min and max partition sizes used in the above suprblock.
if (above_in_image) {
MB_MODE_INFO **above_sb_mi =
&mi[-xd->mi_stride * cm->seq_params.mib_size];
get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size);
}
// Adjust observed min and max for "relaxed" auto partition case.
if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
}
// Check border cases where max and min from neighbors may not be legal.
max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining,
&bh, &bw);
min_size = AOMMIN(min_size, max_size);
// Test for blocks at the edge of the active image.
// This may be the actual edge of the image or where there are formatting
// bars.
if (active_edge_sb(cpi, mi_row, mi_col)) {
min_size = BLOCK_4X4;
} else {
min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size);
}
// When use_square_partition_only is true, make sure at least one square
// partition is allowed by selecting the next smaller square size as
// *min_block_size.
if (min_size >= cpi->sf.use_square_partition_only_threshold) {
min_size = AOMMIN(min_size, next_square_size[max_size]);
}
*min_block_size = AOMMIN(min_size, cm->seq_params.sb_size);
*max_block_size = AOMMIN(max_size, cm->seq_params.sb_size);
}
// TODO(jingning) refactor functions setting partition search range
static void set_partition_range(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, int mi_row,
int mi_col, BLOCK_SIZE bsize,
BLOCK_SIZE *const min_bs,
BLOCK_SIZE *const max_bs) {
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
int idx, idy;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MB_MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[idx_str];
BLOCK_SIZE min_size = cm->seq_params.sb_size; // default values
BLOCK_SIZE max_size = BLOCK_4X4;
if (prev_mi) {
for (idy = 0; idy < mi_height; ++idy) {
for (idx = 0; idx < mi_width; ++idx) {
const MB_MODE_INFO *const mi = prev_mi[idy * cm->mi_stride + idx];
const BLOCK_SIZE bs = mi ? mi->sb_type : bsize;
min_size = AOMMIN(min_size, bs);
max_size = AOMMAX(max_size, bs);
}
}
}
if (xd->left_available) {
for (idy = 0; idy < mi_height; ++idy) {
const MB_MODE_INFO *const mi = xd->mi[idy * cm->mi_stride - 1];
const BLOCK_SIZE bs = mi ? mi->sb_type : bsize;
min_size = AOMMIN(min_size, bs);
max_size = AOMMAX(max_size, bs);
}
}
if (xd->up_available) {
for (idx = 0; idx < mi_width; ++idx) {
const MB_MODE_INFO *const mi = xd->mi[idx - cm->mi_stride];
const BLOCK_SIZE bs = mi ? mi->sb_type : bsize;
min_size = AOMMIN(min_size, bs);
max_size = AOMMAX(max_size, bs);
}
}
if (min_size == max_size) {
min_size = min_partition_size[min_size];
max_size = max_partition_size[max_size];
}
*min_bs = AOMMIN(min_size, cm->seq_params.sb_size);
*max_bs = AOMMIN(max_size, cm->seq_params.sb_size);
}
static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) {
memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv));
}
static INLINE void load_pred_mv(MACROBLOCK *x,
const PICK_MODE_CONTEXT *const ctx) {
memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv));
}
#if CONFIG_FP_MB_STATS
const int qindex_skip_threshold_lookup[BLOCK_SIZES] = {
0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120,
// TODO(debargha): What are the correct numbers here?
130, 130, 150
};
const int qindex_split_threshold_lookup[BLOCK_SIZES] = {
0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120,
// TODO(debargha): What are the correct numbers here?
160, 160, 240
};
const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6,
// TODO(debargha): What are the correct numbers here?
8, 8, 10
};
typedef enum {
MV_ZERO = 0,
MV_LEFT = 1,
MV_UP = 2,
MV_RIGHT = 3,
MV_DOWN = 4,
MV_INVALID
} MOTION_DIRECTION;
static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) {
if (fp_byte & FPMB_MOTION_ZERO_MASK) {
return MV_ZERO;
} else if (fp_byte & FPMB_MOTION_LEFT_MASK) {
return MV_LEFT;
} else if (fp_byte & FPMB_MOTION_RIGHT_MASK) {
return MV_RIGHT;
} else if (fp_byte & FPMB_MOTION_UP_MASK) {
return MV_UP;
} else {
return MV_DOWN;
}
}
static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv,
MOTION_DIRECTION that_mv) {
if (this_mv == that_mv) {
return 0;
} else {
return abs(this_mv - that_mv) == 2 ? 2 : 1;
}
}
#endif
// Try searching for an encoding for the given subblock. Returns zero if the
// rdcost is already too high (to tell the caller not to bother searching for
// encodings of further subblocks)
static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp, int is_last,
int mi_row, int mi_col, BLOCK_SIZE subsize,
RD_STATS *best_rdc, RD_STATS *sum_rdc,
RD_STATS *this_rdc, PARTITION_TYPE partition,
PICK_MODE_CONTEXT *prev_ctx,
PICK_MODE_CONTEXT *this_ctx) {
#define RTS_X_RATE_NOCOEF_ARG
#define RTS_MAX_RDCOST best_rdc->rdcost
MACROBLOCK *const x = &td->mb;
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, prev_ctx);
const int64_t rdcost_remaining = best_rdc->rdcost == INT64_MAX
? INT64_MAX
: (best_rdc->rdcost - sum_rdc->rdcost);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc,
RTS_X_RATE_NOCOEF_ARG partition, subsize, this_ctx,
rdcost_remaining);
if (this_rdc->rate == INT_MAX) {
sum_rdc->rdcost = INT64_MAX;
} else {
sum_rdc->rate += this_rdc->rate;
sum_rdc->dist += this_rdc->dist;
sum_rdc->rdcost += this_rdc->rdcost;
}
if (sum_rdc->rdcost >= RTS_MAX_RDCOST) return 0;
if (!is_last) {
update_state(cpi, tile_data, td, this_ctx, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col,
subsize, NULL);
}
return 1;
#undef RTS_X_RATE_NOCOEF_ARG
#undef RTS_MAX_RDCOST
}
static void rd_test_partition3(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
PC_TREE *pc_tree, RD_STATS *best_rdc,
PICK_MODE_CONTEXT ctxs[3],
PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col,
BLOCK_SIZE bsize, PARTITION_TYPE partition,
int mi_row0, int mi_col0, BLOCK_SIZE subsize0,
int mi_row1, int mi_col1, BLOCK_SIZE subsize1,
int mi_row2, int mi_col2, BLOCK_SIZE subsize2) {
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
RD_STATS sum_rdc, this_rdc;
#define RTP_STX_TRY_ARGS
int pl = partition_plane_context(xd, mi_row, mi_col, bsize);
av1_init_rd_stats(&sum_rdc);
sum_rdc.rate = x->partition_cost[pl][partition];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row0, mi_col0, subsize0,
best_rdc, &sum_rdc, &this_rdc,
RTP_STX_TRY_ARGS partition, ctx, &ctxs[0]))
return;
if (!rd_try_subblock(cpi, td, tile_data, tp, 0, mi_row1, mi_col1, subsize1,
best_rdc, &sum_rdc, &this_rdc,
RTP_STX_TRY_ARGS partition, &ctxs[0], &ctxs[1]))
return;
// With the new layout of mixed partitions for PARTITION_HORZ_B and
// PARTITION_VERT_B, the last subblock might start past halfway through the
// main block, so we might signal it even though the subblock lies strictly
// outside the image. In that case, we won't spend any bits coding it and the
// difference (obviously) doesn't contribute to the error.
const int try_block2 = 1;
if (try_block2 &&
!rd_try_subblock(cpi, td, tile_data, tp, 1, mi_row2, mi_col2, subsize2,
best_rdc, &sum_rdc, &this_rdc,
RTP_STX_TRY_ARGS partition, &ctxs[1], &ctxs[2]))
return;
if (sum_rdc.rdcost >= best_rdc->rdcost) return;
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost >= best_rdc->rdcost) return;
*best_rdc = sum_rdc;
pc_tree->partitioning = partition;
#undef RTP_STX_TRY_ARGS
}
static void reset_partition(PC_TREE *pc_tree, BLOCK_SIZE bsize) {
pc_tree->partitioning = PARTITION_NONE;
pc_tree->cb_search_range = SEARCH_FULL_PLANE;
pc_tree->none.skip = 0;
pc_tree->pc_tree_stats.valid = 0;
pc_tree->pc_tree_stats.split = 0;
pc_tree->pc_tree_stats.skip = 0;
pc_tree->pc_tree_stats.rdcost = INT64_MAX;
for (int i = 0; i < 4; i++) {
pc_tree->pc_tree_stats.sub_block_split[i] = 0;
pc_tree->pc_tree_stats.sub_block_skip[i] = 0;
pc_tree->pc_tree_stats.sub_block_rdcost[i] = INT64_MAX;
}
if (bsize >= BLOCK_8X8) {
BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
for (int idx = 0; idx < 4; ++idx)
reset_partition(pc_tree->split[idx], subsize);
}
}
static void rd_pick_sqr_partition(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
RD_STATS *rd_cost, int64_t best_rd,
PC_TREE *pc_tree, int64_t *none_rd) {
const AV1_COMMON *const cm = &cpi->common;
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_step = mi_size_wide[bsize] / 2;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
const TOKENEXTRA *const tp_orig = *tp;
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
int tmp_partition_cost[PARTITION_TYPES];
BLOCK_SIZE subsize;
RD_STATS this_rdc, sum_rdc, best_rdc, pn_rdc;
const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
int do_square_split = bsize_at_least_8x8;
const int pl = bsize_at_least_8x8
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const int *partition_cost =
pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0];
const int num_planes = av1_num_planes(cm);
int64_t split_rd[4] = { 0, 0, 0, 0 };
// Override skipping rectangular partition operations for edge blocks
const int has_rows = (mi_row + mi_step < cm->mi_rows);
const int has_cols = (mi_col + mi_step < cm->mi_cols);
if (none_rd) *none_rd = 0;
int partition_none_allowed = has_rows && has_cols;
(void)*tp_orig;
(void)split_rd;
if (best_rd < 0) {
pc_tree->none.rdcost = INT64_MAX;
pc_tree->none.skip = 0;
av1_invalid_rd_stats(rd_cost);
return;
}
pc_tree->pc_tree_stats.valid = 1;
// Override partition costs at the edges of the frame in the same
// way as in read_partition (see decodeframe.c)
if (!(has_rows && has_cols)) {
assert(bsize_at_least_8x8 && pl >= 0);
const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl];
for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = INT_MAX;
if (has_cols) {
// At the bottom, the two possibilities are HORZ and SPLIT
aom_cdf_prob bot_cdf[2];
partition_gather_vert_alike(bot_cdf, partition_cdf, bsize);
static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map);
} else if (has_rows) {
// At the right, the two possibilities are VERT and SPLIT
aom_cdf_prob rhs_cdf[2];
partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize);
static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map);
} else {
// At the bottom right, we always split
tmp_partition_cost[PARTITION_SPLIT] = 0;
}
partition_cost = tmp_partition_cost;
}
#ifndef NDEBUG
// Nothing should rely on the default value of this array (which is just
// leftover from encoding the previous block. Setting it to fixed pattern
// when debugging.
// bit 0, 1, 2 are blk_skip of each plane
// bit 4, 5, 6 are initialization checking of each plane
memset(x->blk_skip, 0x77, sizeof(x->blk_skip));
#endif // NDEBUG
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
av1_init_rd_stats(&this_rdc);
av1_init_rd_stats(&sum_rdc);
av1_invalid_rd_stats(&best_rdc);
best_rdc.rdcost = best_rd;
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_log_block_var(cpi, x, bsize);
xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
#if CONFIG_DIST_8X8
if (x->using_dist_8x8) {
if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8)
do_square_split = 0;
}
#endif
// PARTITION_NONE
if (partition_none_allowed) {
int pt_cost = 0;
if (bsize_at_least_8x8) {
pc_tree->partitioning = PARTITION_NONE;
pt_cost = partition_cost[PARTITION_NONE] < INT_MAX
? partition_cost[PARTITION_NONE]
: 0;
}
const int64_t partition_rd_cost = RDCOST(x->rdmult, pt_cost, 0);
const int64_t best_remain_rdcost =
best_rdc.rdcost == INT64_MAX ? INT64_MAX
: (best_rdc.rdcost - partition_rd_cost);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
PARTITION_NONE, bsize, ctx_none, best_remain_rdcost);
pc_tree->pc_tree_stats.rdcost = ctx_none->rdcost;
pc_tree->pc_tree_stats.skip = ctx_none->skip;
if (none_rd) *none_rd = this_rdc.rdcost;
if (this_rdc.rate != INT_MAX) {
if (bsize_at_least_8x8) {
this_rdc.rate += pt_cost;
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
}
if (this_rdc.rdcost < best_rdc.rdcost) {
// Adjust dist breakout threshold according to the partition size.
const int64_t dist_breakout_thr =
cpi->sf.partition_search_breakout_dist_thr >>
((2 * (MAX_SB_SIZE_LOG2 - 2)) -
(mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
const int rate_breakout_thr =
cpi->sf.partition_search_breakout_rate_thr *
num_pels_log2_lookup[bsize];
best_rdc = this_rdc;
if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE;
pc_tree->cb_search_range = SEARCH_FULL_PLANE;
if (!x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) {
const int use_ml_based_breakout =
bsize <= cpi->sf.use_square_partition_only_threshold &&
bsize > BLOCK_4X4 && xd->bd == 8;
// TODO(anyone): Currently this is using the same model and threshold
// values as in rd_pick_partition. Retraining the model and tuning the
// threshold values might be helpful to improve the speed.
if (use_ml_based_breakout) {
if (ml_predict_breakout(cpi, bsize, x, &this_rdc,
x->source_variance)) {
do_square_split = 0;
}
}
// If all y, u, v transform blocks in this partition are skippable,
// and the dist & rate are within the thresholds, the partition search
// is terminated for current branch of the partition search tree. The
// dist & rate thresholds are set to 0 at speed 0 to disable the early
// termination at that speed.
if (best_rdc.dist < dist_breakout_thr &&
best_rdc.rate < rate_breakout_thr) {
do_square_split = 0;
}
}
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none);
int64_t temp_best_rdcost = best_rdc.rdcost;
pn_rdc = best_rdc;
// PARTITION_SPLIT
if (do_square_split) {
int reached_last_index = 0;
subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
int idx;
sum_rdc.rate = partition_cost[PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
for (idx = 0; idx < 4 && sum_rdc.rdcost < temp_best_rdcost; ++idx) {
const int x_idx = (idx & 1) * mi_step;
const int y_idx = (idx >> 1) * mi_step;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
pc_tree->split[idx]->index = idx;
int64_t *p_split_rd = &split_rd[idx];
const int64_t best_remain_rdcost =
(temp_best_rdcost == INT64_MAX) ? INT64_MAX
: (temp_best_rdcost - sum_rdc.rdcost);
rd_pick_sqr_partition(
cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize,
&this_rdc, best_remain_rdcost, pc_tree->split[idx], p_split_rd);
pc_tree->pc_tree_stats.sub_block_rdcost[idx] = this_rdc.rdcost;
pc_tree->pc_tree_stats.sub_block_skip[idx] =
pc_tree->split[idx]->none.skip;
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
break;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
reached_last_index = (idx == 4);
if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_SPLIT;
}
}
int has_split = 0;
if (pc_tree->partitioning == PARTITION_SPLIT) {
for (int cb_idx = 0; cb_idx <= AOMMIN(idx, 3); ++cb_idx) {
if (pc_tree->split[cb_idx]->partitioning == PARTITION_SPLIT)
++has_split;
}
if (has_split >= 3 || sum_rdc.rdcost < (pn_rdc.rdcost >> 1)) {
pc_tree->cb_search_range = SPLIT_PLANE;
}
}
if (pc_tree->partitioning == PARTITION_NONE) {
pc_tree->cb_search_range = SEARCH_SAME_PLANE;
if (pn_rdc.dist <= sum_rdc.dist)
pc_tree->cb_search_range = NONE_PARTITION_PLANE;
}
if (pn_rdc.rate == INT_MAX) pc_tree->cb_search_range = NONE_PARTITION_PLANE;
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
} // if (do_split)
pc_tree->pc_tree_stats.split = pc_tree->partitioning == PARTITION_SPLIT;
if (do_square_split) {
for (int i = 0; i < 4; ++i) {
pc_tree->pc_tree_stats.sub_block_split[i] =
pc_tree->split[i]->partitioning == PARTITION_SPLIT;
}
}
// TODO(jbb): This code added so that we avoid static analysis
// warning related to the fact that best_rd isn't used after this
// point. This code should be refactored so that the duplicate
// checks occur in some sub function and thus are used...
