| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <limits.h> |
| #include <math.h> |
| #include <stdio.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/system_state.h" |
| |
| #if CONFIG_MISMATCH_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_MISMATCH_DEBUG |
| |
| #include "av1/common/cfl.h" |
| #include "av1/common/common.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mv.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| #include "av1/common/warped_motion.h" |
| |
| #include "av1/encoder/aq_complexity.h" |
| #include "av1/encoder/aq_cyclicrefresh.h" |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/global_motion.h" |
| #include "av1/encoder/encodeframe.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/ethread.h" |
| #include "av1/encoder/extend.h" |
| #include "av1/encoder/ml.h" |
| #include "av1/encoder/partition_model_weights.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/reconinter_enc.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/tokenize.h" |
| |
| static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int *rate); |
| |
| // This is used as a reference when computing the source variance for the |
| // purposes of activity masking. |
| // Eventually this should be replaced by custom no-reference routines, |
| // which will be faster. |
| static const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = { |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, |
| 128, 128, 128, 128, 128, 128, 128, 128 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = { |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, |
| 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4 |
| }; |
| |
| static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = { |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, |
| 128 * 16, 128 * 16 |
| }; |
| |
| #if CONFIG_FP_MB_STATS |
| static const uint8_t num_16x16_blocks_wide_lookup[BLOCK_SIZES_ALL] = { |
| 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 4, 4, 4, 8, 8, 1, 1, 1, 2, 2, 4 |
| }; |
| static const uint8_t num_16x16_blocks_high_lookup[BLOCK_SIZES_ALL] = { |
| 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 4, 2, 4, 8, 4, 8, 1, 1, 2, 1, 4, 2 |
| }; |
| #endif // CONFIG_FP_MB_STATS |
| |
| unsigned int av1_get_sby_perpixel_variance(const AV1_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs) { |
| unsigned int sse; |
| const unsigned int var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, AV1_VAR_OFFS, 0, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| unsigned int av1_high_get_sby_perpixel_variance(const AV1_COMP *cpi, |
| const struct buf_2d *ref, |
| BLOCK_SIZE bs, int bd) { |
| unsigned int var, sse; |
| switch (bd) { |
| case 10: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), 0, &sse); |
| break; |
| case 12: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), 0, &sse); |
| break; |
| case 8: |
| default: |
| var = |
| cpi->fn_ptr[bs].vf(ref->buf, ref->stride, |
| CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), 0, &sse); |
| break; |
| } |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| static unsigned int get_sby_perpixel_diff_variance(const AV1_COMP *const cpi, |
| const struct buf_2d *ref, |
| int mi_row, int mi_col, |
| BLOCK_SIZE bs) { |
| unsigned int sse, var; |
| uint8_t *last_y; |
| const YV12_BUFFER_CONFIG *last = get_ref_frame_buffer(cpi, LAST_FRAME); |
| |
| assert(last != NULL); |
| last_y = |
| &last->y_buffer[mi_row * MI_SIZE * last->y_stride + mi_col * MI_SIZE]; |
| var = cpi->fn_ptr[bs].vf(ref->buf, ref->stride, last_y, last->y_stride, &sse); |
| return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[bs]); |
| } |
| |
| static BLOCK_SIZE get_rd_var_based_fixed_partition(AV1_COMP *cpi, MACROBLOCK *x, |
| int mi_row, int mi_col) { |
| unsigned int var = get_sby_perpixel_diff_variance( |
| cpi, &x->plane[0].src, mi_row, mi_col, BLOCK_64X64); |
| if (var < 8) |
| return BLOCK_64X64; |
| else if (var < 128) |
| return BLOCK_32X32; |
| else if (var < 2048) |
| return BLOCK_16X16; |
| else |
| return BLOCK_8X8; |
| } |
| |
| // Lighter version of set_offsets that only sets the mode info |
| // pointers. |
| static void set_mode_info_offsets(const AV1_COMP *const cpi, |
| MACROBLOCK *const x, MACROBLOCKD *const xd, |
| int mi_row, int mi_col) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int idx_str = xd->mi_stride * mi_row + mi_col; |
| xd->mi = cm->mi_grid_visible + idx_str; |
| xd->mi[0] = cm->mi + idx_str; |
| x->mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); |
| } |
| |
| static void set_offsets_without_segment_id(const AV1_COMP *const cpi, |
| const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| |
| set_mode_info_offsets(cpi, x, xd, mi_row, mi_col); |
| |
| set_skip_context(xd, mi_row, mi_col, num_planes); |
| xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| // Set up destination pointers. |
| av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, |
| mi_col, 0, num_planes); |
| |
| // Set up limit values for MV components. |
| // Mv beyond the range do not produce new/different prediction block. |
| x->mv_limits.row_min = |
| -(((mi_row + mi_height) * MI_SIZE) + AOM_INTERP_EXTEND); |
| x->mv_limits.col_min = -(((mi_col + mi_width) * MI_SIZE) + AOM_INTERP_EXTEND); |
| x->mv_limits.row_max = (cm->mi_rows - mi_row) * MI_SIZE + AOM_INTERP_EXTEND; |
| x->mv_limits.col_max = (cm->mi_cols - mi_col) * MI_SIZE + AOM_INTERP_EXTEND; |
| |
| set_plane_n4(xd, mi_width, mi_height, num_planes); |
| |
| // Set up distance of MB to edge of frame in 1/8th pel units. |
| assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); |
| set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_rows, |
| cm->mi_cols); |
| |
| // Set up source buffers. |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); |
| |
| // R/D setup. |
| x->rdmult = cpi->rd.RDMULT; |
| |
| // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() |
| xd->tile = *tile; |
| } |
| |
| static void set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| const struct segmentation *const seg = &cm->seg; |
| |
| set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); |
| |
| mbmi = xd->mi[0]; |
| xd->cfl.mi_row = mi_row; |
| xd->cfl.mi_col = mi_col; |
| |
| mbmi->segment_id = 0; |
| |
| // Setup segment ID. |
| if (seg->enabled) { |
| if (seg->enabled && !cpi->vaq_refresh) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| mbmi->segment_id = |
| map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0; |
| } |
| av1_init_plane_quantizers(cpi, x, mbmi->segment_id); |
| } |
| } |
| |
| static void reset_intmv_filter_type(MB_MODE_INFO *mbmi) { |
| InterpFilter filters[2]; |
| |
| for (int dir = 0; dir < 2; ++dir) { |
| filters[dir] = av1_extract_interp_filter(mbmi->interp_filters, dir); |
| } |
| mbmi->interp_filters = av1_make_interp_filters(filters[0], filters[1]); |
| } |
| |
| static void update_filter_type_count(uint8_t allow_update_cdf, |
| FRAME_COUNTS *counts, |
| const MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi) { |
| int dir; |
| for (dir = 0; dir < 2; ++dir) { |
| const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
| InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir); |
| ++counts->switchable_interp[ctx][filter]; |
| if (allow_update_cdf) { |
| update_cdf(xd->tile_ctx->switchable_interp_cdf[ctx], filter, |
| SWITCHABLE_FILTERS); |
| } |
| } |
| } |
| |
| static void update_global_motion_used(PREDICTION_MODE mode, BLOCK_SIZE bsize, |
| const MB_MODE_INFO *mbmi, |
| RD_COUNTS *rdc) { |
| if (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) { |
| const int num_4x4s = mi_size_wide[bsize] * mi_size_high[bsize]; |
| int ref; |
| for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { |
| rdc->global_motion_used[mbmi->ref_frame[ref]] += num_4x4s; |
| } |
| } |
| } |
| |
| static void reset_tx_size(MACROBLOCK *x, MB_MODE_INFO *mbmi, |
| const TX_MODE tx_mode) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| if (xd->lossless[mbmi->segment_id]) { |
| mbmi->tx_size = TX_4X4; |
| } else if (tx_mode != TX_MODE_SELECT) { |
| mbmi->tx_size = tx_size_from_tx_mode(mbmi->sb_type, tx_mode); |
| } else { |
| BLOCK_SIZE bsize = mbmi->sb_type; |
| TX_SIZE min_tx_size = depth_to_tx_size(MAX_TX_DEPTH, bsize); |
| mbmi->tx_size = (TX_SIZE)TXSIZEMAX(mbmi->tx_size, min_tx_size); |
| } |
| if (is_inter_block(mbmi)) { |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| } |
| memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN); |
| av1_zero(x->blk_skip); |
| x->skip = 0; |
| } |
| |
| static void update_state(const AV1_COMP *const cpi, |
| const TileDataEnc *const tile_data, ThreadData *td, |
| const PICK_MODE_CONTEXT *const ctx, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) { |
| int i, x_idx, y; |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| RD_COUNTS *const rdc = &td->rd_counts; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const MB_MODE_INFO *const mi = &ctx->mic; |
| MB_MODE_INFO *const mi_addr = xd->mi[0]; |
| const struct segmentation *const seg = &cm->seg; |
| const int bw = mi_size_wide[mi->sb_type]; |
| const int bh = mi_size_high[mi->sb_type]; |
| const int mis = cm->mi_stride; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| |
| assert(mi->sb_type == bsize); |
| |
| *mi_addr = *mi; |
| *x->mbmi_ext = ctx->mbmi_ext; |
| |
| reset_intmv_filter_type(mi_addr); |
| |
| memcpy(x->blk_skip, ctx->blk_skip, sizeof(x->blk_skip[0]) * ctx->num_4x4_blk); |
| |
| x->skip = ctx->skip; |
| |
| // If segmentation in use |
| if (seg->enabled) { |
| // For in frame complexity AQ copy the segment id from the segment map. |
| if (cpi->oxcf.aq_mode == COMPLEXITY_AQ) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| mi_addr->segment_id = |
| map ? get_segment_id(cm, map, bsize, mi_row, mi_col) : 0; |
| reset_tx_size(x, mi_addr, cm->tx_mode); |
| } |
| // Else for cyclic refresh mode update the segment map, set the segment id |
| // and then update the quantizer. |
| if (cpi->oxcf.aq_mode == CYCLIC_REFRESH_AQ) { |
| av1_cyclic_refresh_update_segment(cpi, mi_addr, mi_row, mi_col, bsize, |
| ctx->rate, ctx->dist, x->skip); |
| reset_tx_size(x, mi_addr, cm->tx_mode); |
| } |
| if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd)) |
| mi_addr->uv_mode = UV_DC_PRED; |
| } |
| |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| pd[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| // Restore the coding context of the MB to that that was in place |
| // when the mode was picked for it |
| for (y = 0; y < mi_height; y++) |
| for (x_idx = 0; x_idx < mi_width; x_idx++) |
| if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > x_idx && |
| (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > y) { |
| xd->mi[x_idx + y * mis] = mi_addr; |
| } |
| |
| if (cpi->oxcf.aq_mode) av1_init_plane_quantizers(cpi, x, mi_addr->segment_id); |
| |
| if (dry_run) return; |
| |
| #if CONFIG_INTERNAL_STATS |
| { |
| unsigned int *const mode_chosen_counts = |
| (unsigned int *)cpi->mode_chosen_counts; // Cast const away. |
| if (frame_is_intra_only(cm)) { |
| static const int kf_mode_index[] = { |
| THR_DC /*DC_PRED*/, |
| THR_V_PRED /*V_PRED*/, |
| THR_H_PRED /*H_PRED*/, |
| THR_D45_PRED /*D45_PRED*/, |
| THR_D135_PRED /*D135_PRED*/, |
| THR_D113_PRED /*D113_PRED*/, |
| THR_D157_PRED /*D157_PRED*/, |
| THR_D203_PRED /*D203_PRED*/, |
| THR_D67_PRED /*D67_PRED*/, |
| THR_SMOOTH, /*SMOOTH_PRED*/ |
| THR_SMOOTH_V, /*SMOOTH_V_PRED*/ |
| THR_SMOOTH_H, /*SMOOTH_H_PRED*/ |
| THR_PAETH /*PAETH_PRED*/, |
| }; |
| ++mode_chosen_counts[kf_mode_index[mi_addr->mode]]; |
| } else { |
| // Note how often each mode chosen as best |
| ++mode_chosen_counts[ctx->best_mode_index]; |
| } |
| } |
| #endif |
| if (!frame_is_intra_only(cm)) { |
| if (is_inter_block(mi_addr)) { |
| // TODO(sarahparker): global motion stats need to be handled per-tile |
| // to be compatible with tile-based threading. |
| update_global_motion_used(mi_addr->mode, bsize, mi_addr, rdc); |
| } |
| |
| if (cm->interp_filter == SWITCHABLE && |
| mi_addr->motion_mode != WARPED_CAUSAL && |
| !is_nontrans_global_motion(xd, xd->mi[0])) { |
| update_filter_type_count(tile_data->allow_update_cdf, td->counts, xd, |
| mi_addr); |
| } |
| |
| rdc->comp_pred_diff[SINGLE_REFERENCE] += ctx->single_pred_diff; |
| rdc->comp_pred_diff[COMPOUND_REFERENCE] += ctx->comp_pred_diff; |
| rdc->comp_pred_diff[REFERENCE_MODE_SELECT] += ctx->hybrid_pred_diff; |
| } |
| |
| const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col); |
| const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row); |
| av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis); |
| } |
| |
| void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src, |
| int mi_row, int mi_col, const int num_planes) { |
| // Set current frame pointer. |
| x->e_mbd.cur_buf = src; |
| |
| // We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet |
| // the static analysis warnings. |
| for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) { |
| const int is_uv = i > 0; |
| setup_pred_plane(&x->plane[i].src, x->e_mbd.mi[0]->sb_type, src->buffers[i], |
| src->crop_widths[is_uv], src->crop_heights[is_uv], |
| src->strides[is_uv], mi_row, mi_col, NULL, |
| x->e_mbd.plane[i].subsampling_x, |
| x->e_mbd.plane[i].subsampling_y); |
| } |
| } |
| |
| static int set_segment_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| int8_t segment_id) { |
| const AV1_COMMON *const cm = &cpi->common; |
| av1_init_plane_quantizers(cpi, x, segment_id); |
| aom_clear_system_state(); |
| int segment_qindex = av1_get_qindex(&cm->seg, segment_id, cm->base_qindex); |
| return av1_compute_rd_mult(cpi, segment_qindex + cm->y_dc_delta_q); |
| } |
| |
| static int set_deltaq_rdmult(const AV1_COMP *const cpi, MACROBLOCKD *const xd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| |
| return av1_compute_rd_mult( |
| cpi, cm->base_qindex + xd->delta_qindex + cm->y_dc_delta_q); |
| } |
| |
| static void rd_pick_sb_modes(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| MACROBLOCK *const x, int mi_row, int mi_col, |
| RD_STATS *rd_cost, PARTITION_TYPE partition, |
| BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi; |
| MB_MODE_INFO *ctx_mbmi = &ctx->mic; |
| struct macroblock_plane *const p = x->plane; |
| struct macroblockd_plane *const pd = xd->plane; |
| const AQ_MODE aq_mode = cpi->oxcf.aq_mode; |
| const DELTAQ_MODE deltaq_mode = cpi->oxcf.deltaq_mode; |
| int i, orig_rdmult; |
| |
| aom_clear_system_state(); |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| mbmi = xd->mi[0]; |
| |
| if (ctx->rd_mode_is_ready) { |
| assert(ctx_mbmi->sb_type == bsize); |
| assert(ctx_mbmi->partition == partition); |
| *mbmi = *ctx_mbmi; |
| rd_cost->rate = ctx->rate; |
| rd_cost->dist = ctx->dist; |
| rd_cost->rdcost = ctx->rdcost; |
| } else { |
| mbmi->sb_type = bsize; |
| mbmi->partition = partition; |
| } |
| |
| #if CONFIG_RD_DEBUG |
| mbmi->mi_row = mi_row; |
| mbmi->mi_col = mi_col; |
| #endif |
| |
| for (i = 0; i < num_planes; ++i) { |
| p[i].coeff = ctx->coeff[i]; |
| p[i].qcoeff = ctx->qcoeff[i]; |
| pd[i].dqcoeff = ctx->dqcoeff[i]; |
| p[i].eobs = ctx->eobs[i]; |
| p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; |
| } |
| |
| for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; |
| |
| if (!ctx->rd_mode_is_ready) { |
| ctx->skippable = 0; |
| |
| // Set to zero to make sure we do not use the previous encoded frame stats |
| mbmi->skip = 0; |
| |
| // Reset skip mode flag. |
| mbmi->skip_mode = 0; |
| } |
| |
| x->skip_chroma_rd = |
| !is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, |
| xd->plane[1].subsampling_y); |
| |
| if (ctx->rd_mode_is_ready) { |
| x->skip = ctx->skip; |
| *x->mbmi_ext = ctx->mbmi_ext; |
| return; |
| } |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| x->source_variance = av1_high_get_sby_perpixel_variance( |
| cpi, &x->plane[0].src, bsize, xd->bd); |
| } else { |
| x->source_variance = |
| av1_get_sby_perpixel_variance(cpi, &x->plane[0].src, bsize); |
| } |
| |
| // Save rdmult before it might be changed, so it can be restored later. |
| orig_rdmult = x->rdmult; |
| |
| if (aq_mode == VARIANCE_AQ) { |
| if (cpi->vaq_refresh) { |
| const int energy = bsize <= BLOCK_16X16 |
| ? x->mb_energy |
| : av1_log_block_var(cpi, x, bsize); |
| mbmi->segment_id = energy; |
| } |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == COMPLEXITY_AQ) { |
| x->rdmult = set_segment_rdmult(cpi, x, mbmi->segment_id); |
| } else if (aq_mode == CYCLIC_REFRESH_AQ) { |
| // If segment is boosted, use rdmult for that segment. |
| if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) |
| x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); |
| } |
| |
| if (deltaq_mode > 0) x->rdmult = set_deltaq_rdmult(cpi, xd); |
| |
| // Find best coding mode & reconstruct the MB so it is available |
| // as a predictor for MBs that follow in the SB |
| if (frame_is_intra_only(cm)) { |
| av1_rd_pick_intra_mode_sb(cpi, x, mi_row, mi_col, rd_cost, bsize, ctx, |
| best_rd); |
| } else { |
| if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, |
| rd_cost, bsize, ctx, best_rd); |
| } else { |
| av1_rd_pick_inter_mode_sb(cpi, tile_data, x, mi_row, mi_col, rd_cost, |
| bsize, ctx, best_rd); |
| } |
| } |
| |
| // Examine the resulting rate and for AQ mode 2 make a segment choice. |
| if ((rd_cost->rate != INT_MAX) && (aq_mode == COMPLEXITY_AQ) && |
| (bsize >= BLOCK_16X16) && |
| (cm->frame_type == KEY_FRAME || cpi->refresh_alt_ref_frame || |
| cpi->refresh_alt2_ref_frame || |
| (cpi->refresh_golden_frame && !cpi->rc.is_src_frame_alt_ref))) { |
| av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); |
| } |
| |
| x->rdmult = orig_rdmult; |
| |
| // TODO(jingning) The rate-distortion optimization flow needs to be |
| // refactored to provide proper exit/return handle. |
| if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; |
| |
| ctx->rate = rd_cost->rate; |
| ctx->dist = rd_cost->dist; |
| ctx->rdcost = rd_cost->rdcost; |
| } |
| |
| static void update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts, |
| PREDICTION_MODE mode, int16_t mode_context, |
| uint8_t allow_update_cdf) { |
| (void)counts; |
| |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| if (mode == NEWMV) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->newmv_mode[mode_ctx][0]; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 0, 2); |
| return; |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->newmv_mode[mode_ctx][1]; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->newmv_cdf[mode_ctx], 1, 2); |
| |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| if (mode == GLOBALMV) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->zeromv_mode[mode_ctx][0]; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2); |
| return; |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->zeromv_mode[mode_ctx][1]; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2); |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| #if CONFIG_ENTROPY_STATS |
| ++counts->refmv_mode[mode_ctx][mode != NEARESTMV]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2); |
| } |
| } |
| } |
| |
| static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
| FRAME_COUNTS *counts, uint8_t allow_update_cdf) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| |
| (void)counts; |
| |
| if (mbmi->mode == DC_PRED) { |
| const int n = pmi->palette_size[0]; |
| const int palette_mode_ctx = av1_get_palette_mode_ctx(xd); |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx], |
| n > 0, 2); |
| if (n > 0) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx], |
| n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
| } |
| } |
| } |
| |
| if (mbmi->uv_mode == UV_DC_PRED) { |
| const int n = pmi->palette_size[1]; |
| const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2); |
| |
| if (n > 0) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx], |
| n - PALETTE_MIN_SIZE, PALETTE_SIZES); |
| } |
| } |
| } |
| } |
| |
| static void sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts, |
| MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi, |
| const MB_MODE_INFO *above_mi, |
| const MB_MODE_INFO *left_mi, const int intraonly, |
| const int mi_row, const int mi_col, |
| uint8_t allow_update_cdf) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const PREDICTION_MODE y_mode = mbmi->mode; |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| (void)counts; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| |
| if (intraonly) { |
| #if CONFIG_ENTROPY_STATS |
| const PREDICTION_MODE above = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE left = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[above]; |
| const int left_ctx = intra_mode_context[left]; |
| ++counts->kf_y_mode[above_ctx][left_ctx][y_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) |
| update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES); |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->y_mode[size_group_lookup[bsize]][y_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) |
| update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES); |
| } |
| |
| if (av1_filter_intra_allowed(cm, mbmi)) { |
| const int use_filter_intra_mode = |
| mbmi->filter_intra_mode_info.use_filter_intra; |
| #if CONFIG_ENTROPY_STATS |
| ++counts->filter_intra[mbmi->sb_type][use_filter_intra_mode]; |
| if (use_filter_intra_mode) { |
| ++counts |
| ->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode]; |
| } |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) { |
| update_cdf(fc->filter_intra_cdfs[mbmi->sb_type], use_filter_intra_mode, |
| 2); |
| if (use_filter_intra_mode) { |
| update_cdf(fc->filter_intra_mode_cdf, |
| mbmi->filter_intra_mode_info.filter_intra_mode, |
| FILTER_INTRA_MODES); |
| } |
| } |
| } |
| if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->angle_delta[mbmi->mode - V_PRED] |
| [mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED], |
| mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| } |
| |
| if (!is_chroma_reference(mi_row, mi_col, bsize, |
| xd->plane[AOM_PLANE_U].subsampling_x, |
| xd->plane[AOM_PLANE_U].subsampling_y)) |
| return; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->uv_mode[is_cfl_allowed(xd)][y_mode][uv_mode]; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) { |
| const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd); |
| update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode, |
| UV_INTRA_MODES - !cfl_allowed); |
| } |
| if (uv_mode == UV_CFL_PRED) { |
| const int joint_sign = mbmi->cfl_alpha_signs; |
| const int idx = mbmi->cfl_alpha_idx; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_sign[joint_sign]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS); |
| if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE); |
