| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "aom_dsp/aom_simd.h" |
| #define SIMD_FUNC(name) name##_avx2 |
| #include "av1/common/cdef_block_simd.h" |
| |
| // Mask used to shuffle the elements present in 256bit register. |
| const int shuffle_reg_256bit[8] = { 0x0b0a0d0c, 0x07060908, 0x03020504, |
| 0x0f0e0100, 0x0b0a0d0c, 0x07060908, |
| 0x03020504, 0x0f0e0100 }; |
| |
| /* partial A is a 16-bit vector of the form: |
| [x8 - - x1 | x16 - - x9] and partial B has the form: |
| [0 y1 - y7 | 0 y9 - y15]. |
| This function computes (x1^2+y1^2)*C1 + (x2^2+y2^2)*C2 + ... |
| (x7^2+y2^7)*C7 + (x8^2+0^2)*C8 on each 128-bit lane. Here the C1..C8 constants |
| are in const1 and const2. */ |
| static INLINE __m256i fold_mul_and_sum_avx2(__m256i *partiala, |
| __m256i *partialb, |
| const __m256i *const1, |
| const __m256i *const2) { |
| __m256i tmp; |
| /* Reverse partial B. */ |
| *partialb = _mm256_shuffle_epi8( |
| *partialb, _mm256_loadu_si256((const __m256i *)shuffle_reg_256bit)); |
| |
| /* Interleave the x and y values of identical indices and pair x8 with 0. */ |
| tmp = *partiala; |
| *partiala = _mm256_unpacklo_epi16(*partiala, *partialb); |
| *partialb = _mm256_unpackhi_epi16(tmp, *partialb); |
| |
| /* Square and add the corresponding x and y values. */ |
| *partiala = _mm256_madd_epi16(*partiala, *partiala); |
| *partialb = _mm256_madd_epi16(*partialb, *partialb); |
| /* Multiply by constant. */ |
| *partiala = _mm256_mullo_epi32(*partiala, *const1); |
| *partialb = _mm256_mullo_epi32(*partialb, *const2); |
| /* Sum all results. */ |
| *partiala = _mm256_add_epi32(*partiala, *partialb); |
| return *partiala; |
| } |
| |
| static INLINE __m256i hsum4_avx2(__m256i *x0, __m256i *x1, __m256i *x2, |
| __m256i *x3) { |
| const __m256i t0 = _mm256_unpacklo_epi32(*x0, *x1); |
| const __m256i t1 = _mm256_unpacklo_epi32(*x2, *x3); |
| const __m256i t2 = _mm256_unpackhi_epi32(*x0, *x1); |
| const __m256i t3 = _mm256_unpackhi_epi32(*x2, *x3); |
| |
| *x0 = _mm256_unpacklo_epi64(t0, t1); |
| *x1 = _mm256_unpackhi_epi64(t0, t1); |
| *x2 = _mm256_unpacklo_epi64(t2, t3); |
| *x3 = _mm256_unpackhi_epi64(t2, t3); |
| return _mm256_add_epi32(_mm256_add_epi32(*x0, *x1), |
| _mm256_add_epi32(*x2, *x3)); |
| } |
| |
| /* Computes cost for directions 0, 5, 6 and 7. We can call this function again |
| to compute the remaining directions. */ |
| static INLINE __m256i compute_directions_avx2(__m256i *lines, |
| int32_t cost_frist_8x8[4], |
| int32_t cost_second_8x8[4]) { |
| __m256i partial4a, partial4b, partial5a, partial5b, partial7a, partial7b; |
| __m256i partial6; |
| __m256i tmp; |
| /* Partial sums for lines 0 and 1. */ |
| partial4a = _mm256_slli_si256(lines[0], 14); |
| partial4b = _mm256_srli_si256(lines[0], 2); |
| partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[1], 12)); |
| partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[1], 4)); |
| tmp = _mm256_add_epi16(lines[0], lines[1]); |
| partial5a = _mm256_slli_si256(tmp, 10); |
| partial5b = _mm256_srli_si256(tmp, 6); |
| partial7a = _mm256_slli_si256(tmp, 4); |