(void)best_rd;
*rd_cost = best_rdc;
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
pc_tree->index != 3) {
if (bsize == cm->seq_params.sb_size) {
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
if (bsize == cm->seq_params.sb_size) {
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
#define FEATURE_SIZE 19
static const float two_pass_split_partition_weights_128[FEATURE_SIZE + 1] = {
2.683936f, -0.193620f, -4.106470f, -0.141320f, -0.282289f,
0.125296f, -1.134961f, 0.862757f, -0.418799f, -0.637666f,
0.016232f, 0.345013f, 0.018823f, -0.393394f, -1.130700f,
0.695357f, 0.112569f, -0.341975f, -0.513882f, 5.7488966f,
};
static const float two_pass_split_partition_weights_64[FEATURE_SIZE + 1] = {
2.990993f, 0.423273f, -0.926544f, 0.454646f, -0.292698f,
-1.311632f, -0.284432f, 0.717141f, -0.419257f, -0.574760f,
-0.674444f, 0.669047f, -0.374255f, 0.380624f, -0.804036f,
0.264021f, 0.004163f, 1.896802f, 0.924287f, 0.13490619f,
};
static const float two_pass_split_partition_weights_32[FEATURE_SIZE + 1] = {
2.795181f, -0.136943f, -0.924842f, 0.405330f, -0.463505f,
-0.584076f, -0.831472f, 0.382985f, -0.597544f, -0.138915f,
-1.354350f, 0.466035f, -0.553961f, 0.213202f, -1.166429f,
0.010776f, -0.096236f, 2.335084f, 1.699857f, -0.58178353f,
};
static const float two_pass_split_partition_weights_16[FEATURE_SIZE + 1] = {
1.987888f, -0.431100f, -1.687703f, 0.262602f, -0.425298f,
-0.463870f, -1.493457f, 0.470917f, -0.528457f, -0.087700f,
-1.815092f, 0.152883f, -0.337908f, 0.093679f, -1.548267f,
-0.042387f, -0.000861f, 2.556746f, 1.619192f, 0.03643292f,
};
static const float two_pass_split_partition_weights_8[FEATURE_SIZE + 1] = {
2.188344f, -0.817528f, -2.119219f, 0.000000f, -0.348167f,
-0.658074f, -1.960362f, 0.000000f, -0.403080f, 0.282699f,
-2.061088f, 0.000000f, -0.431919f, -0.127960f, -1.099550f,
0.000000f, 0.121622f, 2.017455f, 2.058228f, -0.15475988f,
};
static const float two_pass_none_partition_weights_128[FEATURE_SIZE + 1] = {
-1.006689f, 0.777908f, 4.461072f, -0.395782f, -0.014610f,
-0.853863f, 0.729997f, -0.420477f, 0.282429f, -1.194595f,
3.181220f, -0.511416f, 0.117084f, -1.149348f, 1.507990f,
-0.477212f, 0.202963f, -1.469581f, 0.624461f, -0.89081228f,
};
static const float two_pass_none_partition_weights_64[FEATURE_SIZE + 1] = {
-1.241117f, 0.844878f, 5.638803f, -0.489780f, -0.108796f,
-4.576821f, 1.540624f, -0.477519f, 0.227791f, -1.443968f,
1.586911f, -0.505125f, 0.140764f, -0.464194f, 1.466658f,
-0.641166f, 0.195412f, 1.427905f, 2.080007f, -1.98272777f,
};
static const float two_pass_none_partition_weights_32[FEATURE_SIZE + 1] = {
-2.130825f, 0.476023f, 5.907343f, -0.516002f, -0.097471f,
-2.662754f, 0.614858f, -0.576728f, 0.085261f, -0.031901f,
0.727842f, -0.600034f, 0.079326f, 0.324328f, 0.504502f,
-0.547105f, -0.037670f, 0.304995f, 0.369018f, -2.66299987f,
};
static const float two_pass_none_partition_weights_16[FEATURE_SIZE + 1] = {
-1.626410f, 0.872047f, 5.414965f, -0.554781f, -0.084514f,
-3.020550f, 0.467632f, -0.382280f, 0.199568f, 0.426220f,
0.829426f, -0.467100f, 0.153098f, 0.662994f, 0.327545f,
-0.560106f, -0.141610f, 0.403372f, 0.523991f, -3.02891231f,
};
static const float two_pass_none_partition_weights_8[FEATURE_SIZE + 1] = {
-1.463349f, 0.375376f, 4.751430f, 0.000000f, -0.184451f,
-1.655447f, 0.443214f, 0.000000f, 0.127961f, 0.152435f,
0.083288f, 0.000000f, 0.143105f, 0.438012f, 0.073238f,
0.000000f, -0.278137f, 0.186134f, 0.073737f, -1.6494962f,
};
// split_score indicates confidence of picking split partition;
// none_score indicates confidence of picking none partition;
static int ml_prune_2pass_split_partition(const PC_TREE_STATS *pc_tree_stats,
BLOCK_SIZE bsize, int *split_score,
int *none_score) {
if (!pc_tree_stats->valid) return 0;
const float *split_weights = NULL;
const float *none_weights = NULL;
switch (bsize) {
case BLOCK_4X4: break;
case BLOCK_8X8:
split_weights = two_pass_split_partition_weights_8;
none_weights = two_pass_none_partition_weights_8;
break;
case BLOCK_16X16:
split_weights = two_pass_split_partition_weights_16;
none_weights = two_pass_none_partition_weights_16;
break;
case BLOCK_32X32:
split_weights = two_pass_split_partition_weights_32;
none_weights = two_pass_none_partition_weights_32;
break;
case BLOCK_64X64:
split_weights = two_pass_split_partition_weights_64;
none_weights = two_pass_none_partition_weights_64;
break;
case BLOCK_128X128:
split_weights = two_pass_split_partition_weights_128;
none_weights = two_pass_none_partition_weights_128;
break;
default: assert(0 && "Unexpected bsize.");
}
if (!split_weights || !none_weights) return 0;
aom_clear_system_state();
float features[FEATURE_SIZE];
int feature_index = 0;
features[feature_index++] = (float)pc_tree_stats->split;
features[feature_index++] = (float)pc_tree_stats->skip;
const int rdcost = (int)AOMMIN(INT_MAX, pc_tree_stats->rdcost);
const int rd_valid = rdcost > 0 && rdcost < 1000000000;
features[feature_index++] = (float)rd_valid;
for (int i = 0; i < 4; ++i) {
features[feature_index++] = (float)pc_tree_stats->sub_block_split[i];
features[feature_index++] = (float)pc_tree_stats->sub_block_skip[i];
const int sub_rdcost =
(int)AOMMIN(INT_MAX, pc_tree_stats->sub_block_rdcost[i]);
const int sub_rd_valid = sub_rdcost > 0 && sub_rdcost < 1000000000;
features[feature_index++] = (float)sub_rd_valid;
// Ratio between the sub-block RD and the whole-block RD.
float rd_ratio = 1.0f;
if (rd_valid && sub_rd_valid && sub_rdcost < rdcost)
rd_ratio = (float)sub_rdcost / (float)rdcost;
features[feature_index++] = rd_ratio;
}
assert(feature_index == FEATURE_SIZE);
float score_1 = split_weights[FEATURE_SIZE];
float score_2 = none_weights[FEATURE_SIZE];
for (int i = 0; i < FEATURE_SIZE; ++i) {
score_1 += features[i] * split_weights[i];
score_2 += features[i] * none_weights[i];
}
*split_score = (int)(score_1 * 100);
*none_score = (int)(score_2 * 100);
return 1;
}
#undef FEATURE_SIZE
static void ml_prune_rect_partition(const AV1_COMP *const cpi,
const MACROBLOCK *const x, BLOCK_SIZE bsize,
int64_t best_rd, int64_t none_rd,
int64_t *split_rd,
int *const dst_prune_horz,
int *const dst_prune_vert) {
if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
best_rd = AOMMAX(best_rd, 1);
const NN_CONFIG *nn_config = NULL;
const float prob_thresholds[5] = { 0.01f, 0.01f, 0.004f, 0.002f, 0.002f };
float cur_thresh = 0.0f;
switch (bsize) {
case BLOCK_8X8:
nn_config = &av1_rect_partition_nnconfig_8;
cur_thresh = prob_thresholds[0];
break;
case BLOCK_16X16:
nn_config = &av1_rect_partition_nnconfig_16;
cur_thresh = prob_thresholds[1];
break;
case BLOCK_32X32:
nn_config = &av1_rect_partition_nnconfig_32;
cur_thresh = prob_thresholds[2];
break;
case BLOCK_64X64:
nn_config = &av1_rect_partition_nnconfig_64;
cur_thresh = prob_thresholds[3];
break;
case BLOCK_128X128:
nn_config = &av1_rect_partition_nnconfig_128;
cur_thresh = prob_thresholds[4];
break;
default: assert(0 && "Unexpected bsize.");
}
if (!nn_config) return;
aom_clear_system_state();
// 1. Compute input features
float features[9];
// RD cost ratios
for (int i = 0; i < 5; i++) features[i] = 1.0f;
if (none_rd > 0 && none_rd < 1000000000)
features[0] = (float)none_rd / (float)best_rd;
for (int i = 0; i < 4; i++) {
if (split_rd[i] > 0 && split_rd[i] < 1000000000)
features[1 + i] = (float)split_rd[i] / (float)best_rd;
}
// Variance ratios
const MACROBLOCKD *const xd = &x->e_mbd;
int whole_block_variance;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
whole_block_variance = av1_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
} else {
whole_block_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
whole_block_variance = AOMMAX(whole_block_variance, 1);
int split_variance[4];
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
struct buf_2d buf;
buf.stride = x->plane[0].src.stride;
const int bw = block_size_wide[bsize];
for (int i = 0; i < 4; ++i) {
const int x_idx = (i & 1) * bw / 2;
const int y_idx = (i >> 1) * bw / 2;
buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
split_variance[i] =
av1_high_get_sby_perpixel_variance(cpi, &buf, subsize, xd->bd);
} else {
split_variance[i] = av1_get_sby_perpixel_variance(cpi, &buf, subsize);
}
}
for (int i = 0; i < 4; i++)
features[5 + i] = (float)split_variance[i] / (float)whole_block_variance;
// 2. Do the prediction and prune 0-2 partitions based on their probabilities
float raw_scores[3] = { 0.0f };
av1_nn_predict(features, nn_config, raw_scores);
float probs[3] = { 0.0f };
av1_nn_softmax(raw_scores, probs, 3);
// probs[0] is the probability of the fact that both rectangular partitions
// are worse than current best_rd
if (probs[1] <= cur_thresh) (*dst_prune_horz) = 1;
if (probs[2] <= cur_thresh) (*dst_prune_vert) = 1;
}
// Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be
// considered.
static void ml_prune_ab_partition(BLOCK_SIZE bsize, int part_ctx, int var_ctx,
int64_t best_rd, int64_t horz_rd[2],
int64_t vert_rd[2], int64_t split_rd[4],
int *const horza_partition_allowed,
int *const horzb_partition_allowed,
int *const verta_partition_allowed,
int *const vertb_partition_allowed) {
if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return;
const NN_CONFIG *nn_config = NULL;
switch (bsize) {
case BLOCK_8X8: nn_config = NULL; break;
case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break;
case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break;
case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break;
case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break;
default: assert(0 && "Unexpected bsize.");
}
if (!nn_config) return;
aom_clear_system_state();
// Generate features.
float features[10];
int feature_index = 0;
features[feature_index++] = (float)part_ctx;
features[feature_index++] = (float)var_ctx;
const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
int sub_block_rdcost[8] = { 0 };
int rd_index = 0;
for (int i = 0; i < 2; ++i) {
if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
sub_block_rdcost[rd_index] = (int)horz_rd[i];
++rd_index;
}
for (int i = 0; i < 2; ++i) {
if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
sub_block_rdcost[rd_index] = (int)vert_rd[i];
++rd_index;
}
for (int i = 0; i < 4; ++i) {
if (split_rd[i] > 0 && split_rd[i] < 1000000000)
sub_block_rdcost[rd_index] = (int)split_rd[i];
++rd_index;
}
for (int i = 0; i < 8; ++i) {
// Ratio between the sub-block RD and the whole-block RD.
float rd_ratio = 1.0f;
if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
features[feature_index++] = rd_ratio;
}
assert(feature_index == 10);
// Calculate scores using the NN model.
float score[16] = { 0.0f };
av1_nn_predict(features, nn_config, score);
int int_score[16];
int max_score = -1000;
for (int i = 0; i < 16; ++i) {
int_score[i] = (int)(100 * score[i]);
max_score = AOMMAX(int_score[i], max_score);
}
// Make decisions based on the model scores.
int thresh = max_score;
switch (bsize) {
case BLOCK_16X16: thresh -= 150; break;
case BLOCK_32X32: thresh -= 100; break;
default: break;
}
*horza_partition_allowed = 0;
*horzb_partition_allowed = 0;
*verta_partition_allowed = 0;
*vertb_partition_allowed = 0;
for (int i = 0; i < 16; ++i) {
if (int_score[i] >= thresh) {
if ((i >> 0) & 1) *horza_partition_allowed = 1;
if ((i >> 1) & 1) *horzb_partition_allowed = 1;
if ((i >> 2) & 1) *verta_partition_allowed = 1;
if ((i >> 3) & 1) *vertb_partition_allowed = 1;
}
}
}
#define FEATURES 18
#define LABELS 4
// Use a ML model to predict if horz4 and vert4 should be considered.
static void ml_prune_4_partition(const AV1_COMP *const cpi, MACROBLOCK *const x,
BLOCK_SIZE bsize, int part_ctx,
int64_t best_rd, int64_t horz_rd[2],
int64_t vert_rd[2], int64_t split_rd[4],
int *const partition_horz4_allowed,
int *const partition_vert4_allowed,
unsigned int pb_source_variance, int mi_row,
int mi_col) {
if (best_rd >= 1000000000) return;
const NN_CONFIG *nn_config = NULL;
switch (bsize) {
case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break;
case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break;
case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break;
default: assert(0 && "Unexpected bsize.");
}
if (!nn_config) return;
aom_clear_system_state();
// Generate features.
float features[FEATURES];
int feature_index = 0;
features[feature_index++] = (float)part_ctx;
features[feature_index++] = (float)get_unsigned_bits(pb_source_variance);
const int rdcost = (int)AOMMIN(INT_MAX, best_rd);
int sub_block_rdcost[8] = { 0 };
int rd_index = 0;
for (int i = 0; i < 2; ++i) {
if (horz_rd[i] > 0 && horz_rd[i] < 1000000000)
sub_block_rdcost[rd_index] = (int)horz_rd[i];
++rd_index;
}
for (int i = 0; i < 2; ++i) {
if (vert_rd[i] > 0 && vert_rd[i] < 1000000000)
sub_block_rdcost[rd_index] = (int)vert_rd[i];
++rd_index;
}
for (int i = 0; i < 4; ++i) {
if (split_rd[i] > 0 && split_rd[i] < 1000000000)
sub_block_rdcost[rd_index] = (int)split_rd[i];
++rd_index;
}
for (int i = 0; i < 8; ++i) {
// Ratio between the sub-block RD and the whole-block RD.
float rd_ratio = 1.0f;
if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost)
rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost;
features[feature_index++] = rd_ratio;
}
// Get variance of the 1:4 and 4:1 sub-blocks.
unsigned int horz_4_source_var[4] = { 0 };
unsigned int vert_4_source_var[4] = { 0 };
{
BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4);
BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4);
av1_setup_src_planes(x, cpi->source, mi_row, mi_col,
av1_num_planes(&cpi->common), bsize);
const int src_stride = x->plane[0].src.stride;
const uint8_t *src = x->plane[0].src.buf;
const MACROBLOCKD *const xd = &x->e_mbd;
for (int i = 0; i < 4; ++i) {
const uint8_t *horz_src =
src + i * block_size_high[horz_4_bs] * src_stride;
const uint8_t *vert_src = src + i * block_size_wide[vert_4_bs];
unsigned int horz_var, vert_var, sse;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
switch (xd->bd) {
case 10:
horz_var = cpi->fn_ptr[horz_4_bs].vf(
horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10),
0, &sse);
vert_var = cpi->fn_ptr[vert_4_bs].vf(
vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10),
0, &sse);
break;
case 12:
horz_var = cpi->fn_ptr[horz_4_bs].vf(
horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12),
0, &sse);
vert_var = cpi->fn_ptr[vert_4_bs].vf(
vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12),
0, &sse);
break;
case 8:
default:
horz_var = cpi->fn_ptr[horz_4_bs].vf(
horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8),
0, &sse);
vert_var = cpi->fn_ptr[vert_4_bs].vf(
vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8),
0, &sse);
break;
}
horz_4_source_var[i] =
ROUND_POWER_OF_TWO(horz_var, num_pels_log2_lookup[horz_4_bs]);
vert_4_source_var[i] =
ROUND_POWER_OF_TWO(vert_var, num_pels_log2_lookup[vert_4_bs]);
} else {
horz_var = cpi->fn_ptr[horz_4_bs].vf(horz_src, src_stride, AV1_VAR_OFFS,
0, &sse);
vert_var = cpi->fn_ptr[vert_4_bs].vf(vert_src, src_stride, AV1_VAR_OFFS,
0, &sse);
horz_4_source_var[i] =
ROUND_POWER_OF_TWO(horz_var, num_pels_log2_lookup[horz_4_bs]);
vert_4_source_var[i] =
ROUND_POWER_OF_TWO(vert_var, num_pels_log2_lookup[vert_4_bs]);
}
}
}
const float denom = (float)(pb_source_variance + 1);
const float low_b = 0.1f;
const float high_b = 10.0f;
for (int i = 0; i < 4; ++i) {
// Ratio between the 4:1 sub-block variance and the whole-block variance.
float var_ratio = (float)(horz_4_source_var[i] + 1) / denom;
if (var_ratio < low_b) var_ratio = low_b;
if (var_ratio > high_b) var_ratio = high_b;
features[feature_index++] = var_ratio;
}
for (int i = 0; i < 4; ++i) {
// Ratio between the 1:4 sub-block RD and the whole-block RD.
