| /* |
| * Copyright (c) 2017, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <immintrin.h> |
| |
| #include "./av1_rtcd.h" |
| |
| #include "av1/common/cfl.h" |
| |
| /** |
| * Subtracts avg_q3 from the active part of the CfL prediction buffer. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| */ |
| void av1_cfl_subtract_avx2(int16_t *pred_buf_q3, int width, int height, |
| int16_t avg_q3) { |
| const __m256i avg_x16 = _mm256_set1_epi16(avg_q3); |
| |
| // Sixteen int16 values fit in one __m256i register. If this is enough to do |
| // the entire row, we move to the next row (stride ==32), otherwise we move to |
| // the next sixteen values. |
| // width next |
| // 4 32 |
| // 8 32 |
| // 16 32 |
| // 32 16 |
| const int stride = CFL_BUF_LINE >> (width == 32); |
| |
| const int16_t *end = pred_buf_q3 + height * CFL_BUF_LINE; |
| do { |
| __m256i val_x16 = _mm256_loadu_si256((__m256i *)pred_buf_q3); |
| _mm256_storeu_si256((__m256i *)pred_buf_q3, |
| _mm256_sub_epi16(val_x16, avg_x16)); |
| } while ((pred_buf_q3 += stride) < end); |
| } |
| |
| /** |
| * Adds 4 pixels (in a 2x2 grid) and multiplies them by 2. Resulting in a more |
| * precise version of a box filter 4:2:0 pixel subsampling in Q3. |
| * |
| * The CfL prediction buffer is always of size CFL_BUF_SQUARE. However, the |
| * active area is specified using width and height. |
| * |
| * Note: We don't need to worry about going over the active area, as long as we |
| * stay inside the CfL prediction buffer. |
| * |
| * Note: For 4:2:0 luma subsampling, the width will never be greater than 16. |
| */ |
| static void cfl_luma_subsampling_420_lbd_avx2(const uint8_t *input, |
| int input_stride, |
| int16_t *pred_buf_q3, int width, |
| int height) { |
| (void)width; // Max chroma width is 16, so all widths fit in one __m256i |
| |
| const __m256i twos = _mm256_set1_epi8(2); // Thirty two twos |
| const int luma_stride = input_stride << 1; |
| const int16_t *end = pred_buf_q3 + height * CFL_BUF_LINE; |
| do { |
| // Load 32 values for the top and bottom rows. |
| // t_0, t_1, ... t_31 |
| __m256i top = _mm256_loadu_si256((__m256i *)(input)); |
| // b_0, b_1, ... b_31 |
| __m256i bot = _mm256_loadu_si256((__m256i *)(input + input_stride)); |
| |
| // Horizontal add of the 32 values into 16 values that are multiplied by 2 |
| // (t_0 + t_1) * 2, (t_2 + t_3) * 2, ... (t_30 + t_31) *2 |
| top = _mm256_maddubs_epi16(top, twos); |
| // (b_0 + b_1) * 2, (b_2 + b_3) * 2, ... (b_30 + b_31) *2 |
| bot = _mm256_maddubs_epi16(bot, twos); |
| |
| // Add the 16 values in top with the 16 values in bottom |
| _mm256_storeu_si256((__m256i *)pred_buf_q3, _mm256_add_epi16(top, bot)); |
| |
| input += luma_stride; |
| pred_buf_q3 += CFL_BUF_LINE; |
| } while (pred_buf_q3 < end); |
| } |
| |
| cfl_subsample_lbd_fn get_subsample_lbd_fn_avx2(int sub_x, int sub_y) { |
| static const cfl_subsample_lbd_fn subsample_lbd[2][2] = { |
| // (sub_y == 0, sub_x == 0) (sub_y == 0, sub_x == 1) |
| // (sub_y == 1, sub_x == 0) (sub_y == 1, sub_x == 1) |
| { cfl_luma_subsampling_444_lbd, cfl_luma_subsampling_422_lbd }, |
| { cfl_luma_subsampling_440_lbd, cfl_luma_subsampling_420_lbd_avx2 }, |
| }; |
| // AND sub_x and sub_y with 1 to ensures that an attacker won't be able to |
| // index the function pointer array out of bounds. |
| return subsample_lbd[sub_y & 1][sub_x & 1]; |
| } |
| |
| static INLINE __m256i predict_unclipped(const __m256i *input, __m256i alpha_q12, |
| __m256i alpha_sign, __m256i dc_q0) { |
| __m256i ac_q3 = _mm256_loadu_si256(input); |
| __m256i ac_sign = _mm256_sign_epi16(alpha_sign, ac_q3); |
| __m256i scaled_luma_q0 = |
| _mm256_mulhrs_epi16(_mm256_abs_epi16(ac_q3), alpha_q12); |
| scaled_luma_q0 = _mm256_sign_epi16(scaled_luma_q0, ac_sign); |
| return _mm256_add_epi16(scaled_luma_q0, dc_q0); |
| } |
| |
| static INLINE void cfl_predict_lbd_x(const int16_t *pred_buf_q3, uint8_t *dst, |
| int dst_stride, TX_SIZE tx_size, |
| int alpha_q3, int width) { |
| const int16_t *row_end = pred_buf_q3 + tx_size_high[tx_size] * CFL_BUF_LINE; |
| const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); |