| partial7b = _mm256_srli_si256(tmp, 12); |
| partial6 = tmp; |
| |
| /* Partial sums for lines 2 and 3. */ |
| partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[2], 10)); |
| partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[2], 6)); |
| partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[3], 8)); |
| partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[3], 8)); |
| tmp = _mm256_add_epi16(lines[2], lines[3]); |
| partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 8)); |
| partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 8)); |
| partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 6)); |
| partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 10)); |
| partial6 = _mm256_add_epi16(partial6, tmp); |
| |
| /* Partial sums for lines 4 and 5. */ |
| partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[4], 6)); |
| partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[4], 10)); |
| partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[5], 4)); |
| partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[5], 12)); |
| tmp = _mm256_add_epi16(lines[4], lines[5]); |
| partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 6)); |
| partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 10)); |
| partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 8)); |
| partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 8)); |
| partial6 = _mm256_add_epi16(partial6, tmp); |
| |
| /* Partial sums for lines 6 and 7. */ |
| partial4a = _mm256_add_epi16(partial4a, _mm256_slli_si256(lines[6], 2)); |
| partial4b = _mm256_add_epi16(partial4b, _mm256_srli_si256(lines[6], 14)); |
| partial4a = _mm256_add_epi16(partial4a, lines[7]); |
| tmp = _mm256_add_epi16(lines[6], lines[7]); |
| partial5a = _mm256_add_epi16(partial5a, _mm256_slli_si256(tmp, 4)); |
| partial5b = _mm256_add_epi16(partial5b, _mm256_srli_si256(tmp, 12)); |
| partial7a = _mm256_add_epi16(partial7a, _mm256_slli_si256(tmp, 10)); |
| partial7b = _mm256_add_epi16(partial7b, _mm256_srli_si256(tmp, 6)); |
| partial6 = _mm256_add_epi16(partial6, tmp); |
| |
| const __m256i const_reg_1 = |
| _mm256_set_epi32(210, 280, 420, 840, 210, 280, 420, 840); |
| const __m256i const_reg_2 = |
| _mm256_set_epi32(105, 120, 140, 168, 105, 120, 140, 168); |
| const __m256i const_reg_3 = _mm256_set_epi32(210, 420, 0, 0, 210, 420, 0, 0); |
| const __m256i const_reg_4 = |
| _mm256_set_epi32(105, 105, 105, 140, 105, 105, 105, 140); |
| |
| /* Compute costs in terms of partial sums. */ |
| partial4a = |
| fold_mul_and_sum_avx2(&partial4a, &partial4b, &const_reg_1, &const_reg_2); |
| partial7a = |
| fold_mul_and_sum_avx2(&partial7a, &partial7b, &const_reg_3, &const_reg_4); |
| partial5a = |
| fold_mul_and_sum_avx2(&partial5a, &partial5b, &const_reg_3, &const_reg_4); |
| partial6 = _mm256_madd_epi16(partial6, partial6); |
| partial6 = _mm256_mullo_epi32(partial6, _mm256_set1_epi32(105)); |
| |
| partial4a = hsum4_avx2(&partial4a, &partial5a, &partial6, &partial7a); |
| _mm_storeu_si128((__m128i *)cost_frist_8x8, |
| _mm256_castsi256_si128(partial4a)); |