| } |
| if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE); |
| } |
| } |
| if (av1_is_directional_mode(get_uv_mode(uv_mode)) && |
| av1_use_angle_delta(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->angle_delta[uv_mode - UV_V_PRED] |
| [mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->angle_delta_cdf[uv_mode - UV_V_PRED], |
| mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| } |
| if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) |
| update_palette_cdf(xd, mbmi, counts, allow_update_cdf); |
| } |
| |
| static void update_stats(const AV1_COMMON *const cm, TileDataEnc *tile_data, |
| ThreadData *td, int mi_row, int mi_col) { |
| MACROBLOCK *x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| const uint8_t allow_update_cdf = tile_data->allow_update_cdf; |
| |
| // delta quant applies to both intra and inter |
| const int super_block_upper_left = |
| ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && |
| ((mi_col & (cm->seq_params.mib_size - 1)) == 0); |
| |
| const int seg_ref_active = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); |
| |
| if (cm->skip_mode_flag && !seg_ref_active && is_comp_ref_allowed(bsize)) { |
| const int skip_mode_ctx = av1_get_skip_mode_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); |
| } |
| |
| if (!mbmi->skip_mode) { |
| if (!seg_ref_active) { |
| const int skip_ctx = av1_get_skip_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| td->counts->skip[skip_ctx][mbmi->skip]++; |
| #endif |
| if (allow_update_cdf) update_cdf(fc->skip_cdfs[skip_ctx], mbmi->skip, 2); |
| } |
| } |
| |
| if (cm->delta_q_present_flag && |
| (bsize != cm->seq_params.sb_size || !mbmi->skip) && |
| super_block_upper_left) { |
| #if CONFIG_ENTROPY_STATS |
| const int dq = |
| (mbmi->current_qindex - xd->current_qindex) / cm->delta_q_res; |
| const int absdq = abs(dq); |
| for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { |
| td->counts->delta_q[i][1]++; |
| } |
| if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; |
| #endif |
| xd->current_qindex = mbmi->current_qindex; |
| if (cm->delta_lf_present_flag) { |
| if (cm->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| #if CONFIG_ENTROPY_STATS |
| const int delta_lf = |
| (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / cm->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf_multi[lf_id][i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; |
| #endif |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| const int delta_lf = |
| (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / |
| cm->delta_lf_res; |
| const int abs_delta_lf = abs(delta_lf); |
| for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { |
| td->counts->delta_lf[i][1]++; |
| } |
| if (abs_delta_lf < DELTA_LF_SMALL) |
| td->counts->delta_lf[abs_delta_lf][0]++; |
| #endif |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| |
| if (!is_inter_block(mbmi)) { |
| sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi, |
| frame_is_intra_only(cm), mi_row, mi_col, |
| tile_data->allow_update_cdf); |
| } |
| |
| if (av1_allow_intrabc(cm)) { |
| if (allow_update_cdf) |
| update_cdf(fc->intrabc_cdf, is_intrabc_block(mbmi), 2); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intrabc[is_intrabc_block(mbmi)]; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| |
| if (!frame_is_intra_only(cm)) { |
| RD_COUNTS *rdc = &td->rd_counts; |
| |
| FRAME_COUNTS *const counts = td->counts; |
| |
| if (mbmi->skip_mode) { |
| rdc->skip_mode_used_flag = 1; |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| assert(has_second_ref(mbmi)); |
| rdc->compound_ref_used_flag = 1; |
| } |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| return; |
| } |
| |
| const int inter_block = is_inter_block(mbmi); |
| |
| if (!seg_ref_active) { |
| #if CONFIG_ENTROPY_STATS |
| counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], |
| inter_block, 2); |
| } |
| // If the segment reference feature is enabled we have only a single |
| // reference frame allowed for the segment so exclude it from |
| // the reference frame counts used to work out probabilities. |
| if (inter_block) { |
| const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; |
| const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| if (has_second_ref(mbmi)) |
| // This flag is also updated for 4x4 blocks |
| rdc->compound_ref_used_flag = 1; |
| if (is_comp_ref_allowed(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_inter[av1_get_reference_mode_context(xd)] |
| [has_second_ref(mbmi)]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (allow_update_cdf) { |
| update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), |
| 2); |
| } |
| } |
| } |
| |
| if (has_second_ref(mbmi)) { |
| const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) |
| ? UNIDIR_COMP_REFERENCE |
| : BIDIR_COMP_REFERENCE; |
| if (allow_update_cdf) { |
| update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type, |
| COMP_REFERENCE_TYPES); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref_type[av1_get_comp_reference_type_context(xd)] |
| [comp_ref_type]++; |
| #endif // CONFIG_ENTROPY_STATS |
| |
| if (comp_ref_type == UNIDIR_COMP_REFERENCE) { |
| const int bit = (ref0 == BWDREF_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0] |
| [bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit) { |
| const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1] |
| [bit1]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (bit1) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd), |
| ref1 == GOLDEN_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)] |
| [2][ref1 == GOLDEN_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } else { |
| const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), |
| ref0 == LAST2_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1] |
| [ref0 == LAST2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } else { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), |
| ref0 == GOLDEN_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2] |
| [ref0 == GOLDEN_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), |
| ref1 == ALTREF_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0] |
| [ref1 == ALTREF_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (ref1 != ALTREF_FRAME) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd), |
| ref1 == ALTREF2_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1] |
| [ref1 == ALTREF2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } else { |
| const int bit = (ref0 >= BWDREF_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (bit) { |
| assert(ref0 <= ALTREF_FRAME); |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_single_ref_p2(xd), |
| ref0 == ALTREF_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] |
| [ref0 == ALTREF_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (ref0 != ALTREF_FRAME) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_single_ref_p6(xd), |
| ref0 == ALTREF2_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5] |
| [ref0 == ALTREF2_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } else { |
| const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); |
| if (allow_update_cdf) |
| update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts |
| ->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++; |
| #endif // CONFIG_ENTROPY_STATS |
| if (!bit1) { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_single_ref_p4(xd), |
| ref0 != LAST_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] |
| [ref0 != LAST_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } else { |
| if (allow_update_cdf) { |
| update_cdf(av1_get_pred_cdf_single_ref_p5(xd), |
| ref0 != LAST3_FRAME, 2); |
| } |
| #if CONFIG_ENTROPY_STATS |
| counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] |
| [ref0 != LAST3_FRAME]++; |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| } |
| |
| if (cm->seq_params.enable_interintra_compound && |
| is_interintra_allowed(mbmi)) { |
| const int bsize_group = size_group_lookup[bsize]; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][1]++; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->interintra_cdf[bsize_group], 1, 2); |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->interintra_mode_cdf[bsize_group], |
| mbmi->interintra_mode, INTERINTRA_MODES); |
| } |
| if (is_interintra_wedge_used(bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->wedge_interintra_cdf[bsize], |
| mbmi->use_wedge_interintra, 2); |
| } |
| if (mbmi->use_wedge_interintra) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->wedge_idx_cdf[bsize], |
| mbmi->interintra_wedge_index, 16); |
| } |
| } |
| } |
| } else { |
| #if CONFIG_ENTROPY_STATS |
| counts->interintra[bsize_group][0]++; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->interintra_cdf[bsize_group], 0, 2); |
| } |
| } |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| const MOTION_MODE motion_allowed = |
| cm->switchable_motion_mode |
| ? motion_mode_allowed(xd->global_motion, xd, mbmi, |
| cm->allow_warped_motion) |
| : SIMPLE_TRANSLATION; |
| if (mbmi->ref_frame[1] != INTRA_FRAME) { |
| if (motion_allowed == WARPED_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->motion_mode[bsize][mbmi->motion_mode]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, |
| MOTION_MODES); |
| } |
| } else if (motion_allowed == OBMC_CAUSAL) { |
| #if CONFIG_ENTROPY_STATS |
| counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, |
| 2); |
| } |
| } |
| } |
| |
| if (has_second_ref(mbmi)) { |
| assert(cm->reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| mbmi->motion_mode == SIMPLE_TRANSLATION); |
| |
| const int masked_compound_used = |
| is_any_masked_compound_used(bsize) && |
| cm->seq_params.enable_masked_compound; |
| if (masked_compound_used) { |
| const int comp_group_idx_ctx = get_comp_group_idx_context(xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], |
| mbmi->comp_group_idx, 2); |
| } |
| } |
| |
| if (mbmi->comp_group_idx == 0) { |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->compound_index[comp_index_ctx][mbmi->compound_idx]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->compound_index_cdf[comp_index_ctx], |
| mbmi->compound_idx, 2); |
| } |
| } else { |
| assert(masked_compound_used); |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->compound_type[bsize][mbmi->interinter_comp.type - 1]; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->compound_type_cdf[bsize], |
| mbmi->interinter_comp.type - 1, COMPOUND_TYPES - 1); |
| } |
| } |
| } |
| } |
| if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { |
| #if CONFIG_ENTROPY_STATS |
| counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; |
| #endif |
| if (allow_update_cdf) { |
| update_cdf(fc->wedge_idx_cdf[bsize], |
| mbmi->interinter_comp.wedge_index, 16); |
| } |
| } |
| } |
| } |
| } |
| |
| if (inter_block && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| int16_t mode_ctx; |
| const PREDICTION_MODE mode = mbmi->mode; |
| |
| mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| if (has_second_ref(mbmi)) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(fc->inter_compound_mode_cdf[mode_ctx], |
| INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); |
| } else { |
| update_inter_mode_stats(fc, counts, mode, mode_ctx, allow_update_cdf); |
| } |
| |
| int mode_allowed = (mbmi->mode == NEWMV); |
| mode_allowed |= (mbmi->mode == NEW_NEWMV); |
| if (mode_allowed) { |
| uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| int idx; |
| |
| for (idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| #if CONFIG_ENTROPY_STATS |
| uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; |
| #endif |
| |
| if (mbmi->ref_mv_idx == idx) break; |
| } |
| } |
| } |
| |
| if (have_nearmv_in_inter_mode(mbmi->mode)) { |
| uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| int idx; |
| |
| for (idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| #if CONFIG_ENTROPY_STATS |
| uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); |
| ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; |
| #endif |
| |
| if (mbmi->ref_mv_idx == idx - 1) break; |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| typedef struct { |
| ENTROPY_CONTEXT a[MAX_MIB_SIZE * MAX_MB_PLANE]; |
| ENTROPY_CONTEXT l[MAX_MIB_SIZE * MAX_MB_PLANE]; |
| PARTITION_CONTEXT sa[MAX_MIB_SIZE]; |
| PARTITION_CONTEXT sl[MAX_MIB_SIZE]; |
| TXFM_CONTEXT *p_ta; |
| TXFM_CONTEXT *p_tl; |
| TXFM_CONTEXT ta[MAX_MIB_SIZE]; |
| TXFM_CONTEXT tl[MAX_MIB_SIZE]; |
| } RD_SEARCH_MACROBLOCK_CONTEXT; |
| |
| static void restore_context(MACROBLOCK *x, |
| const RD_SEARCH_MACROBLOCK_CONTEXT *ctx, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| const int num_planes) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = |
| block_size_wide[bsize] >> tx_size_wide_log2[0]; |
| const int num_4x4_blocks_high = |
| block_size_high[bsize] >> tx_size_high_log2[0]; |
| int mi_width = mi_size_wide[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| for (p = 0; p < num_planes; p++) { |
| int tx_col = mi_col; |
| int tx_row = mi_row & MAX_MIB_MASK; |
| memcpy(xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
| ctx->a + num_4x4_blocks_wide * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
| ctx->l + num_4x4_blocks_high * p, |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(xd->above_seg_context + mi_col, ctx->sa, |
| sizeof(*xd->above_seg_context) * mi_width); |
| memcpy(xd->left_seg_context + (mi_row & MAX_MIB_MASK), ctx->sl, |
| sizeof(xd->left_seg_context[0]) * mi_height); |
| xd->above_txfm_context = ctx->p_ta; |
| xd->left_txfm_context = ctx->p_tl; |
| memcpy(xd->above_txfm_context, ctx->ta, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(xd->left_txfm_context, ctx->tl, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| } |
| |
| static void save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| const int num_planes) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| int p; |
| const int num_4x4_blocks_wide = |
| block_size_wide[bsize] >> tx_size_wide_log2[0]; |
| const int num_4x4_blocks_high = |
| block_size_high[bsize] >> tx_size_high_log2[0]; |
| int mi_width = mi_size_wide[bsize]; |
| int mi_height = mi_size_high[bsize]; |
| |
| // buffer the above/left context information of the block in search. |
| for (p = 0; p < num_planes; ++p) { |
| int tx_col = mi_col; |
| int tx_row = mi_row & MAX_MIB_MASK; |
| memcpy(ctx->a + num_4x4_blocks_wide * p, |
| xd->above_context[p] + (tx_col >> xd->plane[p].subsampling_x), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >> |
| xd->plane[p].subsampling_x); |
| memcpy(ctx->l + num_4x4_blocks_high * p, |
| xd->left_context[p] + (tx_row >> xd->plane[p].subsampling_y), |
| (sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >> |
| xd->plane[p].subsampling_y); |
| } |
| memcpy(ctx->sa, xd->above_seg_context + mi_col, |
| sizeof(*xd->above_seg_context) * mi_width); |
| memcpy(ctx->sl, xd->left_seg_context + (mi_row & MAX_MIB_MASK), |
| sizeof(xd->left_seg_context[0]) * mi_height); |
| memcpy(ctx->ta, xd->above_txfm_context, |
| sizeof(*xd->above_txfm_context) * mi_width); |
| memcpy(ctx->tl, xd->left_txfm_context, |
| sizeof(*xd->left_txfm_context) * mi_height); |
| ctx->p_ta = xd->above_txfm_context; |
| ctx->p_tl = xd->left_txfm_context; |
| } |
| |
| static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TOKENEXTRA **tp, int mi_row, int mi_col, |
| RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PARTITION_TYPE partition, |
| const PICK_MODE_CONTEXT *const ctx, int *rate) { |
| TileInfo *const tile = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *xd = &x->e_mbd; |
| |
| set_offsets(cpi, tile, x, mi_row, mi_col, bsize); |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| mbmi->partition = partition; |
| update_state(cpi, tile_data, td, ctx, mi_row, mi_col, bsize, dry_run); |
| |
| if (!dry_run) av1_set_coeff_buffer(cpi, x, mi_row, mi_col); |
| |
| encode_superblock(cpi, tile_data, td, tp, dry_run, mi_row, mi_col, bsize, |
| rate); |
| |
| if (dry_run == 0) |
| x->cb_offset += block_size_wide[bsize] * block_size_high[bsize]; |
| |
| if (!dry_run) { |
| if (bsize == cpi->common.seq_params.sb_size && mbmi->skip == 1 && |
| cpi->common.delta_lf_present_flag) { |
| const int frame_lf_count = av1_num_planes(&cpi->common) > 1 |
| ? FRAME_LF_COUNT |
| : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) |
| mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; |
| mbmi->delta_lf_from_base = xd->delta_lf_from_base; |
| } |
| if (has_second_ref(mbmi)) { |
| if (mbmi->compound_idx == 0 || |
| mbmi->interinter_comp.type == COMPOUND_AVERAGE) |
| mbmi->comp_group_idx = 0; |
| else |
| mbmi->comp_group_idx = 1; |
| } |
| update_stats(&cpi->common, tile_data, td, mi_row, mi_col); |
| } |
| } |
| |
| static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, int mi_row, |
| int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, |
| PC_TREE *pc_tree, int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int hbs = mi_size_wide[bsize] / 2; |
| const int is_partition_root = bsize >= BLOCK_8X8; |
| const int ctx = is_partition_root |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : -1; |
| const PARTITION_TYPE partition = pc_tree->partitioning; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| int quarter_step = mi_size_wide[bsize] / 4; |
| int i; |
| BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| if (!dry_run && ctx >= 0) { |
| const int has_rows = (mi_row + hbs) < cm->mi_rows; |
| const int has_cols = (mi_col + hbs) < cm->mi_cols; |
| |
| if (has_rows && has_cols) { |
| #if CONFIG_ENTROPY_STATS |
| td->counts->partition[ctx][partition]++; |
| #endif |
| |
| if (tile_data->allow_update_cdf) { |
| FRAME_CONTEXT *fc = xd->tile_ctx; |
| update_cdf(fc->partition_cdf[ctx], partition, |
| partition_cdf_length(bsize)); |
| } |
| } |
| } |
| |
| switch (partition) { |
| case PARTITION_NONE: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->none, rate); |
| break; |
| case PARTITION_VERT: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->vertical[0], rate); |
| if (mi_col + hbs < cm->mi_cols) { |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| partition, &pc_tree->vertical[1], rate); |
| } |
| break; |
| case PARTITION_HORZ: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontal[0], rate); |
| if (mi_row + hbs < cm->mi_rows) { |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontal[1], rate); |
| } |
| break; |
| case PARTITION_SPLIT: |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, |
| pc_tree->split[0], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| pc_tree->split[1], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| pc_tree->split[2], rate); |
| encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| subsize, pc_tree->split[3], rate); |
| break; |
| |
| case PARTITION_HORZ_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, &pc_tree->horizontala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, &pc_tree->horizontala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontala[2], rate); |
| break; |
| case PARTITION_HORZ_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, &pc_tree->horizontalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| bsize2, partition, &pc_tree->horizontalb[2], rate); |
| break; |
| case PARTITION_VERT_A: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, |
| partition, &pc_tree->verticala[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, |
| partition, &pc_tree->verticala[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, |
| partition, &pc_tree->verticala[2], rate); |
| |
| break; |
| case PARTITION_VERT_B: |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->verticalb[0], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, |
| partition, &pc_tree->verticalb[1], rate); |
| encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, |
| bsize2, partition, &pc_tree->verticalb[2], rate); |
| break; |
| case PARTITION_HORZ_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * quarter_step; |
| if (i > 0 && this_mi_row >= cm->mi_rows) break; |
| |
| encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, |
| partition, &pc_tree->horizontal4[i], rate); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * quarter_step; |
| if (i > 0 && this_mi_col >= cm->mi_cols) break; |
| |
| encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, |
| partition, &pc_tree->vertical4[i], rate); |
| } |
| break; |
| default: assert(0 && "Invalid partition type."); break; |
| } |
| |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| // Check to see if the given partition size is allowed for a specified number |
| // of mi block rows and columns remaining in the image. |
| // If not then return the largest allowed partition size |
| static BLOCK_SIZE find_partition_size(BLOCK_SIZE bsize, int rows_left, |
| int cols_left, int *bh, int *bw) { |
| if (rows_left <= 0 || cols_left <= 0) { |
| return AOMMIN(bsize, BLOCK_8X8); |
| } else { |
| for (; bsize > 0; bsize -= 3) { |
| *bh = mi_size_high[bsize]; |
| *bw = mi_size_wide[bsize]; |
| if ((*bh <= rows_left) && (*bw <= cols_left)) { |
| break; |
| } |
| } |
| } |
| return bsize; |
| } |
| |
| static void set_partial_sb_partition(const AV1_COMMON *const cm, |
| MB_MODE_INFO *mi, int bh_in, int bw_in, |
| int mi_rows_remaining, |
| int mi_cols_remaining, BLOCK_SIZE bsize, |
| MB_MODE_INFO **mib) { |
| int bh = bh_in; |
| int r, c; |
| for (r = 0; r < cm->seq_params.mib_size; r += bh) { |
| int bw = bw_in; |
| for (c = 0; c < cm->seq_params.mib_size; c += bw) { |
| const int index = r * cm->mi_stride + c; |
| mib[index] = mi + index; |
| mib[index]->sb_type = find_partition_size( |
| bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw); |
| } |
| } |
| } |
| |
| // This function attempts to set all mode info entries in a given superblock |
| // to the same block partition size. |
| // However, at the bottom and right borders of the image the requested size |
| // may not be allowed in which case this code attempts to choose the largest |
| // allowable partition. |
| static void set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile, |
| MB_MODE_INFO **mib, int mi_row, int mi_col, |
| BLOCK_SIZE bsize) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int mi_rows_remaining = tile->mi_row_end - mi_row; |
| const int mi_cols_remaining = tile->mi_col_end - mi_col; |
| int block_row, block_col; |
| MB_MODE_INFO *const mi_upper_left = cm->mi + mi_row * cm->mi_stride + mi_col; |
| int bh = mi_size_high[bsize]; |
| int bw = mi_size_wide[bsize]; |
| |
| assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0)); |
| |
| // Apply the requested partition size to the SB if it is all "in image" |
