blob: 2284ce524c9b94da60ac7eb733d8eb927da3cd9f [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <climits>
#include <vector>
#include "config/aom_config.h"
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "test/codec_factory.h"
#include "test/datarate_test.h"
#include "test/encode_test_driver.h"
#include "test/i420_video_source.h"
#include "test/util.h"
#include "test/y4m_video_source.h"
#include "aom/aom_codec.h"
#include "av1/common/enums.h"
#include "av1/encoder/encoder.h"
namespace datarate_test {
namespace {
struct FrameInfo {
FrameInfo(aom_codec_pts_t _pts, unsigned int _w, unsigned int _h)
: pts(_pts), w(_w), h(_h) {}
aom_codec_pts_t pts;
unsigned int w;
unsigned int h;
};
class DatarateTestSVC
: public ::libaom_test::CodecTestWith4Params<libaom_test::TestMode, int,
unsigned int, int>,
public DatarateTest {
public:
DatarateTestSVC() : DatarateTest(GET_PARAM(0)) {
set_cpu_used_ = GET_PARAM(2);
aq_mode_ = GET_PARAM(3);
}
protected:
void SetUp() override {
InitializeConfig(GET_PARAM(1));
ResetModel();
}
void DecompressedFrameHook(const aom_image_t &img,
aom_codec_pts_t pts) override {
frame_info_list_.push_back(FrameInfo(pts, img.d_w, img.d_h));
++decoded_nframes_;
}
std::vector<FrameInfo> frame_info_list_;
int GetNumSpatialLayers() override { return number_spatial_layers_; }
void ResetModel() override {
DatarateTest::ResetModel();
layer_frame_cnt_ = 0;
superframe_cnt_ = 0;
number_temporal_layers_ = 1;
number_spatial_layers_ = 1;
for (int i = 0; i < AOM_MAX_LAYERS; i++) {
target_layer_bitrate_[i] = 0;
effective_datarate_tl[i] = 0.0;
}
memset(&layer_id_, 0, sizeof(aom_svc_layer_id_t));
memset(&svc_params_, 0, sizeof(aom_svc_params_t));
memset(&ref_frame_config_, 0, sizeof(aom_svc_ref_frame_config_t));
memset(&ref_frame_comp_pred_, 0, sizeof(aom_svc_ref_frame_comp_pred_t));
drop_frames_ = 0;
for (int i = 0; i < 1000; i++) drop_frames_list_[i] = 1000;
decoded_nframes_ = 0;
mismatch_nframes_ = 0;
mismatch_psnr_ = 0.0;
set_frame_level_er_ = 0;
multi_ref_ = 0;
use_fixed_mode_svc_ = 0;
comp_pred_ = 0;
dynamic_enable_disable_mode_ = 0;
intra_only_ = 0;
frame_to_start_decoding_ = 0;
layer_to_decode_ = 0;
frame_sync_ = 0;
current_video_frame_ = 0;
screen_mode_ = 0;
rps_mode_ = 0;
rps_recovery_frame_ = 0;
user_define_frame_qp_ = 0;
set_speed_per_layer_ = false;
simulcast_mode_ = false;
}
void PreEncodeFrameHook(::libaom_test::VideoSource *video,
::libaom_test::Encoder *encoder) override {
int spatial_layer_id = 0;
current_video_frame_ = video->frame();
// video->frame() is called every superframe, so we should condition
// this on layer_frame_cnt_ = 0, so we only do this once on the very
// first frame.
if (video->frame() == 0 && layer_frame_cnt_ == 0) {
initialize_svc(number_temporal_layers_, number_spatial_layers_,
&svc_params_);
if (dynamic_enable_disable_mode_ == 1) {
svc_params_.layer_target_bitrate[2] = 0;
cfg_.rc_target_bitrate -= target_layer_bitrate_[2];
}
encoder->Control(AV1E_SET_SVC_PARAMS, &svc_params_);
// TODO(aomedia:3032): Configure KSVC in fixed mode.
encoder->Control(AV1E_SET_ENABLE_ORDER_HINT, 0);
encoder->Control(AV1E_SET_ENABLE_TPL_MODEL, 0);
encoder->Control(AV1E_SET_DELTAQ_MODE, 0);
if (cfg_.g_threads > 1) {
encoder->Control(AV1E_SET_TILE_COLUMNS, tile_columns_);
encoder->Control(AV1E_SET_TILE_ROWS, tile_rows_);
encoder->Control(AV1E_SET_ROW_MT, 1);
}
if (screen_mode_) {
encoder->Control(AV1E_SET_TUNE_CONTENT, AOM_CONTENT_SCREEN);
}
}
if (number_spatial_layers_ == 2) {
spatial_layer_id = (layer_frame_cnt_ % 2 == 0) ? 0 : 1;
} else if (number_spatial_layers_ == 3) {
spatial_layer_id = (layer_frame_cnt_ % 3 == 0) ? 0
: ((layer_frame_cnt_ - 1) % 3 == 0) ? 1
: 2;
}
// Set the reference/update flags, layer_id, and reference_map
// buffer index.
frame_flags_ = set_layer_pattern(
video->frame(), &layer_id_, &ref_frame_config_, &ref_frame_comp_pred_,
spatial_layer_id, multi_ref_, comp_pred_,
(video->frame() % cfg_.kf_max_dist) == 0, dynamic_enable_disable_mode_,
rps_mode_, rps_recovery_frame_, simulcast_mode_);
if (intra_only_ == 1 && frame_sync_ > 0) {
// Set an Intra-only frame on SL0 at frame_sync_.
// In order to allow decoding to start on SL0 in mid-sequence we need to
// set and refresh all the slots used on SL0 stream, which is 0 and 3
// for this test pattern. The other slots (1, 2, 4, 5) are used for the
// SL > 0 layers and these slotes are not refreshed on frame_sync_, so
// temporal prediction for the top layers can continue.
if (spatial_layer_id == 0 && video->frame() == frame_sync_) {
ref_frame_config_.ref_idx[0] = 0;
ref_frame_config_.ref_idx[3] = 3;
ref_frame_config_.refresh[0] = 1;
ref_frame_config_.refresh[3] = 1;
for (int i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config_.reference[i] = 0;
}
}
if (intra_only_ && video->frame() == 50 && spatial_layer_id == 1) {
// Force an intra_only frame here, for SL1.
for (int i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config_.reference[i] = 0;
}
encoder->Control(AV1E_SET_SVC_LAYER_ID, &layer_id_);
// The SET_SVC_REF_FRAME_CONFIG and AV1E_SET_SVC_REF_FRAME_COMP_PRED api is
// for the flexible SVC mode (i.e., use_fixed_mode_svc == 0).
if (!use_fixed_mode_svc_) {
encoder->Control(AV1E_SET_SVC_REF_FRAME_CONFIG, &ref_frame_config_);
encoder->Control(AV1E_SET_SVC_REF_FRAME_COMP_PRED, &ref_frame_comp_pred_);
}
if (set_speed_per_layer_) {
int speed_per_layer = 10;
if (layer_id_.spatial_layer_id == 0) {
// For for base SL0,TL0: use the speed the test loops over.
if (layer_id_.temporal_layer_id == 1) speed_per_layer = 7;
if (layer_id_.temporal_layer_id == 2) speed_per_layer = 8;
} else if (layer_id_.spatial_layer_id == 1) {
if (layer_id_.temporal_layer_id == 0) speed_per_layer = 7;
if (layer_id_.temporal_layer_id == 1) speed_per_layer = 8;
if (layer_id_.temporal_layer_id == 2) speed_per_layer = 9;
} else if (layer_id_.spatial_layer_id == 2) {
if (layer_id_.temporal_layer_id == 0) speed_per_layer = 8;
if (layer_id_.temporal_layer_id == 1) speed_per_layer = 9;
if (layer_id_.temporal_layer_id == 2) speed_per_layer = 10;
}
encoder->Control(AOME_SET_CPUUSED, speed_per_layer);
}
if (set_frame_level_er_) {
int mode =
(layer_id_.spatial_layer_id > 0 || layer_id_.temporal_layer_id > 0);
encoder->Control(AV1E_SET_ERROR_RESILIENT_MODE, mode);
}
if (dynamic_enable_disable_mode_ == 1) {
if (layer_frame_cnt_ == 300 && spatial_layer_id == 0) {
// Enable: set top spatial layer bitrate back to non-zero.
