blob: d9a8e80563977e57fed790f73910633cecb9a557 [file] [log] [blame]
/*
* Copyright (c) 2001-2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
/* clang-format off */
#ifdef HAVE_CONFIG_H
# include "config.h"
#endif
#include <stdio.h>
#include <stdlib.h>
#include "./aom_config.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/entcode.h"
#include "aom_dsp/entdec.h"
#include "av1/common/odintrin.h"
#include "av1/common/partition.h"
#include "av1/common/pvq_state.h"
#include "av1/decoder/decint.h"
#include "av1/decoder/pvq_decoder.h"
#include "aom_ports/system_state.h"
int aom_read_symbol_pvq_(aom_reader *r, aom_cdf_prob *cdf, int nsymbs
ACCT_STR_PARAM) {
if (cdf[0] == 0)
aom_cdf_init_q15_1D(cdf, nsymbs, CDF_SIZE(nsymbs));
return aom_read_symbol(r, cdf, nsymbs, ACCT_STR_NAME);
}
static void aom_decode_pvq_codeword(aom_reader *r, od_pvq_codeword_ctx *ctx,
od_coeff *y, int n, int k) {
int i;
aom_decode_band_pvq_splits(r, ctx, y, n, k, 0);
for (i = 0; i < n; i++) {
if (y[i] && aom_read_bit(r, "pvq:sign")) y[i] = -y[i];
}
}
/** Inverse of neg_interleave; decodes the interleaved gain.
*
* @param [in] x quantized/interleaved gain to decode
* @param [in] ref quantized gain of the reference
* @return original quantized gain value
*/
static int neg_deinterleave(int x, int ref) {
if (x < 2*ref-1) {
if (x & 1) return ref - 1 - (x >> 1);
else return ref + (x >> 1);
}
else return x+1;
}
/** Synthesizes one parition of coefficient values from a PVQ-encoded
* vector.
*
* @param [out] xcoeff output coefficient partition (x in math doc)
* @param [in] ypulse PVQ-encoded values (y in math doc); in the noref
* case, this vector has n entries, in the
* reference case it contains n-1 entries
* (the m-th entry is not included)
* @param [in] ref reference vector (prediction)
* @param [in] n number of elements in this partition
* @param [in] gr gain of the reference vector (prediction)
* @param [in] noref indicates presence or lack of prediction
* @param [in] g decoded quantized vector gain
* @param [in] theta decoded theta (prediction error)
* @param [in] qm QM with magnitude compensation
* @param [in] qm_inv Inverse of QM with magnitude compensation
*/
static void pvq_synthesis(od_coeff *xcoeff, od_coeff *ypulse, od_val16 *r16,
int n, od_val32 gr, int noref, od_val32 g, od_val32 theta, const int16_t *qm_inv,
int shift) {
int s;
int m;
/* Sign of the Householder reflection vector */
s = 0;
/* Direction of the Householder reflection vector */
m = noref ? 0 : od_compute_householder(r16, n, gr, &s, shift);
od_pvq_synthesis_partial(xcoeff, ypulse, r16, n, noref, g, theta, m, s,
qm_inv);
}
typedef struct {
od_coeff *ref;
int nb_coeffs;
int allow_flip;
} cfl_ctx;
/** Decodes a single vector of integers (eg, a partition within a
* coefficient block) encoded using PVQ
*
* @param [in,out] ec range encoder
* @param [in] q0 scale/quantizer
* @param [in] n number of coefficients in partition
* @param [in,out] model entropy decoder state
* @param [in,out] adapt adaptation context
* @param [in,out] exg ExQ16 expectation of decoded gain value
* @param [in,out] ext ExQ16 expectation of decoded theta value
* @param [in] ref 'reference' (prediction) vector
* @param [out] out decoded partition
* @param [out] noref boolean indicating absence of reference
* @param [in] beta per-band activity masking beta param
* @param [in] is_keyframe whether we're encoding a keyframe
* @param [in] pli plane index