float var_ratio = (float)(vert_4_source_var[i] + 1) / denom;
if (var_ratio < low_b) var_ratio = low_b;
if (var_ratio > high_b) var_ratio = high_b;
features[feature_index++] = var_ratio;
}
assert(feature_index == FEATURES);
// Calculate scores using the NN model.
float score[LABELS] = { 0.0f };
av1_nn_predict(features, nn_config, score);
int int_score[LABELS];
int max_score = -1000;
for (int i = 0; i < LABELS; ++i) {
int_score[i] = (int)(100 * score[i]);
max_score = AOMMAX(int_score[i], max_score);
}
// Make decisions based on the model scores.
int thresh = max_score;
switch (bsize) {
case BLOCK_16X16: thresh -= 500; break;
case BLOCK_32X32: thresh -= 500; break;
case BLOCK_64X64: thresh -= 200; break;
default: break;
}
*partition_horz4_allowed = 0;
*partition_vert4_allowed = 0;
for (int i = 0; i < LABELS; ++i) {
if (int_score[i] >= thresh) {
if ((i >> 0) & 1) *partition_horz4_allowed = 1;
if ((i >> 1) & 1) *partition_vert4_allowed = 1;
}
}
}
#undef FEATURES
#undef LABELS
#define FEATURES 4
// ML-based partition search breakout.
static int ml_predict_breakout(const AV1_COMP *const cpi, BLOCK_SIZE bsize,
const MACROBLOCK *const x,
const RD_STATS *const rd_stats,
unsigned int pb_source_variance) {
const NN_CONFIG *nn_config = NULL;
int thresh = 0;
switch (bsize) {
case BLOCK_8X8:
nn_config = &av1_partition_breakout_nnconfig_8;
thresh = cpi->sf.ml_partition_search_breakout_thresh[0];
break;
case BLOCK_16X16:
nn_config = &av1_partition_breakout_nnconfig_16;
thresh = cpi->sf.ml_partition_search_breakout_thresh[1];
break;
case BLOCK_32X32:
nn_config = &av1_partition_breakout_nnconfig_32;
thresh = cpi->sf.ml_partition_search_breakout_thresh[2];
break;
case BLOCK_64X64:
nn_config = &av1_partition_breakout_nnconfig_64;
thresh = cpi->sf.ml_partition_search_breakout_thresh[3];
break;
case BLOCK_128X128:
nn_config = &av1_partition_breakout_nnconfig_128;
thresh = cpi->sf.ml_partition_search_breakout_thresh[4];
break;
default: assert(0 && "Unexpected bsize.");
}
if (!nn_config || thresh < 0) return 0;
// Generate feature values.
float features[FEATURES];
int feature_index = 0;
aom_clear_system_state();
const int num_pels_log2 = num_pels_log2_lookup[bsize];
float rate_f = (float)AOMMIN(rd_stats->rate, INT_MAX);
rate_f = ((float)x->rdmult / 128.0f / 512.0f / (float)(1 << num_pels_log2)) *
rate_f;
features[feature_index++] = rate_f;
const float dist_f =
(float)(AOMMIN(rd_stats->dist, INT_MAX) >> num_pels_log2);
features[feature_index++] = dist_f;
features[feature_index++] = (float)pb_source_variance;
const int dc_q = (int)x->plane[0].dequant_QTX[0];
features[feature_index++] = (float)(dc_q * dc_q) / 256.0f;
assert(feature_index == FEATURES);
// Calculate score using the NN model.
float score = 0.0f;
av1_nn_predict(features, nn_config, &score);
// Make decision.
return (int)(score * 100) >= thresh;
}
#undef FEATURES
#if CONFIG_ONE_PASS_SVM
#define FEATURES 24
static void ml_op_svm_early_term(const AV1_COMP *const cpi,
const MACROBLOCK *const x,
const MACROBLOCKD *const xd,
const PICK_MODE_CONTEXT *ctx_none,
const RD_STATS *none_rdc, int pb_source_var,
BLOCK_SIZE bsize, float *const score) {
const float *ml_weights = NULL, *ml_mean = NULL, *ml_std = NULL;
if (bsize == BLOCK_128X128) {
ml_weights = av1_op_svm_early_term_weights_128;
ml_mean = av1_op_svm_early_term_mean_128;
ml_std = av1_op_svm_early_term_std_128;
} else if (bsize == BLOCK_64X64) {
ml_weights = av1_op_svm_early_term_weights_64;
ml_mean = av1_op_svm_early_term_mean_64;
ml_std = av1_op_svm_early_term_std_64;
} else if (bsize == BLOCK_32X32) {
ml_weights = av1_op_svm_early_term_weights_32;
ml_mean = av1_op_svm_early_term_mean_32;
ml_std = av1_op_svm_early_term_std_32;
} else if (bsize == BLOCK_16X16) {
ml_weights = av1_op_svm_early_term_weights_16;
ml_mean = av1_op_svm_early_term_mean_16;
ml_std = av1_op_svm_early_term_std_16;
} else {
assert(bsize == BLOCK_128X128 || bsize == BLOCK_64X64 ||
bsize == BLOCK_32X32 || bsize == BLOCK_8X8);
}
if (ml_weights != NULL) {
// Compute some features
float features[FEATURES] = { 0 };
int f_idx = 0;
int r_idx = 0;
// None features
// Get none stats
features[f_idx++] = none_rdc->rate;
features[f_idx++] = none_rdc->dist;
features[f_idx++] = none_rdc->rdcost;
features[f_idx++] = ctx_none->skip;
// EOBS
features[f_idx++] = none_rdc->eob;
int scaled_eob = none_rdc->eob * 32 * 32;
features[f_idx++] = (1.0f + none_rdc->eob_0) / (4.0f + scaled_eob);
features[f_idx++] = (1.0f + none_rdc->eob_1) / (4.0f + scaled_eob);
features[f_idx++] = (1.0f + none_rdc->eob_2) / (4.0f + scaled_eob);
features[f_idx++] = (1.0f + none_rdc->eob_3) / (4.0f + scaled_eob);
// Y_RD
features[f_idx++] = none_rdc->rd;
int64_t scaled_rd = none_rdc->rd * 32 * 32;
features[f_idx++] = (1.0f + none_rdc->rd_0) / (4.0f + scaled_rd);
features[f_idx++] = (1.0f + none_rdc->rd_1) / (4.0f + scaled_rd);
features[f_idx++] = (1.0f + none_rdc->rd_2) / (4.0f + scaled_rd);
features[f_idx++] = (1.0f + none_rdc->rd_3) / (4.0f + scaled_rd);
// Q_SQUARED
features[f_idx++] =
(x->plane[0].dequant_QTX[0]) * (x->plane[0].dequant_QTX[0]);
// SIZE
// Get size of surrounding blocks
int above_size = 18, left_size = 18;
const MB_MODE_INFO *above_block = xd->above_mbmi;
const MB_MODE_INFO *left_block = xd->left_mbmi;
if (above_block) {
above_size = above_block->sb_type;
}
if (left_block) {
left_size = left_block->sb_type;
}
features[f_idx++] = left_size;
features[f_idx++] = left_size != 18;
features[f_idx++] = above_size;
features[f_idx++] = above_size != 18;
// Variance
// Get variance
int var = pb_source_var, var_reg[4] = { 0 };
const int bw = block_size_wide[bsize];
const int bh = block_size_high[bsize];
const BLOCK_SIZE split_size = get_partition_subsize(bsize, PARTITION_SPLIT);
struct buf_2d buf;
buf.stride = x->plane[0].src.stride;
for (int i = 0; i < 4; ++i) {
const int x_idx = (i & 1) * bw / 2;
const int y_idx = (i >> 1) * bh / 2;
buf.buf = x->plane[0].src.buf + x_idx + y_idx * buf.stride;
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
var_reg[i] =
av1_high_get_sby_perpixel_variance(cpi, &buf, split_size, xd->bd);
} else {
var_reg[i] = av1_get_sby_perpixel_variance(cpi, &buf, split_size);
}
}
features[f_idx++] = var;
for (r_idx = 0; r_idx < 4; r_idx++) {
features[f_idx] = (var_reg[r_idx] + 1.0f) / (var + 4.0f);
f_idx++;
}
assert(f_idx == FEATURES);
// Calculate the score
*score = 0.0f;
for (f_idx = 0; f_idx < FEATURES; f_idx++) {
*score += ml_weights[f_idx] * (features[f_idx] - ml_mean[f_idx]) /
ml_std[f_idx];
}
// Dont forget the bias
*score += ml_weights[FEATURES];
}
}
#undef FEATURES
#endif
// TODO(jingning,jimbankoski,rbultje): properly skip partition types that are
// unlikely to be selected depending on previous rate-distortion optimization
// results, for encoding speed-up.
static void rd_pick_partition(AV1_COMP *const cpi, ThreadData *td,
TileDataEnc *tile_data, TOKENEXTRA **tp,
int mi_row, int mi_col, BLOCK_SIZE bsize,
RD_STATS *rd_cost, int64_t best_rd,
PC_TREE *pc_tree, int64_t *none_rd) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_step = mi_size_wide[bsize] / 2;
RD_SEARCH_MACROBLOCK_CONTEXT x_ctx;
const TOKENEXTRA *const tp_orig = *tp;
PICK_MODE_CONTEXT *ctx_none = &pc_tree->none;
int tmp_partition_cost[PARTITION_TYPES];
BLOCK_SIZE subsize;
RD_STATS this_rdc, sum_rdc, best_rdc;
const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8);
int do_square_split = bsize_at_least_8x8;
const int pl = bsize_at_least_8x8
? partition_plane_context(xd, mi_row, mi_col, bsize)
: 0;
const int *partition_cost =
pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0];
int do_rectangular_split = 1;
int64_t cur_none_rd = 0;
int64_t split_rd[4] = { 0, 0, 0, 0 };
int64_t horz_rd[2] = { 0, 0 };
int64_t vert_rd[2] = { 0, 0 };
int split_ctx_is_ready[2] = { 0, 0 };
int horz_ctx_is_ready = 0;
int vert_ctx_is_ready = 0;
BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
if (best_rd < 0) {
pc_tree->none.rdcost = INT64_MAX;
pc_tree->none.skip = 0;
av1_invalid_rd_stats(rd_cost);
return;
}
if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0;
// Override skipping rectangular partition operations for edge blocks
const int has_rows = (mi_row + mi_step < cm->mi_rows);
const int has_cols = (mi_col + mi_step < cm->mi_cols);
const int xss = x->e_mbd.plane[1].subsampling_x;
const int yss = x->e_mbd.plane[1].subsampling_y;
BLOCK_SIZE min_size = x->min_partition_size;
BLOCK_SIZE max_size = x->max_partition_size;
if (none_rd) *none_rd = 0;
#if CONFIG_FP_MB_STATS
unsigned int src_diff_var = UINT_MAX;
int none_complexity = 0;
#endif
int partition_none_allowed = has_rows && has_cols;
int partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8;
int partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8;
(void)*tp_orig;
// Override partition costs at the edges of the frame in the same
// way as in read_partition (see decodeframe.c)
if (!(has_rows && has_cols)) {
assert(bsize_at_least_8x8 && pl >= 0);
const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl];
for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = INT_MAX;
if (has_cols) {
// At the bottom, the two possibilities are HORZ and SPLIT
aom_cdf_prob bot_cdf[2];
partition_gather_vert_alike(bot_cdf, partition_cdf, bsize);
static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map);
} else if (has_rows) {
// At the right, the two possibilities are VERT and SPLIT
aom_cdf_prob rhs_cdf[2];
partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize);
static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT };
av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map);
} else {
// At the bottom right, we always split
tmp_partition_cost[PARTITION_SPLIT] = 0;
}
partition_cost = tmp_partition_cost;
}
#ifndef NDEBUG
// Nothing should rely on the default value of this array (which is just
// leftover from encoding the previous block. Setting it to fixed pattern
// when debugging.
// bit 0, 1, 2 are blk_skip of each plane
// bit 4, 5, 6 are initialization checking of each plane
memset(x->blk_skip, 0x77, sizeof(x->blk_skip));
#endif // NDEBUG
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
av1_init_rd_stats(&this_rdc);
av1_invalid_rd_stats(&best_rdc);
best_rdc.rdcost = best_rd;
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
if (bsize == BLOCK_16X16 && cpi->vaq_refresh)
x->mb_energy = av1_log_block_var(cpi, x, bsize);
if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) {
const int cb_partition_search_ctrl =
((pc_tree->index == 0 || pc_tree->index == 3) +
get_chessboard_index(cm->current_video_frame)) &
0x1;
if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size)
set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size);
}
// Determine partition types in search according to the speed features.
// The threshold set here has to be of square block size.
if (cpi->sf.auto_min_max_partition_size) {
const int no_partition_allowed = (bsize <= max_size && bsize >= min_size);
// Note: Further partitioning is NOT allowed when bsize == min_size already.
const int partition_allowed = (bsize <= max_size && bsize > min_size);
partition_none_allowed &= no_partition_allowed;
partition_horz_allowed &= partition_allowed || !has_rows;
partition_vert_allowed &= partition_allowed || !has_cols;
do_square_split &= bsize > min_size;
}
if (bsize > cpi->sf.use_square_partition_only_threshold) {
partition_horz_allowed &= !has_rows;
partition_vert_allowed &= !has_cols;
}
if (bsize > BLOCK_4X4 && x->use_cb_search_range &&
cpi->sf.auto_min_max_partition_size == 0) {
int split_score = 0;
int none_score = 0;
const int score_valid = ml_prune_2pass_split_partition(
&pc_tree->pc_tree_stats, bsize, &split_score, &none_score);
if (score_valid) {
{
const int only_split_thresh = 300;
const int no_none_thresh = 250;
const int no_split_thresh = 0;
if (split_score > only_split_thresh) {
partition_none_allowed = 0;
partition_horz_allowed = 0;
partition_vert_allowed = 0;
} else if (split_score > no_none_thresh) {
partition_none_allowed = 0;
}
if (split_score < no_split_thresh) do_square_split = 0;
}
{
const int no_split_thresh = 120;
const int no_none_thresh = -120;
if (none_score > no_split_thresh && partition_none_allowed)
do_square_split = 0;
if (none_score < no_none_thresh) partition_none_allowed = 0;
}
} else {
if (pc_tree->cb_search_range == SPLIT_PLANE) {
partition_none_allowed = 0;
partition_horz_allowed = 0;
partition_vert_allowed = 0;
}
if (pc_tree->cb_search_range == SEARCH_SAME_PLANE) do_square_split = 0;
if (pc_tree->cb_search_range == NONE_PARTITION_PLANE) {
do_square_split = 0;
partition_horz_allowed = 0;
partition_vert_allowed = 0;
}
}
// Fall back to default values in case all partition modes are rejected.
if (partition_none_allowed == 0 && do_square_split == 0 &&
partition_horz_allowed == 0 && partition_vert_allowed == 0) {
do_square_split = bsize_at_least_8x8;
partition_none_allowed = has_rows && has_cols;
partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8;
partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8;
}
}
xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row,
mi_col, bsize);
}
// Decide whether we shall split directly and skip searching NONE by using
// the first pass block statistics
if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_square_split &&
partition_none_allowed && src_diff_var > 4 &&
cm->base_qindex < qindex_split_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
// compute a complexity measure, basically measure inconsistency of motion
// vectors obtained from the first pass in the current block
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
MOTION_DIRECTION this_mv;
MOTION_DIRECTION right_mv;
MOTION_DIRECTION bottom_mv;
this_mv =
get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]);
// to its right
if (c != mb_col_end - 1) {
right_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + 1]);
none_complexity += get_motion_inconsistency(this_mv, right_mv);
}
// to its bottom
if (r != mb_row_end - 1) {
bottom_mv = get_motion_direction_fp(
cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]);
none_complexity += get_motion_inconsistency(this_mv, bottom_mv);
}
// do not count its left and top neighbors to avoid double counting
}
}
if (none_complexity > complexity_16x16_blocks_threshold[bsize]) {
partition_none_allowed = 0;
}
}
#endif
// Ref frames picked in the [i_th] quarter subblock during square partition
// RD search. It may be used to prune ref frame selection of rect partitions.
int ref_frames_used[4] = {
0,
};
MB_MODE_INFO *split_mbmi[4] = { 0 };
BEGIN_PARTITION_SEARCH:
if (x->must_find_valid_partition) {
partition_none_allowed = has_rows && has_cols;
partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8;
partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8;
}
// Partition block source pixel variance.
unsigned int pb_source_variance = UINT_MAX;
#if CONFIG_DIST_8X8
if (x->using_dist_8x8) {
if (block_size_high[bsize] <= 8) partition_horz_allowed = 0;
if (block_size_wide[bsize] <= 8) partition_vert_allowed = 0;
if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8)
do_square_split = 0;
}
#endif
// PARTITION_NONE
if (partition_none_allowed) {
int pt_cost = 0;
if (bsize_at_least_8x8) {
pt_cost = partition_cost[PARTITION_NONE] < INT_MAX
? partition_cost[PARTITION_NONE]
: 0;
}
const int64_t partition_rd_cost = RDCOST(x->rdmult, pt_cost, 0);
const int64_t best_remain_rdcost =
(best_rdc.rdcost == INT64_MAX) ? INT64_MAX
: (best_rdc.rdcost - partition_rd_cost);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
PARTITION_NONE, bsize, ctx_none, best_remain_rdcost);
pb_source_variance = x->source_variance;
if (none_rd) *none_rd = this_rdc.rdcost;
cur_none_rd = this_rdc.rdcost;
if (this_rdc.rate != INT_MAX) {
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
const int ref_type = av1_ref_frame_type(ctx_none->mic.ref_frame);
for (int i = 0; i < 4; ++i) {
ref_frames_used[i] |= (1 << ref_type);
}
}
if (bsize_at_least_8x8) {
this_rdc.rate += pt_cost;
this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist);
}
if (this_rdc.rdcost < best_rdc.rdcost) {
// Adjust dist breakout threshold according to the partition size.
const int64_t dist_breakout_thr =
cpi->sf.partition_search_breakout_dist_thr >>
((2 * (MAX_SB_SIZE_LOG2 - 2)) -
(mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]));
const int rate_breakout_thr =
cpi->sf.partition_search_breakout_rate_thr *
num_pels_log2_lookup[bsize];
best_rdc = this_rdc;
if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE;
#if CONFIG_ONE_PASS_SVM
// Use ML if the block size is square and >= 16X16
if (bsize >= BLOCK_16X16 && !frame_is_intra_only(cm) &&
this_rdc.rate < INT_MAX && this_rdc.rate >= 0 &&
!ctx_none->seg_feat) {
// Model Prediction
float score = 0.0f;
ml_op_svm_early_term(cpi, x, xd, ctx_none, &this_rdc,
pb_source_variance, bsize, &score);
// Decide if we want to terminate early
if (score >= 0) {
do_square_split = 0;
do_rectangular_split = 0;
partition_horz_allowed = 0;
partition_vert_allowed = 0;
}
}
#endif
if ((do_square_split || do_rectangular_split) &&
!x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) {
const int use_ml_based_breakout =
bsize <= cpi->sf.use_square_partition_only_threshold &&
bsize > BLOCK_4X4 && xd->bd == 8;
if (use_ml_based_breakout) {
if (ml_predict_breakout(cpi, bsize, x, &this_rdc,
pb_source_variance)) {
do_square_split = 0;
do_rectangular_split = 0;
}
}
// If all y, u, v transform blocks in this partition are skippable,
// and the dist & rate are within the thresholds, the partition
// search is terminated for current branch of the partition search
// tree. The dist & rate thresholds are set to 0 at speed 0 to
// disable the early termination at that speed.
if (best_rdc.dist < dist_breakout_thr &&
best_rdc.rate < rate_breakout_thr) {
do_square_split = 0;
do_rectangular_split = 0;
}
}
#if CONFIG_FP_MB_STATS
// Check if every 16x16 first pass block statistics has zero
// motion and the corresponding first pass residue is small enough.