| if ((mi_cols_remaining >= cm->seq_params.mib_size) && |
| (mi_rows_remaining >= cm->seq_params.mib_size)) { |
| for (block_row = 0; block_row < cm->seq_params.mib_size; block_row += bh) { |
| for (block_col = 0; block_col < cm->seq_params.mib_size; |
| block_col += bw) { |
| int index = block_row * cm->mi_stride + block_col; |
| mib[index] = mi_upper_left + index; |
| mib[index]->sb_type = bsize; |
| } |
| } |
| } else { |
| // Else this is a partial SB. |
| set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining, |
| mi_cols_remaining, bsize, mib); |
| } |
| } |
| |
| static void rd_use_partition(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, MB_MODE_INFO **mib, |
| TOKENEXTRA **tp, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, int *rate, int64_t *dist, |
| int do_recon, PC_TREE *pc_tree) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int bs = mi_size_wide[bsize]; |
| const int hbs = bs / 2; |
| int i; |
| const int pl = (bsize >= BLOCK_8X8) |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| const PARTITION_TYPE partition = |
| (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) |
| : PARTITION_NONE; |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| RD_STATS last_part_rdc, none_rdc, chosen_rdc; |
| BLOCK_SIZE sub_subsize = BLOCK_4X4; |
| int splits_below = 0; |
| BLOCK_SIZE bs_type = mib[0]->sb_type; |
| int do_partition_search = 1; |
| PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| av1_invalid_rd_stats(&last_part_rdc); |
| av1_invalid_rd_stats(&none_rdc); |
| av1_invalid_rd_stats(&chosen_rdc); |
| |
| pc_tree->partitioning = partition; |
| |
| xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| x->mb_energy = av1_log_block_var(cpi, x, bsize); |
| } |
| |
| if (do_partition_search && |
| cpi->sf.partition_search_type == SEARCH_PARTITION && |
| cpi->sf.adjust_partitioning_from_last_frame) { |
| // Check if any of the sub blocks are further split. |
| if (partition == PARTITION_SPLIT && subsize > BLOCK_8X8) { |
| sub_subsize = get_partition_subsize(subsize, PARTITION_SPLIT); |
| splits_below = 1; |
| for (i = 0; i < 4; i++) { |
| int jj = i >> 1, ii = i & 0x01; |
| MB_MODE_INFO *this_mi = mib[jj * hbs * cm->mi_stride + ii * hbs]; |
| if (this_mi && this_mi->sb_type >= sub_subsize) { |
| splits_below = 0; |
| } |
| } |
| } |
| |
| // If partition is not none try none unless each of the 4 splits are split |
| // even further.. |
| if (partition != PARTITION_NONE && !splits_below && |
| mi_row + hbs < cm->mi_rows && mi_col + hbs < cm->mi_cols) { |
| pc_tree->partitioning = PARTITION_NONE; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, |
| PARTITION_NONE, bsize, ctx_none, INT64_MAX); |
| |
| if (none_rdc.rate < INT_MAX) { |
| none_rdc.rate += x->partition_cost[pl][PARTITION_NONE]; |
| none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| mib[0]->sb_type = bs_type; |
| pc_tree->partitioning = partition; |
| } |
| } |
| |
| pc_tree->horizontal[0].skip_ref_frame_mask = 0; |
| pc_tree->horizontal[1].skip_ref_frame_mask = 0; |
| pc_tree->vertical[0].skip_ref_frame_mask = 0; |
| pc_tree->vertical[1].skip_ref_frame_mask = 0; |
| pc_tree->horizontala[0].skip_ref_frame_mask = 0; |
| pc_tree->horizontala[1].skip_ref_frame_mask = 0; |
| pc_tree->horizontala[2].skip_ref_frame_mask = 0; |
| pc_tree->horizontalb[0].skip_ref_frame_mask = 0; |
| pc_tree->horizontalb[1].skip_ref_frame_mask = 0; |
| pc_tree->horizontalb[2].skip_ref_frame_mask = 0; |
| pc_tree->verticala[0].skip_ref_frame_mask = 0; |
| pc_tree->verticala[1].skip_ref_frame_mask = 0; |
| pc_tree->verticala[2].skip_ref_frame_mask = 0; |
| pc_tree->verticalb[0].skip_ref_frame_mask = 0; |
| pc_tree->verticalb[1].skip_ref_frame_mask = 0; |
| pc_tree->verticalb[2].skip_ref_frame_mask = 0; |
| pc_tree->horizontal4[0].skip_ref_frame_mask = 0; |
| pc_tree->horizontal4[1].skip_ref_frame_mask = 0; |
| pc_tree->horizontal4[2].skip_ref_frame_mask = 0; |
| pc_tree->horizontal4[3].skip_ref_frame_mask = 0; |
| pc_tree->vertical4[0].skip_ref_frame_mask = 0; |
| pc_tree->vertical4[1].skip_ref_frame_mask = 0; |
| pc_tree->vertical4[2].skip_ref_frame_mask = 0; |
| pc_tree->vertical4[3].skip_ref_frame_mask = 0; |
| switch (partition) { |
| case PARTITION_NONE: |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_NONE, bsize, ctx_none, INT64_MAX); |
| break; |
| case PARTITION_HORZ: |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_HORZ, subsize, &pc_tree->horizontal[0], |
| INT64_MAX); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_row + hbs < cm->mi_rows) { |
| RD_STATS tmp_rdc; |
| const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0]; |
| av1_init_rd_stats(&tmp_rdc); |
| update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, |
| mi_col, subsize, NULL); |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, |
| PARTITION_HORZ, subsize, &pc_tree->horizontal[1], |
| INT64_MAX); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| case PARTITION_VERT: |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, |
| PARTITION_VERT, subsize, &pc_tree->vertical[0], |
| INT64_MAX); |
| if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && |
| mi_col + hbs < cm->mi_cols) { |
| RD_STATS tmp_rdc; |
| const PICK_MODE_CONTEXT *const ctx_v = &pc_tree->vertical[0]; |
| av1_init_rd_stats(&tmp_rdc); |
| update_state(cpi, tile_data, td, ctx_v, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, |
| mi_col, subsize, NULL); |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, |
| PARTITION_VERT, subsize, |
| &pc_tree->vertical[bsize > BLOCK_8X8], INT64_MAX); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| last_part_rdc.rdcost += tmp_rdc.rdcost; |
| } |
| break; |
| case PARTITION_SPLIT: |
| last_part_rdc.rate = 0; |
| last_part_rdc.dist = 0; |
| last_part_rdc.rdcost = 0; |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| int jj = i >> 1, ii = i & 0x01; |
| RD_STATS tmp_rdc; |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| av1_init_rd_stats(&tmp_rdc); |
| rd_use_partition(cpi, td, tile_data, |
| mib + jj * hbs * cm->mi_stride + ii * hbs, tp, |
| mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, |
| &tmp_rdc.dist, i != 3, pc_tree->split[i]); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&last_part_rdc); |
| break; |
| } |
| last_part_rdc.rate += tmp_rdc.rate; |
| last_part_rdc.dist += tmp_rdc.dist; |
| } |
| break; |
| case PARTITION_VERT_A: |
| case PARTITION_VERT_B: |
| case PARTITION_HORZ_A: |
| case PARTITION_HORZ_B: |
| case PARTITION_HORZ_4: |
| case PARTITION_VERT_4: assert(0 && "Cannot handle extended partiton types"); |
| default: assert(0); break; |
| } |
| |
| if (last_part_rdc.rate < INT_MAX) { |
| last_part_rdc.rate += x->partition_cost[pl][partition]; |
| last_part_rdc.rdcost = |
| RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist); |
| } |
| |
| if (do_partition_search && cpi->sf.adjust_partitioning_from_last_frame && |
| cpi->sf.partition_search_type == SEARCH_PARTITION && |
| partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && |
| (mi_row + bs < cm->mi_rows || mi_row + hbs == cm->mi_rows) && |
| (mi_col + bs < cm->mi_cols || mi_col + hbs == cm->mi_cols)) { |
| BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| chosen_rdc.rate = 0; |
| chosen_rdc.dist = 0; |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| pc_tree->partitioning = PARTITION_SPLIT; |
| |
| // Split partition. |
| for (i = 0; i < 4; i++) { |
| int x_idx = (i & 1) * hbs; |
| int y_idx = (i >> 1) * hbs; |
| RD_STATS tmp_rdc; |
| |
| if ((mi_row + y_idx >= cm->mi_rows) || (mi_col + x_idx >= cm->mi_cols)) |
| continue; |
| |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| pc_tree->split[i]->partitioning = PARTITION_NONE; |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, |
| &tmp_rdc, PARTITION_SPLIT, split_subsize, |
| &pc_tree->split[i]->none, INT64_MAX); |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { |
| av1_invalid_rd_stats(&chosen_rdc); |
| break; |
| } |
| |
| chosen_rdc.rate += tmp_rdc.rate; |
| chosen_rdc.dist += tmp_rdc.dist; |
| |
| if (i != 3) |
| encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, |
| OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); |
| |
| chosen_rdc.rate += x->partition_cost[pl][PARTITION_NONE]; |
| } |
| if (chosen_rdc.rate < INT_MAX) { |
| chosen_rdc.rate += x->partition_cost[pl][PARTITION_SPLIT]; |
| chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist); |
| } |
| } |
| |
| // If last_part is better set the partitioning to that. |
| if (last_part_rdc.rdcost < chosen_rdc.rdcost) { |
| mib[0]->sb_type = bsize; |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; |
| chosen_rdc = last_part_rdc; |
| } |
| // If none was better set the partitioning to that. |
| if (none_rdc.rdcost < chosen_rdc.rdcost) { |
| if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; |
| chosen_rdc = none_rdc; |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| // We must have chosen a partitioning and encoding or we'll fail later on. |
| // No other opportunities for success. |
| if (bsize == cm->seq_params.sb_size) |
| assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); |
| |
| if (do_recon) { |
| if (bsize == cm->seq_params.sb_size) { |
| // NOTE: To get estimate for rate due to the tokens, use: |
| // int rate_coeffs = 0; |
| // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, |
| // bsize, pc_tree, &rate_coeffs); |
| x->cb_offset = 0; |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| pc_tree, NULL); |
| } else { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| *rate = chosen_rdc.rate; |
| *dist = chosen_rdc.dist; |
| } |
| |
| /* clang-format off */ |
| static const BLOCK_SIZE min_partition_size[BLOCK_SIZES_ALL] = { |
| BLOCK_4X4, // 4x4 |
| BLOCK_4X4, BLOCK_4X4, BLOCK_4X4, // 4x8, 8x4, 8x8 |
| BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 8x16, 16x8, 16x16 |
| BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 16x32, 32x16, 32x32 |
| BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 32x64, 64x32, 64x64 |
| BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 64x128, 128x64, 128x128 |
| BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32 |
| BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16 |
| }; |
| |
| static const BLOCK_SIZE max_partition_size[BLOCK_SIZES_ALL] = { |
| BLOCK_8X8, // 4x4 |
| BLOCK_16X16, BLOCK_16X16, BLOCK_16X16, // 4x8, 8x4, 8x8 |
| BLOCK_32X32, BLOCK_32X32, BLOCK_32X32, // 8x16, 16x8, 16x16 |
| BLOCK_64X64, BLOCK_64X64, BLOCK_64X64, // 16x32, 32x16, 32x32 |
| BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 32x64, 64x32, 64x64 |
| BLOCK_LARGEST, BLOCK_LARGEST, BLOCK_LARGEST, // 64x128, 128x64, 128x128 |
| BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 4x16, 16x4, 8x32 |
| BLOCK_32X32, BLOCK_LARGEST, BLOCK_LARGEST, // 32x8, 16x64, 64x16 |
| }; |
| |
| // Next square block size less or equal than current block size. |
| static const BLOCK_SIZE next_square_size[BLOCK_SIZES_ALL] = { |
| BLOCK_4X4, // 4x4 |
| BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x8, 8x4, 8x8 |
| BLOCK_8X8, BLOCK_8X8, BLOCK_16X16, // 8x16, 16x8, 16x16 |
| BLOCK_16X16, BLOCK_16X16, BLOCK_32X32, // 16x32, 32x16, 32x32 |
| BLOCK_32X32, BLOCK_32X32, BLOCK_64X64, // 32x64, 64x32, 64x64 |
| BLOCK_64X64, BLOCK_64X64, BLOCK_128X128, // 64x128, 128x64, 128x128 |
| BLOCK_4X4, BLOCK_4X4, BLOCK_8X8, // 4x16, 16x4, 8x32 |
| BLOCK_8X8, BLOCK_16X16, BLOCK_16X16, // 32x8, 16x64, 64x16 |
| }; |
| /* clang-format on */ |
| |
| // Look at all the mode_info entries for blocks that are part of this |
| // partition and find the min and max values for sb_type. |
| // At the moment this is designed to work on a superblock but could be |
| // adjusted to use a size parameter. |
| // |
| // The min and max are assumed to have been initialized prior to calling this |
| // function so repeat calls can accumulate a min and max of more than one |
| // superblock. |
| static void get_sb_partition_size_range(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, MB_MODE_INFO **mib, |
| BLOCK_SIZE *min_block_size, |
| BLOCK_SIZE *max_block_size) { |
| int i, j; |
| int index = 0; |
| |
| // Check the sb_type for each block that belongs to this region. |
| for (i = 0; i < cm->seq_params.mib_size; ++i) { |
| for (j = 0; j < cm->seq_params.mib_size; ++j) { |
| MB_MODE_INFO *mi = mib[index + j]; |
| BLOCK_SIZE sb_type = mi ? mi->sb_type : BLOCK_4X4; |
| *min_block_size = AOMMIN(*min_block_size, sb_type); |
| *max_block_size = AOMMAX(*max_block_size, sb_type); |
| } |
| index += xd->mi_stride; |
| } |
| } |
| |
| // Checks to see if a super block is on a horizontal image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| static int active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { |
| int top_edge = 0; |
| int bottom_edge = cpi->common.mi_rows; |
| int is_active_h_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| const TWO_PASS *const twopass = &cpi->twopass; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); |
| |
| bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); |
| bottom_edge = AOMMAX(top_edge, bottom_edge); |
| } |
| |
| if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || |
| ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { |
| is_active_h_edge = 1; |
| } |
| return is_active_h_edge; |
| } |
| |
| // Checks to see if a super block is on a vertical image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| static int active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { |
| int left_edge = 0; |
| int right_edge = cpi->common.mi_cols; |
| int is_active_v_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| const TWO_PASS *const twopass = &cpi->twopass; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); |
| |
| right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); |
| right_edge = AOMMAX(left_edge, right_edge); |
| } |
| |
| if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || |
| ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { |
| is_active_v_edge = 1; |
| } |
| return is_active_v_edge; |
| } |
| |
| // Checks to see if a super block is at the edge of the active image. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| static int active_edge_sb(const AV1_COMP *cpi, int mi_row, int mi_col) { |
| return active_h_edge(cpi, mi_row, cpi->common.seq_params.mib_size) || |
| active_v_edge(cpi, mi_col, cpi->common.seq_params.mib_size); |
| } |
| |
| // Look at neighboring blocks and set a min and max partition size based on |
| // what they chose. |
| static void rd_auto_partition_range(AV1_COMP *cpi, const TileInfo *const tile, |
| MACROBLOCKD *const xd, int mi_row, |
| int mi_col, BLOCK_SIZE *min_block_size, |
| BLOCK_SIZE *max_block_size) { |
| AV1_COMMON *const cm = &cpi->common; |
| MB_MODE_INFO **mi = xd->mi; |
| const int left_in_image = xd->left_available && mi[-1]; |
| const int above_in_image = xd->up_available && mi[-xd->mi_stride]; |
| const int mi_rows_remaining = tile->mi_row_end - mi_row; |
| const int mi_cols_remaining = tile->mi_col_end - mi_col; |
| int bh, bw; |
| BLOCK_SIZE min_size = BLOCK_4X4; |
| BLOCK_SIZE max_size = BLOCK_LARGEST; |
| |
| // Trap case where we do not have a prediction. |
| if (left_in_image || above_in_image || cm->frame_type != KEY_FRAME) { |
| // Default "min to max" and "max to min" |
| min_size = BLOCK_LARGEST; |
| max_size = BLOCK_4X4; |
| |
| // NOTE: each call to get_sb_partition_size_range() uses the previous |
| // passed in values for min and max as a starting point. |
| // Find the min and max partition used in previous frame at this location |
| if (cm->frame_type != KEY_FRAME) { |
| MB_MODE_INFO **prev_mi = |
| &cm->prev_mi_grid_visible[mi_row * xd->mi_stride + mi_col]; |
| get_sb_partition_size_range(cm, xd, prev_mi, &min_size, &max_size); |
| } |
| // Find the min and max partition sizes used in the left superblock |
| if (left_in_image) { |
| MB_MODE_INFO **left_sb_mi = &mi[-cm->seq_params.mib_size]; |
| get_sb_partition_size_range(cm, xd, left_sb_mi, &min_size, &max_size); |
| } |
| // Find the min and max partition sizes used in the above suprblock. |
| if (above_in_image) { |
| MB_MODE_INFO **above_sb_mi = |
| &mi[-xd->mi_stride * cm->seq_params.mib_size]; |
| get_sb_partition_size_range(cm, xd, above_sb_mi, &min_size, &max_size); |
| } |
| |
| // Adjust observed min and max for "relaxed" auto partition case. |
| if (cpi->sf.auto_min_max_partition_size == RELAXED_NEIGHBORING_MIN_MAX) { |
| min_size = min_partition_size[min_size]; |
| max_size = max_partition_size[max_size]; |
| } |
| } |
| |
| // Check border cases where max and min from neighbors may not be legal. |
| max_size = find_partition_size(max_size, mi_rows_remaining, mi_cols_remaining, |
| &bh, &bw); |
| min_size = AOMMIN(min_size, max_size); |
| |
| // Test for blocks at the edge of the active image. |
| // This may be the actual edge of the image or where there are formatting |
| // bars. |
| if (active_edge_sb(cpi, mi_row, mi_col)) { |
| min_size = BLOCK_4X4; |
| } else { |
| min_size = AOMMIN(cpi->sf.rd_auto_partition_min_limit, min_size); |
| } |
| |
| // When use_square_partition_only is true, make sure at least one square |
| // partition is allowed by selecting the next smaller square size as |
| // *min_block_size. |
| if (min_size >= cpi->sf.use_square_partition_only_threshold) { |
| min_size = AOMMIN(min_size, next_square_size[max_size]); |
| } |
| |
| *min_block_size = AOMMIN(min_size, cm->seq_params.sb_size); |
| *max_block_size = AOMMIN(max_size, cm->seq_params.sb_size); |
| } |
| |
| // TODO(jingning) refactor functions setting partition search range |
| static void set_partition_range(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, int mi_row, |
| int mi_col, BLOCK_SIZE bsize, |
| BLOCK_SIZE *const min_bs, |
| BLOCK_SIZE *const max_bs) { |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| int idx, idy; |
| |
| const int idx_str = cm->mi_stride * mi_row + mi_col; |
| MB_MODE_INFO **const prev_mi = &cm->prev_mi_grid_visible[idx_str]; |
| BLOCK_SIZE min_size = cm->seq_params.sb_size; // default values |
| BLOCK_SIZE max_size = BLOCK_4X4; |
| |
| if (prev_mi) { |
| for (idy = 0; idy < mi_height; ++idy) { |
| for (idx = 0; idx < mi_width; ++idx) { |
| const MB_MODE_INFO *const mi = prev_mi[idy * cm->mi_stride + idx]; |
| const BLOCK_SIZE bs = mi ? mi->sb_type : bsize; |
| min_size = AOMMIN(min_size, bs); |
| max_size = AOMMAX(max_size, bs); |
| } |
| } |
| } |
| |
| if (xd->left_available) { |
| for (idy = 0; idy < mi_height; ++idy) { |
| const MB_MODE_INFO *const mi = xd->mi[idy * cm->mi_stride - 1]; |
| const BLOCK_SIZE bs = mi ? mi->sb_type : bsize; |
| min_size = AOMMIN(min_size, bs); |
| max_size = AOMMAX(max_size, bs); |
| } |
| } |
| |
| if (xd->up_available) { |
| for (idx = 0; idx < mi_width; ++idx) { |
| const MB_MODE_INFO *const mi = xd->mi[idx - cm->mi_stride]; |
| const BLOCK_SIZE bs = mi ? mi->sb_type : bsize; |
| min_size = AOMMIN(min_size, bs); |
| max_size = AOMMAX(max_size, bs); |
| } |
| } |
| |
| if (min_size == max_size) { |
| min_size = min_partition_size[min_size]; |
| max_size = max_partition_size[max_size]; |
| } |
| |
| *min_bs = AOMMIN(min_size, cm->seq_params.sb_size); |
| *max_bs = AOMMIN(max_size, cm->seq_params.sb_size); |
| } |
| |
| static INLINE void store_pred_mv(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx) { |
| memcpy(ctx->pred_mv, x->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| static INLINE void load_pred_mv(MACROBLOCK *x, |
| const PICK_MODE_CONTEXT *const ctx) { |
| memcpy(x->pred_mv, ctx->pred_mv, sizeof(x->pred_mv)); |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| const int qindex_skip_threshold_lookup[BLOCK_SIZES] = { |
| 0, 10, 10, 30, 40, 40, 60, 80, 80, 90, 100, 100, 120, |
| // TODO(debargha): What are the correct numbers here? |
| 130, 130, 150 |
| }; |
| const int qindex_split_threshold_lookup[BLOCK_SIZES] = { |
| 0, 3, 3, 7, 15, 15, 30, 40, 40, 60, 80, 80, 120, |
| // TODO(debargha): What are the correct numbers here? |
| 160, 160, 240 |
| }; |
| const int complexity_16x16_blocks_threshold[BLOCK_SIZES] = { |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 6, |
| // TODO(debargha): What are the correct numbers here? |
| 8, 8, 10 |
| }; |
| |
| typedef enum { |
| MV_ZERO = 0, |
| MV_LEFT = 1, |
| MV_UP = 2, |
| MV_RIGHT = 3, |
| MV_DOWN = 4, |
| MV_INVALID |
| } MOTION_DIRECTION; |
| |
| static INLINE MOTION_DIRECTION get_motion_direction_fp(uint8_t fp_byte) { |
| if (fp_byte & FPMB_MOTION_ZERO_MASK) { |
| return MV_ZERO; |
| } else if (fp_byte & FPMB_MOTION_LEFT_MASK) { |
| return MV_LEFT; |
| } else if (fp_byte & FPMB_MOTION_RIGHT_MASK) { |
| return MV_RIGHT; |
| } else if (fp_byte & FPMB_MOTION_UP_MASK) { |
| return MV_UP; |
| } else { |
| return MV_DOWN; |
| } |
| } |
| |
| static INLINE int get_motion_inconsistency(MOTION_DIRECTION this_mv, |
| MOTION_DIRECTION that_mv) { |
| if (this_mv == that_mv) { |
| return 0; |
| } else { |
| return abs(this_mv - that_mv) == 2 ? 2 : 1; |
| } |
| } |
| #endif |
| |
| // Try searching for an encoding for the given subblock. Returns zero if the |
| // rdcost is already too high (to tell the caller not to bother searching for |
| // encodings of further subblocks) |
| static int rd_try_subblock(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, |
| int is_first, int is_last, int mi_row, int mi_col, |
| BLOCK_SIZE subsize, RD_STATS *best_rdc, |
| RD_STATS *sum_rdc, RD_STATS *this_rdc, |
| PARTITION_TYPE partition, |
| PICK_MODE_CONTEXT *prev_ctx, |
| PICK_MODE_CONTEXT *this_ctx) { |
| #define RTS_X_RATE_NOCOEF_ARG |
| #define RTS_MAX_RDCOST best_rdc->rdcost |
| |
| MACROBLOCK *const x = &td->mb; |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, prev_ctx); |
| |
| // On the first time around, write the rd stats straight to sum_rdc. Also, we |
| // should treat sum_rdc as containing zeros (even if it doesn't) to avoid |
| // having to zero it at the start. |
| if (is_first) this_rdc = sum_rdc; |
| const int64_t spent_rdcost = is_first ? 0 : sum_rdc->rdcost; |
| const int64_t rdcost_remaining = best_rdc->rdcost - spent_rdcost; |
| |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, |
| RTS_X_RATE_NOCOEF_ARG partition, subsize, this_ctx, |
| rdcost_remaining); |
| |
| if (!is_first) { |
| if (this_rdc->rate == INT_MAX) { |
| sum_rdc->rdcost = INT64_MAX; |
| } else { |
| sum_rdc->rate += this_rdc->rate; |
| sum_rdc->dist += this_rdc->dist; |
| sum_rdc->rdcost += this_rdc->rdcost; |
| } |
| } |
| |
| if (sum_rdc->rdcost >= RTS_MAX_RDCOST) return 0; |
| |
| if (!is_last) { |
| update_state(cpi, tile_data, td, this_ctx, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, |
| subsize, NULL); |
| } |
| |
| return 1; |
| |
| #undef RTS_X_RATE_NOCOEF_ARG |
| #undef RTS_MAX_RDCOST |
| } |
| |