* @param [in] cdf_ctx selects which cdf context to use
* @param [in,out] skip_rest whether to skip further bands in each direction
* @param [in] band index of the band being decoded
* @param [in] band index of the band being decoded
* @param [out] skip skip flag with range [0,1]
* @param [in] qm QM with magnitude compensation
* @param [in] qm_inv Inverse of QM with magnitude compensation
*/
static void pvq_decode_partition(aom_reader *r,
int q0,
int n,
generic_encoder model[3],
od_adapt_ctx *adapt,
int *exg,
int *ext,
od_coeff *ref,
od_coeff *out,
int *noref,
od_val16 beta,
int is_keyframe,
int pli,
int cdf_ctx,
cfl_ctx *cfl,
int has_skip,
int *skip_rest,
int band,
int *skip,
const int16_t *qm,
const int16_t *qm_inv) {
int k;
od_val32 qcg;
int itheta;
od_val32 theta;
od_val32 gr;
od_val32 gain_offset;
od_coeff y[MAXN];
int qg;
int id;
int i;
od_val16 ref16[MAXN];
int rshift;
theta = 0;
gr = 0;
gain_offset = 0;
/* Skip is per-direction. For band=0, we can use any of the flags. */
if (skip_rest[(band + 2) % 3]) {
qg = 0;
if (is_keyframe) {
itheta = -1;
*noref = 1;
}
else {
itheta = 0;
*noref = 0;
}
}
else {
/* Jointly decode gain, itheta and noref for small values. Then we handle
larger gain. */
id = aom_read_symbol_pvq(r, &adapt->pvq.pvq_gaintheta_cdf[cdf_ctx][0],
8 + 7*has_skip, "pvq:gaintheta");
if (!is_keyframe && id >= 10) id++;
if (is_keyframe && id >= 8) id++;
if (id >= 8) {
id -= 8;
skip_rest[0] = skip_rest[1] = skip_rest[2] = 1;
}
qg = id & 1;
itheta = (id >> 1) - 1;
*noref = (itheta == -1);
}
/* The CfL flip bit is only decoded on the first band that has noref=0. */
if (cfl->allow_flip && !*noref) {
int flip;
flip = aom_read_bit(r, "cfl:flip");
if (flip) {
for (i = 0; i < cfl->nb_coeffs; i++) cfl->ref[i] = -cfl->ref[i];
}
cfl->allow_flip = 0;
}
if (qg > 0) {
int tmp;
tmp = *exg;
qg = 1 + generic_decode(r, &model[!*noref], &tmp, 2, "pvq:gain");
OD_IIR_DIADIC(*exg, qg << 16, 2);
}
*skip = 0;
#if defined(OD_FLOAT_PVQ)
rshift = 0;
#else
/* Shift needed to make the reference fit in 15 bits, so that the Householder
vector can fit in 16 bits. */
rshift = OD_MAXI(0, od_vector_log_mag(ref, n) - 14);
#endif
for (i = 0; i < n; i++) {
#if defined(OD_FLOAT_PVQ)
ref16[i] = ref[i]*(double)qm[i]*OD_QM_SCALE_1;
#else
ref16[i] = OD_SHR_ROUND(ref[i]*qm[i], OD_QM_SHIFT + rshift);
#endif
}
if(!*noref){
/* we have a reference; compute its gain */
od_val32 cgr;
int icgr;
int cfl_enabled;
cfl_enabled = pli != 0 && is_keyframe && !OD_DISABLE_CFL;
cgr = od_pvq_compute_gain(ref16, n, q0, &gr, beta, rshift);
if (cfl_enabled) cgr = OD_CGAIN_SCALE;
#if defined(OD_FLOAT_PVQ)
icgr = (int)floor(.5 + cgr);
#else
icgr = OD_SHR_ROUND(cgr, OD_CGAIN_SHIFT);
#endif
/* quantized gain is interleave encoded when there's a reference;
deinterleave it now */
if (is_keyframe) qg = neg_deinterleave(qg, icgr);
else {
qg = neg_deinterleave(qg, icgr + 1) - 1;
if (qg == 0) *skip = (icgr ? OD_PVQ_SKIP_ZERO : OD_PVQ_SKIP_COPY);
}
if (qg == icgr && itheta == 0 && !cfl_enabled) *skip = OD_PVQ_SKIP_COPY;
gain_offset = cgr - OD_SHL(icgr, OD_CGAIN_SHIFT);
qcg = OD_SHL(qg, OD_CGAIN_SHIFT) + gain_offset;
/* read and decode first-stage PVQ error theta */
if (itheta > 1) {
int tmp;
tmp = *ext;
itheta = 2 + generic_decode(r, &model[2], &tmp, 2, "pvq:theta");
OD_IIR_DIADIC(*ext, itheta << 16, 2);
}
theta = od_pvq_compute_theta(itheta, od_pvq_compute_max_theta(qcg, beta));
}
else{
itheta = 0;
if (!is_keyframe) qg++;