// If that is the case, check the difference variance between the
// current frame and the last frame. If the variance is small enough,
// stop further splitting in RD optimization
if (cpi->use_fp_mb_stats && do_square_split &&
cm->base_qindex > qindex_skip_threshold_lookup[bsize]) {
int mb_row = mi_row >> 1;
int mb_col = mi_col >> 1;
int mb_row_end =
AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows);
int mb_col_end =
AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols);
int r, c;
int skip = 1;
for (r = mb_row; r < mb_row_end; r++) {
for (c = mb_col; c < mb_col_end; c++) {
const int mb_index = r * cm->mb_cols + c;
if (!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_MOTION_ZERO_MASK) ||
!(cpi->twopass.this_frame_mb_stats[mb_index] &
FPMB_ERROR_SMALL_MASK)) {
skip = 0;
break;
}
}
if (skip == 0) {
break;
}
}
if (skip) {
if (src_diff_var == UINT_MAX) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize);
src_diff_var = get_sby_perpixel_diff_variance(
cpi, &x->plane[0].src, mi_row, mi_col, bsize);
}
if (src_diff_var < 8) {
do_square_split = 0;
do_rectangular_split = 0;
}
}
}
#endif
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// store estimated motion vector
if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none);
// PARTITION_SPLIT
if (do_square_split) {
av1_init_rd_stats(&sum_rdc);
subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
sum_rdc.rate = partition_cost[PARTITION_SPLIT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
int idx;
for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) {
const int x_idx = (idx & 1) * mi_step;
const int y_idx = (idx >> 1) * mi_step;
if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols)
continue;
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
pc_tree->split[idx]->index = idx;
int64_t *p_split_rd = &split_rd[idx];
const int64_t best_remain_rdcost =
best_rdc.rdcost == INT64_MAX ? INT64_MAX
: (best_rdc.rdcost - sum_rdc.rdcost);
if (cpi->sf.prune_ref_frame_for_rect_partitions)
pc_tree->split[idx]->none.rate = INT_MAX;
rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx,
subsize, &this_rdc, best_remain_rdcost,
pc_tree->split[idx], p_split_rd);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
break;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
if (cpi->sf.prune_ref_frame_for_rect_partitions &&
pc_tree->split[idx]->none.rate != INT_MAX) {
const int ref_type =
av1_ref_frame_type(pc_tree->split[idx]->none.mic.ref_frame);
ref_frames_used[idx] |= (1 << ref_type);
if (cpi->sf.prune_ref_mode_for_partitions) {
split_mbmi[idx] = &pc_tree->split[idx]->none.mic;
}
}
if (idx <= 1 && (bsize <= BLOCK_8X8 ||
pc_tree->split[idx]->partitioning == PARTITION_NONE)) {
const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none.mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted
if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED) split_ctx_is_ready[idx] = 1;
}
}
}
}
const int reached_last_index = (idx == 4);
if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_SPLIT;
}
} else if (cpi->sf.less_rectangular_check_level > 0) {
// skip rectangular partition test when larger block size
// gives better rd cost
if (cpi->sf.less_rectangular_check_level == 2 || idx <= 2)
do_rectangular_split &= !partition_none_allowed;
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
} // if (do_split)
pc_tree->horizontal[0].skip_ref_frame_mask = 0;
pc_tree->horizontal[1].skip_ref_frame_mask = 0;
pc_tree->vertical[0].skip_ref_frame_mask = 0;
pc_tree->vertical[1].skip_ref_frame_mask = 0;
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
int used_frames;
used_frames = ref_frames_used[0] | ref_frames_used[1];
if (used_frames) pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[2] | ref_frames_used[3];
if (used_frames) pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[0] | ref_frames_used[2];
if (used_frames) pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[1] | ref_frames_used[3];
if (used_frames) pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames;
}
for (int i = 0; i < 2; ++i) {
pc_tree->horizontal[i].ref_selected[0] =
pc_tree->horizontal[i].ref_selected[1] = NONE_FRAME;
pc_tree->horizontal[i].mode_selected = -1;
pc_tree->vertical[i].ref_selected[0] =
pc_tree->vertical[i].ref_selected[1] = NONE_FRAME;
pc_tree->vertical[i].mode_selected = -1;
}
if (cpi->sf.prune_ref_mode_for_partitions) {
// horizontal partition
for (int idx = 0; idx < 4; idx += 2) {
const int horz_idx = idx / 2;
if (split_mbmi[idx] && split_mbmi[idx + 1] &&
split_mbmi[idx]->ref_frame[0] > INTRA_FRAME) {
if (!has_second_ref(split_mbmi[idx])) {
// Single ref
if (split_mbmi[idx]->ref_frame[0] ==
split_mbmi[idx + 1]->ref_frame[0] &&
!has_second_ref(split_mbmi[idx + 1])) {
const int ref_type = av1_ref_frame_type(split_mbmi[idx]->ref_frame);
// Overwrite skip_ref_frame_mask for the current block
const int used_frames = (1 << ref_type);
pc_tree->horizontal[horz_idx].skip_ref_frame_mask = ~used_frames;
pc_tree->horizontal[horz_idx].ref_selected[0] =
split_mbmi[idx]->ref_frame[0];
#if 0
// TODO(zoeliu@gmail.com): To consider the scenario of obmc
if (split_mbmi[idx]->motion_mode ==
split_mbmi[idx + 1]->motion_mode &&
split_mbmi[idx]->motion_mode == SIMPLE_TRANSLATION &&
split_mbmi[idx]->use_wedge_interintra == 0) {
pc_tree->horizontal[horz_idx].mode_selected = SIMPLE_TRANSLATION;
}
#endif // 0
}
} else {
// TODO(zoeliu@gmail.com): To handle comp ref
}
}
}
// vertical partition
for (int idx = 0; idx < 2; ++idx) {
const int vert_idx = idx;
if (split_mbmi[idx] && split_mbmi[idx + 2] &&
split_mbmi[idx]->ref_frame[0] > INTRA_FRAME) {
if (!has_second_ref(split_mbmi[idx])) {
// Single ref
if (split_mbmi[idx]->ref_frame[0] ==
split_mbmi[idx + 2]->ref_frame[0] &&
!has_second_ref(split_mbmi[idx + 2])) {
const int ref_type = av1_ref_frame_type(split_mbmi[idx]->ref_frame);
// Overwrite skip_ref_frame_mask for the current block
const int used_frames = (1 << ref_type);
pc_tree->vertical[vert_idx].skip_ref_frame_mask = ~used_frames;
pc_tree->vertical[vert_idx].ref_selected[0] =
split_mbmi[idx]->ref_frame[0];
#if 0
// TODO(zoeliu@gmail.com): To consider the scenario of obmc
if (split_mbmi[idx]->motion_mode ==
split_mbmi[idx + 2]->motion_mode &&
split_mbmi[idx]->motion_mode == SIMPLE_TRANSLATION &&
split_mbmi[idx]->use_wedge_interintra == 0) {
pc_tree->vertical[vert_idx].mode_selected = SIMPLE_TRANSLATION;
}
#endif // 0
}
} else {
// TODO(zoeliu@gmail.com): To handle comp ref
}
}
}
}
int prune_horz = 0;
int prune_vert = 0;
if (cpi->sf.ml_prune_rect_partition && !frame_is_intra_only(cm) &&
(partition_horz_allowed || partition_vert_allowed)) {
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
ml_prune_rect_partition(cpi, x, bsize, best_rdc.rdcost, cur_none_rd,
split_rd, &prune_horz, &prune_vert);
}
// PARTITION_HORZ
if (partition_horz_allowed && !prune_horz &&
(do_rectangular_split || active_h_edge(cpi, mi_row, mi_step))) {
av1_init_rd_stats(&sum_rdc);
subsize = get_partition_subsize(bsize, PARTITION_HORZ);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed) {
pc_tree->horizontal[0].pred_interp_filter =
av1_extract_interp_filter(ctx_none->mic.interp_filters, 0);
}
const int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX
? INT64_MAX
: (best_rdc.rdcost - sum_rdc.rdcost);
sum_rdc.rate = partition_cost[PARTITION_HORZ];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
PARTITION_HORZ, subsize, &pc_tree->horizontal[0],
best_remain_rdcost);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
horz_rd[0] = this_rdc.rdcost;
if (sum_rdc.rdcost < best_rdc.rdcost && has_rows) {
const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0];
const MB_MODE_INFO *const mbmi = &pc_tree->horizontal[0].mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted
if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED) horz_ctx_is_ready = 1;
}
update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col,
subsize, NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed) {
pc_tree->horizontal[1].pred_interp_filter =
av1_extract_interp_filter(ctx_h->mic.interp_filters, 0);
}
rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc,
PARTITION_HORZ, subsize, &pc_tree->horizontal[1],
best_rdc.rdcost - sum_rdc.rdcost);
horz_rd[1] = this_rdc.rdcost;
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_HORZ;
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_VERT
if (partition_vert_allowed && !prune_vert &&
(do_rectangular_split || active_v_edge(cpi, mi_col, mi_step))) {
av1_init_rd_stats(&sum_rdc);
subsize = get_partition_subsize(bsize, PARTITION_VERT);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed) {
pc_tree->vertical[0].pred_interp_filter =
av1_extract_interp_filter(ctx_none->mic.interp_filters, 0);
}
sum_rdc.rate = partition_cost[PARTITION_VERT];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
const int64_t best_remain_rdcost = best_rdc.rdcost == INT64_MAX
? INT64_MAX
: (best_rdc.rdcost - sum_rdc.rdcost);
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc,
PARTITION_VERT, subsize, &pc_tree->vertical[0],
best_remain_rdcost);
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
vert_rd[0] = this_rdc.rdcost;
if (sum_rdc.rdcost < best_rdc.rdcost && has_cols) {
const MB_MODE_INFO *const mbmi = &pc_tree->vertical[0].mic;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
// Neither palette mode nor cfl predicted
if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) {
if (mbmi->uv_mode != UV_CFL_PRED) vert_ctx_is_ready = 1;
}
update_state(cpi, tile_data, td, &pc_tree->vertical[0], mi_row, mi_col,
subsize, 1);
encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col,
subsize, NULL);
if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none);
if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 &&
partition_none_allowed) {
pc_tree->vertical[1].pred_interp_filter =
av1_extract_interp_filter(ctx_none->mic.interp_filters, 0);
}
rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc,
PARTITION_VERT, subsize, &pc_tree->vertical[1],
best_rdc.rdcost - sum_rdc.rdcost);
vert_rd[1] = this_rdc.rdcost;
if (this_rdc.rate == INT_MAX) {
sum_rdc.rdcost = INT64_MAX;
} else {
sum_rdc.rate += this_rdc.rate;
sum_rdc.dist += this_rdc.dist;
sum_rdc.rdcost += this_rdc.rdcost;
}
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_VERT;
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
if (pb_source_variance == UINT_MAX) {
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize);
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
pb_source_variance = av1_high_get_sby_perpixel_variance(
cpi, &x->plane[0].src, bsize, xd->bd);
} else {
pb_source_variance =
av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize);
}
}
const int ext_partition_allowed =
do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed;
// The standard AB partitions are allowed whenever ext-partition-types are
// allowed
int horzab_partition_allowed = ext_partition_allowed;
int vertab_partition_allowed = ext_partition_allowed;
#if CONFIG_DIST_8X8
if (x->using_dist_8x8) {
if (block_size_high[bsize] <= 8 || block_size_wide[bsize] <= 8) {
horzab_partition_allowed = 0;
vertab_partition_allowed = 0;
}
}
#endif
if (cpi->sf.prune_ext_partition_types_search_level) {
if (cpi->sf.prune_ext_partition_types_search_level == 1) {
// TODO(debargha,huisu@google.com): may need to tune the threshold for
// pb_source_variance.
horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
(pc_tree->partitioning == PARTITION_NONE &&
pb_source_variance < 32) ||
pc_tree->partitioning == PARTITION_SPLIT);
vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
(pc_tree->partitioning == PARTITION_NONE &&
pb_source_variance < 32) ||
pc_tree->partitioning == PARTITION_SPLIT);
} else {
horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
pc_tree->partitioning == PARTITION_SPLIT);
vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
pc_tree->partitioning == PARTITION_SPLIT);
}
horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0);
horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0);
vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0);
vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0);
split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0);
split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0);
split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0);
split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0);
}
int horza_partition_allowed = horzab_partition_allowed;
int horzb_partition_allowed = horzab_partition_allowed;
if (cpi->sf.prune_ext_partition_types_search_level) {
const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1];
const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3];
switch (cpi->sf.prune_ext_partition_types_search_level) {
case 1:
horza_partition_allowed &= (horz_a_rd / 16 * 14 < best_rdc.rdcost);
horzb_partition_allowed &= (horz_b_rd / 16 * 14 < best_rdc.rdcost);
break;
case 2:
default:
horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdc.rdcost);
horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdc.rdcost);
break;
}
}
int verta_partition_allowed = vertab_partition_allowed;
int vertb_partition_allowed = vertab_partition_allowed;
if (cpi->sf.prune_ext_partition_types_search_level) {
const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2];
const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3];
switch (cpi->sf.prune_ext_partition_types_search_level) {
case 1:
verta_partition_allowed &= (vert_a_rd / 16 * 14 < best_rdc.rdcost);
vertb_partition_allowed &= (vert_b_rd / 16 * 14 < best_rdc.rdcost);
break;
case 2:
default:
verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdc.rdcost);
vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdc.rdcost);
break;
}
}
if (cpi->sf.ml_prune_ab_partition && ext_partition_allowed &&
partition_horz_allowed && partition_vert_allowed) {
// TODO(huisu@google.com): x->source_variance may not be the current block's
// variance. The correct one to use is pb_source_variance.