| _mm_storeu_si128((__m128i *)cost_second_8x8, |
| _mm256_extractf128_si256(partial4a, 1)); |
| |
| return partial4a; |
| } |
| |
| /* transpose and reverse the order of the lines -- equivalent to a 90-degree |
| counter-clockwise rotation of the pixels. */ |
| static INLINE void array_reverse_transpose_8x8_avx2(__m256i *in, __m256i *res) { |
| const __m256i tr0_0 = _mm256_unpacklo_epi16(in[0], in[1]); |
| const __m256i tr0_1 = _mm256_unpacklo_epi16(in[2], in[3]); |
| const __m256i tr0_2 = _mm256_unpackhi_epi16(in[0], in[1]); |
| const __m256i tr0_3 = _mm256_unpackhi_epi16(in[2], in[3]); |
| const __m256i tr0_4 = _mm256_unpacklo_epi16(in[4], in[5]); |
| const __m256i tr0_5 = _mm256_unpacklo_epi16(in[6], in[7]); |
| const __m256i tr0_6 = _mm256_unpackhi_epi16(in[4], in[5]); |
| const __m256i tr0_7 = _mm256_unpackhi_epi16(in[6], in[7]); |
| |
| const __m256i tr1_0 = _mm256_unpacklo_epi32(tr0_0, tr0_1); |
| const __m256i tr1_1 = _mm256_unpacklo_epi32(tr0_4, tr0_5); |
| const __m256i tr1_2 = _mm256_unpackhi_epi32(tr0_0, tr0_1); |
| const __m256i tr1_3 = _mm256_unpackhi_epi32(tr0_4, tr0_5); |
| const __m256i tr1_4 = _mm256_unpacklo_epi32(tr0_2, tr0_3); |
| const __m256i tr1_5 = _mm256_unpacklo_epi32(tr0_6, tr0_7); |
| const __m256i tr1_6 = _mm256_unpackhi_epi32(tr0_2, tr0_3); |
| const __m256i tr1_7 = _mm256_unpackhi_epi32(tr0_6, tr0_7); |
| |
| res[7] = _mm256_unpacklo_epi64(tr1_0, tr1_1); |
| res[6] = _mm256_unpackhi_epi64(tr1_0, tr1_1); |
| res[5] = _mm256_unpacklo_epi64(tr1_2, tr1_3); |
| res[4] = _mm256_unpackhi_epi64(tr1_2, tr1_3); |
| res[3] = _mm256_unpacklo_epi64(tr1_4, tr1_5); |
| res[2] = _mm256_unpackhi_epi64(tr1_4, tr1_5); |
| res[1] = _mm256_unpacklo_epi64(tr1_6, tr1_7); |
| res[0] = _mm256_unpackhi_epi64(tr1_6, tr1_7); |
| } |
| |
| void cdef_find_dir_dual_avx2(const uint16_t *img1, const uint16_t *img2, |
| int stride, int32_t *var_out_1st, |
| int32_t *var_out_2nd, int coeff_shift, |
| int *out_dir_1st_8x8, int *out_dir_2nd_8x8) { |
| int32_t cost_first_8x8[8]; |
| int32_t cost_second_8x8[8]; |
| // Used to store the best cost for 2 8x8's. |
| int32_t best_cost[2] = { 0 }; |
| // Best direction for 2 8x8's. |
| int best_dir[2] = { 0 }; |
| |
| const __m128i const_coeff_shift_reg = _mm_cvtsi32_si128(coeff_shift); |
| const __m256i const_128_reg = _mm256_set1_epi16(128); |
| __m256i lines[8]; |
| for (int i = 0; i < 8; i++) { |
| const __m128i src_1 = _mm_loadu_si128((const __m128i *)&img1[i * stride]); |
| const __m128i src_2 = _mm_loadu_si128((const __m128i *)&img2[i * stride]); |
| |
| lines[i] = _mm256_insertf128_si256(_mm256_castsi128_si256(src_1), src_2, 1); |
| lines[i] = _mm256_sub_epi16( |
| _mm256_sra_epi16(lines[i], const_coeff_shift_reg), const_128_reg); |
| } |
| |
| /* Compute "mostly vertical" directions. */ |
| const __m256i dir47 = |
| compute_directions_avx2(lines, cost_first_8x8 + 4, cost_second_8x8 + 4); |
| |
| /* Transpose and reverse the order of the lines. */ |
| array_reverse_transpose_8x8_avx2(lines, lines); |
| |
| /* Compute "mostly horizontal" directions. */ |
| const __m256i dir03 = |
| compute_directions_avx2(lines, cost_first_8x8, cost_second_8x8); |