svc_params_.layer_target_bitrate[2] = target_layer_bitrate_[2];
cfg_.rc_target_bitrate += target_layer_bitrate_[2];
encoder->Config(&cfg_);
encoder->Control(AV1E_SET_SVC_PARAMS, &svc_params_);
}
} else if (dynamic_enable_disable_mode_ == 2) {
if (layer_frame_cnt_ == 300 && spatial_layer_id == 0) {
// Disable top spatial layer mid-stream.
svc_params_.layer_target_bitrate[2] = 0;
cfg_.rc_target_bitrate -= target_layer_bitrate_[2];
encoder->Config(&cfg_);
encoder->Control(AV1E_SET_SVC_PARAMS, &svc_params_);
} else if (layer_frame_cnt_ == 600 && spatial_layer_id == 0) {
// Enable top spatial layer mid-stream.
svc_params_.layer_target_bitrate[2] = target_layer_bitrate_[2];
cfg_.rc_target_bitrate += target_layer_bitrate_[2];
encoder->Config(&cfg_);
encoder->Control(AV1E_SET_SVC_PARAMS, &svc_params_);
}
}
layer_frame_cnt_++;
DatarateTest::PreEncodeFrameHook(video, encoder);
if (user_define_frame_qp_) {
frame_qp_ = rnd_.PseudoUniform(63);
encoder->Control(AV1E_SET_QUANTIZER_ONE_PASS, frame_qp_);
}
}
void PostEncodeFrameHook(::libaom_test::Encoder *encoder) override {
int num_operating_points;
encoder->Control(AV1E_GET_NUM_OPERATING_POINTS, &num_operating_points);
ASSERT_EQ(num_operating_points,
number_temporal_layers_ * number_spatial_layers_);
if (user_define_frame_qp_) {
if (current_video_frame_ >= static_cast<unsigned int>(total_frame_))
return;
int qp;
encoder->Control(AOME_GET_LAST_QUANTIZER_64, &qp);
ASSERT_EQ(qp, frame_qp_);
}
}
void FramePktHook(const aom_codec_cx_pkt_t *pkt) override {
const size_t frame_size_in_bits = pkt->data.frame.sz * 8;
// Update the layer cumulative bitrate.
for (int i = layer_id_.temporal_layer_id; i < number_temporal_layers_;
i++) {
int layer = layer_id_.spatial_layer_id * number_temporal_layers_ + i;
effective_datarate_tl[layer] += 1.0 * frame_size_in_bits;
}
if (layer_id_.spatial_layer_id == number_spatial_layers_ - 1) {
last_pts_ = pkt->data.frame.pts;
superframe_cnt_++;
}
// For simulcast mode: verify that for first frame to start decoding,
// for SL > 0, are Intra-only frames (not Key), whereas SL0 is Key.
if (simulcast_mode_ && superframe_cnt_ == (int)frame_to_start_decoding_) {
if (layer_id_.spatial_layer_id > 0) {
EXPECT_NE(pkt->data.frame.flags & AOM_FRAME_IS_KEY, AOM_FRAME_IS_KEY);
} else if (layer_id_.spatial_layer_id == 0) {
EXPECT_EQ(pkt->data.frame.flags & AOM_FRAME_IS_KEY, AOM_FRAME_IS_KEY);
}
}
}
void EndPassHook() override {
duration_ = ((last_pts_ + 1) * timebase_);
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
effective_datarate_tl[i] = (effective_datarate_tl[i] / 1000) / duration_;
}
}
bool DoDecode() const override {
if (drop_frames_ > 0) {
for (unsigned int i = 0; i < drop_frames_; ++i) {
if (drop_frames_list_[i] == (unsigned int)superframe_cnt_) {
std::cout << " Skipping decoding frame: "
<< drop_frames_list_[i] << "\n";
return false;
}
}
} else if (intra_only_ == 1) {
// Only start decoding at frames_to_start_decoding_.
if (current_video_frame_ < frame_to_start_decoding_) return false;
// Only decode base layer for 3SL, for layer_to_decode_ = 0.
if (layer_to_decode_ == 0 && frame_sync_ > 0 &&
(layer_frame_cnt_ - 1) % 3 != 0)
return false;
} else if (simulcast_mode_) {
// Only start decoding at frames_to_start_decoding_ and only
// for top spatial layer SL2 (layer_to_decode_).
if (current_video_frame_ < frame_to_start_decoding_) return false;
if (layer_id_.spatial_layer_id < (int)layer_to_decode_) return false;
}
return true;
}
void MismatchHook(const aom_image_t *img1, const aom_image_t *img2) override {
double mismatch_psnr = compute_psnr(img1, img2);
mismatch_psnr_ += mismatch_psnr;
++mismatch_nframes_;
}
unsigned int GetMismatchFrames() { return mismatch_nframes_; }
unsigned int GetDecodedFrames() { return decoded_nframes_; }
static void ref_config_rps(aom_svc_ref_frame_config_t *ref_frame_config,
int frame_cnt, int rps_recovery_frame) {
// Pattern of 3 references with (ALTREF and GOLDEN) trailing
// LAST by 4 and 8 frame, with some switching logic to
// only predict from longer-term reference.
int last_idx = 0;
int last_idx_refresh = 0;
int gld_idx = 0;
int alt_ref_idx = 0;
const int lag_alt = 4;
const int lag_gld = 8;
const int sh = 8; // slots 0 - 7.
// Moving index slot for last: 0 - (sh - 1)
if (frame_cnt > 1) last_idx = (frame_cnt - 1) % sh;
// Moving index for refresh of last: one ahead for next frame.
last_idx_refresh = frame_cnt % sh;
// Moving index for gld_ref, lag behind current by lag_gld
if (frame_cnt > lag_gld) gld_idx = (frame_cnt - lag_gld) % sh;
// Moving index for alt_ref, lag behind LAST by lag_alt frames.
if (frame_cnt > lag_alt) alt_ref_idx = (frame_cnt - lag_alt) % sh;
// Set the ref_idx.
// Default all references (7) to slot for last.
// LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3),
// BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6).
for (int i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = last_idx;
// Set the ref_idx for the relevant references.
ref_frame_config->ref_idx[0] = last_idx;
ref_frame_config->ref_idx[1] = last_idx_refresh;
ref_frame_config->ref_idx[3] = gld_idx;
ref_frame_config->ref_idx[6] = alt_ref_idx;
// Refresh this slot, which will become LAST on next frame.
ref_frame_config->refresh[last_idx_refresh] = 1;
// Reference LAST, ALTREF, and GOLDEN
ref_frame_config->reference[0] = 1;
ref_frame_config->reference[6] = 1;
ref_frame_config->reference[3] = 1;
if (frame_cnt == rps_recovery_frame) {
// Switch to only reference GOLDEN at recovery_frame.
ref_frame_config->reference[0] = 0;
ref_frame_config->reference[6] = 0;
ref_frame_config->reference[3] = 1;
} else if (frame_cnt > rps_recovery_frame &&
frame_cnt < rps_recovery_frame + 8) {
// Go back to predicting from LAST, and after
// 8 frames (GOLDEN is 8 frames aways) go back
// to predicting off GOLDEN and ALTREF.
ref_frame_config->reference[0] = 1;
ref_frame_config->reference[6] = 0;
ref_frame_config->reference[3] = 0;
}
}
// Simulcast mode for 3 spatial and 3 temporal layers.
// No inter-layer predicton, only prediction is temporal and single
// reference (LAST).
// No overlap in buffer slots between spatial layers. So for example,
// SL0 only uses slots 0 and 1.
// SL1 only uses slots 2 and 3.
// SL2 only uses slots 4 and 5.
// All 7 references for each inter-frame must only access buffer slots
// for that spatial layer.
// On key (super)frames: SL1 and SL2 must have no references set
// and must refresh all the slots for that layer only (so 2 and 3
// for SL1, 4 and 5 for SL2). The base SL0 will be labelled internally
// as a Key frame (refresh all slots). SL1/SL2 will be labelled
// internally as Intra-only frames that allow that stream to be decoded.
// These conditions will allow for each spatial stream to be
// independently decodeable.
static void ref_config_simulcast3SL3TL(
aom_svc_ref_frame_config_t *ref_frame_config,
aom_svc_layer_id_t *layer_id, int is_key_frame, int superframe_cnt) {
int i;
// Initialize all references to 0 (don't use reference).