qcg = OD_SHL(qg, OD_CGAIN_SHIFT);
if (qg == 0) *skip = OD_PVQ_SKIP_ZERO;
}
k = od_pvq_compute_k(qcg, itheta, *noref, n, beta);
if (k != 0) {
/* when noref==0, y is actually size n-1 */
aom_decode_pvq_codeword(r, &adapt->pvq.pvq_codeword_ctx, y,
n - !*noref, k);
}
else {
OD_CLEAR(y, n);
}
if (*skip) {
if (*skip == OD_PVQ_SKIP_COPY) OD_COPY(out, ref, n);
else OD_CLEAR(out, n);
}
else {
od_val32 g;
g = od_gain_expand(qcg, q0, beta);
pvq_synthesis(out, y, ref16, n, gr, *noref, g, theta, qm_inv, rshift);
}
/* If OD_PVQ_SKIP_ZERO or OD_PVQ_SKIP_COPY, set skip to 1 for visualization */
if (*skip) *skip = 1;
}
/** Decodes a coefficient block (except for DC) encoded using PVQ
*
* @param [in,out] dec daala decoder context
* @param [in] ref 'reference' (prediction) vector
* @param [out] out decoded partition
* @param [in] q0 quantizer
* @param [in] pli plane index
* @param [in] bs log of the block size minus two
* @param [in] beta per-band activity masking beta param
* @param [in] is_keyframe whether we're encoding a keyframe
* @param [out] flags bitmask of the per band skip and noref flags
* @param [in] ac_dc_coded skip flag for the block (range 0-3)
* @param [in] qm QM with magnitude compensation
* @param [in] qm_inv Inverse of QM with magnitude compensation
*/
void od_pvq_decode(daala_dec_ctx *dec,
od_coeff *ref,
od_coeff *out,
int q0,
int pli,
int bs,
const od_val16 *beta,
int is_keyframe,
unsigned int *flags,
PVQ_SKIP_TYPE ac_dc_coded,
const int16_t *qm,
const int16_t *qm_inv){
int noref[PVQ_MAX_PARTITIONS];
int skip[PVQ_MAX_PARTITIONS];
int *exg;
int *ext;
int nb_bands;
int i;
const int *off;
int size[PVQ_MAX_PARTITIONS];
generic_encoder *model;
int skip_rest[3] = {0};
cfl_ctx cfl;
const unsigned char *pvq_qm;
int use_masking;
aom_clear_system_state();
/*Default to skip=1 and noref=0 for all bands.*/
for (i = 0; i < PVQ_MAX_PARTITIONS; i++) {
noref[i] = 0;
skip[i] = 1;
}
use_masking = dec->use_activity_masking;
if (use_masking)
pvq_qm = &dec->state.pvq_qm_q4[pli][0];
else
pvq_qm = 0;
exg = &dec->state.adapt->pvq.pvq_exg[pli][bs][0];
ext = dec->state.adapt->pvq.pvq_ext + bs*PVQ_MAX_PARTITIONS;
model = dec->state.adapt->pvq.pvq_param_model;
nb_bands = OD_BAND_OFFSETS[bs][0];
off = &OD_BAND_OFFSETS[bs][1];
out[0] = ac_dc_coded & DC_CODED;
if (ac_dc_coded < AC_CODED) {
if (is_keyframe) for (i = 1; i < 1 << (2*bs + 4); i++) out[i] = 0;
else for (i = 1; i < 1 << (2*bs + 4); i++) out[i] = ref[i];
}
else {
for (i = 0; i < nb_bands; i++) size[i] = off[i+1] - off[i];
cfl.ref = ref;
cfl.nb_coeffs = off[nb_bands];
cfl.allow_flip = pli != 0 && is_keyframe;
for (i = 0; i < nb_bands; i++) {
int q;
if (use_masking)
q = OD_MAXI(1, q0 * pvq_qm[od_qm_get_index(bs, i + 1)] >> 4);
else
q = OD_MAXI(1, q0);
pvq_decode_partition(dec->r, q, size[i],
model, dec->state.adapt, exg + i, ext + i, ref + off[i], out + off[i],
&noref[i], beta[i], is_keyframe, pli,
(pli != 0)*OD_TXSIZES*PVQ_MAX_PARTITIONS + bs*PVQ_MAX_PARTITIONS + i,
&cfl, i == 0 && (i < nb_bands - 1), skip_rest, i, &skip[i],
qm + off[i], qm_inv + off[i]);
if (i == 0 && !skip_rest[0] && bs > 0) {
int skip_dir;
int j;
skip_dir = aom_read_symbol(dec->r,
&dec->state.adapt->pvq.pvq_skip_dir_cdf[(pli != 0) + 2*(bs - 1)][0], 7,
"pvq:skiprest");
for (j = 0; j < 3; j++) skip_rest[j] = !!(skip_dir & (1 << j));
}
}
}
*flags = 0;
for (i = nb_bands - 1; i >= 0; i--) {
*flags <<= 1;
*flags |= noref[i]&1;
*flags <<= 1;
*flags |= skip[i]&1;
}
}