| static void rd_test_partition3(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, |
| PC_TREE *pc_tree, RD_STATS *best_rdc, |
| PICK_MODE_CONTEXT ctxs[3], |
| PICK_MODE_CONTEXT *ctx, int mi_row, int mi_col, |
| BLOCK_SIZE bsize, PARTITION_TYPE partition, |
| int mi_row0, int mi_col0, BLOCK_SIZE subsize0, |
| int mi_row1, int mi_col1, BLOCK_SIZE subsize1, |
| int mi_row2, int mi_col2, BLOCK_SIZE subsize2) { |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| RD_STATS sum_rdc, this_rdc; |
| #define RTP_STX_TRY_ARGS |
| |
| if (!rd_try_subblock(cpi, td, tile_data, tp, 1, 0, mi_row0, mi_col0, subsize0, |
| best_rdc, &sum_rdc, &this_rdc, |
| RTP_STX_TRY_ARGS partition, ctx, &ctxs[0])) |
| return; |
| |
| if (!rd_try_subblock(cpi, td, tile_data, tp, 0, 0, mi_row1, mi_col1, subsize1, |
| best_rdc, &sum_rdc, &this_rdc, |
| RTP_STX_TRY_ARGS partition, &ctxs[0], &ctxs[1])) |
| return; |
| |
| // With the new layout of mixed partitions for PARTITION_HORZ_B and |
| // PARTITION_VERT_B, the last subblock might start past halfway through the |
| // main block, so we might signal it even though the subblock lies strictly |
| // outside the image. In that case, we won't spend any bits coding it and the |
| // difference (obviously) doesn't contribute to the error. |
| const int try_block2 = 1; |
| if (try_block2 && |
| !rd_try_subblock(cpi, td, tile_data, tp, 0, 1, mi_row2, mi_col2, subsize2, |
| best_rdc, &sum_rdc, &this_rdc, |
| RTP_STX_TRY_ARGS partition, &ctxs[1], &ctxs[2])) |
| return; |
| |
| if (sum_rdc.rdcost >= best_rdc->rdcost) return; |
| |
| int pl = partition_plane_context(xd, mi_row, mi_col, bsize); |
| sum_rdc.rate += x->partition_cost[pl][partition]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| |
| if (sum_rdc.rdcost >= best_rdc->rdcost) return; |
| |
| *best_rdc = sum_rdc; |
| pc_tree->partitioning = partition; |
| |
| #undef RTP_STX_TRY_ARGS |
| } |
| |
| #if CONFIG_DIST_8X8 |
| static int64_t dist_8x8_yuv(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| uint8_t *src_plane_8x8[MAX_MB_PLANE], |
| uint8_t *dst_plane_8x8[MAX_MB_PLANE]) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int64_t dist_8x8, dist_8x8_uv, total_dist; |
| const int src_stride = x->plane[0].src.stride; |
| int plane; |
| |
| const int dst_stride = xd->plane[0].dst.stride; |
| dist_8x8 = |
| av1_dist_8x8(cpi, x, src_plane_8x8[0], src_stride, dst_plane_8x8[0], |
| dst_stride, BLOCK_8X8, 8, 8, 8, 8, x->qindex) |
| << 4; |
| |
| // Compute chroma distortion for a luma 8x8 block |
| dist_8x8_uv = 0; |
| |
| if (num_planes > 1) { |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) { |
| unsigned sse; |
| const int src_stride_uv = x->plane[plane].src.stride; |
| const int dst_stride_uv = xd->plane[plane].dst.stride; |
| const int ssx = xd->plane[plane].subsampling_x; |
| const int ssy = xd->plane[plane].subsampling_y; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(BLOCK_8X8, ssx, ssy); |
| |
| cpi->fn_ptr[plane_bsize].vf(src_plane_8x8[plane], src_stride_uv, |
| dst_plane_8x8[plane], dst_stride_uv, &sse); |
| dist_8x8_uv += (int64_t)sse << 4; |
| } |
| } |
| |
| return total_dist = dist_8x8 + dist_8x8_uv; |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| static void reset_partition(PC_TREE *pc_tree, BLOCK_SIZE bsize) { |
| pc_tree->partitioning = PARTITION_NONE; |
| pc_tree->cb_search_range = SEARCH_FULL_PLANE; |
| pc_tree->none.skip = 0; |
| |
| if (bsize >= BLOCK_8X8) { |
| BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| for (int idx = 0; idx < 4; ++idx) |
| reset_partition(pc_tree->split[idx], subsize); |
| } |
| } |
| |
| static void rd_pick_sqr_partition(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| RD_STATS *rd_cost, int64_t best_rd, |
| PC_TREE *pc_tree, int64_t *none_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_step = mi_size_wide[bsize] / 2; |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| const TOKENEXTRA *const tp_orig = *tp; |
| PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; |
| int tmp_partition_cost[PARTITION_TYPES]; |
| BLOCK_SIZE subsize; |
| RD_STATS this_rdc, sum_rdc, best_rdc, pn_rdc; |
| const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); |
| int do_square_split = bsize_at_least_8x8; |
| const int pl = bsize_at_least_8x8 |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| const int *partition_cost = |
| pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0]; |
| const int num_planes = av1_num_planes(cm); |
| |
| int64_t split_rd[4] = { 0, 0, 0, 0 }; |
| |
| // Override skipping rectangular partition operations for edge blocks |
| const int has_rows = (mi_row + mi_step < cm->mi_rows); |
| const int has_cols = (mi_col + mi_step < cm->mi_cols); |
| |
| if (none_rd) *none_rd = 0; |
| |
| int partition_none_allowed = has_rows && has_cols; |
| |
| (void)*tp_orig; |
| (void)split_rd; |
| |
| av1_zero(pc_tree->pc_tree_stats); |
| pc_tree->pc_tree_stats.valid = 1; |
| |
| // Override partition costs at the edges of the frame in the same |
| // way as in read_partition (see decodeframe.c) |
| if (!(has_rows && has_cols)) { |
| assert(bsize_at_least_8x8 && pl >= 0); |
| const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl]; |
| for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = INT_MAX; |
| if (has_cols) { |
| // At the bottom, the two possibilities are HORZ and SPLIT |
| aom_cdf_prob bot_cdf[2]; |
| partition_gather_vert_alike(bot_cdf, partition_cdf, bsize); |
| static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map); |
| } else if (has_rows) { |
| // At the right, the two possibilities are VERT and SPLIT |
| aom_cdf_prob rhs_cdf[2]; |
| partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize); |
| static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map); |
| } else { |
| // At the bottom right, we always split |
| tmp_partition_cost[PARTITION_SPLIT] = 0; |
| } |
| |
| partition_cost = tmp_partition_cost; |
| } |
| |
| #ifndef NDEBUG |
| // Nothing should rely on the default value of this array (which is just |
| // leftover from encoding the previous block. Setting it to magic number |
| // when debugging. |
| memset(x->blk_skip, 234, sizeof(x->blk_skip)); |
| #endif // NDEBUG |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| av1_init_rd_stats(&this_rdc); |
| av1_init_rd_stats(&sum_rdc); |
| av1_invalid_rd_stats(&best_rdc); |
| best_rdc.rdcost = best_rd; |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) |
| x->mb_energy = av1_log_block_var(cpi, x, bsize); |
| |
| xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| // PARTITION_NONE |
| if (partition_none_allowed) { |
| if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; |
| |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, |
| PARTITION_NONE, bsize, ctx_none, best_rdc.rdcost); |
| |
| pc_tree->pc_tree_stats.rdcost = ctx_none->rdcost; |
| pc_tree->pc_tree_stats.skip = ctx_none->skip; |
| |
| if (none_rd) *none_rd = this_rdc.rdcost; |
| if (this_rdc.rate != INT_MAX) { |
| if (bsize_at_least_8x8) { |
| const int pt_cost = partition_cost[PARTITION_NONE] < INT_MAX |
| ? partition_cost[PARTITION_NONE] |
| : 0; |
| this_rdc.rate += pt_cost; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| } |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| // Adjust dist breakout threshold according to the partition size. |
| const int64_t dist_breakout_thr = |
| cpi->sf.partition_search_breakout_dist_thr >> |
| ((2 * (MAX_SB_SIZE_LOG2 - 2)) - |
| (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); |
| const int rate_breakout_thr = |
| cpi->sf.partition_search_breakout_rate_thr * |
| num_pels_log2_lookup[bsize]; |
| |
| best_rdc = this_rdc; |
| if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; |
| |
| pc_tree->cb_search_range = SEARCH_FULL_PLANE; |
| |
| // If all y, u, v transform blocks in this partition are skippable, and |
| // the dist & rate are within the thresholds, the partition search is |
| // terminated for current branch of the partition search tree. |
| // The dist & rate thresholds are set to 0 at speed 0 to disable the |
| // early termination at that speed. |
| if (!x->e_mbd.lossless[xd->mi[0]->segment_id] && |
| (ctx_none->skippable && best_rdc.dist < dist_breakout_thr && |
| best_rdc.rate < rate_breakout_thr)) { |
| do_square_split = 0; |
| } |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // store estimated motion vector |
| if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none); |
| |
| int64_t temp_best_rdcost = best_rdc.rdcost; |
| pn_rdc = best_rdc; |
| |
| #if CONFIG_DIST_8X8 |
| uint8_t *src_plane_8x8[MAX_MB_PLANE], *dst_plane_8x8[MAX_MB_PLANE]; |
| |
| if (x->using_dist_8x8 && bsize == BLOCK_8X8) { |
| for (int i = 0; i < MAX_MB_PLANE; i++) { |
| src_plane_8x8[i] = x->plane[i].src.buf; |
| dst_plane_8x8[i] = xd->plane[i].dst.buf; |
| } |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| // PARTITION_SPLIT |
| if (do_square_split) { |
| int reached_last_index = 0; |
| subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| int idx; |
| |
| for (idx = 0; idx < 4 && sum_rdc.rdcost < temp_best_rdcost; ++idx) { |
| const int x_idx = (idx & 1) * mi_step; |
| const int y_idx = (idx >> 1) * mi_step; |
| |
| if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) |
| continue; |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| pc_tree->split[idx]->index = idx; |
| int64_t *p_split_rd = &split_rd[idx]; |
| rd_pick_sqr_partition(cpi, td, tile_data, tp, mi_row + y_idx, |
| mi_col + x_idx, subsize, &this_rdc, |
| temp_best_rdcost - sum_rdc.rdcost, |
| pc_tree->split[idx], p_split_rd); |
| |
| pc_tree->pc_tree_stats.sub_block_rdcost[idx] = this_rdc.rdcost; |
| pc_tree->pc_tree_stats.sub_block_skip[idx] = |
| pc_tree->split[idx]->none.skip; |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| break; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| } |
| } |
| reached_last_index = (idx == 4); |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && reached_last_index && |
| sum_rdc.rdcost != INT64_MAX && bsize == BLOCK_8X8) { |
| sum_rdc.dist = dist_8x8_yuv(cpi, x, src_plane_8x8, dst_plane_8x8); |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rate += partition_cost[PARTITION_SPLIT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| } |
| } |
| |
| int has_split = 0; |
| if (pc_tree->partitioning == PARTITION_SPLIT) { |
| for (int cb_idx = 0; cb_idx <= AOMMIN(idx, 3); ++cb_idx) { |
| if (pc_tree->split[cb_idx]->partitioning == PARTITION_SPLIT) |
| ++has_split; |
| } |
| |
| if (has_split >= 3 || sum_rdc.rdcost < (pn_rdc.rdcost >> 1)) { |
| pc_tree->cb_search_range = SPLIT_PLANE; |
| } |
| } |
| |
| if (pc_tree->partitioning == PARTITION_NONE) { |
| pc_tree->cb_search_range = SEARCH_SAME_PLANE; |
| if (pn_rdc.dist <= sum_rdc.dist) |
| pc_tree->cb_search_range = NONE_PARTITION_PLANE; |
| } |
| |
| if (pn_rdc.rate == INT_MAX) pc_tree->cb_search_range = NONE_PARTITION_PLANE; |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } // if (do_split) |
| |
| pc_tree->pc_tree_stats.split = pc_tree->partitioning == PARTITION_SPLIT; |
| if (do_square_split) { |
| for (int i = 0; i < 4; ++i) { |
| pc_tree->pc_tree_stats.sub_block_split[i] = |
| pc_tree->split[i]->partitioning == PARTITION_SPLIT; |
| } |
| } |
| |
| // TODO(jbb): This code added so that we avoid static analysis |
| // warning related to the fact that best_rd isn't used after this |
| // point. This code should be refactored so that the duplicate |
| // checks occur in some sub function and thus are used... |
| (void)best_rd; |
| *rd_cost = best_rdc; |
| |
| if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && |
| pc_tree->index != 3) { |
| if (bsize == cm->seq_params.sb_size) { |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } else { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && best_rdc.rate < INT_MAX && |
| best_rdc.dist < INT64_MAX && bsize == BLOCK_4X4 && pc_tree->index == 3) { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| if (bsize == cm->seq_params.sb_size) { |
| assert(best_rdc.rate < INT_MAX); |
| assert(best_rdc.dist < INT64_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| } |
| |
| #define FEATURE_SIZE 19 |
| static const float two_pass_split_partition_weights_128[FEATURE_SIZE + 1] = { |
| 2.683936f, -0.193620f, -4.106470f, -0.141320f, -0.282289f, |
| 0.125296f, -1.134961f, 0.862757f, -0.418799f, -0.637666f, |
| 0.016232f, 0.345013f, 0.018823f, -0.393394f, -1.130700f, |
| 0.695357f, 0.112569f, -0.341975f, -0.513882f, 5.7488966f, |
| }; |
| |
| static const float two_pass_split_partition_weights_64[FEATURE_SIZE + 1] = { |
| 2.990993f, 0.423273f, -0.926544f, 0.454646f, -0.292698f, |
| -1.311632f, -0.284432f, 0.717141f, -0.419257f, -0.574760f, |
| -0.674444f, 0.669047f, -0.374255f, 0.380624f, -0.804036f, |
| 0.264021f, 0.004163f, 1.896802f, 0.924287f, 0.13490619f, |
| }; |
| |
| static const float two_pass_split_partition_weights_32[FEATURE_SIZE + 1] = { |
| 2.795181f, -0.136943f, -0.924842f, 0.405330f, -0.463505f, |
| -0.584076f, -0.831472f, 0.382985f, -0.597544f, -0.138915f, |
| -1.354350f, 0.466035f, -0.553961f, 0.213202f, -1.166429f, |
| 0.010776f, -0.096236f, 2.335084f, 1.699857f, -0.58178353f, |
| }; |
| |
| static const float two_pass_split_partition_weights_16[FEATURE_SIZE + 1] = { |
| 1.987888f, -0.431100f, -1.687703f, 0.262602f, -0.425298f, |
| -0.463870f, -1.493457f, 0.470917f, -0.528457f, -0.087700f, |
| -1.815092f, 0.152883f, -0.337908f, 0.093679f, -1.548267f, |
| -0.042387f, -0.000861f, 2.556746f, 1.619192f, 0.03643292f, |
| }; |
| |
| static const float two_pass_split_partition_weights_8[FEATURE_SIZE + 1] = { |
| 2.188344f, -0.817528f, -2.119219f, 0.000000f, -0.348167f, |
| -0.658074f, -1.960362f, 0.000000f, -0.403080f, 0.282699f, |
| -2.061088f, 0.000000f, -0.431919f, -0.127960f, -1.099550f, |
| 0.000000f, 0.121622f, 2.017455f, 2.058228f, -0.15475988f, |
| }; |
| |
| static const float two_pass_none_partition_weights_128[FEATURE_SIZE + 1] = { |
| -1.006689f, 0.777908f, 4.461072f, -0.395782f, -0.014610f, |
| -0.853863f, 0.729997f, -0.420477f, 0.282429f, -1.194595f, |
| 3.181220f, -0.511416f, 0.117084f, -1.149348f, 1.507990f, |
| -0.477212f, 0.202963f, -1.469581f, 0.624461f, -0.89081228f, |
| }; |
| |
| static const float two_pass_none_partition_weights_64[FEATURE_SIZE + 1] = { |
| -1.241117f, 0.844878f, 5.638803f, -0.489780f, -0.108796f, |
| -4.576821f, 1.540624f, -0.477519f, 0.227791f, -1.443968f, |
| 1.586911f, -0.505125f, 0.140764f, -0.464194f, 1.466658f, |
| -0.641166f, 0.195412f, 1.427905f, 2.080007f, -1.98272777f, |
| }; |
| |
| static const float two_pass_none_partition_weights_32[FEATURE_SIZE + 1] = { |
| -2.130825f, 0.476023f, 5.907343f, -0.516002f, -0.097471f, |
| -2.662754f, 0.614858f, -0.576728f, 0.085261f, -0.031901f, |
| 0.727842f, -0.600034f, 0.079326f, 0.324328f, 0.504502f, |
| -0.547105f, -0.037670f, 0.304995f, 0.369018f, -2.66299987f, |
| }; |
| |
| static const float two_pass_none_partition_weights_16[FEATURE_SIZE + 1] = { |
| -1.626410f, 0.872047f, 5.414965f, -0.554781f, -0.084514f, |
| -3.020550f, 0.467632f, -0.382280f, 0.199568f, 0.426220f, |
| 0.829426f, -0.467100f, 0.153098f, 0.662994f, 0.327545f, |
| -0.560106f, -0.141610f, 0.403372f, 0.523991f, -3.02891231f, |
| }; |
| |
| static const float two_pass_none_partition_weights_8[FEATURE_SIZE + 1] = { |
| -1.463349f, 0.375376f, 4.751430f, 0.000000f, -0.184451f, |
| -1.655447f, 0.443214f, 0.000000f, 0.127961f, 0.152435f, |
| 0.083288f, 0.000000f, 0.143105f, 0.438012f, 0.073238f, |
| 0.000000f, -0.278137f, 0.186134f, 0.073737f, -1.6494962f, |
| }; |
| |
| // split_score indicates confidence of picking split partition; |
| // none_score indicates confidence of picking none partition; |
| static int ml_prune_2pass_split_partition(const PC_TREE_STATS *pc_tree_stats, |
| BLOCK_SIZE bsize, int *split_score, |
| int *none_score) { |
| if (!pc_tree_stats->valid) return 0; |
| const float *split_weights = NULL; |
| const float *none_weights = NULL; |
| switch (bsize) { |
| case BLOCK_4X4: break; |
| case BLOCK_8X8: |
| split_weights = two_pass_split_partition_weights_8; |
| none_weights = two_pass_none_partition_weights_8; |
| break; |
| case BLOCK_16X16: |
| split_weights = two_pass_split_partition_weights_16; |
| none_weights = two_pass_none_partition_weights_16; |
| break; |
| case BLOCK_32X32: |
| split_weights = two_pass_split_partition_weights_32; |
| none_weights = two_pass_none_partition_weights_32; |
| break; |
| case BLOCK_64X64: |
| split_weights = two_pass_split_partition_weights_64; |
| none_weights = two_pass_none_partition_weights_64; |
| break; |
| case BLOCK_128X128: |
| split_weights = two_pass_split_partition_weights_128; |
| none_weights = two_pass_none_partition_weights_128; |
| break; |
| default: assert(0 && "Unexpected bsize."); |
| } |
| if (!split_weights || !none_weights) return 0; |
| |
| aom_clear_system_state(); |
| |
| float features[FEATURE_SIZE]; |
| int feature_index = 0; |
| features[feature_index++] = (float)pc_tree_stats->split; |
| features[feature_index++] = (float)pc_tree_stats->skip; |
| const int rdcost = (int)AOMMIN(INT_MAX, pc_tree_stats->rdcost); |
| const int rd_valid = rdcost > 0 && rdcost < 1000000000; |
| features[feature_index++] = (float)rd_valid; |
| for (int i = 0; i < 4; ++i) { |
| features[feature_index++] = (float)pc_tree_stats->sub_block_split[i]; |
| features[feature_index++] = (float)pc_tree_stats->sub_block_skip[i]; |
| const int sub_rdcost = |
| (int)AOMMIN(INT_MAX, pc_tree_stats->sub_block_rdcost[i]); |
| const int sub_rd_valid = sub_rdcost > 0 && sub_rdcost < 1000000000; |
| features[feature_index++] = (float)sub_rd_valid; |
| // Ratio between the sub-block RD and the whole-block RD. |
| float rd_ratio = 1.0f; |
| if (rd_valid && sub_rd_valid && sub_rdcost < rdcost) |
| rd_ratio = (float)sub_rdcost / (float)rdcost; |
| features[feature_index++] = rd_ratio; |
| } |
| assert(feature_index == FEATURE_SIZE); |
| |
| float score_1 = split_weights[FEATURE_SIZE]; |
| float score_2 = none_weights[FEATURE_SIZE]; |
| for (int i = 0; i < FEATURE_SIZE; ++i) { |
| score_1 += features[i] * split_weights[i]; |
| score_2 += features[i] * none_weights[i]; |
| } |
| *split_score = (int)(score_1 * 100); |
| *none_score = (int)(score_2 * 100); |
| return 1; |
| } |
| #undef FEATURE_SIZE |
| |
| // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be |
| // considered. |
| static void ml_prune_ab_partition(BLOCK_SIZE bsize, int part_ctx, int var_ctx, |
| int64_t best_rd, int64_t horz_rd[2], |
| int64_t vert_rd[2], int64_t split_rd[4], |
| int *const horza_partition_allowed, |
| int *const horzb_partition_allowed, |
| int *const verta_partition_allowed, |
| int *const vertb_partition_allowed) { |
| if (bsize < BLOCK_8X8 || best_rd >= 1000000000) return; |
| const NN_CONFIG *nn_config = NULL; |
| switch (bsize) { |
| case BLOCK_8X8: nn_config = NULL; break; |
| case BLOCK_16X16: nn_config = &av1_ab_partition_nnconfig_16; break; |
| case BLOCK_32X32: nn_config = &av1_ab_partition_nnconfig_32; break; |
| case BLOCK_64X64: nn_config = &av1_ab_partition_nnconfig_64; break; |
| case BLOCK_128X128: nn_config = &av1_ab_partition_nnconfig_128; break; |
| default: assert(0 && "Unexpected bsize."); |
| } |
| if (!nn_config) return; |
| |
| aom_clear_system_state(); |
| |
| // Generate features. |
| float features[10]; |
| int feature_index = 0; |
| features[feature_index++] = (float)part_ctx; |
| features[feature_index++] = (float)var_ctx; |
| const int rdcost = (int)AOMMIN(INT_MAX, best_rd); |
| int sub_block_rdcost[8] = { 0 }; |
| int rd_index = 0; |
| for (int i = 0; i < 2; ++i) { |
| if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) |
| sub_block_rdcost[rd_index] = (int)horz_rd[i]; |
| ++rd_index; |
| } |
| for (int i = 0; i < 2; ++i) { |
| if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) |
| sub_block_rdcost[rd_index] = (int)vert_rd[i]; |
| ++rd_index; |
| } |
| for (int i = 0; i < 4; ++i) { |
| if (split_rd[i] > 0 && split_rd[i] < 1000000000) |
| sub_block_rdcost[rd_index] = (int)split_rd[i]; |
| ++rd_index; |
| } |
| for (int i = 0; i < 8; ++i) { |
| // Ratio between the sub-block RD and the whole-block RD. |
| float rd_ratio = 1.0f; |
| if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) |
| rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; |
| features[feature_index++] = rd_ratio; |
| } |
| assert(feature_index == 10); |
| |
| // Calculate scores using the NN model. |
| float score[16] = { 0.0f }; |
| av1_nn_predict(features, nn_config, score); |
| int int_score[16]; |
| int max_score = -1000; |
| for (int i = 0; i < 16; ++i) { |
| int_score[i] = (int)(100 * score[i]); |
| max_score = AOMMAX(int_score[i], max_score); |
| } |
| |
| // Make decisions based on the model scores. |
| int thresh = max_score; |
| switch (bsize) { |
| case BLOCK_16X16: thresh -= 150; break; |
| case BLOCK_32X32: thresh -= 100; break; |
| default: break; |
| } |
| *horza_partition_allowed = 0; |
| *horzb_partition_allowed = 0; |
| *verta_partition_allowed = 0; |
| *vertb_partition_allowed = 0; |
| for (int i = 0; i < 16; ++i) { |
| if (int_score[i] >= thresh) { |
| if ((i >> 0) & 1) *horza_partition_allowed = 1; |
| if ((i >> 1) & 1) *horzb_partition_allowed = 1; |
| if ((i >> 2) & 1) *verta_partition_allowed = 1; |
| if ((i >> 3) & 1) *vertb_partition_allowed = 1; |
| } |
| } |
| } |
| |
| #define FEATURES 18 |
| #define LABELS 4 |
| // Use a ML model to predict if horz4 and vert4 should be considered. |
| static void ml_prune_4_partition(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, BLOCK_SIZE bsize, |
| int part_ctx, int64_t best_rd, |
| int64_t horz_rd[2], int64_t vert_rd[2], |
| int64_t split_rd[4], |
| int *const partition_horz4_allowed, |
| int *const partition_vert4_allowed) { |
| if (best_rd >= 1000000000) return; |
| const NN_CONFIG *nn_config = NULL; |
| switch (bsize) { |
| case BLOCK_16X16: nn_config = &av1_4_partition_nnconfig_16; break; |
| case BLOCK_32X32: nn_config = &av1_4_partition_nnconfig_32; break; |
| case BLOCK_64X64: nn_config = &av1_4_partition_nnconfig_64; break; |
| default: assert(0 && "Unexpected bsize."); |
| } |
| if (!nn_config) return; |
| |
| aom_clear_system_state(); |
| |
| // Generate features. |
| float features[FEATURES]; |
| int feature_index = 0; |
| features[feature_index++] = (float)part_ctx; |
| features[feature_index++] = (float)get_unsigned_bits(x->source_variance); |
| |
| const int rdcost = (int)AOMMIN(INT_MAX, best_rd); |
| int sub_block_rdcost[8] = { 0 }; |
| int rd_index = 0; |
| for (int i = 0; i < 2; ++i) { |
| if (horz_rd[i] > 0 && horz_rd[i] < 1000000000) |
| sub_block_rdcost[rd_index] = (int)horz_rd[i]; |
| ++rd_index; |
| } |
| for (int i = 0; i < 2; ++i) { |
| if (vert_rd[i] > 0 && vert_rd[i] < 1000000000) |
| sub_block_rdcost[rd_index] = (int)vert_rd[i]; |
| ++rd_index; |
| } |