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->reference[i] = 0;
// Initialize as no refresh/update for all slots.
for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0;
for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0;
if (is_key_frame) {
if (layer_id->spatial_layer_id == 0) {
// Assign LAST/GOLDEN to slot 0/1.
// Refesh slots 0 and 1 for SL0.
// SL0: this will get set to KEY frame internally.
ref_frame_config->ref_idx[0] = 0;
ref_frame_config->ref_idx[3] = 1;
ref_frame_config->refresh[0] = 1;
ref_frame_config->refresh[1] = 1;
} else if (layer_id->spatial_layer_id == 1) {
// Assign LAST/GOLDEN to slot 2/3.
// Refesh slots 2 and 3 for SL1.
// This will get set to Intra-only frame internally.
ref_frame_config->ref_idx[0] = 2;
ref_frame_config->ref_idx[3] = 3;
ref_frame_config->refresh[2] = 1;
ref_frame_config->refresh[3] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Assign LAST/GOLDEN to slot 4/5.
// Refresh slots 4 and 5 for SL2.
// This will get set to Intra-only frame internally.
ref_frame_config->ref_idx[0] = 4;
ref_frame_config->ref_idx[3] = 5;
ref_frame_config->refresh[4] = 1;
ref_frame_config->refresh[5] = 1;
}
} else if (superframe_cnt % 4 == 0) {
// Base temporal layer: TL0
layer_id->temporal_layer_id = 0;
if (layer_id->spatial_layer_id == 0) { // SL0
// Reference LAST. Assign all references to either slot
// 0 or 1. Here we assign LAST to slot 0, all others to 1.
// Update slot 0 (LAST).
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 1;
ref_frame_config->ref_idx[0] = 0;
ref_frame_config->refresh[0] = 1;
} else if (layer_id->spatial_layer_id == 1) { // SL1
// Reference LAST. Assign all references to either slot
// 2 or 3. Here we assign LAST to slot 2, all others to 3.
// Update slot 2 (LAST).
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 3;
ref_frame_config->ref_idx[0] = 2;
ref_frame_config->refresh[2] = 1;
} else if (layer_id->spatial_layer_id == 2) { // SL2
// Reference LAST. Assign all references to either slot
// 4 or 5. Here we assign LAST to slot 4, all others to 5.
// Update slot 4 (LAST).
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 5;
ref_frame_config->ref_idx[0] = 4;
ref_frame_config->refresh[4] = 1;
}
} else if ((superframe_cnt - 1) % 4 == 0) {
// First top temporal enhancement layer: TL2
layer_id->temporal_layer_id = 2;
if (layer_id->spatial_layer_id == 0) { // SL0
// Reference LAST (slot 0). Assign other references to slot 1.
// No update/refresh on any slots.
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 1;
ref_frame_config->ref_idx[0] = 0;
} else if (layer_id->spatial_layer_id == 1) { // SL1
// Reference LAST (slot 2). Assign other references to slot 3.
// No update/refresh on any slots.
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 3;
ref_frame_config->ref_idx[0] = 2;
} else if (layer_id->spatial_layer_id == 2) { // SL2
// Reference LAST (slot 4). Assign other references to slot 4.
// No update/refresh on any slots.
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 5;
ref_frame_config->ref_idx[0] = 4;
}
} else if ((superframe_cnt - 2) % 4 == 0) {
// Middle temporal enhancement layer: TL1
layer_id->temporal_layer_id = 1;
if (layer_id->spatial_layer_id == 0) { // SL0
// Reference LAST (slot 0).
// Set GOLDEN to slot 1 and update slot 1.
// This will be used as reference for next TL2.
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 1;
ref_frame_config->ref_idx[0] = 0;
ref_frame_config->refresh[1] = 1;
} else if (layer_id->spatial_layer_id == 1) { // SL1
// Reference LAST (slot 2).
// Set GOLDEN to slot 3 and update slot 3.
// This will be used as reference for next TL2.
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 3;
ref_frame_config->ref_idx[0] = 2;
ref_frame_config->refresh[3] = 1;
} else if (layer_id->spatial_layer_id == 2) { // SL2
// Reference LAST (slot 4).
// Set GOLDEN to slot 5 and update slot 5.
// This will be used as reference for next TL2.
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 5;
ref_frame_config->ref_idx[0] = 4;
ref_frame_config->refresh[5] = 1;
}
} else if ((superframe_cnt - 3) % 4 == 0) {
// Second top temporal enhancement layer: TL2
layer_id->temporal_layer_id = 2;
if (layer_id->spatial_layer_id == 0) { // SL0
// Reference LAST (slot 1). Assign other references to slot 0.
// No update/refresh on any slots.
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 1;
} else if (layer_id->spatial_layer_id == 1) { // SL1
// Reference LAST (slot 3). Assign other references to slot 2.
// No update/refresh on any slots.
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 2;
ref_frame_config->ref_idx[0] = 3;
} else if (layer_id->spatial_layer_id == 2) { // SL2
// Reference LAST (slot 5). Assign other references to slot 4.
// No update/refresh on any slots.
ref_frame_config->reference[0] = 1;
for (i = 0; i < INTER_REFS_PER_FRAME; i++)
ref_frame_config->ref_idx[i] = 4;
ref_frame_config->ref_idx[0] = 5;
}
}
}
// 3 spatial and 3 temporal layer.
// Overlap in the buffer slot updates: the slots 3 and 4 updated by
// first TL2 are reused for update in TL1 superframe.
static void ref_config_3SL3TL(aom_svc_ref_frame_config_t *ref_frame_config,
aom_svc_layer_id_t *layer_id, int is_key_frame,
int superframe_cnt) {
if (superframe_cnt % 4 == 0) {
// Base temporal layer.
layer_id->temporal_layer_id = 0;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST, update LAST.
// Set all buffer_idx to 0.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 0;
ref_frame_config->refresh[0] = 1;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
// GOLDEN (and all other refs) to slot 0.
// Update slot 1 (LAST).
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->refresh[1] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
// GOLDEN (and all other refs) to slot 1.
// Update slot 2 (LAST).
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 1;
ref_frame_config->ref_idx[0] = 2;
ref_frame_config->refresh[2] = 1;
}
} else if ((superframe_cnt - 1) % 4 == 0) {
// First top temporal enhancement layer.
layer_id->temporal_layer_id = 2;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST (slot 0).
// Set GOLDEN to slot 3 and update slot 3.
// Set all other buffer_idx to slot 0.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[3] = 3;
ref_frame_config->refresh[3] = 1;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
// GOLDEN (and all other refs) to slot 3.
// Set LAST2 to slot 4 and Update slot 4.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 3;
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->ref_idx[1] = 4;
ref_frame_config->refresh[4] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
// GOLDEN (and all other refs) to slot 4.
// No update.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 4;
ref_frame_config->ref_idx[0] = 2;
}
} else if ((superframe_cnt - 2) % 4 == 0) {
// Middle temporal enhancement layer.
layer_id->temporal_layer_id = 1;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST.
// Set all buffer_idx to 0.
// Set GOLDEN to slot 3 and update slot 3.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[3] = 3;
ref_frame_config->refresh[3] = 1;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1,
// GOLDEN (and all other refs) to slot 3.
// Set LAST2 to slot 4 and update slot 4.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 3;
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->ref_idx[2] = 4;
ref_frame_config->refresh[4] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2,
// GOLDEN (and all other refs) to slot 4.
// Set LAST2 to slot 5 and update slot 5.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 4;
ref_frame_config->ref_idx[0] = 2;
ref_frame_config->ref_idx[2] = 5;
ref_frame_config->refresh[5] = 1;
}
} else if ((superframe_cnt - 3) % 4 == 0) {
// Second top temporal enhancement layer.
layer_id->temporal_layer_id = 2;
if (layer_id->spatial_layer_id == 0) {
// Set LAST to slot 3 and reference LAST.
// Set GOLDEN to slot 3 and update slot 3.