| |
| __m256i max = _mm256_max_epi32(dir03, dir47); |
| max = |
| _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 8), |
| _mm256_slli_si256(max, 16 - (8)))); |
| max = |
| _mm256_max_epi32(max, _mm256_or_si256(_mm256_srli_si256(max, 4), |
| _mm256_slli_si256(max, 16 - (4)))); |
| |
| const __m128i first_8x8_output = _mm256_castsi256_si128(max); |
| const __m128i second_8x8_output = _mm256_extractf128_si256(max, 1); |
| const __m128i cmpeg_res_00 = |
| _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir47)); |
| const __m128i cmpeg_res_01 = |
| _mm_cmpeq_epi32(first_8x8_output, _mm256_castsi256_si128(dir03)); |
| const __m128i cmpeg_res_10 = |
| _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir47, 1)); |
| const __m128i cmpeg_res_11 = |
| _mm_cmpeq_epi32(second_8x8_output, _mm256_extractf128_si256(dir03, 1)); |
| const __m128i t_first_8x8 = _mm_packs_epi32(cmpeg_res_01, cmpeg_res_00); |
| const __m128i t_second_8x8 = _mm_packs_epi32(cmpeg_res_11, cmpeg_res_10); |
| |
| best_cost[0] = _mm_cvtsi128_si32(_mm256_castsi256_si128(max)); |
| best_cost[1] = _mm_cvtsi128_si32(second_8x8_output); |
| best_dir[0] = _mm_movemask_epi8(_mm_packs_epi16(t_first_8x8, t_first_8x8)); |
| best_dir[0] = |
| get_msb(best_dir[0] ^ (best_dir[0] - 1)); // Count trailing zeros |
| best_dir[1] = _mm_movemask_epi8(_mm_packs_epi16(t_second_8x8, t_second_8x8)); |
| best_dir[1] = |
| get_msb(best_dir[1] ^ (best_dir[1] - 1)); // Count trailing zeros |
| |
| /* Difference between the optimal variance and the variance along the |
| orthogonal direction. Again, the sum(x^2) terms cancel out. */ |
| *var_out_1st = best_cost[0] - cost_first_8x8[(best_dir[0] + 4) & 7]; |
| *var_out_2nd = best_cost[1] - cost_second_8x8[(best_dir[1] + 4) & 7]; |
| |
| /* We'd normally divide by 840, but dividing by 1024 is close enough |
| for what we're going to do with this. */ |
| *var_out_1st >>= 10; |
| *var_out_2nd >>= 10; |
| *out_dir_1st_8x8 = best_dir[0]; |
| *out_dir_2nd_8x8 = best_dir[1]; |
| } |
| |
| void cdef_copy_rect8_8bit_to_16bit_avx2(uint16_t *dst, int dstride, |
| const uint8_t *src, int sstride, int v, |
| int h) { |
| int i = 0, j = 0; |
| int remaining_width = h; |
| |
| // Process multiple 16 pixels at a time. |
| if (h > 15) { |
| for (i = 0; i < v; i++) { |
| for (j = 0; j < h - 15; j += 16) { |
| __m128i row = _mm_loadu_si128((__m128i *)&src[i * sstride + j]); |
| _mm256_storeu_si256((__m256i *)&dst[i * dstride + j], |
| _mm256_cvtepu8_epi16(row)); |
| } |
| } |
| remaining_width = h & 0xe; |
| } |
| |
| // Process multiple 8 pixels at a time. |
| if (remaining_width > 7) { |
| for (i = 0; i < v; i++) { |
| __m128i row = _mm_loadl_epi64((__m128i *)&src[i * sstride + j]); |
| _mm_storeu_si128((__m128i *)&dst[i * dstride + j], |
| _mm_unpacklo_epi8(row, _mm_setzero_si128())); |
| } |
| remaining_width = h & 0x7; |
| j += 8; |
| } |
| |
| // Process the remaining pixels. |
| if (remaining_width) { |
| for (i = 0; i < v; i++) { |
| for (int k = j; k < h; k++) { |
| dst[i * dstride + k] = src[i * sstride + k]; |
| } |
| } |
| } |
| } |