| for (int i = 0; i < 4; ++i) { |
| if (split_rd[i] > 0 && split_rd[i] < 1000000000) |
| sub_block_rdcost[rd_index] = (int)split_rd[i]; |
| ++rd_index; |
| } |
| for (int i = 0; i < 8; ++i) { |
| // Ratio between the sub-block RD and the whole-block RD. |
| float rd_ratio = 1.0f; |
| if (sub_block_rdcost[i] > 0 && sub_block_rdcost[i] < rdcost) |
| rd_ratio = (float)sub_block_rdcost[i] / (float)rdcost; |
| features[feature_index++] = rd_ratio; |
| } |
| |
| // Get variance of the 1:4 and 4:1 sub-blocks. |
| unsigned int horz_4_source_var[4] = { 0 }; |
| unsigned int vert_4_source_var[4] = { 0 }; |
| { |
| BLOCK_SIZE horz_4_bs = get_partition_subsize(bsize, PARTITION_HORZ_4); |
| BLOCK_SIZE vert_4_bs = get_partition_subsize(bsize, PARTITION_VERT_4); |
| const int src_stride = x->plane[0].src.stride; |
| const uint8_t *src = x->plane[0].src.buf; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| for (int i = 0; i < 4; ++i) { |
| const uint8_t *horz_src = |
| src + i * block_size_high[horz_4_bs] * src_stride; |
| const uint8_t *vert_src = src + i * block_size_wide[vert_4_bs]; |
| unsigned int horz_var, vert_var, sse; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| switch (xd->bd) { |
| case 10: |
| horz_var = cpi->fn_ptr[horz_4_bs].vf( |
| horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), |
| 0, &sse); |
| vert_var = cpi->fn_ptr[vert_4_bs].vf( |
| vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_10), |
| 0, &sse); |
| break; |
| case 12: |
| horz_var = cpi->fn_ptr[horz_4_bs].vf( |
| horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), |
| 0, &sse); |
| vert_var = cpi->fn_ptr[vert_4_bs].vf( |
| vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_12), |
| 0, &sse); |
| break; |
| case 8: |
| default: |
| horz_var = cpi->fn_ptr[horz_4_bs].vf( |
| horz_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), |
| 0, &sse); |
| vert_var = cpi->fn_ptr[vert_4_bs].vf( |
| vert_src, src_stride, CONVERT_TO_BYTEPTR(AV1_HIGH_VAR_OFFS_8), |
| 0, &sse); |
| break; |
| } |
| horz_4_source_var[i] = |
| ROUND_POWER_OF_TWO(horz_var, num_pels_log2_lookup[horz_4_bs]); |
| vert_4_source_var[i] = |
| ROUND_POWER_OF_TWO(vert_var, num_pels_log2_lookup[vert_4_bs]); |
| } else { |
| horz_var = cpi->fn_ptr[horz_4_bs].vf(horz_src, src_stride, AV1_VAR_OFFS, |
| 0, &sse); |
| vert_var = cpi->fn_ptr[vert_4_bs].vf(vert_src, src_stride, AV1_VAR_OFFS, |
| 0, &sse); |
| horz_4_source_var[i] = |
| ROUND_POWER_OF_TWO(horz_var, num_pels_log2_lookup[horz_4_bs]); |
| vert_4_source_var[i] = |
| ROUND_POWER_OF_TWO(vert_var, num_pels_log2_lookup[vert_4_bs]); |
| } |
| } |
| } |
| |
| const float denom = (float)(x->source_variance + 1); |
| const float low_b = 0.1f; |
| const float high_b = 10.0f; |
| for (int i = 0; i < 4; ++i) { |
| // Ratio between the 4:1 sub-block variance and the whole-block variance. |
| float var_ratio = (float)(horz_4_source_var[i] + 1) / denom; |
| if (var_ratio < low_b) var_ratio = low_b; |
| if (var_ratio > high_b) var_ratio = high_b; |
| features[feature_index++] = var_ratio; |
| } |
| for (int i = 0; i < 4; ++i) { |
| // Ratio between the 1:4 sub-block RD and the whole-block RD. |
| float var_ratio = (float)(vert_4_source_var[i] + 1) / denom; |
| if (var_ratio < low_b) var_ratio = low_b; |
| if (var_ratio > high_b) var_ratio = high_b; |
| features[feature_index++] = var_ratio; |
| } |
| assert(feature_index == FEATURES); |
| |
| // Calculate scores using the NN model. |
| float score[LABELS] = { 0.0f }; |
| av1_nn_predict(features, nn_config, score); |
| int int_score[LABELS]; |
| int max_score = -1000; |
| for (int i = 0; i < LABELS; ++i) { |
| int_score[i] = (int)(100 * score[i]); |
| max_score = AOMMAX(int_score[i], max_score); |
| } |
| |
| // Make decisions based on the model scores. |
| int thresh = max_score; |
| switch (bsize) { |
| case BLOCK_16X16: thresh -= 400; break; |
| case BLOCK_32X32: thresh -= 400; break; |
| case BLOCK_64X64: thresh -= 100; break; |
| default: break; |
| } |
| *partition_horz4_allowed = 0; |
| *partition_vert4_allowed = 0; |
| for (int i = 0; i < LABELS; ++i) { |
| if (int_score[i] >= thresh) { |
| if ((i >> 0) & 1) *partition_horz4_allowed = 1; |
| if ((i >> 1) & 1) *partition_vert4_allowed = 1; |
| } |
| } |
| } |
| #undef FEATURES |
| #undef LABELS |
| |
| // TODO(jingning,jimbankoski,rbultje): properly skip partition types that are |
| // unlikely to be selected depending on previous rate-distortion optimization |
| // results, for encoding speed-up. |
| static void rd_pick_partition(const AV1_COMP *const cpi, ThreadData *td, |
| TileDataEnc *tile_data, TOKENEXTRA **tp, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| RD_STATS *rd_cost, int64_t best_rd, |
| PC_TREE *pc_tree, int64_t *none_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const int mi_step = mi_size_wide[bsize] / 2; |
| RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; |
| const TOKENEXTRA *const tp_orig = *tp; |
| PICK_MODE_CONTEXT *ctx_none = &pc_tree->none; |
| int tmp_partition_cost[PARTITION_TYPES]; |
| BLOCK_SIZE subsize; |
| RD_STATS this_rdc, sum_rdc, best_rdc; |
| const int bsize_at_least_8x8 = (bsize >= BLOCK_8X8); |
| int do_square_split = bsize_at_least_8x8; |
| const int pl = bsize_at_least_8x8 |
| ? partition_plane_context(xd, mi_row, mi_col, bsize) |
| : 0; |
| const int *partition_cost = |
| pl >= 0 ? x->partition_cost[pl] : x->partition_cost[0]; |
| |
| int do_rectangular_split = 1; |
| int64_t split_rd[4] = { 0, 0, 0, 0 }; |
| int64_t horz_rd[2] = { 0, 0 }; |
| int64_t vert_rd[2] = { 0, 0 }; |
| |
| int split_ctx_is_ready[2] = { 0, 0 }; |
| int horz_ctx_is_ready = 0; |
| int vert_ctx_is_ready = 0; |
| BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| if (bsize == cm->seq_params.sb_size) x->must_find_valid_partition = 0; |
| |
| // Override skipping rectangular partition operations for edge blocks |
| const int has_rows = (mi_row + mi_step < cm->mi_rows); |
| const int has_cols = (mi_col + mi_step < cm->mi_cols); |
| const int xss = x->e_mbd.plane[1].subsampling_x; |
| const int yss = x->e_mbd.plane[1].subsampling_y; |
| |
| BLOCK_SIZE min_size = x->min_partition_size; |
| BLOCK_SIZE max_size = x->max_partition_size; |
| |
| if (none_rd) *none_rd = 0; |
| |
| #if CONFIG_FP_MB_STATS |
| unsigned int src_diff_var = UINT_MAX; |
| int none_complexity = 0; |
| #endif |
| |
| int partition_none_allowed = has_rows && has_cols; |
| int partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8; |
| int partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8; |
| |
| (void)*tp_orig; |
| |
| // Override partition costs at the edges of the frame in the same |
| // way as in read_partition (see decodeframe.c) |
| if (!(has_rows && has_cols)) { |
| assert(bsize_at_least_8x8 && pl >= 0); |
| const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[pl]; |
| for (int i = 0; i < PARTITION_TYPES; ++i) tmp_partition_cost[i] = INT_MAX; |
| if (has_cols) { |
| // At the bottom, the two possibilities are HORZ and SPLIT |
| aom_cdf_prob bot_cdf[2]; |
| partition_gather_vert_alike(bot_cdf, partition_cdf, bsize); |
| static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(tmp_partition_cost, bot_cdf, bot_inv_map); |
| } else if (has_rows) { |
| // At the right, the two possibilities are VERT and SPLIT |
| aom_cdf_prob rhs_cdf[2]; |
| partition_gather_horz_alike(rhs_cdf, partition_cdf, bsize); |
| static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; |
| av1_cost_tokens_from_cdf(tmp_partition_cost, rhs_cdf, rhs_inv_map); |
| } else { |
| // At the bottom right, we always split |
| tmp_partition_cost[PARTITION_SPLIT] = 0; |
| } |
| |
| partition_cost = tmp_partition_cost; |
| } |
| |
| #ifndef NDEBUG |
| // Nothing should rely on the default value of this array (which is just |
| // leftover from encoding the previous block. Setting it to magic number |
| // when debugging. |
| memset(x->blk_skip, 234, sizeof(x->blk_skip)); |
| #endif // NDEBUG |
| |
| assert(mi_size_wide[bsize] == mi_size_high[bsize]); |
| |
| av1_init_rd_stats(&this_rdc); |
| av1_invalid_rd_stats(&best_rdc); |
| best_rdc.rdcost = best_rd; |
| |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| |
| if (bsize == BLOCK_16X16 && cpi->vaq_refresh) |
| x->mb_energy = av1_log_block_var(cpi, x, bsize); |
| |
| if (cpi->sf.cb_partition_search && bsize == BLOCK_16X16) { |
| const int cb_partition_search_ctrl = |
| ((pc_tree->index == 0 || pc_tree->index == 3) + |
| get_chessboard_index(cm->current_video_frame)) & |
| 0x1; |
| |
| if (cb_partition_search_ctrl && bsize > min_size && bsize < max_size) |
| set_partition_range(cm, xd, mi_row, mi_col, bsize, &min_size, &max_size); |
| } |
| |
| // Determine partition types in search according to the speed features. |
| // The threshold set here has to be of square block size. |
| if (cpi->sf.auto_min_max_partition_size) { |
| const int no_partition_allowed = (bsize <= max_size && bsize >= min_size); |
| // Note: Further partitioning is NOT allowed when bsize == min_size already. |
| const int partition_allowed = (bsize <= max_size && bsize > min_size); |
| partition_none_allowed &= no_partition_allowed; |
| partition_horz_allowed &= partition_allowed || !has_rows; |
| partition_vert_allowed &= partition_allowed || !has_cols; |
| do_square_split &= bsize > min_size; |
| } |
| |
| if (bsize > cpi->sf.use_square_partition_only_threshold) { |
| partition_horz_allowed &= !has_rows; |
| partition_vert_allowed &= !has_cols; |
| } |
| |
| if (bsize > BLOCK_4X4 && x->use_cb_search_range && |
| cpi->sf.auto_min_max_partition_size == 0) { |
| int split_score = 0; |
| int none_score = 0; |
| const int score_valid = ml_prune_2pass_split_partition( |
| &pc_tree->pc_tree_stats, bsize, &split_score, &none_score); |
| if (score_valid) { |
| { |
| const int only_split_thresh = 300; |
| const int no_none_thresh = 250; |
| const int no_split_thresh = 0; |
| if (split_score > only_split_thresh) { |
| partition_none_allowed = 0; |
| partition_horz_allowed = 0; |
| partition_vert_allowed = 0; |
| } else if (split_score > no_none_thresh) { |
| partition_none_allowed = 0; |
| } |
| if (split_score < no_split_thresh) do_square_split = 0; |
| } |
| { |
| const int no_split_thresh = 120; |
| const int no_none_thresh = -120; |
| if (none_score > no_split_thresh && partition_none_allowed) |
| do_square_split = 0; |
| if (none_score < no_none_thresh) partition_none_allowed = 0; |
| } |
| } else { |
| if (pc_tree->cb_search_range == SPLIT_PLANE) { |
| partition_none_allowed = 0; |
| partition_horz_allowed = 0; |
| partition_vert_allowed = 0; |
| } |
| if (pc_tree->cb_search_range == SEARCH_SAME_PLANE) do_square_split = 0; |
| if (pc_tree->cb_search_range == NONE_PARTITION_PLANE) { |
| do_square_split = 0; |
| partition_horz_allowed = 0; |
| partition_vert_allowed = 0; |
| } |
| } |
| |
| // Fall back to default values in case all partition modes are rejected. |
| if (partition_none_allowed == 0 && do_square_split == 0 && |
| partition_horz_allowed == 0 && partition_vert_allowed == 0) { |
| do_square_split = bsize_at_least_8x8; |
| partition_none_allowed = has_rows && has_cols; |
| partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8; |
| partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8; |
| } |
| } |
| |
| xd->above_txfm_context = cm->above_txfm_context[tile_info->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| src_diff_var = get_sby_perpixel_diff_variance(cpi, &x->plane[0].src, mi_row, |
| mi_col, bsize); |
| } |
| |
| // Decide whether we shall split directly and skip searching NONE by using |
| // the first pass block statistics |
| if (cpi->use_fp_mb_stats && bsize >= BLOCK_32X32 && do_square_split && |
| partition_none_allowed && src_diff_var > 4 && |
| cm->base_qindex < qindex_split_threshold_lookup[bsize]) { |
| int mb_row = mi_row >> 1; |
| int mb_col = mi_col >> 1; |
| int mb_row_end = |
| AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); |
| int mb_col_end = |
| AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); |
| int r, c; |
| |
| // compute a complexity measure, basically measure inconsistency of motion |
| // vectors obtained from the first pass in the current block |
| for (r = mb_row; r < mb_row_end; r++) { |
| for (c = mb_col; c < mb_col_end; c++) { |
| const int mb_index = r * cm->mb_cols + c; |
| |
| MOTION_DIRECTION this_mv; |
| MOTION_DIRECTION right_mv; |
| MOTION_DIRECTION bottom_mv; |
| |
| this_mv = |
| get_motion_direction_fp(cpi->twopass.this_frame_mb_stats[mb_index]); |
| |
| // to its right |
| if (c != mb_col_end - 1) { |
| right_mv = get_motion_direction_fp( |
| cpi->twopass.this_frame_mb_stats[mb_index + 1]); |
| none_complexity += get_motion_inconsistency(this_mv, right_mv); |
| } |
| |
| // to its bottom |
| if (r != mb_row_end - 1) { |
| bottom_mv = get_motion_direction_fp( |
| cpi->twopass.this_frame_mb_stats[mb_index + cm->mb_cols]); |
| none_complexity += get_motion_inconsistency(this_mv, bottom_mv); |
| } |
| |
| // do not count its left and top neighbors to avoid double counting |
| } |
| } |
| |
| if (none_complexity > complexity_16x16_blocks_threshold[bsize]) { |
| partition_none_allowed = 0; |
| } |
| } |
| #endif |
| |
| // Ref frames picked in the [i_th] quarter subblock during square partition |
| // RD search. It may be used to prune ref frame selection of rect partitions. |
| uint8_t ref_frames_used[4] = { |
| 0, |
| }; |
| |
| BEGIN_PARTITION_SEARCH: |
| if (x->must_find_valid_partition) { |
| partition_none_allowed = has_rows && has_cols; |
| partition_horz_allowed = has_cols && yss <= xss && bsize_at_least_8x8; |
| partition_vert_allowed = has_rows && xss <= yss && bsize_at_least_8x8; |
| } |
| // PARTITION_NONE |
| if (partition_none_allowed) { |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, |
| PARTITION_NONE, bsize, ctx_none, best_rdc.rdcost); |
| if (none_rd) *none_rd = this_rdc.rdcost; |
| if (this_rdc.rate != INT_MAX) { |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| const int ref1 = ctx_none->mic.ref_frame[0]; |
| const int ref2 = ctx_none->mic.ref_frame[1]; |
| for (int i = 0; i < 4; ++i) { |
| ref_frames_used[i] |= (1 << ref1); |
| if (ref2 > 0) ref_frames_used[i] |= (1 << ref2); |
| } |
| } |
| if (bsize_at_least_8x8) { |
| const int pt_cost = partition_cost[PARTITION_NONE] < INT_MAX |
| ? partition_cost[PARTITION_NONE] |
| : 0; |
| this_rdc.rate += pt_cost; |
| this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); |
| } |
| |
| if (this_rdc.rdcost < best_rdc.rdcost) { |
| // Adjust dist breakout threshold according to the partition size. |
| const int64_t dist_breakout_thr = |
| cpi->sf.partition_search_breakout_dist_thr >> |
| ((2 * (MAX_SB_SIZE_LOG2 - 2)) - |
| (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); |
| const int rate_breakout_thr = |
| cpi->sf.partition_search_breakout_rate_thr * |
| num_pels_log2_lookup[bsize]; |
| |
| best_rdc = this_rdc; |
| if (bsize_at_least_8x8) pc_tree->partitioning = PARTITION_NONE; |
| |
| // If all y, u, v transform blocks in this partition are skippable, and |
| // the dist & rate are within the thresholds, the partition search is |
| // terminated for current branch of the partition search tree. |
| // The dist & rate thresholds are set to 0 at speed 0 to disable the |
| // early termination at that speed. |
| if (!x->e_mbd.lossless[xd->mi[0]->segment_id] && |
| (ctx_none->skippable && best_rdc.dist < dist_breakout_thr && |
| best_rdc.rate < rate_breakout_thr)) { |
| do_square_split = 0; |
| do_rectangular_split = 0; |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| // Check if every 16x16 first pass block statistics has zero |
| // motion and the corresponding first pass residue is small enough. |
| // If that is the case, check the difference variance between the |
| // current frame and the last frame. If the variance is small enough, |
| // stop further splitting in RD optimization |
| if (cpi->use_fp_mb_stats && do_square_split && |
| cm->base_qindex > qindex_skip_threshold_lookup[bsize]) { |
| int mb_row = mi_row >> 1; |
| int mb_col = mi_col >> 1; |
| int mb_row_end = |
| AOMMIN(mb_row + num_16x16_blocks_high_lookup[bsize], cm->mb_rows); |
| int mb_col_end = |
| AOMMIN(mb_col + num_16x16_blocks_wide_lookup[bsize], cm->mb_cols); |
| int r, c; |
| |
| int skip = 1; |
| for (r = mb_row; r < mb_row_end; r++) { |
| for (c = mb_col; c < mb_col_end; c++) { |
| const int mb_index = r * cm->mb_cols + c; |
| if (!(cpi->twopass.this_frame_mb_stats[mb_index] & |
| FPMB_MOTION_ZERO_MASK) || |
| !(cpi->twopass.this_frame_mb_stats[mb_index] & |
| FPMB_ERROR_SMALL_MASK)) { |
| skip = 0; |
| break; |
| } |
| } |
| if (skip == 0) { |
| break; |
| } |
| } |
| if (skip) { |
| if (src_diff_var == UINT_MAX) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); |
| src_diff_var = get_sby_perpixel_diff_variance( |
| cpi, &x->plane[0].src, mi_row, mi_col, bsize); |
| } |
| if (src_diff_var < 8) { |
| do_square_split = 0; |
| do_rectangular_split = 0; |
| } |
| } |
| } |
| #endif |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // store estimated motion vector |
| if (cpi->sf.adaptive_motion_search) store_pred_mv(x, ctx_none); |
| |
| #if CONFIG_DIST_8X8 |
| uint8_t *src_plane_8x8[MAX_MB_PLANE], *dst_plane_8x8[MAX_MB_PLANE]; |
| |
| if (x->using_dist_8x8 && bsize == BLOCK_8X8) { |
| for (int i = 0; i < num_planes; i++) { |
| src_plane_8x8[i] = x->plane[i].src.buf; |
| dst_plane_8x8[i] = xd->plane[i].dst.buf; |
| } |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| // PARTITION_SPLIT |
| if (do_square_split) { |
| av1_init_rd_stats(&sum_rdc); |
| subsize = get_partition_subsize(bsize, PARTITION_SPLIT); |
| |
| int idx; |
| for (idx = 0; idx < 4 && sum_rdc.rdcost < best_rdc.rdcost; ++idx) { |
| const int x_idx = (idx & 1) * mi_step; |
| const int y_idx = (idx >> 1) * mi_step; |
| |
| if (mi_row + y_idx >= cm->mi_rows || mi_col + x_idx >= cm->mi_cols) |
| continue; |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| pc_tree->split[idx]->index = idx; |
| int64_t *p_split_rd = &split_rd[idx]; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) |
| pc_tree->split[idx]->none.rate = INT_MAX; |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, |
| subsize, &this_rdc, best_rdc.rdcost - sum_rdc.rdcost, |
| pc_tree->split[idx], p_split_rd); |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| break; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions && |
| pc_tree->split[idx]->none.rate != INT_MAX) { |
| const int ref1 = pc_tree->split[idx]->none.mic.ref_frame[0]; |
| const int ref2 = pc_tree->split[idx]->none.mic.ref_frame[1]; |
| ref_frames_used[idx] |= (1 << ref1); |
| if (ref2 > 0) ref_frames_used[idx] |= (1 << ref2); |
| } |
| if (idx <= 1 && (bsize <= BLOCK_8X8 || |
| pc_tree->split[idx]->partitioning == PARTITION_NONE)) { |
| const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none.mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) split_ctx_is_ready[idx] = 1; |
| } |
| } |
| } |
| } |
| const int reached_last_index = (idx == 4); |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && reached_last_index && |
| sum_rdc.rdcost != INT64_MAX && bsize == BLOCK_8X8) { |
| const int64_t dist_8x8 = |
| dist_8x8_yuv(cpi, x, src_plane_8x8, dst_plane_8x8); |
| #ifdef DEBUG_DIST_8X8 |
| // TODO(anyone): Fix dist-8x8 assert failure here when CFL is enabled |
| if (x->tune_metric == AOM_TUNE_PSNR && xd->bd == 8 && 0 /*!CONFIG_CFL*/) |
| assert(sum_rdc.dist == dist_8x8); |
| #endif // DEBUG_DIST_8X8 |
| sum_rdc.dist = dist_8x8; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| if (reached_last_index && sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rate += partition_cost[PARTITION_SPLIT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_SPLIT; |
| } |
| } else if (cpi->sf.less_rectangular_check) { |
| // skip rectangular partition test when larger block size |
| // gives better rd cost |
| do_rectangular_split &= !partition_none_allowed; |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } // if (do_split) |
| |
| pc_tree->horizontal[0].skip_ref_frame_mask = 0; |
| pc_tree->horizontal[1].skip_ref_frame_mask = 0; |
| pc_tree->vertical[0].skip_ref_frame_mask = 0; |
| pc_tree->vertical[1].skip_ref_frame_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| uint8_t used_frames; |
| used_frames = ref_frames_used[0] | ref_frames_used[1]; |
| if (used_frames) pc_tree->horizontal[0].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[2] | ref_frames_used[3]; |
| if (used_frames) pc_tree->horizontal[1].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[0] | ref_frames_used[2]; |
| if (used_frames) pc_tree->vertical[0].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[1] | ref_frames_used[3]; |
| if (used_frames) pc_tree->vertical[1].skip_ref_frame_mask = ~used_frames; |
| } |
| |
| // PARTITION_HORZ |
| if (partition_horz_allowed && |
| (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step))) { |
| av1_init_rd_stats(&sum_rdc); |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ); |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) { |
| pc_tree->horizontal[0].pred_interp_filter = |
| av1_extract_interp_filter(ctx_none->mic.interp_filters, 0); |
| } |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, |
| PARTITION_HORZ, subsize, &pc_tree->horizontal[0], |
| best_rdc.rdcost); |
| horz_rd[0] = sum_rdc.rdcost; |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost && has_rows) { |
| const PICK_MODE_CONTEXT *const ctx_h = &pc_tree->horizontal[0]; |
| const MB_MODE_INFO *const mbmi = &pc_tree->horizontal[0].mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) horz_ctx_is_ready = 1; |
| } |
| update_state(cpi, tile_data, td, ctx_h, mi_row, mi_col, subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, |
| subsize, NULL); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_h); |
| |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) { |
| pc_tree->horizontal[1].pred_interp_filter = |
| av1_extract_interp_filter(ctx_h->mic.interp_filters, 0); |
| } |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row + mi_step, mi_col, &this_rdc, |
| PARTITION_HORZ, subsize, &pc_tree->horizontal[1], |
| best_rdc.rdcost - sum_rdc.rdcost); |
| horz_rd[1] = this_rdc.rdcost; |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && this_rdc.rate != INT_MAX && bsize == BLOCK_8X8) { |
| update_state(cpi, tile_data, td, &pc_tree->horizontal[1], |
| mi_row + mi_step, mi_col, subsize, DRY_RUN_NORMAL); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, |
| mi_row + mi_step, mi_col, subsize, NULL); |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| } |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && sum_rdc.rdcost != INT64_MAX && |
| bsize == BLOCK_8X8) { |
| const int64_t dist_8x8 = |
| dist_8x8_yuv(cpi, x, src_plane_8x8, dst_plane_8x8); |
| #ifdef DEBUG_DIST_8X8 |