// Set all other buffer_idx to 0.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 3;
ref_frame_config->ref_idx[3] = 3;
ref_frame_config->refresh[3] = 1;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 4,
// GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 4;
ref_frame_config->ref_idx[3] = 3;
ref_frame_config->ref_idx[1] = 4;
ref_frame_config->refresh[4] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 5,
// GOLDEN to slot 4. No update.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 5;
ref_frame_config->ref_idx[3] = 4;
}
}
if (layer_id->spatial_layer_id > 0) {
// Always reference GOLDEN (inter-layer prediction).
ref_frame_config->reference[3] = 1;
if (is_key_frame && layer_id->spatial_layer_id > 0) {
// On superframes whose base is key: remove LAST since GOLDEN
// is used as reference.
ref_frame_config->reference[0] = 0;
}
}
}
// Layer pattern configuration.
virtual int set_layer_pattern(
int frame_cnt, aom_svc_layer_id_t *layer_id,
aom_svc_ref_frame_config_t *ref_frame_config,
aom_svc_ref_frame_comp_pred_t *ref_frame_comp_pred, int spatial_layer,
int multi_ref, int comp_pred, int is_key_frame,
int dynamic_enable_disable_mode, int rps_mode, int rps_recovery_frame,
int simulcast_mode) {
int lag_index = 0;
int base_count = frame_cnt >> 2;
layer_id->spatial_layer_id = spatial_layer;
// Set the reference map buffer idx for the 7 references:
// LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3),
// BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6).
for (int i = 0; i < INTER_REFS_PER_FRAME; i++) {
ref_frame_config->ref_idx[i] = i;
ref_frame_config->reference[i] = 0;
}
for (int i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0;
if (comp_pred) {
ref_frame_comp_pred->use_comp_pred[0] = 1; // GOLDEN_LAST
ref_frame_comp_pred->use_comp_pred[1] = 1; // LAST2_LAST
ref_frame_comp_pred->use_comp_pred[2] = 1; // ALTREF_LAST
}
// Set layer_flags to 0 when using ref_frame_config->reference.
int layer_flags = 0;
// Always reference LAST.
ref_frame_config->reference[0] = 1;
if (number_temporal_layers_ == 1 && number_spatial_layers_ == 1) {
ref_frame_config->refresh[0] = 1;
if (rps_mode)
ref_config_rps(ref_frame_config, frame_cnt, rps_recovery_frame);
}
if (number_temporal_layers_ == 2 && number_spatial_layers_ == 1) {
// 2-temporal layer.
// 1 3 5
// 0 2 4
// Keep golden fixed at slot 3.
base_count = frame_cnt >> 1;
ref_frame_config->ref_idx[3] = 3;
// Cyclically refresh slots 5, 6, 7, for lag alt ref.
lag_index = 5;
if (base_count > 0) {
lag_index = 5 + (base_count % 3);
if (frame_cnt % 2 != 0) lag_index = 5 + ((base_count + 1) % 3);
}
// Set the altref slot to lag_index.
ref_frame_config->ref_idx[6] = lag_index;
if (frame_cnt % 2 == 0) {
layer_id->temporal_layer_id = 0;
// Update LAST on layer 0, reference LAST.
ref_frame_config->refresh[0] = 1;
ref_frame_config->reference[0] = 1;
// Refresh lag_index slot, needed for lagging golen.
ref_frame_config->refresh[lag_index] = 1;
// Refresh GOLDEN every x base layer frames.
if (base_count % 32 == 0) ref_frame_config->refresh[3] = 1;
} else {
layer_id->temporal_layer_id = 1;
// No updates on layer 1, reference LAST (TL0).
ref_frame_config->reference[0] = 1;
}
// Always reference golden and altref on TL0.
if (layer_id->temporal_layer_id == 0) {
ref_frame_config->reference[3] = 1;
ref_frame_config->reference[6] = 1;
}
} else if (number_temporal_layers_ == 3 && number_spatial_layers_ == 1) {
// 3-layer:
// 1 3 5 7
// 2 6
// 0 4 8
if (multi_ref) {
// Keep golden fixed at slot 3.
ref_frame_config->ref_idx[3] = 3;
// Cyclically refresh slots 4, 5, 6, 7, for lag altref.
lag_index = 4 + (base_count % 4);
// Set the altref slot to lag_index.
ref_frame_config->ref_idx[6] = lag_index;
}
if (frame_cnt % 4 == 0) {
// Base layer.
layer_id->temporal_layer_id = 0;
// Update LAST on layer 0, reference LAST and GF.
ref_frame_config->refresh[0] = 1;
ref_frame_config->reference[3] = 1;
if (multi_ref) {
// Refresh GOLDEN every x ~10 base layer frames.
if (base_count % 10 == 0) ref_frame_config->refresh[3] = 1;
// Refresh lag_index slot, needed for lagging altref.
ref_frame_config->refresh[lag_index] = 1;
}
} else if ((frame_cnt - 1) % 4 == 0) {
layer_id->temporal_layer_id = 2;
// First top layer: no updates, only reference LAST (TL0).
} else if ((frame_cnt - 2) % 4 == 0) {
layer_id->temporal_layer_id = 1;
// Middle layer (TL1): update LAST2, only reference LAST (TL0).
ref_frame_config->refresh[1] = 1;
} else if ((frame_cnt - 3) % 4 == 0) {
layer_id->temporal_layer_id = 2;
// Second top layer: no updates, only reference LAST.
// Set buffer idx for LAST to slot 1, since that was the slot
// updated in previous frame. So LAST is TL1 frame.
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->ref_idx[1] = 0;
}
if (multi_ref) {
// Every frame can reference GOLDEN AND ALTREF.
ref_frame_config->reference[3] = 1;
ref_frame_config->reference[6] = 1;
}
} else if (number_temporal_layers_ == 1 && number_spatial_layers_ == 2) {
layer_id->temporal_layer_id = 0;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST, update LAST. Keep LAST and GOLDEN in slots 0 and 3.
ref_frame_config->ref_idx[0] = 0;
ref_frame_config->ref_idx[3] = 3;
ref_frame_config->refresh[0] = 1;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 3
// and GOLDEN to slot 0. Update slot 3 (LAST).
ref_frame_config->ref_idx[0] = 3;
ref_frame_config->ref_idx[3] = 0;
ref_frame_config->refresh[3] = 1;
}
// Reference GOLDEN.
if (layer_id->spatial_layer_id > 0) ref_frame_config->reference[3] = 1;
} else if (number_temporal_layers_ == 1 && number_spatial_layers_ == 3) {
// 3 spatial layers, 1 temporal.
// Note for this case , we set the buffer idx for all references to be
// either LAST or GOLDEN, which are always valid references, since decoder
// will check if any of the 7 references is valid scale in
// valid_ref_frame_size().
layer_id->temporal_layer_id = 0;
if (layer_id->spatial_layer_id == 0) {
// Reference LAST, update LAST. Set all other buffer_idx to 0.
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 0;
ref_frame_config->refresh[0] = 1;
} else if (layer_id->spatial_layer_id == 1) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1
// and GOLDEN (and all other refs) to slot 0.
// Update slot 1 (LAST).
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 0;
ref_frame_config->ref_idx[0] = 1;
ref_frame_config->refresh[1] = 1;
} else if (layer_id->spatial_layer_id == 2) {
// Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2
// and GOLDEN (and all other refs) to slot 1.
// Update slot 2 (LAST).
for (int i = 0; i < 7; i++) ref_frame_config->ref_idx[i] = 1;
ref_frame_config->ref_idx[0] = 2;
ref_frame_config->refresh[2] = 1;
if (multi_ref) {
ref_frame_config->ref_idx[6] = 7;
ref_frame_config->reference[6] = 1;
if (base_count % 10 == 0) ref_frame_config->refresh[7] = 1;
}
}
// Reference GOLDEN.
if (layer_id->spatial_layer_id > 0) ref_frame_config->reference[3] = 1;
} else if (number_temporal_layers_ == 3 && number_spatial_layers_ == 3) {
if (simulcast_mode) {
ref_config_simulcast3SL3TL(ref_frame_config, layer_id, is_key_frame,
superframe_cnt_);
} else {
ref_config_3SL3TL(ref_frame_config, layer_id, is_key_frame,
superframe_cnt_);
// Allow for top spatial layer to use additional temporal reference.