// Need to re-train the model to fix it.
ml_prune_ab_partition(bsize, pc_tree->partitioning,
get_unsigned_bits(x->source_variance),
best_rdc.rdcost, horz_rd, vert_rd, split_rd,
&horza_partition_allowed, &horzb_partition_allowed,
&verta_partition_allowed, &vertb_partition_allowed);
}
// PARTITION_HORZ_A
if (partition_horz_allowed && horza_partition_allowed) {
subsize = get_partition_subsize(bsize, PARTITION_HORZ_A);
pc_tree->horizontala[0].rd_mode_is_ready = 0;
pc_tree->horizontala[1].rd_mode_is_ready = 0;
pc_tree->horizontala[2].rd_mode_is_ready = 0;
if (split_ctx_is_ready[0]) {
av1_copy_tree_context(&pc_tree->horizontala[0], &pc_tree->split[0]->none);
pc_tree->horizontala[0].mic.partition = PARTITION_HORZ_A;
pc_tree->horizontala[0].rd_mode_is_ready = 1;
if (split_ctx_is_ready[1]) {
av1_copy_tree_context(&pc_tree->horizontala[1],
&pc_tree->split[1]->none);
pc_tree->horizontala[1].mic.partition = PARTITION_HORZ_A;
pc_tree->horizontala[1].rd_mode_is_ready = 1;
}
}
for (int i = 0; i < 3; ++i) {
pc_tree->horizontala[i].skip_ref_frame_mask = 0;
pc_tree->horizontala[i].ref_selected[0] =
pc_tree->horizontala[i].ref_selected[1] = NONE_FRAME;
}
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
int used_frames;
used_frames = ref_frames_used[0];
if (used_frames)
pc_tree->horizontala[0].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[1];
if (used_frames)
pc_tree->horizontala[1].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[2] | ref_frames_used[3];
if (used_frames)
pc_tree->horizontala[2].skip_ref_frame_mask = ~used_frames;
}
if (cpi->sf.prune_ref_mode_for_partitions) {
// Overwrite skip_ref_frame_mask for the current block
if (split_mbmi[0] && split_mbmi[0]->ref_frame[0] > INTRA_FRAME &&
!has_second_ref(split_mbmi[0])) { // single ref
const int used_frames = 1 << (int)split_mbmi[0]->ref_frame[0];
pc_tree->horizontala[0].skip_ref_frame_mask = ~used_frames;
pc_tree->horizontala[0].ref_selected[0] = split_mbmi[0]->ref_frame[0];
}
if (split_mbmi[1] && split_mbmi[1]->ref_frame[0] > INTRA_FRAME &&
!has_second_ref(split_mbmi[1])) { // single ref
const int used_frames = 1 << (int)split_mbmi[1]->ref_frame[0];
pc_tree->horizontala[1].skip_ref_frame_mask = ~used_frames;
pc_tree->horizontala[1].ref_selected[0] = split_mbmi[1]->ref_frame[0];
}
if (split_mbmi[2] && split_mbmi[3] &&
split_mbmi[2]->ref_frame[0] > INTRA_FRAME &&
split_mbmi[2]->ref_frame[0] == split_mbmi[3]->ref_frame[0] &&
!has_second_ref(split_mbmi[2]) &&
!has_second_ref(split_mbmi[3])) { // single ref
const int used_frames = 1 << (int)split_mbmi[2]->ref_frame[0];
pc_tree->horizontala[2].skip_ref_frame_mask = ~used_frames;
pc_tree->horizontala[2].ref_selected[0] = split_mbmi[2]->ref_frame[0];
}
}
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->horizontala, ctx_none, mi_row, mi_col, bsize,
PARTITION_HORZ_A, mi_row, mi_col, bsize2, mi_row,
mi_col + mi_step, bsize2, mi_row + mi_step, mi_col,
subsize);
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_HORZ_B
if (partition_horz_allowed && horzb_partition_allowed) {
subsize = get_partition_subsize(bsize, PARTITION_HORZ_B);
pc_tree->horizontalb[0].rd_mode_is_ready = 0;
pc_tree->horizontalb[1].rd_mode_is_ready = 0;
pc_tree->horizontalb[2].rd_mode_is_ready = 0;
if (horz_ctx_is_ready) {
av1_copy_tree_context(&pc_tree->horizontalb[0], &pc_tree->horizontal[0]);
pc_tree->horizontalb[0].mic.partition = PARTITION_HORZ_B;
pc_tree->horizontalb[0].rd_mode_is_ready = 1;
}
for (int i = 0; i < 3; ++i) {
pc_tree->horizontalb[i].skip_ref_frame_mask = 0;
pc_tree->horizontalb[i].ref_selected[0] =
pc_tree->horizontalb[i].ref_selected[1] = NONE_FRAME;
}
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
int used_frames;
used_frames = ref_frames_used[0] | ref_frames_used[1];
if (used_frames)
pc_tree->horizontalb[0].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[2];
if (used_frames)
pc_tree->horizontalb[1].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[3];
if (used_frames)
pc_tree->horizontalb[2].skip_ref_frame_mask = ~used_frames;
}
if (cpi->sf.prune_ref_mode_for_partitions) {
// Overwrite skip_ref_frame_mask for the current block
if (split_mbmi[0] && split_mbmi[1] &&
split_mbmi[0]->ref_frame[0] > INTRA_FRAME &&
split_mbmi[0]->ref_frame[0] == split_mbmi[1]->ref_frame[0] &&
!has_second_ref(split_mbmi[0]) &&
!has_second_ref(split_mbmi[1])) { // single ref
const int used_frames = 1 << (int)split_mbmi[0]->ref_frame[0];
pc_tree->horizontalb[0].skip_ref_frame_mask = ~used_frames;
pc_tree->horizontalb[0].ref_selected[0] = split_mbmi[0]->ref_frame[0];
}
if (split_mbmi[2] && split_mbmi[2]->ref_frame[0] > INTRA_FRAME &&
!has_second_ref(split_mbmi[2])) { // single ref
const int used_frames = 1 << (int)split_mbmi[2]->ref_frame[0];
pc_tree->horizontalb[1].skip_ref_frame_mask = ~used_frames;
pc_tree->horizontalb[1].ref_selected[0] = split_mbmi[2]->ref_frame[0];
}
if (split_mbmi[3] && split_mbmi[3]->ref_frame[0] > INTRA_FRAME &&
!has_second_ref(split_mbmi[3])) { // single ref
const int used_frames = 1 << (int)split_mbmi[3]->ref_frame[0];
pc_tree->horizontalb[2].skip_ref_frame_mask = ~used_frames;
pc_tree->horizontalb[2].ref_selected[0] = split_mbmi[3]->ref_frame[0];
}
}
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->horizontalb, ctx_none, mi_row, mi_col, bsize,
PARTITION_HORZ_B, mi_row, mi_col, subsize,
mi_row + mi_step, mi_col, bsize2, mi_row + mi_step,
mi_col + mi_step, bsize2);
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_VERT_A
if (partition_vert_allowed && verta_partition_allowed) {
subsize = get_partition_subsize(bsize, PARTITION_VERT_A);
pc_tree->verticala[0].rd_mode_is_ready = 0;
pc_tree->verticala[1].rd_mode_is_ready = 0;
pc_tree->verticala[2].rd_mode_is_ready = 0;
if (split_ctx_is_ready[0]) {
av1_copy_tree_context(&pc_tree->verticala[0], &pc_tree->split[0]->none);
pc_tree->verticala[0].mic.partition = PARTITION_VERT_A;
pc_tree->verticala[0].rd_mode_is_ready = 1;
}
for (int i = 0; i < 3; ++i) {
pc_tree->verticala[i].skip_ref_frame_mask = 0;
pc_tree->verticala[i].ref_selected[0] =
pc_tree->verticala[i].ref_selected[1] = NONE_FRAME;
}
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
int used_frames;
used_frames = ref_frames_used[0];
if (used_frames) pc_tree->verticala[0].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[2];
if (used_frames) pc_tree->verticala[1].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[1] | ref_frames_used[3];
if (used_frames) pc_tree->verticala[2].skip_ref_frame_mask = ~used_frames;
}
if (cpi->sf.prune_ref_mode_for_partitions) {
// Overwrite skip_ref_frame_mask for the current block
if (split_mbmi[0] && split_mbmi[0]->ref_frame[0] > INTRA_FRAME &&
!has_second_ref(split_mbmi[0])) { // single ref
const int used_frames = 1 << (int)split_mbmi[0]->ref_frame[0];
pc_tree->verticala[0].skip_ref_frame_mask = ~used_frames;
pc_tree->verticala[0].ref_selected[0] = split_mbmi[0]->ref_frame[0];
}
if (split_mbmi[2] && split_mbmi[2]->ref_frame[0] > INTRA_FRAME &&
!has_second_ref(split_mbmi[2])) { // single ref
const int used_frames = 1 << (int)split_mbmi[2]->ref_frame[0];
pc_tree->verticala[1].skip_ref_frame_mask = ~used_frames;
pc_tree->verticala[1].ref_selected[0] = split_mbmi[2]->ref_frame[0];
}
if (split_mbmi[1] && split_mbmi[3] &&
split_mbmi[1]->ref_frame[0] > INTRA_FRAME &&
split_mbmi[1]->ref_frame[0] == split_mbmi[3]->ref_frame[0] &&
!has_second_ref(split_mbmi[1]) &&
!has_second_ref(split_mbmi[3])) { // single ref
const int used_frames = 1 << (int)split_mbmi[1]->ref_frame[0];
pc_tree->verticala[2].skip_ref_frame_mask = ~used_frames;
pc_tree->verticala[2].ref_selected[0] = split_mbmi[1]->ref_frame[0];
}
}
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->verticala, ctx_none, mi_row, mi_col, bsize,
PARTITION_VERT_A, mi_row, mi_col, bsize2,
mi_row + mi_step, mi_col, bsize2, mi_row,
mi_col + mi_step, subsize);
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_VERT_B
if (partition_vert_allowed && vertb_partition_allowed) {
subsize = get_partition_subsize(bsize, PARTITION_VERT_B);
pc_tree->verticalb[0].rd_mode_is_ready = 0;
pc_tree->verticalb[1].rd_mode_is_ready = 0;
pc_tree->verticalb[2].rd_mode_is_ready = 0;
if (vert_ctx_is_ready) {
av1_copy_tree_context(&pc_tree->verticalb[0], &pc_tree->vertical[0]);
pc_tree->verticalb[0].mic.partition = PARTITION_VERT_B;
pc_tree->verticalb[0].rd_mode_is_ready = 1;
}
for (int i = 0; i < 3; ++i) {
pc_tree->verticalb[i].skip_ref_frame_mask = 0;
pc_tree->verticalb[i].ref_selected[0] =
pc_tree->verticalb[i].ref_selected[1] = NONE_FRAME;
}
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
int used_frames;
used_frames = ref_frames_used[0] | ref_frames_used[2];
if (used_frames) pc_tree->verticalb[0].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[1];
if (used_frames) pc_tree->verticalb[1].skip_ref_frame_mask = ~used_frames;
used_frames = ref_frames_used[3];
if (used_frames) pc_tree->verticalb[2].skip_ref_frame_mask = ~used_frames;
}
if (cpi->sf.prune_ref_mode_for_partitions) {
// Overwrite skip_ref_frame_mask for the current block
if (split_mbmi[0] && split_mbmi[2] &&
split_mbmi[0]->ref_frame[0] > INTRA_FRAME &&
split_mbmi[0]->ref_frame[0] == split_mbmi[2]->ref_frame[0] &&
!has_second_ref(split_mbmi[0]) &&
!has_second_ref(split_mbmi[2])) { // single ref
const int used_frames = 1 << (int)split_mbmi[0]->ref_frame[0];
pc_tree->verticalb[0].skip_ref_frame_mask = ~used_frames;
pc_tree->verticalb[0].ref_selected[0] = split_mbmi[0]->ref_frame[0];
}
if (split_mbmi[1] && split_mbmi[1]->ref_frame[0] > INTRA_FRAME &&
!has_second_ref(split_mbmi[1])) { // single ref
const int used_frames = 1 << (int)split_mbmi[1]->ref_frame[0];
pc_tree->verticalb[1].skip_ref_frame_mask = ~used_frames;
pc_tree->verticalb[1].ref_selected[0] = split_mbmi[1]->ref_frame[0];
}
if (split_mbmi[3] && split_mbmi[3]->ref_frame[0] > INTRA_FRAME &&
!has_second_ref(split_mbmi[3])) { // single ref
const int used_frames = 1 << (int)split_mbmi[3]->ref_frame[0];
pc_tree->verticalb[2].skip_ref_frame_mask = ~used_frames;
pc_tree->verticalb[2].ref_selected[0] = split_mbmi[3]->ref_frame[0];
}
}
rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc,
pc_tree->verticalb, ctx_none, mi_row, mi_col, bsize,
PARTITION_VERT_B, mi_row, mi_col, subsize, mi_row,
mi_col + mi_step, bsize2, mi_row + mi_step,
mi_col + mi_step, bsize2);
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or
// PARTITION_VERT_4 for this block. This is almost the same as
// ext_partition_allowed, except that we don't allow 128x32 or 32x128 blocks,
// so we require that bsize is not BLOCK_128X128.
const int partition4_allowed =
ext_partition_allowed && bsize != BLOCK_128X128;
int partition_horz4_allowed = partition4_allowed && partition_horz_allowed;
int partition_vert4_allowed = partition4_allowed && partition_vert_allowed;
if (cpi->sf.prune_ext_partition_types_search_level == 2) {
partition_horz4_allowed &= (pc_tree->partitioning == PARTITION_HORZ ||
pc_tree->partitioning == PARTITION_HORZ_A ||
pc_tree->partitioning == PARTITION_HORZ_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
partition_vert4_allowed &= (pc_tree->partitioning == PARTITION_VERT ||
pc_tree->partitioning == PARTITION_VERT_A ||
pc_tree->partitioning == PARTITION_VERT_B ||
pc_tree->partitioning == PARTITION_SPLIT ||
pc_tree->partitioning == PARTITION_NONE);
}
if (cpi->sf.ml_prune_4_partition && partition4_allowed &&
partition_horz_allowed && partition_vert_allowed) {
ml_prune_4_partition(cpi, x, bsize, pc_tree->partitioning, best_rdc.rdcost,
horz_rd, vert_rd, split_rd, &partition_horz4_allowed,
&partition_vert4_allowed, pb_source_variance, mi_row,
mi_col);
}
#if CONFIG_DIST_8X8
if (x->using_dist_8x8) {
if (block_size_high[bsize] <= 16 || block_size_wide[bsize] <= 16) {
partition_horz4_allowed = 0;
partition_vert4_allowed = 0;
}
}
#endif
// PARTITION_HORZ_4
if (partition_horz4_allowed && has_rows &&
(do_rectangular_split || active_h_edge(cpi, mi_row, mi_step))) {
av1_init_rd_stats(&sum_rdc);
const int quarter_step = mi_size_high[bsize] / 4;
PICK_MODE_CONTEXT *ctx_prev = ctx_none;
subsize = get_partition_subsize(bsize, PARTITION_HORZ_4);
sum_rdc.rate = partition_cost[PARTITION_HORZ_4];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
for (int i = 0; i < 4; ++i) {
const int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
PICK_MODE_CONTEXT *ctx_this = &pc_tree->horizontal4[i];
ctx_this->rd_mode_is_ready = 0;
ctx_this->skip_ref_frame_mask = 0;
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
const int used_frames = i <= 1
? (ref_frames_used[0] | ref_frames_used[1])
: (ref_frames_used[2] | ref_frames_used[3]);
if (used_frames) ctx_this->skip_ref_frame_mask = ~used_frames;
}
if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), this_mi_row,
mi_col, subsize, &best_rdc, &sum_rdc, &this_rdc,
PARTITION_HORZ_4, ctx_prev, ctx_this))
break;
ctx_prev = ctx_this;
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_HORZ_4;
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
// PARTITION_VERT_4
if (partition_vert4_allowed && has_cols &&
(do_rectangular_split || active_v_edge(cpi, mi_row, mi_step))) {
av1_init_rd_stats(&sum_rdc);
const int quarter_step = mi_size_wide[bsize] / 4;
PICK_MODE_CONTEXT *ctx_prev = ctx_none;
subsize = get_partition_subsize(bsize, PARTITION_VERT_4);
sum_rdc.rate = partition_cost[PARTITION_VERT_4];
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0);
for (int i = 0; i < 4; ++i) {
const int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
PICK_MODE_CONTEXT *ctx_this = &pc_tree->vertical4[i];
ctx_this->rd_mode_is_ready = 0;
ctx_this->skip_ref_frame_mask = 0;
if (cpi->sf.prune_ref_frame_for_rect_partitions) {
const int used_frames = i <= 1
? (ref_frames_used[0] | ref_frames_used[2])
: (ref_frames_used[1] | ref_frames_used[3]);
if (used_frames) ctx_this->skip_ref_frame_mask = ~used_frames;
}
if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 3), mi_row,
this_mi_col, subsize, &best_rdc, &sum_rdc, &this_rdc,
PARTITION_VERT_4, ctx_prev, ctx_this))
break;
ctx_prev = ctx_this;
}
if (sum_rdc.rdcost < best_rdc.rdcost) {
sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist);
if (sum_rdc.rdcost < best_rdc.rdcost) {
best_rdc = sum_rdc;
pc_tree->partitioning = PARTITION_VERT_4;
}
}
restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes);
}
if (bsize == cm->seq_params.sb_size && best_rdc.rate == INT_MAX) {
// Did not find a valid partition, go back and search again, with less
// constraint on which partition types to search.
x->must_find_valid_partition = 1;
goto BEGIN_PARTITION_SEARCH;
}
// TODO(jbb): This code added so that we avoid static analysis
// warning related to the fact that best_rd isn't used after this
// point. This code should be refactored so that the duplicate
// checks occur in some sub function and thus are used...
(void)best_rd;
*rd_cost = best_rdc;
if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX &&
pc_tree->index != 3) {
if (bsize == cm->seq_params.sb_size) {
x->cb_offset = 0;
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize,
pc_tree, NULL);
} else {
encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize,
pc_tree, NULL);
}
}
if (bsize == cm->seq_params.sb_size) {
assert(best_rdc.rate < INT_MAX);
assert(best_rdc.dist < INT64_MAX);
} else {
assert(tp_orig == *tp);
}
}
// Set all the counters as max.
static void init_first_partition_pass_stats_tables(
FIRST_PARTITION_PASS_STATS *stats) {
for (int i = 0; i < FIRST_PARTITION_PASS_STATS_TABLES; ++i) {
memset(stats[i].ref0_counts, 0xff, sizeof(stats[i].ref0_counts));
memset(stats[i].ref1_counts, 0xff, sizeof(stats[i].ref1_counts));
stats[i].sample_counts = INT_MAX;
}
}
// Minimum number of samples to trigger the
// mode_pruning_based_on_two_pass_partition_search feature.