| const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); |
| const __m256i dc_q0 = _mm256_set1_epi16(*dst); |
| do { |
| __m256i res = |
| predict_unclipped((__m256i *)pred_buf_q3, alpha_q12, alpha_sign, dc_q0); |
| __m256i next = res; |
| if (width == 32) |
| next = predict_unclipped((__m256i *)(pred_buf_q3 + 16), alpha_q12, |
| alpha_sign, dc_q0); |
| res = _mm256_packus_epi16(res, next); |
| if (width == 4) { |
| *(int32_t *)dst = _mm256_extract_epi32(res, 0); |
| } else if (width == 8) { |
| #ifdef __x86_64__ |
| *(int64_t *)dst = _mm256_extract_epi64(res, 0); |
| #else |
| _mm_storel_epi64((__m128i *)dst, _mm256_castsi256_si128(res)); |
| #endif |
| } else { |
| res = _mm256_permute4x64_epi64(res, _MM_SHUFFLE(3, 1, 2, 0)); |
| if (width == 16) |
| _mm_storeu_si128((__m128i *)dst, _mm256_castsi256_si128(res)); |
| else |
| _mm256_storeu_si256((__m256i *)dst, res); |
| } |
| dst += dst_stride; |
| pred_buf_q3 += CFL_BUF_LINE; |
| } while (pred_buf_q3 < row_end); |
| } |
| |
| static __m256i highbd_max_epi16(int bd) { |
| const __m256i neg_one = _mm256_set1_epi16(-1); |
| // (1 << bd) - 1 => -(-1 << bd) -1 => -1 - (-1 << bd) => -1 ^ (-1 << bd) |
| return _mm256_xor_si256(_mm256_slli_epi16(neg_one, bd), neg_one); |
| } |
| |
| static __m256i highbd_clamp_epi16(__m256i u, __m256i zero, __m256i max) { |
| return _mm256_max_epi16(_mm256_min_epi16(u, max), zero); |
| } |
| |
| static INLINE void cfl_predict_hbd_x(const int16_t *pred_buf_q3, uint16_t *dst, |
| int dst_stride, TX_SIZE tx_size, |
| int alpha_q3, int bd, int width) { |
| const int16_t *row_end = pred_buf_q3 + tx_size_high[tx_size] * CFL_BUF_LINE; |
| const __m256i alpha_sign = _mm256_set1_epi16(alpha_q3); |
| const __m256i alpha_q12 = _mm256_slli_epi16(_mm256_abs_epi16(alpha_sign), 9); |
| const __m256i dc_q0 = _mm256_loadu_si256((__m256i *)dst); |
| const __m256i max = highbd_max_epi16(bd); |
| const __m256i zero = _mm256_setzero_si256(); |
| do { |
| __m256i res = |
| predict_unclipped((__m256i *)pred_buf_q3, alpha_q12, alpha_sign, dc_q0); |
| res = highbd_clamp_epi16(res, zero, max); |
| if (width == 4) |
| #ifdef __x86_64__ |
| *(int64_t *)dst = _mm256_extract_epi64(res, 0); |
| #else |
| _mm_storel_epi64((__m128i *)dst, _mm256_castsi256_si128(res)); |
| #endif |
| else if (width == 8) |
| _mm_storeu_si128((__m128i *)dst, _mm256_castsi256_si128(res)); |
| else |
| _mm256_storeu_si256((__m256i *)dst, res); |
| if (width == 32) { |
| res = predict_unclipped((__m256i *)(pred_buf_q3 + 16), alpha_q12, |
| alpha_sign, dc_q0); |
| res = highbd_clamp_epi16(res, zero, max); |
| _mm256_storeu_si256((__m256i *)(dst + 16), res); |
| } |
| dst += dst_stride; |
| pred_buf_q3 += CFL_BUF_LINE; |
| } while (pred_buf_q3 < row_end); |
| } |
| |
| #define CFL_PREDICT_LBD_X(width) \ |
| static void cfl_predict_lbd_##width(const int16_t *pred_buf_q3, \ |
| uint8_t *dst, int dst_stride, \ |
| TX_SIZE tx_size, int alpha_q3) { \ |
| cfl_predict_lbd_x(pred_buf_q3, dst, dst_stride, tx_size, alpha_q3, width); \ |
| } |
| |
| CFL_PREDICT_LBD_X(4) |
| CFL_PREDICT_LBD_X(8) |
| CFL_PREDICT_LBD_X(16) |
| CFL_PREDICT_LBD_X(32) |
| |
| #define CFL_PREDICT_HBD_X(width) \ |
| static void cfl_predict_hbd_##width(const int16_t *pred_buf_q3, \ |
| uint16_t *dst, int dst_stride, \ |
| TX_SIZE tx_size, int alpha_q3, int bd) { \ |
| cfl_predict_hbd_x(pred_buf_q3, dst, dst_stride, tx_size, alpha_q3, bd, \ |
| width); \ |
| } |
| |
| CFL_PREDICT_HBD_X(4) |
| CFL_PREDICT_HBD_X(8) |
| CFL_PREDICT_HBD_X(16) |
| CFL_PREDICT_HBD_X(32) |
| |
| cfl_predict_lbd_fn get_predict_lbd_fn_avx2(TX_SIZE tx_size) { |
| static const cfl_predict_lbd_fn predict_lbd[4] = { |
| cfl_predict_lbd_4, cfl_predict_lbd_8, cfl_predict_lbd_16, cfl_predict_lbd_32 |
| }; |
| return predict_lbd[(tx_size_wide_log2[tx_size] - tx_size_wide_log2[0]) & 3]; |
| } |
| |
| cfl_predict_hbd_fn get_predict_hbd_fn_avx2(TX_SIZE tx_size) { |
| static const cfl_predict_hbd_fn predict_hbd[4] = { |
| cfl_predict_hbd_4, cfl_predict_hbd_8, cfl_predict_hbd_16, cfl_predict_hbd_32 |
| }; |
| return predict_hbd[(tx_size_wide_log2[tx_size] - tx_size_wide_log2[0]) & 3]; |
| } |