// Additional reference is only updated on base temporal layer, every
// 10 TL0 frames here.
if (multi_ref && layer_id->spatial_layer_id == 2) {
ref_frame_config->ref_idx[6] = 7;
if (!is_key_frame) ref_frame_config->reference[6] = 1;
if (base_count % 10 == 0 && layer_id->temporal_layer_id == 0)
ref_frame_config->refresh[7] = 1;
}
}
}
// If the top spatial layer is first-time encoded in mid-sequence
// (i.e., dynamic_enable_disable_mode = 1), then don't predict from LAST,
// since it will have been last updated on first key frame (SL0) and so
// be different resolution from SL2.
if (dynamic_enable_disable_mode == 1 &&
layer_id->spatial_layer_id == number_spatial_layers_ - 1)
ref_frame_config->reference[0] = 0;
return layer_flags;
}
virtual void initialize_svc(int number_temporal_layers,
int number_spatial_layers,
aom_svc_params *svc_params) {
svc_params->number_spatial_layers = number_spatial_layers;
svc_params->number_temporal_layers = number_temporal_layers;
for (int i = 0; i < number_temporal_layers * number_spatial_layers; ++i) {
svc_params->max_quantizers[i] = 60;
svc_params->min_quantizers[i] = 2;
svc_params->layer_target_bitrate[i] = target_layer_bitrate_[i];
}
// Do at most 3 spatial or temporal layers here.
svc_params->framerate_factor[0] = 1;
if (number_temporal_layers == 2) {
svc_params->framerate_factor[0] = 2;
svc_params->framerate_factor[1] = 1;
} else if (number_temporal_layers == 3) {
svc_params->framerate_factor[0] = 4;
svc_params->framerate_factor[1] = 2;
svc_params->framerate_factor[2] = 1;
}
svc_params->scaling_factor_num[0] = 1;
svc_params->scaling_factor_den[0] = 1;
if (number_spatial_layers == 2) {
svc_params->scaling_factor_num[0] = 1;
svc_params->scaling_factor_den[0] = 2;
svc_params->scaling_factor_num[1] = 1;
svc_params->scaling_factor_den[1] = 1;
} else if (number_spatial_layers == 3) {
svc_params->scaling_factor_num[0] = 1;
svc_params->scaling_factor_den[0] = 4;
svc_params->scaling_factor_num[1] = 1;
svc_params->scaling_factor_den[1] = 2;
svc_params->scaling_factor_num[2] = 1;
svc_params->scaling_factor_den[2] = 1;
}
}
virtual void BasicRateTargetingSVC3TL1SLTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 1;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 3;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Top temporal layers are non_reference, so exlcude them from
// mismatch count, since loopfilter/cdef is not applied for these on
// encoder side, but is always applied on decoder.
// This means 150 = #frames(300) - #TL2_frames(150).
EXPECT_EQ((int)GetMismatchFrames(), 150);
}
virtual void SetFrameQpSVC3TL1SLTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 1;
user_define_frame_qp_ = 1;
total_frame_ = 300;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 3;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
}
virtual void SetFrameQpSVC3TL3SLTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
user_define_frame_qp_ = 1;
total_frame_ = 300;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
}
virtual void BasicRateTargetingSVC3TL1SLScreenTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::Y4mVideoSource video("screendata.y4m", 0, 60);
const int bitrate_array[2] = { 1000, 1500 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
screen_mode_ = 1;
number_temporal_layers_ = 3;
number_spatial_layers_ = 1;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.40)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 2.0)
<< " The datarate for the file is greater than target by too much!";
}
// Top temporal layers are non_reference, so exlcude them from
// mismatch count, since loopfilter/cdef is not applied for these on
// encoder side, but is always applied on decoder.
// This means 30 = #frames(60) - #TL2_frames(30).
// We use LE for screen since loopfilter level can become very small
// or zero and then the frame is not a mismatch.
EXPECT_LE((int)GetMismatchFrames(), 30);
}
virtual void BasicRateTargetingSVC2TL1SLScreenDropFrameTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 30;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 52;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 60, 100 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
screen_mode_ = 1;
number_temporal_layers_ = 2;
number_spatial_layers_ = 1;
target_layer_bitrate_[0] = 60 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.75)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.5)
<< " The datarate for the file is greater than target by too much!";
}
// Top temporal layers are non_reference, so exlcude them from
// mismatch count, since loopfilter/cdef is not applied for these on
// encoder side, but is always applied on decoder.
// This means 300 = #frames(300) - #TL2_frames(150).
// We use LE for screen since loopfilter level can become very small
// or zero and then the frame is not a mismatch.
EXPECT_LE((int)GetMismatchFrames(), 150);
}
virtual void BasicRateTargetingSVC1TL3SLScreenTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60);
const int bitrate_array[2] = { 800, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
screen_mode_ = 1;
number_temporal_layers_ = 1;
number_spatial_layers_ = 3;
target_layer_bitrate_[0] = 30 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 60 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.50)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.5)
<< " The datarate for the file is greater than target by too much!";
}
EXPECT_EQ((int)GetMismatchFrames(), 0);
}
virtual void BasicRateTargetingSVC1TL1SLScreenScCutsMotionTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 500 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
screen_mode_ = 1;
number_temporal_layers_ = 1;
number_spatial_layers_ = 1;
target_layer_bitrate_[0] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.40)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.7)
<< " The datarate for the file is greater than target by too much!";
}
EXPECT_EQ((int)GetMismatchFrames(), 0);
}
virtual void BasicRateTargetingSVC3TL1SLResizeTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
cfg_.rc_resize_mode = RESIZE_DYNAMIC;
::libaom_test::I420VideoSource video("niklas_640_480_30.yuv", 640, 480, 30,
1, 0, 400);
cfg_.g_w = 640;
cfg_.g_h = 480;
const int bitrate_array[2] = { 80, 90 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 3;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.80)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
unsigned int last_w = cfg_.g_w;
unsigned int last_h = cfg_.g_h;
int resize_down_count = 0;
for (std::vector<FrameInfo>::const_iterator info = frame_info_list_.begin();
info != frame_info_list_.end(); ++info) {
if (info->w != last_w || info->h != last_h) {
// Verify that resize down occurs.
ASSERT_LT(info->w, last_w);
ASSERT_LT(info->h, last_h);
last_w = info->w;
last_h = info->h;
resize_down_count++;
}
}
// Must be at least one resize down.
ASSERT_GE(resize_down_count, 1);
}
virtual void BasicRateTargetingSVC1TL2SLTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 300, 600 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 1;
number_spatial_layers_ = 2;
target_layer_bitrate_[0] = 2 * cfg_.rc_target_bitrate / 4;
target_layer_bitrate_[1] = 2 * cfg_.rc_target_bitrate / 4;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.80)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC3TL3SLIntraStartDecodeBaseMidSeq() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 56;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 500, 1000 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
intra_only_ = 1;
frame_sync_ = 20;
frame_to_start_decoding_ = frame_sync_;
layer_to_decode_ = 0;
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
// Only check datarate on SL0 - this is layer that is decoded starting at
// frame_to_start_decoding_.
for (int i = 0; i < number_temporal_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.50)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Only base spatial layer is decoded and there are no non-referenece
// frames on S0, so #mismatch must be 0.
EXPECT_EQ((int)GetMismatchFrames(), 0);
}
virtual void BasicRateTargetingSVC3TL3SLIntraMidSeqDecodeAll() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 56;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 500, 1000 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
intra_only_ = 1;
frame_sync_ = 20;
frame_to_start_decoding_ = 0;
layer_to_decode_ = 3;
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.585)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// All 3 spatial layers are decoded, starting at frame 0, so there are
// and there 300/2 = 150 non-reference frames, so mismatch is 150.