#define FIRST_PARTITION_PASS_MIN_SAMPLES 16
static int get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col, int orig_rdmult) {
TplDepFrame *tpl_frame = &cpi->tpl_stats[cpi->twopass.gf_group.index];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
int64_t intra_cost = 0;
int64_t mc_dep_cost = 0;
int mi_wide = mi_size_wide[bsize];
int mi_high = mi_size_high[bsize];
int row, col;
int dr = 0;
int count = 0;
double r0, rk, beta;
if (tpl_frame->is_valid == 0) return orig_rdmult;
if (cpi->common.show_frame) return orig_rdmult;
if (cpi->twopass.gf_group.index >= MAX_LAG_BUFFERS) return orig_rdmult;
for (row = mi_row; row < mi_row + mi_high; ++row) {
for (col = mi_col; col < mi_col + mi_wide; ++col) {
TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
if (row >= cpi->common.mi_rows || col >= cpi->common.mi_cols) continue;
intra_cost += this_stats->intra_cost;
mc_dep_cost += this_stats->mc_dep_cost;
++count;
}
}
aom_clear_system_state();
r0 = cpi->rd.r0;
rk = (double)intra_cost / mc_dep_cost;
beta = r0 / rk;
dr = av1_get_adaptive_rdmult(cpi, beta);
dr = AOMMIN(dr, orig_rdmult * 3 / 2);
dr = AOMMAX(dr, orig_rdmult * 1 / 2);
dr = AOMMAX(1, dr);
return dr;
}
static void setup_delta_q(AV1_COMP *const cpi, MACROBLOCK *const x,
const TileInfo *const tile_info, int mi_row,
int mi_col, int num_planes) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
const int mib_size = cm->seq_params.mib_size;
// Delta-q modulation based on variance
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size);
int offset_qindex;
if (DELTAQ_MODULATION == 1) {
const int block_wavelet_energy_level =
av1_block_wavelet_energy_level(cpi, x, sb_size);
x->sb_energy_level = block_wavelet_energy_level;
offset_qindex =
av1_compute_deltaq_from_energy_level(cpi, block_wavelet_energy_level);
} else {
const int block_var_level = av1_log_block_var(cpi, x, sb_size);
x->sb_energy_level = block_var_level;
offset_qindex = av1_compute_deltaq_from_energy_level(cpi, block_var_level);
}
const int qmask = ~(cm->delta_q_res - 1);
int current_qindex = clamp(cm->base_qindex + offset_qindex, cm->delta_q_res,
256 - cm->delta_q_res);
current_qindex =
((current_qindex - cm->base_qindex + cm->delta_q_res / 2) & qmask) +
cm->base_qindex;
assert(current_qindex > 0);
xd->delta_qindex = current_qindex - cm->base_qindex;
set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
xd->mi[0]->current_qindex = current_qindex;
av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id);
if (cpi->oxcf.deltaq_mode == DELTA_Q_LF) {
const int lfmask = ~(cm->delta_lf_res - 1);
const int delta_lf_from_base =
((offset_qindex / 2 + cm->delta_lf_res / 2) & lfmask);
// pre-set the delta lf for loop filter. Note that this value is set
// before mi is assigned for each block in current superblock
for (int j = 0; j < AOMMIN(mib_size, cm->mi_rows - mi_row); j++) {
for (int k = 0; k < AOMMIN(mib_size, cm->mi_cols - mi_col); k++) {
cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)].delta_lf_from_base =
clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)].delta_lf[lf_id] =
clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
}
}
}
}
}
// First pass of partition search only considers square partition block sizes.
// The results will be used in the second partition search pass to prune
// unlikely partition candidates.
static void first_partition_search_pass(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, int mi_row,
int mi_col, TOKENEXTRA **tp) {
MACROBLOCK *const x = &td->mb;
x->cb_partition_scan = 1;
const SPEED_FEATURES *const sf = &cpi->sf;
// Reset the stats tables.
if (sf->mode_pruning_based_on_two_pass_partition_search)
av1_zero(x->first_partition_pass_stats);
AV1_COMMON *const cm = &cpi->common;
const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
const int mib_size_log2 = cm->seq_params.mib_size_log2;
PC_TREE *const pc_root = td->pc_root[mib_size_log2 - MIN_MIB_SIZE_LOG2];
RD_STATS dummy_rdc;
rd_pick_sqr_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
&dummy_rdc, INT64_MAX, pc_root, NULL);
x->cb_partition_scan = 0;
x->source_variance = UINT_MAX;
if (sf->adaptive_pred_interp_filter) {
const int leaf_nodes = 256;
for (int i = 0; i < leaf_nodes; ++i) {
td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
}
}
x->mb_rd_record.num = x->mb_rd_record.index_start = 0;
av1_zero(x->txb_rd_record_8X8);
av1_zero(x->txb_rd_record_16X16);
av1_zero(x->txb_rd_record_32X32);
av1_zero(x->txb_rd_record_64X64);
av1_zero(x->txb_rd_record_intra);
av1_zero(x->pred_mv);
pc_root->index = 0;
for (int idy = 0; idy < mi_size_high[sb_size]; ++idy) {
for (int idx = 0; idx < mi_size_wide[sb_size]; ++idx) {
const int offset = cm->mi_stride * (mi_row + idy) + (mi_col + idx);
cm->mi_grid_visible[offset] = 0;
}
}
x->use_cb_search_range = 1;
if (sf->mode_pruning_based_on_two_pass_partition_search) {
for (int i = 0; i < FIRST_PARTITION_PASS_STATS_TABLES; ++i) {
FIRST_PARTITION_PASS_STATS *const stat =
&x->first_partition_pass_stats[i];
if (stat->sample_counts < FIRST_PARTITION_PASS_MIN_SAMPLES) {
// If there are not enough samples collected, make all available.
memset(stat->ref0_counts, 0xff, sizeof(stat->ref0_counts));
memset(stat->ref1_counts, 0xff, sizeof(stat->ref1_counts));
} else if (sf->selective_ref_frame < 3) {
// ALTREF2_FRAME and BWDREF_FRAME may be skipped during the
// initial partition scan, so we don't eliminate them.
stat->ref0_counts[ALTREF2_FRAME] = 0xff;
stat->ref1_counts[ALTREF2_FRAME] = 0xff;
stat->ref0_counts[BWDREF_FRAME] = 0xff;
stat->ref1_counts[BWDREF_FRAME] = 0xff;
}
}
}
}
static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, int mi_row,
TOKENEXTRA **tp) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const TileInfo *const tile_info = &tile_data->tile_info;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const SPEED_FEATURES *const sf = &cpi->sf;
const int leaf_nodes = 256;
const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_data->tile_info);
const BLOCK_SIZE sb_size = cm->seq_params.sb_size;
const int mib_size = cm->seq_params.mib_size;
const int mib_size_log2 = cm->seq_params.mib_size_log2;
const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
// Initialize the left context for the new SB row
av1_zero_left_context(xd);
// Reset delta for every tile
if (mi_row == tile_info->mi_row_start) {
if (cm->delta_q_present_flag) xd->current_qindex = cm->base_qindex;
if (cm->delta_lf_present_flag) {
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
}
}
// Code each SB in the row
for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0;
mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) {
(*(cpi->row_mt_sync_read_ptr))(&tile_data->row_mt_sync, sb_row,
sb_col_in_tile);
if ((cpi->row_mt == 1) && (tile_info->mi_col_start == mi_col) &&
(tile_info->mi_row_start != mi_row)) {
// restore frame context of 1st column sb
memcpy(xd->tile_ctx, x->backup_tile_ctx, sizeof(*xd->tile_ctx));
}
av1_fill_coeff_costs(&td->mb, xd->tile_ctx, num_planes);
av1_fill_mode_rates(cm, x, xd->tile_ctx);
if (sf->adaptive_pred_interp_filter) {
for (int i = 0; i < leaf_nodes; ++i) {
td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE;
td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE;
}
}
x->mb_rd_record.num = x->mb_rd_record.index_start = 0;
av1_zero(x->txb_rd_record_8X8);
av1_zero(x->txb_rd_record_16X16);
av1_zero(x->txb_rd_record_32X32);
av1_zero(x->txb_rd_record_64X64);
av1_zero(x->txb_rd_record_intra);
av1_zero(x->pred_mv);
PC_TREE *const pc_root = td->pc_root[mib_size_log2 - MIN_MIB_SIZE_LOG2];
pc_root->index = 0;
const struct segmentation *const seg = &cm->seg;
int seg_skip = 0;
if (seg->enabled) {
const uint8_t *const map =
seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map;
const int segment_id =
map ? get_segment_id(cm, map, sb_size, mi_row, mi_col) : 0;
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
}
xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv;
x->sb_energy_level = 0;
if (cm->delta_q_present_flag)
setup_delta_q(cpi, x, tile_info, mi_row, mi_col, num_planes);
int dummy_rate;
int64_t dummy_dist;
RD_STATS dummy_rdc;
const int idx_str = cm->mi_stride * mi_row + mi_col;
MB_MODE_INFO **mi = cm->mi_grid_visible + idx_str;
x->source_variance = UINT_MAX;
if (sf->partition_search_type == FIXED_PARTITION || seg_skip) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
const BLOCK_SIZE bsize = seg_skip ? sb_size : sf->always_this_block_size;
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
&dummy_rate, &dummy_dist, 1, pc_root);
} else if (cpi->partition_search_skippable_frame) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
const BLOCK_SIZE bsize =
get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col);
set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
&dummy_rate, &dummy_dist, 1, pc_root);
} else {
const int orig_rdmult = cpi->rd.RDMULT;
x->cb_rdmult = orig_rdmult;
if (cpi->twopass.gf_group.index > 0 && cpi->oxcf.enable_tpl_model &&
cpi->oxcf.aq_mode == NO_AQ && cpi->oxcf.deltaq_mode == 0) {
const int dr =
get_rdmult_delta(cpi, BLOCK_128X128, mi_row, mi_col, orig_rdmult);
x->cb_rdmult = dr;
x->rdmult = x->cb_rdmult;
}
// If required set upper and lower partition size limits
if (sf->auto_min_max_partition_size) {
set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col,
&x->min_partition_size, &x->max_partition_size);
}
reset_partition(pc_root, sb_size);
x->use_cb_search_range = 0;
init_first_partition_pass_stats_tables(x->first_partition_pass_stats);
// Do the first pass if we need two pass partition search
if (cpi->sf.two_pass_partition_search &&
cpi->sf.use_square_partition_only_threshold > BLOCK_4X4 &&
mi_row + mi_size_high[sb_size] < cm->mi_rows &&
mi_col + mi_size_wide[sb_size] < cm->mi_cols &&
cm->frame_type != KEY_FRAME) {
first_partition_search_pass(cpi, td, tile_data, mi_row, mi_col, tp);
}
rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
&dummy_rdc, INT64_MAX, pc_root, NULL);
}
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
// TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile.
if (cpi->sf.inter_mode_rd_model_estimation && cm->tile_cols == 1 &&
cm->tile_rows == 1) {
av1_inter_mode_data_fit(tile_data, x->rdmult);
}
#endif
// Context update for row based multi-threading of encoder is done based on
// the following conditions:
// 1. If mib_size_log2==5, context of top-right superblock is used
// for context modelling. If top-right is not available (in case of tile
// with width == mib_size_log2==5), top superblock's context is used.
// 2. If mib_size_log2==4, context of next superblock to top-right
// superblock is used. Using context of top-right superblock in this case
// gives high BD Rate drop for smaller resolutions.
if (cpi->row_mt == 1) {
int update_context = 0;
if (mib_size_log2 == 5) {
update_context = sb_cols_in_tile == 1 || sb_col_in_tile == 1;
} else if (mib_size_log2 == 4) {
update_context = sb_cols_in_tile == 1 ||
(sb_cols_in_tile == 2 && sb_col_in_tile == 1) ||
sb_col_in_tile == 2;
}
if (update_context)
memcpy(x->backup_tile_ctx, xd->tile_ctx, sizeof(*xd->tile_ctx));
}
(*(cpi->row_mt_sync_write_ptr))(&tile_data->row_mt_sync, sb_row,
sb_col_in_tile, sb_cols_in_tile);
}
}
static void init_encode_frame_mb_context(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
// Copy data over into macro block data structures.
av1_setup_src_planes(x, cpi->source, 0, 0, num_planes,
cm->seq_params.sb_size);
av1_setup_block_planes(xd, cm->seq_params.subsampling_x,
cm->seq_params.subsampling_y, num_planes);
}
static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) {
if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME;
// We will not update the golden frame with an internal overlay frame
else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) ||
cpi->rc.is_src_frame_ext_arf)
return ALTREF_FRAME;
else if (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame ||
cpi->refresh_alt_ref_frame)
return GOLDEN_FRAME;
else
// TODO(zoeliu): To investigate whether a frame_type other than
// INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
return LAST_FRAME;
}
static TX_MODE select_tx_mode(const AV1_COMP *cpi) {
if (cpi->common.coded_lossless) return ONLY_4X4;
if (cpi->sf.tx_size_search_method == USE_LARGESTALL)
return TX_MODE_LARGEST;
else if (cpi->sf.tx_size_search_method == USE_FULL_RD ||
cpi->sf.tx_size_search_method == USE_FAST_RD)
return TX_MODE_SELECT;
else
return cpi->common.tx_mode;
}
void av1_alloc_tile_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int tile_col, tile_row;
if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
CHECK_MEM_ERROR(
cm, cpi->tile_data,
aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data)));
cpi->allocated_tiles = tile_cols * tile_rows;
for (tile_row = 0; tile_row < tile_rows; ++tile_row)
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
int i, j;
for (i = 0; i < BLOCK_SIZES_ALL; ++i) {
for (j = 0; j < MAX_MODES; ++j) {
tile_data->thresh_freq_fact[i][j] = 32;
tile_data->mode_map[i][j] = j;
}
}
}
}
void av1_init_tile_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int tile_col, tile_row;
TOKENEXTRA *pre_tok = cpi->tile_tok[0][0];
TOKENLIST *tplist = cpi->tplist[0][0];
unsigned int tile_tok = 0;
int tplist_count = 0;
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
TileInfo *const tile_info = &tile_data->tile_info;
av1_tile_init(tile_info, cm, tile_row, tile_col);
cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = cpi->tile_tok[tile_row][tile_col];
tile_tok = allocated_tokens(
*tile_info, cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes);
cpi->tplist[tile_row][tile_col] = tplist + tplist_count;
tplist = cpi->tplist[tile_row][tile_col];
tplist_count = av1_get_sb_rows_in_tile(cm, tile_data->tile_info);
tile_data->allow_update_cdf = !cm->large_scale_tile;
tile_data->allow_update_cdf =
tile_data->allow_update_cdf && !cm->disable_cdf_update;
tile_data->tctx = *cm->fc;
}
}
}
void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row,
int tile_col, int mi_row) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const int tile_cols = cm->tile_cols;
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
TOKENEXTRA *tok = NULL;
const int sb_row_in_tile =
(mi_row - tile_info->mi_row_start) >> cm->seq_params.mib_size_log2;
const int tile_mb_cols =
(tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2;
const int num_mb_rows_in_sb =
((1 << (cm->seq_params.mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4;
get_start_tok(cpi, tile_row, tile_col, mi_row, &tok,
cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes);
cpi->tplist[tile_row][tile_col][sb_row_in_tile].start = tok;
encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok);
cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop = tok;
cpi->tplist[tile_row][tile_col][sb_row_in_tile].count =
(unsigned int)(cpi->tplist[tile_row][tile_col][sb_row_in_tile].stop -
cpi->tplist[tile_row][tile_col][sb_row_in_tile].start);
assert(
(unsigned int)(tok -
cpi->tplist[tile_row][tile_col][sb_row_in_tile].start) <=
get_token_alloc(num_mb_rows_in_sb, tile_mb_cols,
cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes));
(void)tile_mb_cols;
(void)num_mb_rows_in_sb;
}
void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
int tile_col) {
AV1_COMMON *const cm = &cpi->common;
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
int mi_row;
#if CONFIG_COLLECT_INTER_MODE_RD_STATS
av1_inter_mode_data_init(this_tile);
#endif
av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start,
tile_info->mi_col_end, tile_row);
av1_init_above_context(cm, &td->mb.e_mbd, tile_row);
// Set up pointers to per thread motion search counters.
this_tile->m_search_count = 0; // Count of motion search hits.
this_tile->ex_search_count = 0; // Exhaustive mesh search hits.