| // TODO(anyone): Fix dist-8x8 assert failure here when CFL is enabled |
| if (x->tune_metric == AOM_TUNE_PSNR && xd->bd == 8 && 0 /*!CONFIG_CFL*/) |
| assert(sum_rdc.dist == dist_8x8); |
| #endif // DEBUG_DIST_8X8 |
| sum_rdc.dist = dist_8x8; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| } |
| #endif // CONFIG_DIST_8X8 |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rate += partition_cost[PARTITION_HORZ]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_HORZ; |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // PARTITION_VERT |
| if (partition_vert_allowed && |
| (do_rectangular_split || active_v_edge(cpi, mi_col, mi_step))) { |
| av1_init_rd_stats(&sum_rdc); |
| subsize = get_partition_subsize(bsize, PARTITION_VERT); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) { |
| pc_tree->vertical[0].pred_interp_filter = |
| av1_extract_interp_filter(ctx_none->mic.interp_filters, 0); |
| } |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &sum_rdc, |
| PARTITION_VERT, subsize, &pc_tree->vertical[0], |
| best_rdc.rdcost); |
| vert_rd[0] = sum_rdc.rdcost; |
| const int64_t vert_max_rdcost = best_rdc.rdcost; |
| if (sum_rdc.rdcost < vert_max_rdcost && has_cols) { |
| const MB_MODE_INFO *const mbmi = &pc_tree->vertical[0].mic; |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| // Neither palette mode nor cfl predicted |
| if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { |
| if (mbmi->uv_mode != UV_CFL_PRED) vert_ctx_is_ready = 1; |
| } |
| update_state(cpi, tile_data, td, &pc_tree->vertical[0], mi_row, mi_col, |
| subsize, 1); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, mi_col, |
| subsize, NULL); |
| |
| if (cpi->sf.adaptive_motion_search) load_pred_mv(x, ctx_none); |
| |
| if (cpi->sf.adaptive_pred_interp_filter && bsize == BLOCK_8X8 && |
| partition_none_allowed) { |
| pc_tree->vertical[1].pred_interp_filter = |
| av1_extract_interp_filter(ctx_none->mic.interp_filters, 0); |
| } |
| rd_pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + mi_step, &this_rdc, |
| PARTITION_VERT, subsize, &pc_tree->vertical[1], |
| best_rdc.rdcost - sum_rdc.rdcost); |
| vert_rd[1] = this_rdc.rdcost; |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && this_rdc.rate != INT_MAX && bsize == BLOCK_8X8) { |
| update_state(cpi, tile_data, td, &pc_tree->vertical[1], mi_row, |
| mi_col + mi_step, subsize, DRY_RUN_NORMAL); |
| encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, mi_row, |
| mi_col + mi_step, subsize, NULL); |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| if (this_rdc.rate == INT_MAX) { |
| sum_rdc.rdcost = INT64_MAX; |
| } else { |
| sum_rdc.rate += this_rdc.rate; |
| sum_rdc.dist += this_rdc.dist; |
| sum_rdc.rdcost += this_rdc.rdcost; |
| } |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && sum_rdc.rdcost != INT64_MAX && |
| bsize == BLOCK_8X8) { |
| const int64_t dist_8x8 = |
| dist_8x8_yuv(cpi, x, src_plane_8x8, dst_plane_8x8); |
| #ifdef DEBUG_DIST_8X8 |
| // TODO(anyone): Fix dist-8x8 assert failure here when CFL is enabled |
| if (x->tune_metric == AOM_TUNE_PSNR && xd->bd == 8 && |
| 0 /* !CONFIG_CFL */) |
| assert(sum_rdc.dist == dist_8x8); |
| #endif // DEBUG_DIST_8X8 |
| sum_rdc.dist = dist_8x8; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| } |
| #endif // CONFIG_DIST_8X8 |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rate += partition_cost[PARTITION_VERT]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_VERT; |
| } |
| } |
| |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| const int ext_partition_allowed = |
| do_rectangular_split && bsize > BLOCK_8X8 && partition_none_allowed; |
| |
| // The standard AB partitions are allowed whenever ext-partition-types are |
| // allowed |
| int horzab_partition_allowed = ext_partition_allowed; |
| int vertab_partition_allowed = ext_partition_allowed; |
| |
| if (cpi->sf.prune_ext_partition_types_search_level) { |
| if (cpi->sf.prune_ext_partition_types_search_level == 1) { |
| horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || |
| (pc_tree->partitioning == PARTITION_NONE && |
| x->source_variance < 32) || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || |
| (pc_tree->partitioning == PARTITION_NONE && |
| x->source_variance < 32) || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| } else { |
| horzab_partition_allowed &= (pc_tree->partitioning == PARTITION_HORZ || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| vertab_partition_allowed &= (pc_tree->partitioning == PARTITION_VERT || |
| pc_tree->partitioning == PARTITION_SPLIT); |
| } |
| horz_rd[0] = (horz_rd[0] < INT64_MAX ? horz_rd[0] : 0); |
| horz_rd[1] = (horz_rd[1] < INT64_MAX ? horz_rd[1] : 0); |
| vert_rd[0] = (vert_rd[0] < INT64_MAX ? vert_rd[0] : 0); |
| vert_rd[1] = (vert_rd[1] < INT64_MAX ? vert_rd[1] : 0); |
| split_rd[0] = (split_rd[0] < INT64_MAX ? split_rd[0] : 0); |
| split_rd[1] = (split_rd[1] < INT64_MAX ? split_rd[1] : 0); |
| split_rd[2] = (split_rd[2] < INT64_MAX ? split_rd[2] : 0); |
| split_rd[3] = (split_rd[3] < INT64_MAX ? split_rd[3] : 0); |
| } |
| int horza_partition_allowed = horzab_partition_allowed; |
| int horzb_partition_allowed = horzab_partition_allowed; |
| if (cpi->sf.prune_ext_partition_types_search_level) { |
| const int64_t horz_a_rd = horz_rd[1] + split_rd[0] + split_rd[1]; |
| const int64_t horz_b_rd = horz_rd[0] + split_rd[2] + split_rd[3]; |
| switch (cpi->sf.prune_ext_partition_types_search_level) { |
| case 1: |
| horza_partition_allowed &= (horz_a_rd / 16 * 14 < best_rdc.rdcost); |
| horzb_partition_allowed &= (horz_b_rd / 16 * 14 < best_rdc.rdcost); |
| break; |
| case 2: |
| default: |
| horza_partition_allowed &= (horz_a_rd / 16 * 15 < best_rdc.rdcost); |
| horzb_partition_allowed &= (horz_b_rd / 16 * 15 < best_rdc.rdcost); |
| break; |
| } |
| } |
| |
| int verta_partition_allowed = vertab_partition_allowed; |
| int vertb_partition_allowed = vertab_partition_allowed; |
| if (cpi->sf.prune_ext_partition_types_search_level) { |
| const int64_t vert_a_rd = vert_rd[1] + split_rd[0] + split_rd[2]; |
| const int64_t vert_b_rd = vert_rd[0] + split_rd[1] + split_rd[3]; |
| switch (cpi->sf.prune_ext_partition_types_search_level) { |
| case 1: |
| verta_partition_allowed &= (vert_a_rd / 16 * 14 < best_rdc.rdcost); |
| vertb_partition_allowed &= (vert_b_rd / 16 * 14 < best_rdc.rdcost); |
| break; |
| case 2: |
| default: |
| verta_partition_allowed &= (vert_a_rd / 16 * 15 < best_rdc.rdcost); |
| vertb_partition_allowed &= (vert_b_rd / 16 * 15 < best_rdc.rdcost); |
| break; |
| } |
| } |
| |
| if (cpi->sf.ml_prune_ab_partition && ext_partition_allowed && |
| partition_horz_allowed && partition_vert_allowed) { |
| ml_prune_ab_partition(bsize, pc_tree->partitioning, |
| get_unsigned_bits(x->source_variance), |
| best_rdc.rdcost, horz_rd, vert_rd, split_rd, |
| &horza_partition_allowed, &horzb_partition_allowed, |
| &verta_partition_allowed, &vertb_partition_allowed); |
| } |
| |
| // PARTITION_HORZ_A |
| if (partition_horz_allowed && horza_partition_allowed) { |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ_A); |
| pc_tree->horizontala[0].rd_mode_is_ready = 0; |
| pc_tree->horizontala[1].rd_mode_is_ready = 0; |
| pc_tree->horizontala[2].rd_mode_is_ready = 0; |
| if (split_ctx_is_ready[0]) { |
| av1_copy_tree_context(&pc_tree->horizontala[0], &pc_tree->split[0]->none); |
| pc_tree->horizontala[0].mic.partition = PARTITION_HORZ_A; |
| pc_tree->horizontala[0].rd_mode_is_ready = 1; |
| if (split_ctx_is_ready[1]) { |
| av1_copy_tree_context(&pc_tree->horizontala[1], |
| &pc_tree->split[1]->none); |
| pc_tree->horizontala[1].mic.partition = PARTITION_HORZ_A; |
| pc_tree->horizontala[1].rd_mode_is_ready = 1; |
| } |
| } |
| pc_tree->horizontala[0].skip_ref_frame_mask = 0; |
| pc_tree->horizontala[1].skip_ref_frame_mask = 0; |
| pc_tree->horizontala[2].skip_ref_frame_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| uint8_t used_frames; |
| used_frames = ref_frames_used[0]; |
| if (used_frames) |
| pc_tree->horizontala[0].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[1]; |
| if (used_frames) |
| pc_tree->horizontala[1].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[2] | ref_frames_used[3]; |
| if (used_frames) |
| pc_tree->horizontala[2].skip_ref_frame_mask = ~used_frames; |
| } |
| rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, |
| pc_tree->horizontala, ctx_none, mi_row, mi_col, bsize, |
| PARTITION_HORZ_A, mi_row, mi_col, bsize2, mi_row, |
| mi_col + mi_step, bsize2, mi_row + mi_step, mi_col, |
| subsize); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| // PARTITION_HORZ_B |
| if (partition_horz_allowed && horzb_partition_allowed) { |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ_B); |
| pc_tree->horizontalb[0].rd_mode_is_ready = 0; |
| pc_tree->horizontalb[1].rd_mode_is_ready = 0; |
| pc_tree->horizontalb[2].rd_mode_is_ready = 0; |
| if (horz_ctx_is_ready) { |
| av1_copy_tree_context(&pc_tree->horizontalb[0], &pc_tree->horizontal[0]); |
| pc_tree->horizontalb[0].mic.partition = PARTITION_HORZ_B; |
| pc_tree->horizontalb[0].rd_mode_is_ready = 1; |
| } |
| pc_tree->horizontalb[0].skip_ref_frame_mask = 0; |
| pc_tree->horizontalb[1].skip_ref_frame_mask = 0; |
| pc_tree->horizontalb[2].skip_ref_frame_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| uint8_t used_frames; |
| used_frames = ref_frames_used[0] | ref_frames_used[1]; |
| if (used_frames) |
| pc_tree->horizontalb[0].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[2]; |
| if (used_frames) |
| pc_tree->horizontalb[1].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[3]; |
| if (used_frames) |
| pc_tree->horizontalb[2].skip_ref_frame_mask = ~used_frames; |
| } |
| rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, |
| pc_tree->horizontalb, ctx_none, mi_row, mi_col, bsize, |
| PARTITION_HORZ_B, mi_row, mi_col, subsize, |
| mi_row + mi_step, mi_col, bsize2, mi_row + mi_step, |
| mi_col + mi_step, bsize2); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // PARTITION_VERT_A |
| if (partition_vert_allowed && verta_partition_allowed) { |
| subsize = get_partition_subsize(bsize, PARTITION_VERT_A); |
| pc_tree->verticala[0].rd_mode_is_ready = 0; |
| pc_tree->verticala[1].rd_mode_is_ready = 0; |
| pc_tree->verticala[2].rd_mode_is_ready = 0; |
| if (split_ctx_is_ready[0]) { |
| av1_copy_tree_context(&pc_tree->verticala[0], &pc_tree->split[0]->none); |
| pc_tree->verticala[0].mic.partition = PARTITION_VERT_A; |
| pc_tree->verticala[0].rd_mode_is_ready = 1; |
| } |
| pc_tree->verticala[0].skip_ref_frame_mask = 0; |
| pc_tree->verticala[1].skip_ref_frame_mask = 0; |
| pc_tree->verticala[2].skip_ref_frame_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| uint8_t used_frames; |
| used_frames = ref_frames_used[0]; |
| if (used_frames) pc_tree->verticala[0].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[2]; |
| if (used_frames) pc_tree->verticala[1].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[1] | ref_frames_used[3]; |
| if (used_frames) pc_tree->verticala[2].skip_ref_frame_mask = ~used_frames; |
| } |
| rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, |
| pc_tree->verticala, ctx_none, mi_row, mi_col, bsize, |
| PARTITION_VERT_A, mi_row, mi_col, bsize2, |
| mi_row + mi_step, mi_col, bsize2, mi_row, |
| mi_col + mi_step, subsize); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| // PARTITION_VERT_B |
| if (partition_vert_allowed && vertb_partition_allowed) { |
| subsize = get_partition_subsize(bsize, PARTITION_VERT_B); |
| pc_tree->verticalb[0].rd_mode_is_ready = 0; |
| pc_tree->verticalb[1].rd_mode_is_ready = 0; |
| pc_tree->verticalb[2].rd_mode_is_ready = 0; |
| if (vert_ctx_is_ready) { |
| av1_copy_tree_context(&pc_tree->verticalb[0], &pc_tree->vertical[0]); |
| pc_tree->verticalb[0].mic.partition = PARTITION_VERT_B; |
| pc_tree->verticalb[0].rd_mode_is_ready = 1; |
| } |
| pc_tree->verticalb[0].skip_ref_frame_mask = 0; |
| pc_tree->verticalb[1].skip_ref_frame_mask = 0; |
| pc_tree->verticalb[2].skip_ref_frame_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| uint8_t used_frames; |
| used_frames = ref_frames_used[0] | ref_frames_used[2]; |
| if (used_frames) pc_tree->verticalb[0].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[1]; |
| if (used_frames) pc_tree->verticalb[1].skip_ref_frame_mask = ~used_frames; |
| used_frames = ref_frames_used[3]; |
| if (used_frames) pc_tree->verticalb[2].skip_ref_frame_mask = ~used_frames; |
| } |
| rd_test_partition3(cpi, td, tile_data, tp, pc_tree, &best_rdc, |
| pc_tree->verticalb, ctx_none, mi_row, mi_col, bsize, |
| PARTITION_VERT_B, mi_row, mi_col, subsize, mi_row, |
| mi_col + mi_step, bsize2, mi_row + mi_step, |
| mi_col + mi_step, bsize2); |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or |
| // PARTITION_VERT_4 for this block. This is almost the same as |
| // ext_partition_allowed, except that we don't allow 128x32 or 32x128 blocks, |
| // so we require that bsize is not BLOCK_128X128. |
| const int partition4_allowed = |
| ext_partition_allowed && bsize != BLOCK_128X128; |
| int partition_horz4_allowed = partition4_allowed && partition_horz_allowed; |
| int partition_vert4_allowed = partition4_allowed && partition_vert_allowed; |
| if (cpi->sf.prune_ext_partition_types_search_level == 2) { |
| partition_horz4_allowed &= (pc_tree->partitioning == PARTITION_HORZ || |
| pc_tree->partitioning == PARTITION_HORZ_A || |
| pc_tree->partitioning == PARTITION_HORZ_B || |
| pc_tree->partitioning == PARTITION_SPLIT || |
| pc_tree->partitioning == PARTITION_NONE); |
| partition_vert4_allowed &= (pc_tree->partitioning == PARTITION_VERT || |
| pc_tree->partitioning == PARTITION_VERT_A || |
| pc_tree->partitioning == PARTITION_VERT_B || |
| pc_tree->partitioning == PARTITION_SPLIT || |
| pc_tree->partitioning == PARTITION_NONE); |
| } |
| if (cpi->sf.ml_prune_4_partition && partition4_allowed && |
| partition_horz_allowed && partition_vert_allowed) { |
| ml_prune_4_partition(cpi, x, bsize, pc_tree->partitioning, best_rdc.rdcost, |
| horz_rd, vert_rd, split_rd, &partition_horz4_allowed, |
| &partition_vert4_allowed); |
| } |
| |
| // PARTITION_HORZ_4 |
| if (partition_horz4_allowed && has_rows && |
| (do_rectangular_split || active_h_edge(cpi, mi_row, mi_step))) { |
| av1_init_rd_stats(&sum_rdc); |
| const int quarter_step = mi_size_high[bsize] / 4; |
| PICK_MODE_CONTEXT *ctx_prev = ctx_none; |
| |
| subsize = get_partition_subsize(bsize, PARTITION_HORZ_4); |
| |
| for (int i = 0; i < 4; ++i) { |
| const int this_mi_row = mi_row + i * quarter_step; |
| |
| if (i > 0 && this_mi_row >= cm->mi_rows) break; |
| |
| PICK_MODE_CONTEXT *ctx_this = &pc_tree->horizontal4[i]; |
| |
| ctx_this->rd_mode_is_ready = 0; |
| ctx_this->skip_ref_frame_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| const uint8_t used_frames = |
| i <= 1 ? (ref_frames_used[0] | ref_frames_used[1]) |
| : (ref_frames_used[2] | ref_frames_used[3]); |
| if (used_frames) ctx_this->skip_ref_frame_mask = ~used_frames; |
| } |
| if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 0), (i == 3), |
| this_mi_row, mi_col, subsize, &best_rdc, &sum_rdc, |
| &this_rdc, PARTITION_HORZ_4, ctx_prev, ctx_this)) |
| break; |
| |
| ctx_prev = ctx_this; |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rate += partition_cost[PARTITION_HORZ_4]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_HORZ_4; |
| } |
| } |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| // PARTITION_VERT_4 |
| if (partition_vert4_allowed && has_cols && |
| (do_rectangular_split || active_v_edge(cpi, mi_row, mi_step))) { |
| av1_init_rd_stats(&sum_rdc); |
| const int quarter_step = mi_size_wide[bsize] / 4; |
| PICK_MODE_CONTEXT *ctx_prev = ctx_none; |
| |
| subsize = get_partition_subsize(bsize, PARTITION_VERT_4); |
| |
| for (int i = 0; i < 4; ++i) { |
| const int this_mi_col = mi_col + i * quarter_step; |
| |
| if (i > 0 && this_mi_col >= cm->mi_cols) break; |
| |
| PICK_MODE_CONTEXT *ctx_this = &pc_tree->vertical4[i]; |
| |
| ctx_this->rd_mode_is_ready = 0; |
| ctx_this->skip_ref_frame_mask = 0; |
| if (cpi->sf.prune_ref_frame_for_rect_partitions) { |
| const uint8_t used_frames = |
| i <= 1 ? (ref_frames_used[0] | ref_frames_used[2]) |
| : (ref_frames_used[1] | ref_frames_used[3]); |
| if (used_frames) ctx_this->skip_ref_frame_mask = ~used_frames; |
| } |
| if (!rd_try_subblock(cpi, td, tile_data, tp, (i == 0), (i == 3), mi_row, |
| this_mi_col, subsize, &best_rdc, &sum_rdc, &this_rdc, |
| PARTITION_VERT_4, ctx_prev, ctx_this)) |
| break; |
| |
| ctx_prev = ctx_this; |
| } |
| |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| sum_rdc.rate += partition_cost[PARTITION_VERT_4]; |
| sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); |
| if (sum_rdc.rdcost < best_rdc.rdcost) { |
| best_rdc = sum_rdc; |
| pc_tree->partitioning = PARTITION_VERT_4; |
| } |
| } |
| restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); |
| } |
| |
| if (bsize == cm->seq_params.sb_size && best_rdc.rate == INT_MAX) { |
| // Did not find a valid partition, go back and search again, with less |
| // constraint on which partition types to search. |
| x->must_find_valid_partition = 1; |
| goto BEGIN_PARTITION_SEARCH; |
| } |
| |
| // TODO(jbb): This code added so that we avoid static analysis |
| // warning related to the fact that best_rd isn't used after this |
| // point. This code should be refactored so that the duplicate |
| // checks occur in some sub function and thus are used... |
| (void)best_rd; |
| *rd_cost = best_rdc; |
| |
| if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX && |
| pc_tree->index != 3) { |
| if (bsize == cm->seq_params.sb_size) { |
| x->cb_offset = 0; |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, |
| pc_tree, NULL); |
| } else { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| } |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && best_rdc.rate < INT_MAX && |
| best_rdc.dist < INT64_MAX && bsize == BLOCK_4X4 && pc_tree->index == 3) { |
| encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, |
| pc_tree, NULL); |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| if (bsize == cm->seq_params.sb_size) { |
| assert(best_rdc.rate < INT_MAX); |
| assert(best_rdc.dist < INT64_MAX); |
| } else { |
| assert(tp_orig == *tp); |
| } |
| } |
| |
| // Set all the counters as max. |
| static void init_first_partition_pass_stats_tables( |
| FIRST_PARTITION_PASS_STATS *stats) { |
| for (int i = 0; i < FIRST_PARTITION_PASS_STATS_TABLES; ++i) { |
| memset(stats[i].ref0_counts, 0xff, sizeof(stats[i].ref0_counts)); |
| memset(stats[i].ref1_counts, 0xff, sizeof(stats[i].ref1_counts)); |
| stats[i].sample_counts = INT_MAX; |
| } |
| } |
| |
| // Minimum number of samples to trigger the |
| // mode_pruning_based_on_two_pass_partition_search feature. |
| #define FIRST_PARTITION_PASS_MIN_SAMPLES 16 |
| |
| static void encode_rd_sb_row(AV1_COMP *cpi, ThreadData *td, |
| TileDataEnc *tile_data, int mi_row, |
| TOKENEXTRA **tp) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const TileInfo *const tile_info = &tile_data->tile_info; |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| SPEED_FEATURES *const sf = &cpi->sf; |
| const int leaf_nodes = 256; |
| |
| // Initialize the left context for the new SB row |
| av1_zero_left_context(xd); |
| |
| // Reset delta for every tile |
| if (mi_row == tile_info->mi_row_start) { |
| if (cm->delta_q_present_flag) xd->current_qindex = cm->base_qindex; |
| if (cm->delta_lf_present_flag) { |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| } |
| } |
| |
| PC_TREE *const pc_root = |
| td->pc_root[cm->seq_params.mib_size_log2 - MIN_MIB_SIZE_LOG2]; |
| // Code each SB in the row |
| for (int mi_col = tile_info->mi_col_start; mi_col < tile_info->mi_col_end; |
| mi_col += cm->seq_params.mib_size) { |
| av1_fill_coeff_costs(&td->mb, xd->tile_ctx, num_planes); |
| av1_fill_mode_rates(cm, x, xd->tile_ctx); |
| |
| if (sf->adaptive_pred_interp_filter) { |
| for (int i = 0; i < leaf_nodes; ++i) { |
| td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; |
| } |
| } |
| |
| x->mb_rd_record.num = x->mb_rd_record.index_start = 0; |
| |
| av1_zero(x->txb_rd_record_8X8); |
| av1_zero(x->txb_rd_record_16X16); |
| av1_zero(x->txb_rd_record_32X32); |
| av1_zero(x->txb_rd_record_64X64); |
| av1_zero(x->txb_rd_record_intra); |
| |
| av1_zero(x->pred_mv); |
| pc_root->index = 0; |
| |
| const struct segmentation *const seg = &cm->seg; |
| int seg_skip = 0; |
| if (seg->enabled) { |
| const uint8_t *const map = |
| seg->update_map ? cpi->segmentation_map : cm->last_frame_seg_map; |
| const int segment_id = |
| map ? get_segment_id(cm, map, cm->seq_params.sb_size, mi_row, mi_col) |
| : 0; |
| seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP); |
| } |
| xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv; |
| |
| x->sb_energy_level = 0; |
| if (cm->delta_q_present_flag) { |
| // Delta-q modulation based on variance |
| av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes); |
| |
| int offset_qindex; |
| if (DELTAQ_MODULATION == 1) { |
| const int block_wavelet_energy_level = |
| av1_block_wavelet_energy_level(cpi, x, cm->seq_params.sb_size); |
| x->sb_energy_level = block_wavelet_energy_level; |
| offset_qindex = av1_compute_deltaq_from_energy_level( |
| cpi, block_wavelet_energy_level); |
| } else { |
| const int block_var_level = |
| av1_log_block_var(cpi, x, cm->seq_params.sb_size); |
| x->sb_energy_level = block_var_level; |
| offset_qindex = |
| av1_compute_deltaq_from_energy_level(cpi, block_var_level); |
| } |
| const int qmask = ~(cm->delta_q_res - 1); |
| int current_qindex = clamp(cm->base_qindex + offset_qindex, |
| cm->delta_q_res, 256 - cm->delta_q_res); |
| current_qindex = |
| ((current_qindex - cm->base_qindex + cm->delta_q_res / 2) & qmask) + |
| cm->base_qindex; |
| assert(current_qindex > 0); |
| |
| xd->delta_qindex = current_qindex - cm->base_qindex; |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); |
| xd->mi[0]->current_qindex = current_qindex; |
| av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id); |
| if (cpi->oxcf.deltaq_mode == DELTA_Q_LF) { |
| const int lfmask = ~(cm->delta_lf_res - 1); |
| const int delta_lf_from_base = |
| ((offset_qindex / 2 + cm->delta_lf_res / 2) & lfmask); |
| |
| // pre-set the delta lf for loop filter. Note that this value is set |
| // before mi is assigned for each block in current superblock |
| for (int j = 0; |
| j < AOMMIN(cm->seq_params.mib_size, cm->mi_rows - mi_row); j++) { |
| for (int k = 0; |
| k < AOMMIN(cm->seq_params.mib_size, cm->mi_cols - mi_col); k++) { |
| cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)] |
| .delta_lf_from_base = |
| clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| cm->mi[(mi_row + j) * cm->mi_stride + (mi_col + k)] |