EXPECT_EQ((int)GetMismatchFrames(), 150);
}
virtual void BasicRateTargetingSVC3TL3SLSimulcast() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 56;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
cfg_.kf_max_dist = 150;
cfg_.kf_min_dist = 150;
int num_frames = 300;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, num_frames);
const int bitrate_array[2] = { 500, 1000 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
simulcast_mode_ = 1;
frame_to_start_decoding_ = cfg_.kf_max_dist;
layer_to_decode_ = 2; // SL2
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
// Only SL2 layer is decoded.
for (int tl = 0; tl < number_temporal_layers_; tl++) {
int i = layer_to_decode_ * number_temporal_layers_ + tl;
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.6)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.7)
<< " The datarate for the file is greater than target by too much!";
}
// Only top spatial layer (SL2) is decoded, starting at frame 150
// (frame_to_start_decoding_), so there (300 - 150) / 2 = 75
// non-reference frames, so mismatch is 75.
int num_mismatch = (num_frames - frame_to_start_decoding_) / 2;
EXPECT_EQ((int)GetMismatchFrames(), num_mismatch);
}
virtual void BasicRateTargetingSVC1TL2SLIntraOnlyTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 300, 600 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
intra_only_ = 1;
number_temporal_layers_ = 1;
number_spatial_layers_ = 2;
target_layer_bitrate_[0] = 2 * cfg_.rc_target_bitrate / 4;
target_layer_bitrate_[1] = 2 * cfg_.rc_target_bitrate / 4;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.80)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC1TL3SLTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 500, 1000 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 1;
number_spatial_layers_ = 3;
target_layer_bitrate_[0] = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[1] = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[2] = 4 * cfg_.rc_target_bitrate / 8;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.80)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.38)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC1TL3SLMultiRefTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 500, 1000 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
multi_ref_ = 1;
number_temporal_layers_ = 1;
number_spatial_layers_ = 3;
target_layer_bitrate_[0] = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[1] = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[2] = 4 * cfg_.rc_target_bitrate / 8;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.80)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.38)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC3TL3SLTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.50)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.38)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC3TL3SLHDTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.70)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.45)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingFixedModeSVC3TL3SLHDTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
use_fixed_mode_svc_ = 1;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.70)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.45)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC3TL3SLMultiThreadSpeedPerLayerTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
cfg_.g_threads = 2;
::libaom_test::I420VideoSource video("niklas_640_480_30.yuv", 640, 480, 30,
1, 0, 400);
cfg_.g_w = 640;
cfg_.g_h = 480;
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
tile_columns_ = 1;
tile_rows_ = 0;
set_speed_per_layer_ = true;
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.70)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.45)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC3TL3SLHDMultiThread2Test() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
cfg_.g_threads = 2;
::libaom_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
tile_columns_ = 1;
tile_rows_ = 0;
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.70)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.45)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC2TL1SLHDMultiThread4Test() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
cfg_.g_threads = 4;
::libaom_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
tile_columns_ = 1;
tile_rows_ = 1;
number_temporal_layers_ = 2;
number_spatial_layers_ = 1;
target_layer_bitrate_[0] = 60 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.70)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.45)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC3TL3SLHDMultiThread4Test() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
cfg_.g_threads = 4;
::libaom_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
tile_columns_ = 1;
tile_rows_ = 1;
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.70)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.45)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC3TL3SLHDMultiRefTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::Y4mVideoSource video("niklas_1280_720_30.y4m", 0, 60);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
multi_ref_ = 1;
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.70)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.45)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC3TL3SLKfTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
cfg_.kf_mode = AOM_KF_AUTO;
cfg_.kf_min_dist = cfg_.kf_max_dist = 100;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.55)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.4)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargeting444SVC3TL3SLTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
cfg_.g_profile = 1;
::libaom_test::Y4mVideoSource video("rush_hour_444.y4m", 0, 140);
const int bitrate_array[2] = { 600, 1200 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.70)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.38)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC3TL1SLMultiRefDropAllEnhTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
// error_resilient can set to off/0, since for SVC the context update
// is done per-layer.
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
multi_ref_ = 1;
// Drop TL1 and TL2: #frames(300) - #TL0.
drop_frames_ = 300 - 300 / 4;
int n = 0;
for (int i = 0; i < 300; i++) {
if (i % 4 != 0) {
drop_frames_list_[n] = i;
n++;
}
}
number_temporal_layers_ = 3;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Test that no mismatches have been found.
std::cout << " Decoded frames: " << GetDecodedFrames() << "\n";
std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n";
EXPECT_EQ(300 - GetDecodedFrames(), drop_frames_);
EXPECT_EQ((int)GetMismatchFrames(), 0);
}
virtual void BasicRateTargetingSVC3TL1SLDropAllEnhTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
// error_resilient can set to off/0, since for SVC the context update
// is done per-layer.
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
// Drop TL1 and TL2: #frames(300) - #TL0.
drop_frames_ = 300 - 300 / 4;
int n = 0;
for (int i = 0; i < 300; i++) {
if (i % 4 != 0) {
drop_frames_list_[n] = i;
n++;
}
}
number_temporal_layers_ = 3;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Test that no mismatches have been found.
std::cout << " Decoded frames: " << GetDecodedFrames() << "\n";
std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n";
EXPECT_EQ(300 - GetDecodedFrames(), drop_frames_);
EXPECT_EQ((int)GetMismatchFrames(), 0);
}
virtual void BasicRateTargetingSVC3TL1SLDropTL2EnhTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
// error_resilient for sequence can be off/0, since dropped frames (TL2)
// are non-reference frames.
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
// Drop TL2: #frames(300) - (#TL0 + #TL1).
drop_frames_ = 300 - 300 / 2;
int n = 0;
for (int i = 0; i < 300; i++) {
if (i % 2 != 0) {
drop_frames_list_[n] = i;
n++;
}
}
number_temporal_layers_ = 3;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Test that no mismatches have been found.
std::cout << " Decoded frames: " << GetDecodedFrames() << "\n";
std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n";
EXPECT_EQ(300 - GetDecodedFrames(), drop_frames_);
EXPECT_EQ((int)GetMismatchFrames(), 0);
}
virtual void BasicRateTargetingSVC3TL1SLDropAllEnhFrameERTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
// Set error_resilience at frame level, with codec control,
// on/1 for enahancement layers and off/0 for base layer frames.
set_frame_level_er_ = 1;
// Drop TL1 and TL2: #frames(300) - #TL0.
drop_frames_ = 300 - 300 / 4;
int n = 0;
for (int i = 0; i < 300; i++) {
if (i % 4 != 0) {
drop_frames_list_[n] = i;
n++;
}
}
number_temporal_layers_ = 3;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Test that no mismatches have been found.
std::cout << " Decoded frames: " << GetDecodedFrames() << "\n";
std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n";
EXPECT_EQ(300 - GetDecodedFrames(), drop_frames_);
EXPECT_EQ((int)GetMismatchFrames(), 0);
}
virtual void BasicRateTargetingSVC3TL1SLDropSetEnhFrameERTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
// Set error_resilience at frame level, with codec control,
// on/1 for enahancement layers and off/0 for base layer frames.
set_frame_level_er_ = 1;
// Drop TL1 and TL2: for part of sequence. Start at first TL2 at
// frame 101, and end at second T2 at frame 199. Frame 200 is TL0,
// so we can continue decoding without mismatch (since LAST is the
// only reference and error_resilient = 1 on TL1/TL2 frames).
int n = 0;
int num_nonref = 300 / 2;
for (int i = 101; i < 200; i++) {
if (i % 4 != 0) {
drop_frames_list_[n] = i;
n++;
if (i % 2 != 0) num_nonref -= 1;
}
}
drop_frames_ = n;
number_temporal_layers_ = 3;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Test that no mismatches have been found.
std::cout << " Decoded frames: " << GetDecodedFrames() << "\n";
std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n";
EXPECT_EQ(300 - GetDecodedFrames(), drop_frames_);
EXPECT_EQ((int)GetMismatchFrames(), num_nonref);
}
virtual void BasicRateTargetingSVC2TL1SLDropSetEnhER0Test() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
// Set error_resilience off.
cfg_.g_error_resilient = 0;
// Drop TL1: for part of sequence. Start at first TL1 at
// frame 101, and end at frame 199. Frame 200 is TL0,
// so we can continue decoding without mismatch (since LAST is the
// only reference).
int n = 0;
int num_nonref = 300 / 2;
for (int i = 101; i < 200; i++) {
if (i % 2 != 0) {
drop_frames_list_[n] = i;
n++;
if (i % 2 != 0) num_nonref -= 1;
}
}
drop_frames_ = n;
number_temporal_layers_ = 2;
target_layer_bitrate_[0] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Test that no mismatches have been found.
std::cout << " Decoded frames: " << GetDecodedFrames() << "\n";
std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n";
EXPECT_EQ(300 - GetDecodedFrames(), drop_frames_);
EXPECT_EQ((int)GetMismatchFrames(), num_nonref);
}
virtual void BasicRateTargetingSVC3TL1SLDropSetEnhER0Test() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
// Set error_resilience off.