td->mb.m_search_count_ptr = &this_tile->m_search_count;
td->mb.ex_search_count_ptr = &this_tile->ex_search_count;
cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params);
av1_crc32c_calculator_init(&td->mb.mb_rd_record.crc_calculator);
for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
mi_row += cm->seq_params.mib_size) {
av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
}
}
static void encode_tiles(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int tile_col, tile_row;
if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows)
av1_alloc_tile_data(cpi);
av1_init_tile_data(cpi);
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tile_cols + tile_col];
cpi->td.intrabc_used = 0;
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
cpi->td.mb.backup_tile_ctx = &this_tile->backup_tctx;
av1_encode_tile(cpi, &cpi->td, tile_row, tile_col);
cpi->intrabc_used |= cpi->td.intrabc_used;
}
}
}
#if CONFIG_FP_MB_STATS
static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats,
AV1_COMMON *cm, uint8_t **this_frame_mb_stats) {
uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start +
cm->current_video_frame * cm->MBs * sizeof(uint8_t);
if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF;
*this_frame_mb_stats = mb_stats_in;
return 1;
}
#endif
#define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search
static int gm_get_params_cost(const WarpedMotionParams *gm,
const WarpedMotionParams *ref_gm, int allow_hp) {
int params_cost = 0;
int trans_bits, trans_prec_diff;
switch (gm->wmtype) {
case AFFINE:
case ROTZOOM:
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS),
(gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF),
(gm->wmmat[3] >> GM_ALPHA_PREC_DIFF));
if (gm->wmtype >= AFFINE) {
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF),
(gm->wmmat[4] >> GM_ALPHA_PREC_DIFF));
params_cost += aom_count_signed_primitive_refsubexpfin(
GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS),
(gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS));
}
AOM_FALLTHROUGH_INTENDED;
case TRANSLATION:
trans_bits = (gm->wmtype == TRANSLATION)
? GM_ABS_TRANS_ONLY_BITS - !allow_hp
: GM_ABS_TRANS_BITS;
trans_prec_diff = (gm->wmtype == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
: GM_TRANS_PREC_DIFF;
params_cost += aom_count_signed_primitive_refsubexpfin(
(1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_gm->wmmat[0] >> trans_prec_diff),
(gm->wmmat[0] >> trans_prec_diff));
params_cost += aom_count_signed_primitive_refsubexpfin(
(1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_gm->wmmat[1] >> trans_prec_diff),
(gm->wmmat[1] >> trans_prec_diff));
AOM_FALLTHROUGH_INTENDED;
case IDENTITY: break;
default: assert(0);
}
return (params_cost << AV1_PROB_COST_SHIFT);
}
static int do_gm_search_logic(SPEED_FEATURES *const sf, int num_refs_using_gm,
int frame) {
(void)num_refs_using_gm;
(void)frame;
switch (sf->gm_search_type) {
case GM_FULL_SEARCH: return 1;
case GM_REDUCED_REF_SEARCH:
return !(frame == LAST2_FRAME || frame == LAST3_FRAME);
case GM_DISABLE_SEARCH: return 0;
default: assert(0);
}
return 1;
}
static const uint8_t ref_frame_flag_list[REF_FRAMES] = { 0,
AOM_LAST_FLAG,
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
AOM_GOLD_FLAG,
AOM_BWD_FLAG,
AOM_ALT2_FLAG,
AOM_ALT_FLAG };
// Enforce the number of references for each arbitrary frame limited to
// (INTER_REFS_PER_FRAME - 1)
static void enforce_max_ref_frames(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
MV_REFERENCE_FRAME ref_frame;
int total_valid_refs = 0;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (cpi->ref_frame_flags & ref_frame_flag_list[ref_frame])
total_valid_refs++;
}
// NOTE(zoeliu): When all the possible reference frames are availble, we
// reduce the number of reference frames by 1, following the rules of:
// (1) Retain GOLDEN_FARME/ALTEF_FRAME;
// (2) Check the earliest 2 remaining reference frames, and remove the one
// with the lower quality factor, otherwise if both have been coded at
// the same quality level, remove the earliest reference frame.
if (total_valid_refs == INTER_REFS_PER_FRAME) {
unsigned int min_ref_offset = UINT_MAX;
unsigned int second_min_ref_offset = UINT_MAX;
MV_REFERENCE_FRAME earliest_ref_frames[2] = { LAST3_FRAME, LAST2_FRAME };
int earliest_buf_idxes[2] = { 0 };
// Locate the earliest two reference frames except GOLDEN/ALTREF.
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
// Retain GOLDEN/ALTERF
if (ref_frame == GOLDEN_FRAME || ref_frame == ALTREF_FRAME) continue;
const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx;
if (buf_idx >= 0) {
const unsigned int ref_offset =
cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset;
if (min_ref_offset == UINT_MAX) {
min_ref_offset = ref_offset;
earliest_ref_frames[0] = ref_frame;
earliest_buf_idxes[0] = buf_idx;
} else {
if (get_relative_dist(cm, ref_offset, min_ref_offset) < 0) {
second_min_ref_offset = min_ref_offset;
earliest_ref_frames[1] = earliest_ref_frames[0];
earliest_buf_idxes[1] = earliest_buf_idxes[0];
min_ref_offset = ref_offset;
earliest_ref_frames[0] = ref_frame;
earliest_buf_idxes[0] = buf_idx;
} else if (second_min_ref_offset == UINT_MAX ||
get_relative_dist(cm, ref_offset, second_min_ref_offset) <
0) {
second_min_ref_offset = ref_offset;
earliest_ref_frames[1] = ref_frame;
earliest_buf_idxes[1] = buf_idx;
}
}
}
}
// Check the coding quality factors of the two earliest reference frames.
RATE_FACTOR_LEVEL ref_rf_level[2];
double ref_rf_deltas[2];
for (int i = 0; i < 2; ++i) {
ref_rf_level[i] = cpi->frame_rf_level[earliest_buf_idxes[i]];
ref_rf_deltas[i] = rate_factor_deltas[ref_rf_level[i]];
}
(void)ref_rf_level;
(void)ref_rf_deltas;
#define USE_RF_LEVEL_TO_ENFORCE 1
#if USE_RF_LEVEL_TO_ENFORCE
// If both earliest two reference frames are coded using the same rate-
// factor, disable the earliest reference frame; Otherwise disable the
// reference frame that uses a lower rate-factor delta.
const MV_REFERENCE_FRAME ref_frame_to_disable =
(ref_rf_deltas[0] <= ref_rf_deltas[1]) ? earliest_ref_frames[0]
: earliest_ref_frames[1];
#else
// Always disable the earliest reference frame
const MV_REFERENCE_FRAME ref_frame_to_disable = earliest_ref_frames[0];
#endif // USE_RF_LEVEL_TO_ENFORCE
#undef USE_RF_LEVEL_TO_ENFORCE
switch (ref_frame_to_disable) {
case LAST_FRAME: cpi->ref_frame_flags &= ~AOM_LAST_FLAG; break;
case LAST2_FRAME: cpi->ref_frame_flags &= ~AOM_LAST2_FLAG; break;
case LAST3_FRAME: cpi->ref_frame_flags &= ~AOM_LAST3_FLAG; break;
case BWDREF_FRAME: cpi->ref_frame_flags &= ~AOM_BWD_FLAG; break;
case ALTREF2_FRAME: cpi->ref_frame_flags &= ~AOM_ALT2_FLAG; break;
default: break;
}
}
}
static INLINE int av1_refs_are_one_sided(const AV1_COMMON *cm) {
assert(!frame_is_intra_only(cm));
int one_sided_refs = 1;
for (int ref = 0; ref < INTER_REFS_PER_FRAME; ++ref) {
const int buf_idx = cm->frame_refs[ref].idx;
if (buf_idx == INVALID_IDX) continue;
const int ref_offset =
cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset;
if (get_relative_dist(cm, ref_offset, (int)cm->frame_offset) > 0) {
one_sided_refs = 0; // bwd reference
break;
}
}
return one_sided_refs;
}
static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm,
int ref_offset[2]) {
ref_offset[0] = ref_offset[1] = 0;
if (!cm->is_skip_mode_allowed) return;
const int buf_idx_0 = cm->frame_refs[cm->ref_frame_idx_0].idx;
const int buf_idx_1 = cm->frame_refs[cm->ref_frame_idx_1].idx;
assert(buf_idx_0 != INVALID_IDX && buf_idx_1 != INVALID_IDX);
ref_offset[0] = cm->buffer_pool->frame_bufs[buf_idx_0].cur_frame_offset;
ref_offset[1] = cm->buffer_pool->frame_bufs[buf_idx_1].cur_frame_offset;
}
static int check_skip_mode_enabled(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
av1_setup_skip_mode_allowed(cm);
if (!cm->is_skip_mode_allowed) return 0;
// Turn off skip mode if the temporal distances of the reference pair to the
// current frame are different by more than 1 frame.
const int cur_offset = (int)cm->frame_offset;
int ref_offset[2];
get_skip_mode_ref_offsets(cm, ref_offset);
const int cur_to_ref0 = get_relative_dist(cm, cur_offset, ref_offset[0]);
const int cur_to_ref1 = abs(get_relative_dist(cm, cur_offset, ref_offset[1]));
if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0;
// High Latency: Turn off skip mode if all refs are fwd.
if (cpi->all_one_sided_refs && cpi->oxcf.lag_in_frames > 0) return 0;
static const int flag_list[REF_FRAMES] = { 0,
AOM_LAST_FLAG,
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
AOM_GOLD_FLAG,
AOM_BWD_FLAG,
AOM_ALT2_FLAG,
AOM_ALT_FLAG };
const int ref_frame[2] = { cm->ref_frame_idx_0 + LAST_FRAME,
cm->ref_frame_idx_1 + LAST_FRAME };
if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) ||
!(cpi->ref_frame_flags & flag_list[ref_frame[1]]))
return 0;
return 1;
}
// Function to decide if we can skip the global motion parameter computation
// for a particular ref frame
static INLINE int skip_gm_frame(AV1_COMMON *const cm, int ref_frame) {
if ((ref_frame == LAST3_FRAME || ref_frame == LAST2_FRAME) &&
cm->global_motion[GOLDEN_FRAME].wmtype != IDENTITY) {
return get_relative_dist(
cm, cm->cur_frame->ref_frame_offset[ref_frame - LAST_FRAME],
cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0;
}
return 0;
}
static void set_default_interp_skip_flags(AV1_COMP *cpi) {
const int num_planes = av1_num_planes(&cpi->common);
cpi->default_interp_skip_flags = (num_planes == 1)
? DEFAULT_LUMA_INTERP_SKIP_FLAG
: DEFAULT_INTERP_SKIP_FLAG;
}
static void encode_frame_internal(AV1_COMP *cpi) {
ThreadData *const td = &cpi->td;
MACROBLOCK *const x = &td->mb;
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
int i;
x->min_partition_size = AOMMIN(x->min_partition_size, cm->seq_params.sb_size);
x->max_partition_size = AOMMIN(x->max_partition_size, cm->seq_params.sb_size);
#if CONFIG_DIST_8X8
x->using_dist_8x8 = cpi->oxcf.using_dist_8x8;
x->tune_metric = cpi->oxcf.tuning;
#endif
cm->setup_mi(cm);
xd->mi = cm->mi_grid_visible;
xd->mi[0] = cm->mi;
av1_zero(*td->counts);
av1_zero(rdc->comp_pred_diff);
// Allow intrabc when screen content tools are enabled.
cm->allow_intrabc = cm->allow_screen_content_tools;
// Reset the flag.
cpi->intrabc_used = 0;
// Need to disable intrabc when superres is selected
if (av1_superres_scaled(cm)) {
cm->allow_intrabc = 0;
}
if (cpi->oxcf.pass != 1 && av1_use_hash_me(cm)) {
// add to hash table
const int pic_width = cpi->source->y_crop_width;
const int pic_height = cpi->source->y_crop_height;
uint32_t *block_hash_values[2][2];
int8_t *is_block_same[2][3];
int k, j;
for (k = 0; k < 2; k++) {
for (j = 0; j < 2; j++) {
CHECK_MEM_ERROR(cm, block_hash_values[k][j],
aom_malloc(sizeof(uint32_t) * pic_width * pic_height));
}
for (j = 0; j < 3; j++) {
CHECK_MEM_ERROR(cm, is_block_same[k][j],
aom_malloc(sizeof(int8_t) * pic_width * pic_height));
}
}
av1_hash_table_create(&cm->cur_frame->hash_table);
av1_generate_block_2x2_hash_value(cpi->source, block_hash_values[0],
is_block_same[0], &cpi->td.mb);
av1_generate_block_hash_value(cpi->source, 4, block_hash_values[0],
block_hash_values[1], is_block_same[0],
is_block_same[1], &cpi->td.mb);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2],
pic_width, pic_height, 4);
av1_generate_block_hash_value(cpi->source, 8, block_hash_values[1],
block_hash_values[0], is_block_same[1],
is_block_same[0], &cpi->td.mb);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2],
pic_width, pic_height, 8);
av1_generate_block_hash_value(cpi->source, 16, block_hash_values[0],
block_hash_values[1], is_block_same[0],
is_block_same[1], &cpi->td.mb);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2],
pic_width, pic_height, 16);
av1_generate_block_hash_value(cpi->source, 32, block_hash_values[1],
block_hash_values[0], is_block_same[1],
is_block_same[0], &cpi->td.mb);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2],
pic_width, pic_height, 32);
av1_generate_block_hash_value(cpi->source, 64, block_hash_values[0],
block_hash_values[1], is_block_same[0],
is_block_same[1], &cpi->td.mb);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2],
pic_width, pic_height, 64);
av1_generate_block_hash_value(cpi->source, 128, block_hash_values[1],
block_hash_values[0], is_block_same[1],
is_block_same[0], &cpi->td.mb);
av1_add_to_hash_map_by_row_with_precal_data(
&cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2],
pic_width, pic_height, 128);
for (k = 0; k < 2; k++) {
for (j = 0; j < 2; j++) {
aom_free(block_hash_values[k][j]);
}
for (j = 0; j < 3; j++) {
aom_free(is_block_same[k][j]);
}
}
}
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = cm->seg.enabled
? av1_get_qindex(&cm->seg, i, cm->base_qindex)
: cm->base_qindex;
xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 &&
cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0;
if (xd->lossless[i]) cpi->has_lossless_segment = 1;
xd->qindex[i] = qindex;
if (xd->lossless[i]) {
cpi->optimize_seg_arr[i] = 0;
} else {
cpi->optimize_seg_arr[i] = cpi->optimize_speed_feature;
}
}
cm->coded_lossless = is_coded_lossless(cm, xd);
cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm);
cm->tx_mode = select_tx_mode(cpi);
// Fix delta q resolution for the moment
cm->delta_q_res = DEFAULT_DELTA_Q_RES;
// Set delta_q_present_flag before it is used for the first time
cm->delta_lf_res = DEFAULT_DELTA_LF_RES;
cm->delta_q_present_flag = cpi->oxcf.deltaq_mode != NO_DELTA_Q;
cm->delta_lf_present_flag = cpi->oxcf.deltaq_mode == DELTA_Q_LF;
cm->delta_lf_multi = DEFAULT_DELTA_LF_MULTI;
// update delta_q_present_flag and delta_lf_present_flag based on base_qindex
cm->delta_q_present_flag &= cm->base_qindex > 0;
cm->delta_lf_present_flag &= cm->base_qindex > 0;
if (cpi->twopass.gf_group.index &&
cpi->twopass.gf_group.index < MAX_LAG_BUFFERS &&
cpi->oxcf.enable_tpl_model) {
TplDepFrame *tpl_frame = &cpi->tpl_stats[cpi->twopass.gf_group.index];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
int64_t intra_cost_base = 0;
int64_t mc_dep_cost_base = 0;
int row, col;
for (row = 0; row < cm->mi_rows; ++row) {
for (col = 0; col < cm->mi_cols; ++col) {
TplDepStats *this_stats = &tpl_stats[row * tpl_stride + col];
intra_cost_base += this_stats->intra_cost;
mc_dep_cost_base += this_stats->mc_dep_cost;
}
}
aom_clear_system_state();
if (tpl_frame->is_valid)
cpi->rd.r0 =
(double)intra_cost_base / (intra_cost_base + mc_dep_cost_base);
}
av1_frame_init_quantizer(cpi);
av1_initialize_rd_consts(cpi);
av1_initialize_me_consts(cpi, x, cm->base_qindex);
init_encode_frame_mb_context(cpi);
set_default_interp_skip_flags(cpi);
if (cm->prev_frame)
cm->last_frame_seg_map = cm->prev_frame->seg_map;
else
cm->last_frame_seg_map = NULL;
cm->current_frame_seg_map = cm->cur_frame->seg_map;
if (cm->allow_intrabc || cm->coded_lossless) {
av1_set_default_ref_deltas(cm->lf.ref_deltas);
av1_set_default_mode_deltas(cm->lf.mode_deltas);
} else if (cm->prev_frame) {
memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
}
memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES);
memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS);
// Special case: set prev_mi to NULL when the previous mode info
// context cannot be used.
cm->prev_mi = cm->allow_ref_frame_mvs ? cm->prev_mip : NULL;
x->txb_split_count = 0;
av1_zero(rdc->global_motion_used);
av1_zero(cpi->gmparams_cost);
#if !CONFIG_GLOBAL_MOTION_SEARCH
cpi->global_motion_search_done = 1;
#endif // !CONFIG_GLOBAL_MOTION_SEARCH
if (cpi->common.frame_type == INTER_FRAME && cpi->source &&
!cpi->global_motion_search_done) {
YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES];
int frame;
double params_by_motion[RANSAC_NUM_MOTIONS * (MAX_PARAMDIM - 1)];
const double *params_this_motion;
int inliers_by_motion[RANSAC_NUM_MOTIONS];
WarpedMotionParams tmp_wm_params;
// clang-format off
static const double kIdentityParams[MAX_PARAMDIM - 1] = {
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0
};
// clang-format on
int num_refs_using_gm = 0;
for (frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) {
ref_buf[frame] = get_ref_frame_buffer(cpi, frame);
int pframe;
cm->global_motion[frame] = default_warp_params;
const WarpedMotionParams *ref_params =
cm->prev_frame ? &cm->prev_frame->global_motion[frame]
: &default_warp_params;
// check for duplicate buffer
for (pframe = ALTREF_FRAME; pframe > frame; --pframe) {
if (ref_buf[frame] == ref_buf[pframe]) break;
}
if (pframe > frame) {
memcpy(&cm->global_motion[frame], &cm->global_motion[pframe],
sizeof(WarpedMotionParams));
} else if (ref_buf[frame] &&
ref_buf[frame]->y_crop_width == cpi->source->y_crop_width &&
ref_buf[frame]->y_crop_height == cpi->source->y_crop_height &&
do_gm_search_logic(&cpi->sf, num_refs_using_gm, frame) &&
!(cpi->sf.selective_ref_gm && skip_gm_frame(cm, frame))) {
TransformationType model;
const int64_t ref_frame_error =
av1_frame_error(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
ref_buf[frame]->y_buffer, ref_buf[frame]->y_stride,
cpi->source->y_buffer, cpi->source->y_width,
cpi->source->y_height, cpi->source->y_stride);
if (ref_frame_error == 0) continue;
aom_clear_system_state();
for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) {
int64_t best_warp_error = INT64_MAX;
// Initially set all params to identity.