| .delta_lf[lf_id] = |
| clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER); |
| } |
| } |
| } |
| } |
| } |
| |
| int dummy_rate; |
| int64_t dummy_dist; |
| RD_STATS dummy_rdc; |
| const int idx_str = cm->mi_stride * mi_row + mi_col; |
| MB_MODE_INFO **mi = cm->mi_grid_visible + idx_str; |
| x->source_variance = UINT_MAX; |
| if (sf->partition_search_type == FIXED_PARTITION || seg_skip) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); |
| const BLOCK_SIZE bsize = |
| seg_skip ? cm->seq_params.sb_size : sf->always_this_block_size; |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, |
| cm->seq_params.sb_size, &dummy_rate, &dummy_dist, 1, |
| pc_root); |
| } else if (cpi->partition_search_skippable_frame) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); |
| const BLOCK_SIZE bsize = |
| get_rd_var_based_fixed_partition(cpi, x, mi_row, mi_col); |
| set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize); |
| rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, |
| cm->seq_params.sb_size, &dummy_rate, &dummy_dist, 1, |
| pc_root); |
| } else { |
| // If required set upper and lower partition size limits |
| if (sf->auto_min_max_partition_size) { |
| set_offsets(cpi, tile_info, x, mi_row, mi_col, cm->seq_params.sb_size); |
| rd_auto_partition_range(cpi, tile_info, xd, mi_row, mi_col, |
| &x->min_partition_size, &x->max_partition_size); |
| } |
| |
| reset_partition(pc_root, cm->seq_params.sb_size); |
| x->use_cb_search_range = 0; |
| init_first_partition_pass_stats_tables(x->first_partition_pass_stats); |
| if (cpi->sf.two_pass_partition_search && |
| cpi->sf.use_square_partition_only_threshold > BLOCK_4X4 && |
| mi_row + mi_size_high[cm->seq_params.sb_size] < cm->mi_rows && |
| mi_col + mi_size_wide[cm->seq_params.sb_size] < cm->mi_cols && |
| cm->frame_type != KEY_FRAME) { |
| x->cb_partition_scan = 1; |
| // Reset the stats tables. |
| if (sf->mode_pruning_based_on_two_pass_partition_search) |
| av1_zero(x->first_partition_pass_stats); |
| rd_pick_sqr_partition(cpi, td, tile_data, tp, mi_row, mi_col, |
| cm->seq_params.sb_size, &dummy_rdc, INT64_MAX, |
| pc_root, NULL); |
| x->cb_partition_scan = 0; |
| |
| x->source_variance = UINT_MAX; |
| if (sf->adaptive_pred_interp_filter) { |
| for (int i = 0; i < leaf_nodes; ++i) { |
| td->pc_tree[i].vertical[0].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].vertical[1].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].horizontal[0].pred_interp_filter = SWITCHABLE; |
| td->pc_tree[i].horizontal[1].pred_interp_filter = SWITCHABLE; |
| } |
| } |
| |
| x->mb_rd_record.num = x->mb_rd_record.index_start = 0; |
| av1_zero(x->txb_rd_record_8X8); |
| av1_zero(x->txb_rd_record_16X16); |
| av1_zero(x->txb_rd_record_32X32); |
| av1_zero(x->txb_rd_record_64X64); |
| av1_zero(x->txb_rd_record_intra); |
| av1_zero(x->pred_mv); |
| pc_root->index = 0; |
| |
| for (int idy = 0; idy < mi_size_high[cm->seq_params.sb_size]; ++idy) { |
| for (int idx = 0; idx < mi_size_wide[cm->seq_params.sb_size]; ++idx) { |
| const int offset = cm->mi_stride * (mi_row + idy) + (mi_col + idx); |
| cm->mi_grid_visible[offset] = 0; |
| } |
| } |
| |
| x->use_cb_search_range = 1; |
| |
| if (sf->mode_pruning_based_on_two_pass_partition_search) { |
| for (int i = 0; i < FIRST_PARTITION_PASS_STATS_TABLES; ++i) { |
| FIRST_PARTITION_PASS_STATS *const stat = |
| &x->first_partition_pass_stats[i]; |
| if (stat->sample_counts < FIRST_PARTITION_PASS_MIN_SAMPLES) { |
| // If there are not enough samples collected, make all available. |
| memset(stat->ref0_counts, 0xff, sizeof(stat->ref0_counts)); |
| memset(stat->ref1_counts, 0xff, sizeof(stat->ref1_counts)); |
| } else if (sf->selective_ref_frame < 2) { |
| // ALTREF2_FRAME and BWDREF_FRAME may be skipped during the |
| // initial partition scan, so we don't eliminate them. |
| stat->ref0_counts[ALTREF2_FRAME] = 0xff; |
| stat->ref1_counts[ALTREF2_FRAME] = 0xff; |
| stat->ref0_counts[BWDREF_FRAME] = 0xff; |
| stat->ref1_counts[BWDREF_FRAME] = 0xff; |
| } |
| } |
| } |
| |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, |
| cm->seq_params.sb_size, &dummy_rdc, INT64_MAX, |
| pc_root, NULL); |
| } else { |
| rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, |
| cm->seq_params.sb_size, &dummy_rdc, INT64_MAX, |
| pc_root, NULL); |
| } |
| } |
| #if CONFIG_COLLECT_INTER_MODE_RD_STATS |
| // TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile. |
| if (cpi->sf.inter_mode_rd_model_estimation && cm->tile_cols == 1 && |
| cm->tile_rows == 1) { |
| av1_inter_mode_data_fit(x->rdmult); |
| } |
| #endif |
| } |
| } |
| |
| static void init_encode_frame_mb_context(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Copy data over into macro block data structures. |
| av1_setup_src_planes(x, cpi->source, 0, 0, num_planes); |
| |
| av1_setup_block_planes(xd, cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y, num_planes); |
| } |
| |
| static MV_REFERENCE_FRAME get_frame_type(const AV1_COMP *cpi) { |
| if (frame_is_intra_only(&cpi->common)) return INTRA_FRAME; |
| // We will not update the golden frame with an internal overlay frame |
| else if ((cpi->rc.is_src_frame_alt_ref && cpi->refresh_golden_frame) || |
| cpi->rc.is_src_frame_ext_arf) |
| return ALTREF_FRAME; |
| else if (cpi->refresh_golden_frame || cpi->refresh_alt2_ref_frame || |
| cpi->refresh_alt_ref_frame) |
| return GOLDEN_FRAME; |
| else |
| // TODO(zoeliu): To investigate whether a frame_type other than |
| // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. |
| return LAST_FRAME; |
| } |
| |
| static TX_MODE select_tx_mode(const AV1_COMP *cpi) { |
| if (cpi->common.coded_lossless) return ONLY_4X4; |
| if (cpi->sf.tx_size_search_method == USE_LARGESTALL) |
| return TX_MODE_LARGEST; |
| else if (cpi->sf.tx_size_search_method == USE_FULL_RD || |
| cpi->sf.tx_size_search_method == USE_FAST_RD) |
| return TX_MODE_SELECT; |
| else |
| return cpi->common.tx_mode; |
| } |
| |
| void av1_init_tile_data(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| int tile_col, tile_row; |
| TOKENEXTRA *pre_tok = cpi->tile_tok[0][0]; |
| unsigned int tile_tok = 0; |
| |
| if (cpi->tile_data == NULL || cpi->allocated_tiles < tile_cols * tile_rows) { |
| if (cpi->tile_data != NULL) aom_free(cpi->tile_data); |
| CHECK_MEM_ERROR( |
| cm, cpi->tile_data, |
| aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data))); |
| cpi->allocated_tiles = tile_cols * tile_rows; |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| int i, j; |
| for (i = 0; i < BLOCK_SIZES_ALL; ++i) { |
| for (j = 0; j < MAX_MODES; ++j) { |
| tile_data->thresh_freq_fact[i][j] = 32; |
| tile_data->mode_map[i][j] = j; |
| } |
| } |
| } |
| } |
| |
| for (tile_row = 0; tile_row < tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < tile_cols; ++tile_col) { |
| TileDataEnc *const tile_data = |
| &cpi->tile_data[tile_row * tile_cols + tile_col]; |
| TileInfo *const tile_info = &tile_data->tile_info; |
| av1_tile_init(tile_info, cm, tile_row, tile_col); |
| |
| cpi->tile_tok[tile_row][tile_col] = pre_tok + tile_tok; |
| pre_tok = cpi->tile_tok[tile_row][tile_col]; |
| tile_tok = allocated_tokens( |
| *tile_info, cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, num_planes); |
| tile_data->allow_update_cdf = !cm->large_scale_tile; |
| tile_data->allow_update_cdf = |
| tile_data->allow_update_cdf && !cm->disable_cdf_update; |
| } |
| } |
| } |
| |
| void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row, |
| int tile_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| TileDataEnc *const this_tile = |
| &cpi->tile_data[tile_row * cm->tile_cols + tile_col]; |
| const TileInfo *const tile_info = &this_tile->tile_info; |
| TOKENEXTRA *tok = cpi->tile_tok[tile_row][tile_col]; |
| int mi_row; |
| |
| av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start, |
| tile_info->mi_col_end, tile_row); |
| av1_init_above_context(cm, &td->mb.e_mbd, tile_row); |
| |
| // Set up pointers to per thread motion search counters. |
| this_tile->m_search_count = 0; // Count of motion search hits. |
| this_tile->ex_search_count = 0; // Exhaustive mesh search hits. |
| td->mb.m_search_count_ptr = &this_tile->m_search_count; |
| td->mb.ex_search_count_ptr = &this_tile->ex_search_count; |
| this_tile->tctx = *cm->fc; |
| td->mb.e_mbd.tile_ctx = &this_tile->tctx; |
| |
| cfl_init(&td->mb.e_mbd.cfl, &cm->seq_params); |
| |
| av1_crc32c_calculator_init(&td->mb.mb_rd_record.crc_calculator); |
| |
| td->intrabc_used_this_tile = 0; |
| |
| for (mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end; |
| mi_row += cm->seq_params.mib_size) { |
| encode_rd_sb_row(cpi, td, this_tile, mi_row, &tok); |
| } |
| |
| cpi->tok_count[tile_row][tile_col] = |
| (unsigned int)(tok - cpi->tile_tok[tile_row][tile_col]); |
| assert(cpi->tok_count[tile_row][tile_col] <= |
| allocated_tokens(*tile_info, |
| cm->seq_params.mib_size_log2 + MI_SIZE_LOG2, |
| av1_num_planes(cm))); |
| } |
| |
| static void encode_tiles(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| int tile_col, tile_row; |
| |
| av1_init_tile_data(cpi); |
| |
| for (tile_row = 0; tile_row < cm->tile_rows; ++tile_row) { |
| for (tile_col = 0; tile_col < cm->tile_cols; ++tile_col) { |
| av1_encode_tile(cpi, &cpi->td, tile_row, tile_col); |
| cpi->intrabc_used |= cpi->td.intrabc_used_this_tile; |
| } |
| } |
| } |
| |
| #if CONFIG_FP_MB_STATS |
| static int input_fpmb_stats(FIRSTPASS_MB_STATS *firstpass_mb_stats, |
| AV1_COMMON *cm, uint8_t **this_frame_mb_stats) { |
| uint8_t *mb_stats_in = firstpass_mb_stats->mb_stats_start + |
| cm->current_video_frame * cm->MBs * sizeof(uint8_t); |
| |
| if (mb_stats_in > firstpass_mb_stats->mb_stats_end) return EOF; |
| |
| *this_frame_mb_stats = mb_stats_in; |
| |
| return 1; |
| } |
| #endif |
| |
| #define GLOBAL_TRANS_TYPES_ENC 3 // highest motion model to search |
| static int gm_get_params_cost(const WarpedMotionParams *gm, |
| const WarpedMotionParams *ref_gm, int allow_hp) { |
| int params_cost = 0; |
| int trans_bits, trans_prec_diff; |
| switch (gm->wmtype) { |
| case AFFINE: |
| case ROTZOOM: |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), |
| (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF), |
| (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF)); |
| if (gm->wmtype >= AFFINE) { |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF), |
| (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS), |
| (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| } |
| AOM_FALLTHROUGH_INTENDED; |
| case TRANSLATION: |
| trans_bits = (gm->wmtype == TRANSLATION) |
| ? GM_ABS_TRANS_ONLY_BITS - !allow_hp |
| : GM_ABS_TRANS_BITS; |
| trans_prec_diff = (gm->wmtype == TRANSLATION) |
| ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp |
| : GM_TRANS_PREC_DIFF; |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[0] >> trans_prec_diff), |
| (gm->wmmat[0] >> trans_prec_diff)); |
| params_cost += aom_count_signed_primitive_refsubexpfin( |
| (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_gm->wmmat[1] >> trans_prec_diff), |
| (gm->wmmat[1] >> trans_prec_diff)); |
| AOM_FALLTHROUGH_INTENDED; |
| case IDENTITY: break; |
| default: assert(0); |
| } |
| return (params_cost << AV1_PROB_COST_SHIFT); |
| } |
| |
| static int do_gm_search_logic(SPEED_FEATURES *const sf, int num_refs_using_gm, |
| int frame) { |
| (void)num_refs_using_gm; |
| (void)frame; |
| switch (sf->gm_search_type) { |
| case GM_FULL_SEARCH: return 1; |
| case GM_REDUCED_REF_SEARCH: |
| return !(frame == LAST2_FRAME || frame == LAST3_FRAME); |
| case GM_DISABLE_SEARCH: return 0; |
| default: assert(0); |
| } |
| return 1; |
| } |
| |
| // Estimate if the source frame is screen content, based on the portion of |
| // blocks that have no more than 4 (experimentally selected) luma colors. |
| static int is_screen_content(const uint8_t *src, int use_hbd, int bd, |
| int stride, int width, int height) { |
| assert(src != NULL); |
| int counts = 0; |
| const int blk_w = 16; |
| const int blk_h = 16; |
| const int limit = 4; |
| for (int r = 0; r + blk_h <= height; r += blk_h) { |
| for (int c = 0; c + blk_w <= width; c += blk_w) { |
| int count_buf[1 << 12]; // Maximum (1 << 12) color levels. |
| const int n_colors = |
| use_hbd ? av1_count_colors_highbd(src + r * stride + c, stride, blk_w, |
| blk_h, bd, count_buf) |
| : av1_count_colors(src + r * stride + c, stride, blk_w, blk_h, |
| count_buf); |
| if (n_colors > 1 && n_colors <= limit) counts++; |
| } |
| } |
| // The threshold is 10%. |
| return counts * blk_h * blk_w * 10 > width * height; |
| } |
| |
| static const uint8_t ref_frame_flag_list[REF_FRAMES] = { 0, |
| AOM_LAST_FLAG, |
| AOM_LAST2_FLAG, |
| AOM_LAST3_FLAG, |
| AOM_GOLD_FLAG, |
| AOM_BWD_FLAG, |
| AOM_ALT2_FLAG, |
| AOM_ALT_FLAG }; |
| |
| // Enforce the number of references for each arbitrary frame limited to |
| // (INTER_REFS_PER_FRAME - 1) |
| static void enforce_max_ref_frames(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| MV_REFERENCE_FRAME ref_frame; |
| int total_valid_refs = 0; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| if (cpi->ref_frame_flags & ref_frame_flag_list[ref_frame]) |
| total_valid_refs++; |
| } |
| |
| // NOTE(zoeliu): When all the possible reference frames are availble, we |
| // reduce the number of reference frames by 1, following the rules of: |
| // (1) Retain GOLDEN_FARME/ALTEF_FRAME; |
| // (2) Check the earliest 2 remaining reference frames, and remove the one |
| // with the lower quality factor, otherwise if both have been coded at |
| // the same quality level, remove the earliest reference frame. |
| |
| if (total_valid_refs == INTER_REFS_PER_FRAME) { |
| unsigned int min_ref_offset = UINT_MAX; |
| unsigned int second_min_ref_offset = UINT_MAX; |
| MV_REFERENCE_FRAME earliest_ref_frames[2] = { LAST3_FRAME, LAST2_FRAME }; |
| int earliest_buf_idxes[2] = { 0 }; |
| |
| // Locate the earliest two reference frames except GOLDEN/ALTREF. |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| // Retain GOLDEN/ALTERF |
| if (ref_frame == GOLDEN_FRAME || ref_frame == ALTREF_FRAME) continue; |
| |
| const int buf_idx = cm->frame_refs[ref_frame - LAST_FRAME].idx; |
| if (buf_idx >= 0) { |
| const unsigned int ref_offset = |
| cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; |
| |
| if (min_ref_offset == UINT_MAX) { |
| min_ref_offset = ref_offset; |
| earliest_ref_frames[0] = ref_frame; |
| earliest_buf_idxes[0] = buf_idx; |
| } else { |
| if (get_relative_dist(cm, ref_offset, min_ref_offset) < 0) { |
| second_min_ref_offset = min_ref_offset; |
| earliest_ref_frames[1] = earliest_ref_frames[0]; |
| earliest_buf_idxes[1] = earliest_buf_idxes[0]; |
| |
| min_ref_offset = ref_offset; |
| earliest_ref_frames[0] = ref_frame; |
| earliest_buf_idxes[0] = buf_idx; |
| } else if (second_min_ref_offset == UINT_MAX || |
| get_relative_dist(cm, ref_offset, second_min_ref_offset) < |
| 0) { |
| second_min_ref_offset = ref_offset; |
| earliest_ref_frames[1] = ref_frame; |
| earliest_buf_idxes[1] = buf_idx; |
| } |
| } |
| } |
| } |
| // Check the coding quality factors of the two earliest reference frames. |
| RATE_FACTOR_LEVEL ref_rf_level[2]; |
| double ref_rf_deltas[2]; |
| for (int i = 0; i < 2; ++i) { |
| ref_rf_level[i] = cpi->frame_rf_level[earliest_buf_idxes[i]]; |
| ref_rf_deltas[i] = rate_factor_deltas[ref_rf_level[i]]; |
| } |
| (void)ref_rf_level; |
| (void)ref_rf_deltas; |
| |
| #define USE_RF_LEVEL_TO_ENFORCE 1 |
| #if USE_RF_LEVEL_TO_ENFORCE |
| // If both earliest two reference frames are coded using the same rate- |
| // factor, disable the earliest reference frame; Otherwise disable the |
| // reference frame that uses a lower rate-factor delta. |
| const MV_REFERENCE_FRAME ref_frame_to_disable = |
| (ref_rf_deltas[0] <= ref_rf_deltas[1]) ? earliest_ref_frames[0] |
| : earliest_ref_frames[1]; |
| #else |
| // Always disable the earliest reference frame |
| const MV_REFERENCE_FRAME ref_frame_to_disable = earliest_ref_frames[0]; |
| #endif // USE_RF_LEVEL_TO_ENFORCE |
| #undef USE_RF_LEVEL_TO_ENFORCE |
| |
| switch (ref_frame_to_disable) { |
| case LAST_FRAME: cpi->ref_frame_flags &= ~AOM_LAST_FLAG; break; |
| case LAST2_FRAME: cpi->ref_frame_flags &= ~AOM_LAST2_FLAG; break; |
| case LAST3_FRAME: cpi->ref_frame_flags &= ~AOM_LAST3_FLAG; break; |
| case BWDREF_FRAME: cpi->ref_frame_flags &= ~AOM_BWD_FLAG; break; |
| case ALTREF2_FRAME: cpi->ref_frame_flags &= ~AOM_ALT2_FLAG; break; |
| default: break; |
| } |
| } |
| } |
| |
| static INLINE int av1_refs_are_one_sided(const AV1_COMMON *cm) { |
| assert(!frame_is_intra_only(cm)); |
| |
| int one_sided_refs = 1; |
| for (int ref = 0; ref < INTER_REFS_PER_FRAME; ++ref) { |
| const int buf_idx = cm->frame_refs[ref].idx; |
| if (buf_idx == INVALID_IDX) continue; |
| |
| const int ref_offset = |
| cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; |
| if (get_relative_dist(cm, ref_offset, (int)cm->frame_offset) > 0) { |
| one_sided_refs = 0; // bwd reference |
| break; |
| } |
| } |
| return one_sided_refs; |
| } |
| |
| static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm, |
| int ref_offset[2]) { |
| ref_offset[0] = ref_offset[1] = 0; |
| if (!cm->is_skip_mode_allowed) return; |
| |
| const int buf_idx_0 = cm->frame_refs[cm->ref_frame_idx_0].idx; |
| const int buf_idx_1 = cm->frame_refs[cm->ref_frame_idx_1].idx; |
| assert(buf_idx_0 != INVALID_IDX && buf_idx_1 != INVALID_IDX); |
| |
| ref_offset[0] = cm->buffer_pool->frame_bufs[buf_idx_0].cur_frame_offset; |
| ref_offset[1] = cm->buffer_pool->frame_bufs[buf_idx_1].cur_frame_offset; |
| } |
| |
| static int check_skip_mode_enabled(AV1_COMP *const cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| |
| av1_setup_skip_mode_allowed(cm); |
| if (!cm->is_skip_mode_allowed) return 0; |
| |
| // Turn off skip mode if the temporal distances of the reference pair to the |
| // current frame are different by more than 1 frame. |
| const int cur_offset = (int)cm->frame_offset; |
| int ref_offset[2]; |
| get_skip_mode_ref_offsets(cm, ref_offset); |
| const int cur_to_ref0 = get_relative_dist(cm, cur_offset, ref_offset[0]); |
| const int cur_to_ref1 = abs(get_relative_dist(cm, cur_offset, ref_offset[1])); |
| if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0; |
| |
| // High Latency: Turn off skip mode if all refs are fwd. |
| if (cpi->all_one_sided_refs && cpi->oxcf.lag_in_frames > 0) return 0; |
| |
| static const int flag_list[REF_FRAMES] = { 0, |
| AOM_LAST_FLAG, |
| AOM_LAST2_FLAG, |
| AOM_LAST3_FLAG, |
| AOM_GOLD_FLAG, |
| AOM_BWD_FLAG, |
| AOM_ALT2_FLAG, |
| AOM_ALT_FLAG }; |
| const int ref_frame[2] = { cm->ref_frame_idx_0 + LAST_FRAME, |
| cm->ref_frame_idx_1 + LAST_FRAME }; |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) || |
| !(cpi->ref_frame_flags & flag_list[ref_frame[1]])) |
| return 0; |
| |
| return 1; |
| } |
| |
| // Function to decide if we can skip the global motion parameter computation |
| // for a particular ref frame |
| static INLINE int skip_gm_frame(AV1_COMMON *const cm, int ref_frame) { |
| if ((ref_frame == LAST3_FRAME || ref_frame == LAST2_FRAME) && |
| cm->global_motion[GOLDEN_FRAME].wmtype != IDENTITY) { |
| return get_relative_dist( |
| cm, cm->cur_frame->ref_frame_offset[ref_frame - LAST_FRAME], |
| cm->cur_frame->ref_frame_offset[GOLDEN_FRAME - LAST_FRAME]) <= 0; |
| } |
| return 0; |
| } |
| |
| static void set_default_interp_skip_flags(AV1_COMP *cpi) { |
| const int num_planes = av1_num_planes(&cpi->common); |
| cpi->default_interp_skip_flags = (num_planes == 1) |
| ? DEFAULT_LUMA_INTERP_SKIP_FLAG |
| : DEFAULT_INTERP_SKIP_FLAG; |
| } |
| |
| static void encode_frame_internal(AV1_COMP *cpi) { |
| ThreadData *const td = &cpi->td; |
| MACROBLOCK *const x = &td->mb; |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| int i; |
| |
| x->min_partition_size = AOMMIN(x->min_partition_size, cm->seq_params.sb_size); |
| x->max_partition_size = AOMMIN(x->max_partition_size, cm->seq_params.sb_size); |
| #if CONFIG_DIST_8X8 |
| x->using_dist_8x8 = cpi->oxcf.using_dist_8x8; |
| x->tune_metric = cpi->oxcf.tuning; |
| #endif |
| cm->setup_mi(cm); |
| |
| xd->mi = cm->mi_grid_visible; |
| xd->mi[0] = cm->mi; |
| |
| av1_zero(*td->counts); |
| av1_zero(rdc->comp_pred_diff); |
| |
| if (frame_is_intra_only(cm)) { |
| if (cm->seq_params.force_screen_content_tools == 2) { |
| cm->allow_screen_content_tools = |
| cpi->oxcf.content == AOM_CONTENT_SCREEN || |
| is_screen_content(cpi->source->y_buffer, |
| cpi->source->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| cpi->source->y_stride, cpi->source->y_width, |
| cpi->source->y_height); |
| } else { |
| cm->allow_screen_content_tools = |
| cm->seq_params.force_screen_content_tools; |
| } |
| } |
| |
| // Allow intrabc when screen content tools are enabled. |
| cm->allow_intrabc = cm->allow_screen_content_tools; |
| // Reset the flag. |
| cpi->intrabc_used = 0; |
| // Need to disable intrabc when superres is selected |
| if (av1_superres_scaled(cm)) { |
| cm->allow_intrabc = 0; |
| } |
| |
| if (cpi->oxcf.pass != 1 && av1_use_hash_me(cm)) { |
| // add to hash table |
| const int pic_width = cpi->source->y_crop_width; |
| const int pic_height = cpi->source->y_crop_height; |
| uint32_t *block_hash_values[2][2]; |
| int8_t *is_block_same[2][3]; |
| int k, j; |
| |
| for (k = 0; k < 2; k++) { |
| for (j = 0; j < 2; j++) { |
| CHECK_MEM_ERROR(cm, block_hash_values[k][j], |
| aom_malloc(sizeof(uint32_t) * pic_width * pic_height)); |
| } |
| |
| for (j = 0; j < 3; j++) { |
| CHECK_MEM_ERROR(cm, is_block_same[k][j], |
| aom_malloc(sizeof(int8_t) * pic_width * pic_height)); |
| } |
| } |
| |
| av1_hash_table_create(&cm->cur_frame->hash_table); |
| av1_generate_block_2x2_hash_value(cpi->source, block_hash_values[0], |
| is_block_same[0]); |
| av1_generate_block_hash_value(cpi->source, 4, block_hash_values[0], |
| block_hash_values[1], is_block_same[0], |
| is_block_same[1]); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], |
| pic_width, pic_height, 4); |
| av1_generate_block_hash_value(cpi->source, 8, block_hash_values[1], |
| block_hash_values[0], is_block_same[1], |
| is_block_same[0]); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], |
| pic_width, pic_height, 8); |
| av1_generate_block_hash_value(cpi->source, 16, block_hash_values[0], |
| block_hash_values[1], is_block_same[0], |
| is_block_same[1]); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], |
| pic_width, pic_height, 16); |
| av1_generate_block_hash_value(cpi->source, 32, block_hash_values[1], |
| block_hash_values[0], is_block_same[1], |
| is_block_same[0]); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], |
| pic_width, pic_height, 32); |
| av1_generate_block_hash_value(cpi->source, 64, block_hash_values[0], |
| block_hash_values[1], is_block_same[0], |