cfg_.g_error_resilient = 0;
// Drop TL1 and TL2: for part of sequence. Start at first TL2 at
// frame 101, and end at second T2 at frame 199. Frame 200 is TL0,
// so we can continue decoding without mismatch (since LAST is the
// only reference).
int n = 0;
int num_nonref = 300 / 2;
for (int i = 101; i < 200; i++) {
if (i % 4 != 0) {
drop_frames_list_[n] = i;
n++;
if (i % 2 != 0) num_nonref -= 1;
}
}
drop_frames_ = n;
number_temporal_layers_ = 3;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Test that no mismatches have been found.
std::cout << " Decoded frames: " << GetDecodedFrames() << "\n";
std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n";
EXPECT_EQ(300 - GetDecodedFrames(), drop_frames_);
EXPECT_EQ((int)GetMismatchFrames(), num_nonref);
}
virtual void BasicRateTargetingSVC3TL3SLDropSetEnhER0Test() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 200, 550 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
// Set error_resilience off.
cfg_.g_error_resilient = 0;
// Drop TL1 and TL2: for part of sequence. Start at first TL2 at
// frame 101, and end at second T2 at frame 199. Frame 200 is TL0,
// so we can continue decoding without mismatch (since LAST is the
// only reference).
// Drop here means drop whole superframe.
int n = 0;
int num_nonref = 300 / 2;
for (int i = 101; i < 200; i++) {
if (i % 4 != 0) {
drop_frames_list_[n] = i;
n++;
if (i % 2 != 0) num_nonref -= 1;
}
}
number_temporal_layers_ = 3;
number_spatial_layers_ = 3;
multi_ref_ = 1;
drop_frames_ = n * number_spatial_layers_;
// SL0
const int bitrate_sl0 = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[0] = 50 * bitrate_sl0 / 100;
target_layer_bitrate_[1] = 70 * bitrate_sl0 / 100;
target_layer_bitrate_[2] = bitrate_sl0;
// SL1
const int bitrate_sl1 = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[3] = 50 * bitrate_sl1 / 100;
target_layer_bitrate_[4] = 70 * bitrate_sl1 / 100;
target_layer_bitrate_[5] = bitrate_sl1;
// SL2
const int bitrate_sl2 = 4 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[6] = 50 * bitrate_sl2 / 100;
target_layer_bitrate_[7] = 70 * bitrate_sl2 / 100;
target_layer_bitrate_[8] = bitrate_sl2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Test that no mismatches have been found.
std::cout << " Decoded frames: " << GetDecodedFrames() << "\n";
std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n";
EXPECT_EQ(300 * number_spatial_layers_ - GetDecodedFrames(), drop_frames_);
EXPECT_EQ((int)GetMismatchFrames(), num_nonref);
}
virtual void BasicRateTargetingSVC3TL1SLMultiRefCompoundTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("niklas_640_480_30.yuv", 640, 480, 30,
1, 0, 400);
cfg_.g_w = 640;
cfg_.g_h = 480;
const int bitrate_array[2] = { 400, 800 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
multi_ref_ = 1;
comp_pred_ = 1;
number_temporal_layers_ = 3;
number_spatial_layers_ = 1;
target_layer_bitrate_[0] = 50 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[1] = 70 * cfg_.rc_target_bitrate / 100;
target_layer_bitrate_[2] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.80)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC1TL3SLDynEnablTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("niklas_640_480_30.yuv", 640, 480, 30,
1, 0, 400);
const int bitrate_array[2] = { 500, 1000 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 1;
number_spatial_layers_ = 3;
target_layer_bitrate_[0] = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[1] = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[2] = 4 * cfg_.rc_target_bitrate / 8;
dynamic_enable_disable_mode_ = 1;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
// No need to check RC on top layer which is disabled part of the time.
for (int i = 0; i < number_spatial_layers_ - 1; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.80)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.38)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingSVC1TL3SLDynDisEnablTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
cfg_.g_error_resilient = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 500, 1000 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
number_temporal_layers_ = 1;
number_spatial_layers_ = 3;
target_layer_bitrate_[0] = 1 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[1] = 3 * cfg_.rc_target_bitrate / 8;
target_layer_bitrate_[2] = 4 * cfg_.rc_target_bitrate / 8;
dynamic_enable_disable_mode_ = 2;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
// No need to check RC on top layer which is disabled part of the time.
for (int i = 0; i < number_spatial_layers_ - 1; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.80)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.38)
<< " The datarate for the file is greater than target by too much!";
}
}
virtual void BasicRateTargetingRPS1TL1SLDropFramesTest() {
cfg_.rc_buf_initial_sz = 500;
cfg_.rc_buf_optimal_sz = 500;
cfg_.rc_buf_sz = 1000;
cfg_.rc_dropframe_thresh = 0;
cfg_.rc_min_quantizer = 0;
cfg_.rc_max_quantizer = 63;
cfg_.rc_end_usage = AOM_CBR;
cfg_.g_lag_in_frames = 0;
::libaom_test::I420VideoSource video("hantro_collage_w352h288.yuv", 352,
288, 30, 1, 0, 300);
const int bitrate_array[2] = { 100, 300 };
cfg_.rc_target_bitrate = bitrate_array[GET_PARAM(4)];
ResetModel();
rps_mode_ = 1;
rps_recovery_frame_ = 100;
cfg_.g_error_resilient = 0;
// Drop x frames before the recovery frames (where the reference
// is switched to an older reference (golden or altref).
// GOLDEN is 8 frames behind (for the rps pattern example) so we can't
// drop more than 8 frames recovery frame, so choose x = 7.
int n = 0;
for (int i = rps_recovery_frame_ - 7; i < rps_recovery_frame_; i++) {
drop_frames_list_[n] = i;
n++;
}
drop_frames_ = n;
number_spatial_layers_ = 1;
number_temporal_layers_ = 1;
target_layer_bitrate_[0] = cfg_.rc_target_bitrate;
ASSERT_NO_FATAL_FAILURE(RunLoop(&video));
for (int i = 0; i < number_temporal_layers_ * number_spatial_layers_; i++) {
ASSERT_GE(effective_datarate_tl[i], target_layer_bitrate_[i] * 0.60)
<< " The datarate for the file is lower than target by too much!";
ASSERT_LE(effective_datarate_tl[i], target_layer_bitrate_[i] * 1.60)
<< " The datarate for the file is greater than target by too much!";
}
// Test that no mismatches have been found.
std::cout << " Decoded frames: " << GetDecodedFrames() << "\n";
std::cout << " Mismatch frames: " << GetMismatchFrames() << "\n";
EXPECT_EQ(300 - GetDecodedFrames(), drop_frames_);
EXPECT_EQ((int)GetMismatchFrames(), 0);
}
int layer_frame_cnt_;
int superframe_cnt_;
int number_temporal_layers_;
int number_spatial_layers_;
// Allow for up to 3 temporal layers.