for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
memcpy(params_by_motion + (MAX_PARAMDIM - 1) * i, kIdentityParams,
(MAX_PARAMDIM - 1) * sizeof(*params_by_motion));
}
compute_global_motion(model, cpi->source, ref_buf[frame],
cpi->common.seq_params.bit_depth,
inliers_by_motion, params_by_motion,
RANSAC_NUM_MOTIONS);
for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) {
if (inliers_by_motion[i] == 0) continue;
params_this_motion = params_by_motion + (MAX_PARAMDIM - 1) * i;
convert_model_to_params(params_this_motion, &tmp_wm_params);
if (tmp_wm_params.wmtype != IDENTITY) {
const int64_t warp_error = refine_integerized_param(
&tmp_wm_params, tmp_wm_params.wmtype,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd,
ref_buf[frame]->y_buffer, ref_buf[frame]->y_width,
ref_buf[frame]->y_height, ref_buf[frame]->y_stride,
cpi->source->y_buffer, cpi->source->y_width,
cpi->source->y_height, cpi->source->y_stride, 5,
best_warp_error);
if (warp_error < best_warp_error) {
best_warp_error = warp_error;
// Save the wm_params modified by refine_integerized_param()
// rather than motion index to avoid rerunning refine() below.
memcpy(&(cm->global_motion[frame]), &tmp_wm_params,
sizeof(WarpedMotionParams));
}
}
}
if (cm->global_motion[frame].wmtype <= AFFINE)
if (!get_shear_params(&cm->global_motion[frame]))
cm->global_motion[frame] = default_warp_params;
if (cm->global_motion[frame].wmtype == TRANSLATION) {
cm->global_motion[frame].wmmat[0] =
convert_to_trans_prec(cm->allow_high_precision_mv,
cm->global_motion[frame].wmmat[0]) *
GM_TRANS_ONLY_DECODE_FACTOR;
cm->global_motion[frame].wmmat[1] =
convert_to_trans_prec(cm->allow_high_precision_mv,
cm->global_motion[frame].wmmat[1]) *
GM_TRANS_ONLY_DECODE_FACTOR;
}
// If the best error advantage found doesn't meet the threshold for
// this motion type, revert to IDENTITY.
if (!is_enough_erroradvantage(
(double)best_warp_error / ref_frame_error,
gm_get_params_cost(&cm->global_motion[frame], ref_params,
cm->allow_high_precision_mv),
cpi->sf.gm_erroradv_type)) {
cm->global_motion[frame] = default_warp_params;
}
if (cm->global_motion[frame].wmtype != IDENTITY) break;
}
aom_clear_system_state();
}
if (cm->global_motion[frame].wmtype != IDENTITY) num_refs_using_gm++;
cpi->gmparams_cost[frame] =
gm_get_params_cost(&cm->global_motion[frame], ref_params,
cm->allow_high_precision_mv) +
cpi->gmtype_cost[cm->global_motion[frame].wmtype] -
cpi->gmtype_cost[IDENTITY];
}
// clear disabled ref_frames
for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
const int ref_disabled =
!(cpi->ref_frame_flags & ref_frame_flag_list[frame]);
if (ref_disabled && cpi->sf.recode_loop != DISALLOW_RECODE) {
cpi->gmparams_cost[frame] = 0;
cm->global_motion[frame] = default_warp_params;
}
}
cpi->global_motion_search_done = 1;
}
memcpy(cm->cur_frame->global_motion, cm->global_motion,
REF_FRAMES * sizeof(WarpedMotionParams));
av1_setup_motion_field(cm);
cpi->all_one_sided_refs =
frame_is_intra_only(cm) ? 0 : av1_refs_are_one_sided(cm);
cm->skip_mode_flag = check_skip_mode_enabled(cpi);
{
struct aom_usec_timer emr_timer;
aom_usec_timer_start(&emr_timer);
#if CONFIG_FP_MB_STATS
if (cpi->use_fp_mb_stats) {
input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm,
&cpi->twopass.this_frame_mb_stats);
}
#endif
cpi->row_mt_sync_read_ptr = av1_row_mt_sync_read_dummy;
cpi->row_mt_sync_write_ptr = av1_row_mt_sync_write_dummy;
cpi->row_mt = 0;
if (cpi->oxcf.row_mt && (cpi->oxcf.max_threads > 1)) {
cpi->row_mt = 1;
cpi->row_mt_sync_read_ptr = av1_row_mt_sync_read;
cpi->row_mt_sync_write_ptr = av1_row_mt_sync_write;
av1_encode_tiles_row_mt(cpi);
} else {
if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols * cm->tile_rows) > 1)
av1_encode_tiles_mt(cpi);
else
encode_tiles(cpi);
}
aom_usec_timer_mark(&emr_timer);
cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer);
}
// If intrabc is allowed but never selected, reset the allow_intrabc flag.
if (cm->allow_intrabc && !cpi->intrabc_used) cm->allow_intrabc = 0;
if (cm->allow_intrabc) cm->delta_lf_present_flag = 0;
}
void av1_encode_frame(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
// Indicates whether or not to use a default reduced set for ext-tx
// rather than the potential full set of 16 transforms
cm->reduced_tx_set_used = 0;
if (cm->show_frame == 0) {
int arf_offset = AOMMIN(
(MAX_GF_INTERVAL - 1),
cpi->twopass.gf_group.arf_src_offset[cpi->twopass.gf_group.index]);
int brf_offset =
cpi->twopass.gf_group.brf_src_offset[cpi->twopass.gf_group.index];
arf_offset = AOMMIN((MAX_GF_INTERVAL - 1), arf_offset + brf_offset);
cm->frame_offset = cm->current_video_frame + arf_offset;
} else {
cm->frame_offset = cm->current_video_frame;
}
cm->frame_offset %= (1 << (cm->seq_params.order_hint_bits_minus_1 + 1));
// Make sure segment_id is no larger than last_active_segid.
if (cm->seg.enabled && cm->seg.update_map) {
const int mi_rows = cm->mi_rows;
const int mi_cols = cm->mi_cols;
const int last_active_segid = cm->seg.last_active_segid;
uint8_t *map = cpi->segmentation_map;
for (int mi_row = 0; mi_row < mi_rows; ++mi_row) {
for (int mi_col = 0; mi_col < mi_cols; ++mi_col) {
map[mi_col] = AOMMIN(map[mi_col], last_active_segid);
}
map += mi_cols;
}
}
av1_setup_frame_buf_refs(cm);
if (cpi->sf.selective_ref_frame >= 3) enforce_max_ref_frames(cpi);
av1_setup_frame_sign_bias(cm);
#if CONFIG_MISMATCH_DEBUG
mismatch_reset_frame(num_planes);
#else
(void)num_planes;
#endif
cpi->allow_comp_inter_inter = !frame_is_intra_only(cm);
if (cpi->sf.frame_parameter_update) {
int i;
RD_OPT *const rd_opt = &cpi->rd;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
// This code does a single RD pass over the whole frame assuming
// either compound, single or hybrid prediction as per whatever has
// worked best for that type of frame in the past.
// It also predicts whether another coding mode would have worked
// better than this coding mode. If that is the case, it remembers
// that for subsequent frames.
// It does the same analysis for transform size selection also.
//
// TODO(zoeliu): To investigate whether a frame_type other than
// INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately.
const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi);
int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type];
const int is_alt_ref = frame_type == ALTREF_FRAME;
/* prediction (compound, single or hybrid) mode selection */
// NOTE: "is_alt_ref" is true only for OVERLAY/INTNL_OVERLAY frames
if (is_alt_ref || !cpi->allow_comp_inter_inter)
cm->reference_mode = SINGLE_REFERENCE;
else
cm->reference_mode = REFERENCE_MODE_SELECT;
cm->interp_filter = SWITCHABLE;
if (cm->large_scale_tile) cm->interp_filter = EIGHTTAP_REGULAR;
cm->switchable_motion_mode = 1;
rdc->compound_ref_used_flag = 0;
rdc->skip_mode_used_flag = 0;
encode_frame_internal(cpi);
for (i = 0; i < REFERENCE_MODES; ++i)
mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2;
if (cm->reference_mode == REFERENCE_MODE_SELECT) {
// Use a flag that includes 4x4 blocks
if (rdc->compound_ref_used_flag == 0) {
cm->reference_mode = SINGLE_REFERENCE;
#if CONFIG_ENTROPY_STATS
av1_zero(cpi->td.counts->comp_inter);
#endif // CONFIG_ENTROPY_STATS
}
}
// Re-check on the skip mode status as reference mode may have been changed.
if (frame_is_intra_only(cm) || cm->reference_mode == SINGLE_REFERENCE) {
cm->is_skip_mode_allowed = 0;
cm->skip_mode_flag = 0;
}
if (cm->skip_mode_flag && rdc->skip_mode_used_flag == 0)
cm->skip_mode_flag = 0;
if (!cm->large_scale_tile) {
if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0)
cm->tx_mode = TX_MODE_LARGEST;
}
} else {
encode_frame_internal(cpi);
}
}
static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd,
FRAME_COUNTS *counts, TX_SIZE tx_size, int depth,
int blk_row, int blk_col,
uint8_t allow_update_cdf) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->sb_type, tx_size);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
if (depth == MAX_VARTX_DEPTH) {
// Don't add to counts in this case
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
if (tx_size == plane_tx_size) {
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][0];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2);
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
#if CONFIG_ENTROPY_STATS
++counts->txfm_partition[ctx][1];
#endif
if (allow_update_cdf)
update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2);
++x->txb_split_count;
if (sub_txs == TX_4X4) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = row;
int offsetc = col;
update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr,
blk_col + offsetc, allow_update_cdf);
}
}
}
}
static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x,
BLOCK_SIZE plane_bsize, int mi_row,
int mi_col, FRAME_COUNTS *td_counts,
uint8_t allow_update_cdf) {
MACROBLOCKD *xd = &x->e_mbd;
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int idx, idy;
xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
for (idy = 0; idy < mi_height; idy += bh)
for (idx = 0; idx < mi_width; idx += bw)
update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx,
allow_update_cdf);
}
static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row,
int blk_col) {
MB_MODE_INFO *mbmi = xd->mi[0];
const BLOCK_SIZE bsize = mbmi->sb_type;
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col);
const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index];
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size) {
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
} else {
if (tx_size == TX_8X8) {
mbmi->inter_tx_size[txb_size_index] = TX_4X4;
mbmi->tx_size = TX_4X4;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, TX_4X4, tx_size);
return;
}
const TX_SIZE sub_txs = sub_tx_size_map[tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
set_txfm_context(xd, sub_txs, offsetr, offsetc);
}
}
}
}
static void tx_partition_set_contexts(const AV1_COMMON *const cm,
MACROBLOCKD *xd, BLOCK_SIZE plane_bsize,
int mi_row, int mi_col) {
const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0];
const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0];
const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
int idx, idy;
xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
for (idy = 0; idy < mi_height; idy += bh)
for (idx = 0; idx < mi_width; idx += bw)
set_txfm_context(xd, max_tx_size, idy, idx);
}
static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data,
ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run,
int mi_row, int mi_col, BLOCK_SIZE bsize,
int *rate) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO **mi_4x4 = xd->mi;
MB_MODE_INFO *mbmi = mi_4x4[0];
const int seg_skip =
segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP);
const int mis = cm->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
const int is_inter = is_inter_block(mbmi);
if (cpi->sf.mode_pruning_based_on_two_pass_partition_search &&
x->cb_partition_scan) {
for (int row = mi_row; row < mi_row + mi_width;
row += FIRST_PARTITION_PASS_SAMPLE_REGION) {
for (int col = mi_col; col < mi_col + mi_height;
col += FIRST_PARTITION_PASS_SAMPLE_REGION) {
const int index = av1_first_partition_pass_stats_index(row, col);
FIRST_PARTITION_PASS_STATS *const stats =
&x->first_partition_pass_stats[index];
// Increase the counter of data samples.
++stats->sample_counts;
// Increase the counter for ref_frame[0] and ref_frame[1].
if (stats->ref0_counts[mbmi->ref_frame[0]] < 255)
++stats->ref0_counts[mbmi->ref_frame[0]];
if (mbmi->ref_frame[1] >= 0 &&
stats->ref1_counts[mbmi->ref_frame[0]] < 255)
++stats->ref1_counts[mbmi->ref_frame[1]];
}
}
}
if (!is_inter) {
xd->cfl.is_chroma_reference =
is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x,
cm->seq_params.subsampling_y);
xd->cfl.store_y = store_cfl_required(cm, xd);
mbmi->skip = 1;
for (int plane = 0; plane < num_planes; ++plane) {
av1_encode_intra_block_plane(cpi, x, bsize, plane,
cpi->optimize_seg_arr[mbmi->segment_id],
mi_row, mi_col);
}
// If there is at least one lossless segment, force the skip for intra
// block to be 0, in order to avoid the segment_id to be changed by in
// write_segment_id().
if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map &&
cpi->has_lossless_segment)
mbmi->skip = 0;
xd->cfl.store_y = 0;
if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) {
for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) {
if (mbmi->palette_mode_info.palette_size[plane] > 0) {
if (!dry_run) {
av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size,
PALETTE_MAP, tile_data->allow_update_cdf,
td->counts);
} else if (dry_run == DRY_RUN_COSTCOEFFS) {
rate +=
av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP);
}
}
}
}
av1_update_txb_context(cpi, td, dry_run, bsize, rate, mi_row, mi_col,
tile_data->allow_update_cdf);
} else {
int ref;
const int is_compound = has_second_ref(mbmi);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (ref = 0; ref < 1 + is_compound; ++ref) {
YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]);
assert(IMPLIES(!is_intrabc_block(mbmi), cfg));
av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col,
&xd->block_refs[ref]->sf, num_planes);
}
av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);
if (mbmi->motion_mode == OBMC_CAUSAL)
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
#if CONFIG_MISMATCH_DEBUG
if (dry_run == OUTPUT_ENABLED) {
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int pixel_c, pixel_r;
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
pd->subsampling_x, pd->subsampling_y);
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, cm->frame_offset,
plane, pixel_c, pixel_r, pd->width,
pd->height,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
}
}
#else
(void)num_planes;
#endif
av1_encode_sb(cpi, x, bsize, mi_row, mi_col, dry_run);
av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col, bsize, rate,
tile_data->allow_update_cdf);
}
if (!dry_run) {
if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1;
if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id] &&
mbmi->sb_type > BLOCK_4X4 && !(is_inter && (mbmi->skip || seg_skip))) {
if (is_inter) {
tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts,
tile_data->allow_update_cdf);
} else {
if (mbmi->tx_size != max_txsize_rect_lookup[bsize])
++x->txb_split_count;
if (block_signals_txsize(bsize)) {
const int tx_size_ctx = get_tx_size_context(xd);
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize);
const int depth = tx_size_to_depth(mbmi->tx_size, bsize);
const int max_depths = bsize_to_max_depth(bsize);
if (tile_data->allow_update_cdf)
update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx],
depth, max_depths + 1);
#if CONFIG_ENTROPY_STATS
++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth];
#endif
}
}
assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi)));
} else {
int i, j;
TX_SIZE intra_tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
intra_tx_size = TX_4X4;
} else {
intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode);
}
} else {
intra_tx_size = mbmi->tx_size;
}
for (j = 0; j < mi_height; j++)
for (i = 0; i < mi_width; i++)
if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows)
mi_4x4[mis * j + i]->tx_size = intra_tx_size;
if (intra_tx_size != max_txsize_rect_lookup[bsize]) ++x->txb_split_count;
}
}
if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type) &&
is_inter && !(mbmi->skip || seg_skip) &&
!xd->lossless[mbmi->segment_id]) {
if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col);
} else {
TX_SIZE tx_size = mbmi->tx_size;
// The new intra coding scheme requires no change of transform size
if (is_inter) {
if (xd->lossless[mbmi->segment_id]) {
tx_size = TX_4X4;
} else {
tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode);
}
} else {
tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4;
}
mbmi->tx_size = tx_size;
set_txfm_ctxs(tx_size, xd->n4_w, xd->n4_h,
(mbmi->skip || seg_skip) && is_inter_block(mbmi), xd);
}
CFL_CTX *const cfl = &xd->cfl;
if (is_inter_block(mbmi) &&
!is_chroma_reference(mi_row, mi_col, bsize, cfl->subsampling_x,
cfl->subsampling_y) &&
is_cfl_allowed(xd)) {
cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size);
}
}