| is_block_same[1]); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[1], is_block_same[1][2], |
| pic_width, pic_height, 64); |
| |
| av1_generate_block_hash_value(cpi->source, 128, block_hash_values[1], |
| block_hash_values[0], is_block_same[1], |
| is_block_same[0]); |
| av1_add_to_hash_map_by_row_with_precal_data( |
| &cm->cur_frame->hash_table, block_hash_values[0], is_block_same[0][2], |
| pic_width, pic_height, 128); |
| |
| for (k = 0; k < 2; k++) { |
| for (j = 0; j < 2; j++) { |
| aom_free(block_hash_values[k][j]); |
| } |
| |
| for (j = 0; j < 3; j++) { |
| aom_free(is_block_same[k][j]); |
| } |
| } |
| } |
| |
| for (i = 0; i < MAX_SEGMENTS; ++i) { |
| const int qindex = cm->seg.enabled |
| ? av1_get_qindex(&cm->seg, i, cm->base_qindex) |
| : cm->base_qindex; |
| xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 && |
| cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 && |
| cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0; |
| if (xd->lossless[i]) cpi->has_lossless_segment = 1; |
| xd->qindex[i] = qindex; |
| if (xd->lossless[i]) { |
| cpi->optimize_seg_arr[i] = 0; |
| } else { |
| cpi->optimize_seg_arr[i] = cpi->optimize_speed_feature; |
| } |
| } |
| cm->coded_lossless = is_coded_lossless(cm, xd); |
| cm->all_lossless = cm->coded_lossless && !av1_superres_scaled(cm); |
| |
| cm->tx_mode = select_tx_mode(cpi); |
| |
| // Fix delta q resolution for the moment |
| cm->delta_q_res = DEFAULT_DELTA_Q_RES; |
| // Set delta_q_present_flag before it is used for the first time |
| cm->delta_lf_res = DEFAULT_DELTA_LF_RES; |
| cm->delta_q_present_flag = cpi->oxcf.deltaq_mode != NO_DELTA_Q; |
| cm->delta_lf_present_flag = cpi->oxcf.deltaq_mode == DELTA_Q_LF; |
| cm->delta_lf_multi = DEFAULT_DELTA_LF_MULTI; |
| // update delta_q_present_flag and delta_lf_present_flag based on base_qindex |
| cm->delta_q_present_flag &= cm->base_qindex > 0; |
| cm->delta_lf_present_flag &= cm->base_qindex > 0; |
| |
| av1_frame_init_quantizer(cpi); |
| |
| av1_initialize_rd_consts(cpi); |
| av1_initialize_me_consts(cpi, x, cm->base_qindex); |
| init_encode_frame_mb_context(cpi); |
| set_default_interp_skip_flags(cpi); |
| if (cm->prev_frame) |
| cm->last_frame_seg_map = cm->prev_frame->seg_map; |
| else |
| cm->last_frame_seg_map = NULL; |
| cm->current_frame_seg_map = cm->cur_frame->seg_map; |
| if (cm->allow_intrabc || cm->coded_lossless) { |
| av1_set_default_ref_deltas(cm->lf.ref_deltas); |
| av1_set_default_mode_deltas(cm->lf.mode_deltas); |
| } else if (cm->prev_frame) { |
| memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES); |
| memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS); |
| } |
| memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES); |
| memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS); |
| |
| // Special case: set prev_mi to NULL when the previous mode info |
| // context cannot be used. |
| cm->prev_mi = cm->allow_ref_frame_mvs ? cm->prev_mip : NULL; |
| |
| x->txb_split_count = 0; |
| |
| av1_zero(rdc->global_motion_used); |
| av1_zero(cpi->gmparams_cost); |
| if (cpi->common.frame_type == INTER_FRAME && cpi->source && |
| !cpi->global_motion_search_done) { |
| YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES]; |
| int frame; |
| double params_by_motion[RANSAC_NUM_MOTIONS * (MAX_PARAMDIM - 1)]; |
| const double *params_this_motion; |
| int inliers_by_motion[RANSAC_NUM_MOTIONS]; |
| WarpedMotionParams tmp_wm_params; |
| static const double kIdentityParams[MAX_PARAMDIM - 1] = { |
| 0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 0.0, 0.0 |
| }; |
| int num_refs_using_gm = 0; |
| |
| for (frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) { |
| ref_buf[frame] = get_ref_frame_buffer(cpi, frame); |
| int pframe; |
| cm->global_motion[frame] = default_warp_params; |
| const WarpedMotionParams *ref_params = |
| cm->prev_frame ? &cm->prev_frame->global_motion[frame] |
| : &default_warp_params; |
| // check for duplicate buffer |
| for (pframe = ALTREF_FRAME; pframe > frame; --pframe) { |
| if (ref_buf[frame] == ref_buf[pframe]) break; |
| } |
| if (pframe > frame) { |
| memcpy(&cm->global_motion[frame], &cm->global_motion[pframe], |
| sizeof(WarpedMotionParams)); |
| } else if (ref_buf[frame] && |
| ref_buf[frame]->y_crop_width == cpi->source->y_crop_width && |
| ref_buf[frame]->y_crop_height == cpi->source->y_crop_height && |
| do_gm_search_logic(&cpi->sf, num_refs_using_gm, frame) && |
| !(cpi->sf.selective_ref_gm && skip_gm_frame(cm, frame))) { |
| TransformationType model; |
| const int64_t ref_frame_error = |
| av1_frame_error(xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| ref_buf[frame]->y_buffer, ref_buf[frame]->y_stride, |
| cpi->source->y_buffer, cpi->source->y_width, |
| cpi->source->y_height, cpi->source->y_stride); |
| |
| if (ref_frame_error == 0) continue; |
| |
| aom_clear_system_state(); |
| for (model = ROTZOOM; model < GLOBAL_TRANS_TYPES_ENC; ++model) { |
| int64_t best_warp_error = INT64_MAX; |
| // Initially set all params to identity. |
| for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { |
| memcpy(params_by_motion + (MAX_PARAMDIM - 1) * i, kIdentityParams, |
| (MAX_PARAMDIM - 1) * sizeof(*params_by_motion)); |
| } |
| |
| compute_global_motion_feature_based( |
| model, cpi->source, ref_buf[frame], |
| cpi->common.seq_params.bit_depth, inliers_by_motion, |
| params_by_motion, RANSAC_NUM_MOTIONS); |
| |
| for (i = 0; i < RANSAC_NUM_MOTIONS; ++i) { |
| if (inliers_by_motion[i] == 0) continue; |
| |
| params_this_motion = params_by_motion + (MAX_PARAMDIM - 1) * i; |
| convert_model_to_params(params_this_motion, &tmp_wm_params); |
| |
| if (tmp_wm_params.wmtype != IDENTITY) { |
| const int64_t warp_error = refine_integerized_param( |
| &tmp_wm_params, tmp_wm_params.wmtype, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH, xd->bd, |
| ref_buf[frame]->y_buffer, ref_buf[frame]->y_width, |
| ref_buf[frame]->y_height, ref_buf[frame]->y_stride, |
| cpi->source->y_buffer, cpi->source->y_width, |
| cpi->source->y_height, cpi->source->y_stride, 5, |
| best_warp_error); |
| if (warp_error < best_warp_error) { |
| best_warp_error = warp_error; |
| // Save the wm_params modified by refine_integerized_param() |
| // rather than motion index to avoid rerunning refine() below. |
| memcpy(&(cm->global_motion[frame]), &tmp_wm_params, |
| sizeof(WarpedMotionParams)); |
| } |
| } |
| } |
| if (cm->global_motion[frame].wmtype <= AFFINE) |
| if (!get_shear_params(&cm->global_motion[frame])) |
| cm->global_motion[frame] = default_warp_params; |
| |
| if (cm->global_motion[frame].wmtype == TRANSLATION) { |
| cm->global_motion[frame].wmmat[0] = |
| convert_to_trans_prec(cm->allow_high_precision_mv, |
| cm->global_motion[frame].wmmat[0]) * |
| GM_TRANS_ONLY_DECODE_FACTOR; |
| cm->global_motion[frame].wmmat[1] = |
| convert_to_trans_prec(cm->allow_high_precision_mv, |
| cm->global_motion[frame].wmmat[1]) * |
| GM_TRANS_ONLY_DECODE_FACTOR; |
| } |
| |
| // If the best error advantage found doesn't meet the threshold for |
| // this motion type, revert to IDENTITY. |
| if (!is_enough_erroradvantage( |
| (double)best_warp_error / ref_frame_error, |
| gm_get_params_cost(&cm->global_motion[frame], ref_params, |
| cm->allow_high_precision_mv), |
| cpi->sf.gm_erroradv_type)) { |
| cm->global_motion[frame] = default_warp_params; |
| } |
| if (cm->global_motion[frame].wmtype != IDENTITY) break; |
| } |
| aom_clear_system_state(); |
| } |
| if (cm->global_motion[frame].wmtype != IDENTITY) num_refs_using_gm++; |
| cpi->gmparams_cost[frame] = |
| gm_get_params_cost(&cm->global_motion[frame], ref_params, |
| cm->allow_high_precision_mv) + |
| cpi->gmtype_cost[cm->global_motion[frame].wmtype] - |
| cpi->gmtype_cost[IDENTITY]; |
| } |
| // clear disabled ref_frames |
| for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { |
| const int ref_disabled = |
| !(cpi->ref_frame_flags & ref_frame_flag_list[frame]); |
| if (ref_disabled && cpi->sf.recode_loop != DISALLOW_RECODE) { |
| cpi->gmparams_cost[frame] = 0; |
| cm->global_motion[frame] = default_warp_params; |
| } |
| } |
| cpi->global_motion_search_done = 1; |
| } |
| memcpy(cm->cur_frame->global_motion, cm->global_motion, |
| REF_FRAMES * sizeof(WarpedMotionParams)); |
| |
| av1_setup_motion_field(cm); |
| |
| cpi->all_one_sided_refs = |
| frame_is_intra_only(cm) ? 0 : av1_refs_are_one_sided(cm); |
| |
| cm->skip_mode_flag = check_skip_mode_enabled(cpi); |
| |
| { |
| struct aom_usec_timer emr_timer; |
| aom_usec_timer_start(&emr_timer); |
| |
| #if CONFIG_FP_MB_STATS |
| if (cpi->use_fp_mb_stats) { |
| input_fpmb_stats(&cpi->twopass.firstpass_mb_stats, cm, |
| &cpi->twopass.this_frame_mb_stats); |
| } |
| #endif |
| |
| #if CONFIG_COLLECT_INTER_MODE_RD_STATS |
| av1_inter_mode_data_init(); |
| #endif |
| |
| if (AOMMIN(cpi->oxcf.max_threads, cm->tile_cols * cm->tile_rows) > 1) |
| av1_encode_tiles_mt(cpi); |
| else |
| encode_tiles(cpi); |
| |
| aom_usec_timer_mark(&emr_timer); |
| cpi->time_encode_sb_row += aom_usec_timer_elapsed(&emr_timer); |
| } |
| |
| // If intrabc is allowed but never selected, reset the allow_intrabc flag. |
| if (cm->allow_intrabc && !cpi->intrabc_used) cm->allow_intrabc = 0; |
| if (cm->allow_intrabc) cm->delta_lf_present_flag = 0; |
| } |
| |
| void av1_encode_frame(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| // Indicates whether or not to use a default reduced set for ext-tx |
| // rather than the potential full set of 16 transforms |
| cm->reduced_tx_set_used = 0; |
| |
| if (cm->show_frame == 0) { |
| int arf_offset = AOMMIN( |
| (MAX_GF_INTERVAL - 1), |
| cpi->twopass.gf_group.arf_src_offset[cpi->twopass.gf_group.index]); |
| int brf_offset = |
| cpi->twopass.gf_group.brf_src_offset[cpi->twopass.gf_group.index]; |
| arf_offset = AOMMIN((MAX_GF_INTERVAL - 1), arf_offset + brf_offset); |
| cm->frame_offset = cm->current_video_frame + arf_offset; |
| } else { |
| cm->frame_offset = cm->current_video_frame; |
| } |
| cm->frame_offset %= (1 << (cm->seq_params.order_hint_bits_minus_1 + 1)); |
| |
| // Make sure segment_id is no larger than last_active_segid. |
| if (cm->seg.enabled && cm->seg.update_map) { |
| const int mi_rows = cm->mi_rows; |
| const int mi_cols = cm->mi_cols; |
| const int last_active_segid = cm->seg.last_active_segid; |
| uint8_t *map = cpi->segmentation_map; |
| for (int mi_row = 0; mi_row < mi_rows; ++mi_row) { |
| for (int mi_col = 0; mi_col < mi_cols; ++mi_col) { |
| map[mi_col] = AOMMIN(map[mi_col], last_active_segid); |
| } |
| map += mi_cols; |
| } |
| } |
| |
| av1_setup_frame_buf_refs(cm); |
| if (cpi->sf.selective_ref_frame >= 2) enforce_max_ref_frames(cpi); |
| av1_setup_frame_sign_bias(cm); |
| |
| #if CONFIG_MISMATCH_DEBUG |
| mismatch_reset_frame(num_planes); |
| #else |
| (void)num_planes; |
| #endif |
| |
| cpi->allow_comp_inter_inter = !frame_is_intra_only(cm); |
| |
| if (cpi->sf.frame_parameter_update) { |
| int i; |
| RD_OPT *const rd_opt = &cpi->rd; |
| RD_COUNTS *const rdc = &cpi->td.rd_counts; |
| |
| // This code does a single RD pass over the whole frame assuming |
| // either compound, single or hybrid prediction as per whatever has |
| // worked best for that type of frame in the past. |
| // It also predicts whether another coding mode would have worked |
| // better than this coding mode. If that is the case, it remembers |
| // that for subsequent frames. |
| // It does the same analysis for transform size selection also. |
| // |
| // TODO(zoeliu): To investigate whether a frame_type other than |
| // INTRA/ALTREF/GOLDEN/LAST needs to be specified seperately. |
| const MV_REFERENCE_FRAME frame_type = get_frame_type(cpi); |
| int64_t *const mode_thrs = rd_opt->prediction_type_threshes[frame_type]; |
| const int is_alt_ref = frame_type == ALTREF_FRAME; |
| |
| /* prediction (compound, single or hybrid) mode selection */ |
| // NOTE: "is_alt_ref" is true only for OVERLAY/INTNL_OVERLAY frames |
| if (is_alt_ref || !cpi->allow_comp_inter_inter) |
| cm->reference_mode = SINGLE_REFERENCE; |
| else |
| cm->reference_mode = REFERENCE_MODE_SELECT; |
| |
| cm->interp_filter = SWITCHABLE; |
| if (cm->large_scale_tile) cm->interp_filter = EIGHTTAP_REGULAR; |
| |
| cm->switchable_motion_mode = 1; |
| |
| rdc->compound_ref_used_flag = 0; |
| rdc->skip_mode_used_flag = 0; |
| |
| encode_frame_internal(cpi); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| mode_thrs[i] = (mode_thrs[i] + rdc->comp_pred_diff[i] / cm->MBs) / 2; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| // Use a flag that includes 4x4 blocks |
| if (rdc->compound_ref_used_flag == 0) { |
| cm->reference_mode = SINGLE_REFERENCE; |
| #if CONFIG_ENTROPY_STATS |
| av1_zero(cpi->td.counts->comp_inter); |
| #endif // CONFIG_ENTROPY_STATS |
| } |
| } |
| // Re-check on the skip mode status as reference mode may have been changed. |
| if (frame_is_intra_only(cm) || cm->reference_mode == SINGLE_REFERENCE) { |
| cm->is_skip_mode_allowed = 0; |
| cm->skip_mode_flag = 0; |
| } |
| if (cm->skip_mode_flag && rdc->skip_mode_used_flag == 0) |
| cm->skip_mode_flag = 0; |
| |
| if (!cm->large_scale_tile) { |
| if (cm->tx_mode == TX_MODE_SELECT && cpi->td.mb.txb_split_count == 0) |
| cm->tx_mode = TX_MODE_LARGEST; |
| } |
| } else { |
| encode_frame_internal(cpi); |
| } |
| } |
| |
| static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, |
| FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, |
| int blk_row, int blk_col, |
| uint8_t allow_update_cdf) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, |
| mbmi->sb_type, tx_size); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| assert(tx_size > TX_4X4); |
| |
| if (depth == MAX_VARTX_DEPTH) { |
| // Don't add to counts in this case |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| |
| if (tx_size == plane_tx_size) { |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][0]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| #if CONFIG_ENTROPY_STATS |
| ++counts->txfm_partition[ctx][1]; |
| #endif |
| if (allow_update_cdf) |
| update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); |
| ++x->txb_split_count; |
| |
| if (sub_txs == TX_4X4) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = row; |
| int offsetc = col; |
| |
| update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, |
| blk_col + offsetc, allow_update_cdf); |
| } |
| } |
| } |
| } |
| |
| static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, |
| BLOCK_SIZE plane_bsize, int mi_row, |
| int mi_col, FRAME_COUNTS *td_counts, |
| uint8_t allow_update_cdf) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| int idx, idy; |
| |
| xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| for (idy = 0; idy < mi_height; idy += bh) |
| for (idx = 0; idx < mi_width; idx += bw) |
| update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, |
| allow_update_cdf); |
| } |
| |
| static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, |
| int blk_col) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); |
| const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (tx_size == plane_tx_size) { |
| mbmi->tx_size = tx_size; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| |
| } else { |
| if (tx_size == TX_8X8) { |
| mbmi->inter_tx_size[txb_size_index] = TX_4X4; |
| mbmi->tx_size = TX_4X4; |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, TX_4X4, tx_size); |
| return; |
| } |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| set_txfm_context(xd, sub_txs, offsetr, offsetc); |
| } |
| } |
| } |
| } |
| |
| static void tx_partition_set_contexts(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, BLOCK_SIZE plane_bsize, |
| int mi_row, int mi_col) { |
| const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int mi_height = block_size_high[plane_bsize] >> tx_size_high_log2[0]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| int idx, idy; |
| |
| xd->above_txfm_context = cm->above_txfm_context[xd->tile.tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| for (idy = 0; idy < mi_height; idy += bh) |
| for (idx = 0; idx < mi_width; idx += bw) |
| set_txfm_context(xd, max_tx_size, idy, idx); |
| } |
| |
| static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, |
| ThreadData *td, TOKENEXTRA **t, RUN_TYPE dry_run, |
| int mi_row, int mi_col, BLOCK_SIZE bsize, |
| int *rate) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCK *const x = &td->mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO **mi_4x4 = xd->mi; |
| MB_MODE_INFO *mbmi = mi_4x4[0]; |
| const int seg_skip = |
| segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); |
| const int mis = cm->mi_stride; |
| const int mi_width = mi_size_wide[bsize]; |
| const int mi_height = mi_size_high[bsize]; |
| const int is_inter = is_inter_block(mbmi); |
| |
| if (cpi->sf.mode_pruning_based_on_two_pass_partition_search && |
| x->cb_partition_scan) { |
| for (int row = mi_row; row < mi_row + mi_width; |
| row += FIRST_PARTITION_PASS_SAMPLE_REGION) { |
| for (int col = mi_col; col < mi_col + mi_height; |
| col += FIRST_PARTITION_PASS_SAMPLE_REGION) { |
| const int index = av1_first_partition_pass_stats_index(row, col); |
| FIRST_PARTITION_PASS_STATS *const stats = |
| &x->first_partition_pass_stats[index]; |
| // Increase the counter of data samples. |
| ++stats->sample_counts; |
| // Increase the counter for ref_frame[0] and ref_frame[1]. |
| if (stats->ref0_counts[mbmi->ref_frame[0]] < 255) |
| ++stats->ref0_counts[mbmi->ref_frame[0]]; |
| if (mbmi->ref_frame[1] >= 0 && |
| stats->ref1_counts[mbmi->ref_frame[0]] < 255) |
| ++stats->ref1_counts[mbmi->ref_frame[1]]; |
| } |
| } |
| } |
| |
| if (!is_inter) { |
| xd->cfl.is_chroma_reference = |
| is_chroma_reference(mi_row, mi_col, bsize, cm->seq_params.subsampling_x, |
| cm->seq_params.subsampling_y); |
| xd->cfl.store_y = store_cfl_required(cm, xd); |
| mbmi->skip = 1; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| av1_encode_intra_block_plane(cpi, x, bsize, plane, |
| cpi->optimize_seg_arr[mbmi->segment_id], |
| mi_row, mi_col); |
| } |
| |
| // If there is at least one lossless segment, force the skip for intra |
| // block to be 0, in order to avoid the segment_id to be changed by in |
| // write_segment_id(). |
| if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && |
| cpi->has_lossless_segment) |
| mbmi->skip = 0; |
| |
| xd->cfl.store_y = 0; |
| if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) { |
| for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) { |
| if (mbmi->palette_mode_info.palette_size[plane] > 0) { |
| if (!dry_run) { |
| av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, |
| PALETTE_MAP, tile_data->allow_update_cdf, |
| td->counts); |
| } else if (dry_run == DRY_RUN_COSTCOEFFS) { |
| rate += |
| av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); |
| } |
| } |
| } |
| } |
| |
| av1_update_txb_context(cpi, td, dry_run, bsize, rate, mi_row, mi_col, |
| tile_data->allow_update_cdf); |
| } else { |
| int ref; |
| const int is_compound = has_second_ref(mbmi); |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, mbmi->ref_frame[ref]); |
| assert(IMPLIES(!is_intrabc_block(mbmi), cfg)); |
| av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, |
| &xd->block_refs[ref]->sf, num_planes); |
| } |
| |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); |
| if (mbmi->motion_mode == OBMC_CAUSAL) |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| |
| #if CONFIG_MISMATCH_DEBUG |
| if (dry_run == OUTPUT_ENABLED) { |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblockd_plane *pd = &xd->plane[plane]; |
| int pixel_c, pixel_r; |
| mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, |
| pd->subsampling_x, pd->subsampling_y); |
| if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, |
| pd->subsampling_y)) |
| continue; |
| mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, cm->frame_offset, |
| plane, pixel_c, pixel_r, pd->width, |
| pd->height, |
| xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); |
| } |
| } |
| #else |
| (void)num_planes; |
| #endif |
| |
| av1_encode_sb(cpi, x, bsize, mi_row, mi_col, dry_run); |
| av1_tokenize_sb_vartx(cpi, td, t, dry_run, mi_row, mi_col, bsize, rate, |
| tile_data->allow_update_cdf); |
| } |
| |
| if (!dry_run) { |
| if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) |
| td->intrabc_used_this_tile = 1; |
| if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id] && |
| mbmi->sb_type > BLOCK_4X4 && !(is_inter && (mbmi->skip || seg_skip))) { |
| if (is_inter) { |
| tx_partition_count_update(cm, x, bsize, mi_row, mi_col, td->counts, |
| tile_data->allow_update_cdf); |
| } else { |
| if (mbmi->tx_size != max_txsize_rect_lookup[bsize]) |
| ++x->txb_split_count; |
| if (block_signals_txsize(bsize)) { |
| const int tx_size_ctx = get_tx_size_context(xd); |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| const int depth = tx_size_to_depth(mbmi->tx_size, bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| |
| if (tile_data->allow_update_cdf) |
| update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], |
| depth, max_depths + 1); |
| #if CONFIG_ENTROPY_STATS |
| ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; |
| #endif |
| } |
| } |
| assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); |
| } else { |
| int i, j; |
| TX_SIZE intra_tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| intra_tx_size = TX_4X4; |
| } else { |
| intra_tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); |
| } |
| } else { |
| intra_tx_size = mbmi->tx_size; |
| } |
| |
| for (j = 0; j < mi_height; j++) |
| for (i = 0; i < mi_width; i++) |
| if (mi_col + i < cm->mi_cols && mi_row + j < cm->mi_rows) |
| mi_4x4[mis * j + i]->tx_size = intra_tx_size; |
| |
| if (intra_tx_size != max_txsize_rect_lookup[bsize]) ++x->txb_split_count; |
| } |
| } |
| |
| if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type) && |
| is_inter && !(mbmi->skip || seg_skip) && |
| !xd->lossless[mbmi->segment_id]) { |
| if (dry_run) tx_partition_set_contexts(cm, xd, bsize, mi_row, mi_col); |
| } else { |
| TX_SIZE tx_size = mbmi->tx_size; |
| // The new intra coding scheme requires no change of transform size |
| if (is_inter) { |
| if (xd->lossless[mbmi->segment_id]) { |
| tx_size = TX_4X4; |
| } else { |
| tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); |
| } |
| } else { |
| tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; |
| } |
| mbmi->tx_size = tx_size; |
| set_txfm_ctxs(tx_size, xd->n8_w, xd->n8_h, |
| (mbmi->skip || seg_skip) && is_inter_block(mbmi), xd); |
| } |
| CFL_CTX *const cfl = &xd->cfl; |
| if (is_inter_block(mbmi) && |
| !is_chroma_reference(mi_row, mi_col, bsize, cfl->subsampling_x, |
| cfl->subsampling_y) && |
| is_cfl_allowed(xd)) { |
| cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size); |
| } |
| } |