int target_layer_bitrate_[AOM_MAX_LAYERS];
aom_svc_params_t svc_params_;
aom_svc_ref_frame_config_t ref_frame_config_;
aom_svc_ref_frame_comp_pred_t ref_frame_comp_pred_;
aom_svc_layer_id_t layer_id_;
double effective_datarate_tl[AOM_MAX_LAYERS];
unsigned int drop_frames_;
unsigned int drop_frames_list_[1000];
unsigned int mismatch_nframes_;
unsigned int decoded_nframes_;
double mismatch_psnr_;
int set_frame_level_er_;
int multi_ref_;
int use_fixed_mode_svc_;
int comp_pred_;
int dynamic_enable_disable_mode_;
int intra_only_;
unsigned int frame_to_start_decoding_;
unsigned int layer_to_decode_;
unsigned int frame_sync_;
unsigned int current_video_frame_;
int screen_mode_;
int rps_mode_;
int rps_recovery_frame_;
int simulcast_mode_;
int user_define_frame_qp_;
int frame_qp_;
int total_frame_;
bool set_speed_per_layer_;
libaom_test::ACMRandom rnd_;
};
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SL) {
BasicRateTargetingSVC3TL1SLTest();
}
TEST_P(DatarateTestSVC, SetFrameQpSVC3TL1SL) { SetFrameQpSVC3TL1SLTest(); }
TEST_P(DatarateTestSVC, SetFrameQpSVC3TL3SL) { SetFrameQpSVC3TL3SLTest(); }
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial
// for screen mode.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SLScreen) {
BasicRateTargetingSVC3TL1SLScreenTest();
}
// Check basic rate targeting for CBR, for 2 temporal layers, 1 spatial
// for screen mode, with frame dropper on at low bitrates
TEST_P(DatarateTestSVC, BasicRateTargetingSVC2TL1SLScreenDropFrame) {
BasicRateTargetingSVC2TL1SLScreenDropFrameTest();
}
// Check basic rate targeting for CBR, for 3 spatial layers, 1 temporal
// for screen mode.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC1TL3SLScreen) {
BasicRateTargetingSVC1TL3SLScreenTest();
}
// Check basic rate targeting for CBR, for 1 temporal layer, 1 spatial
// for screen mode, with source with many scene cuts and motion.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC1TL1SLScreenScCutsMotion) {
BasicRateTargetingSVC1TL1SLScreenScCutsMotionTest();
}
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial,
// with dynamic resize on. Encode at very low bitrate and check that
// there is at least one resize (down) event.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SLResize) {
BasicRateTargetingSVC3TL1SLResizeTest();
}
// Check basic rate targeting for CBR, for 2 spatial layers, 1 temporal.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC1TL2SL) {
BasicRateTargetingSVC1TL2SLTest();
}
// Check basic rate targeting for CBR, for 3 spatial layers, 3 temporal,
// with Intra-only frame inserted in the stream. Verify that we can start
// decoding the SL0 stream at the intra_only frame in mid-sequence.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLIntraStartDecodeBaseMidSeq) {
BasicRateTargetingSVC3TL3SLIntraStartDecodeBaseMidSeq();
}
// Check basic rate targeting for CBR, for 3spatial layers, 3 temporal,
// with Intra-only frame inserted in the stream. Verify that we can
// decode all frames and layers with no mismatch.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLIntraMidSeqDecodeAll) {
BasicRateTargetingSVC3TL3SLIntraMidSeqDecodeAll();
}
// Check simulcast mode for 3 spatial layers, 3 temporal,
// Key frame is inserted on base SLO in mid-stream, and verify that the
// top spatial layer (SL2) case be decoded, starting with an Intra-only frame.
// Verify that we can decode all frames for SL2 with no mismatch.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLSimulcast) {
BasicRateTargetingSVC3TL3SLSimulcast();
}
// Check basic rate targeting for CBR, for 2 spatial layers, 1 temporal,
// with Intra-only frame inserted in the stream.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC1TL2SLIntraOnly) {
BasicRateTargetingSVC1TL2SLIntraOnlyTest();
}
// Check basic rate targeting for CBR, for 3 spatial layers, 1 temporal.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC1TL3SL) {
BasicRateTargetingSVC1TL3SLTest();
}
// Check basic rate targeting for CBR, for 3 spatial layers, 1 temporal,
// with additional temporal reference for top spatial layer.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC1TL3SLMultiRef) {
BasicRateTargetingSVC1TL3SLMultiRefTest();
}
// Check basic rate targeting for CBR, for 3 spatial, 3 temporal layers.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SL) {
BasicRateTargetingSVC3TL3SLTest();
}
// Check basic rate targeting for CBR, for 3 spatial, 3 temporal layers.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLHD) {
BasicRateTargetingSVC3TL3SLHDTest();
}
// Check basic rate targeting for CBR, for 3 spatial, 3 temporal layers,
// for fixed mode SVC.
TEST_P(DatarateTestSVC, BasicRateTargetingFixedModeSVC3TL3SLHD) {
BasicRateTargetingFixedModeSVC3TL3SLHDTest();
}
// Check basic rate targeting for CBR, for 3 spatial, 3 temporal layers,
// for 2 threads, 2 tile_columns, row-mt enabled, and different speed
// per layer.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLMultiThreadSpeedPerLayer) {
BasicRateTargetingSVC3TL3SLMultiThreadSpeedPerLayerTest();
}
// Check basic rate targeting for CBR, for 3 spatial, 3 temporal layers,
// for 2 threads, 2 tile_columns, row-mt enabled.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLHDMultiThread2) {
BasicRateTargetingSVC3TL3SLHDMultiThread2Test();
}
// Check basic rate targeting for CBR, for 1 spatial, 2 temporal layers,
// for 4 threads, 2 tile_columns, 2 tiles_rows, row-mt enabled.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC2TL1SLHDMultiThread4) {
BasicRateTargetingSVC2TL1SLHDMultiThread4Test();
}
// Check basic rate targeting for CBR, for 3 spatial, 3 temporal layers,
// for 4 threads, 2 tile_columns, 2 tiles_rows, row-mt enabled.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLHDMultiThread4) {
BasicRateTargetingSVC3TL3SLHDMultiThread4Test();
}
// Check basic rate targeting for CBR, for 3 spatial, 3 temporal layers,
// with additional temporal reference for top spatial layer.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLHDMultiRef) {
BasicRateTargetingSVC3TL3SLHDMultiRefTest();
}
// Check basic rate targeting for CBR, for 3 spatial, 3 temporal layers,
// for auto key frame mode with short key frame period.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLKf) {
BasicRateTargetingSVC3TL3SLKfTest();
}
// Check basic rate targeting for CBR, for 3 spatial, 3 temporal layers,
// for 4:4:4 input.
#if defined(CONFIG_MAX_DECODE_PROFILE) && CONFIG_MAX_DECODE_PROFILE < 1
TEST_P(DatarateTestSVC, DISABLED_BasicRateTargeting444SVC3TL3SL) {
#else
TEST_P(DatarateTestSVC, BasicRateTargeting444SVC3TL3SL) {
#endif
BasicRateTargeting444SVC3TL3SLTest();
}
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial layer,
// with dropping of all enhancement layers (TL 1 and TL2). Check that the base
// layer (TL0) can still be decodeable (with no mismatch) with the
// error_resilient flag set to 0. This test used the pattern with multiple
// references (last, golden, and altref), updated on base layer.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SLMultiRefDropAllEnh) {
BasicRateTargetingSVC3TL1SLMultiRefDropAllEnhTest();
}
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial layer,
// with dropping of all enhancement layers (TL 1 and TL2). Check that the base
// layer (TL0) can still be decodeable (with no mismatch) with the
// error_resilient flag set to 0.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SLDropAllEnh) {
BasicRateTargetingSVC3TL1SLDropAllEnhTest();
}
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial layer,
// with dropping of the TL2 enhancement layer, which are non-reference
// (droppble) frames. For the base layer (TL0) and TL1 to still be decodeable
// (with no mismatch), the error_resilient_flag may be off (set to 0),
// since TL2 are non-reference frames.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SLDropTL2Enh) {
BasicRateTargetingSVC3TL1SLDropTL2EnhTest();
}
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial layer,
// with dropping of all enhancement layers (TL 1 and TL2). Test that the
// error_resilient flag can be set at frame level, with on/1 on
// enhancement layers and off/0 on base layer.
// This allows for successful decoding after dropping enhancement layer frames.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SLDropAllEnhFrameER) {
BasicRateTargetingSVC3TL1SLDropAllEnhFrameERTest();
}
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial layer,
// with dropping set of enhancement layers (TL 1 and TL2) in middle of sequence.
// Test that the error_resilient flag can be set at frame level, with on/1 on
// enhancement layers and off/0 on base layer.
// This allows for successful decoding after dropping a set enhancement layer
// frames in the sequence.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SLDropSetEnhFrameER) {
BasicRateTargetingSVC3TL1SLDropSetEnhFrameERTest();
}
// Check basic rate targeting for CBR, for 2 temporal layers, 1 spatial layer,
// with dropping set of enhancement layers (TL 1) in middle of sequence.
// Test that the error_resilient flag can be 0/off for all frames.
// This allows for successful decoding after dropping a set enhancement layer
// frames in the sequence.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC2TL1SLDropSetEnhER0) {
BasicRateTargetingSVC2TL1SLDropSetEnhER0Test();
}
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial layer,
// with dropping set of enhancement layers (TL 1 and TL2) in middle of sequence.
// Test that the error_resilient flag can be 0/off for all frames.
// This allows for successful decoding after dropping a set enhancement layer
// frames in the sequence.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SLDropSetEnhER0) {
BasicRateTargetingSVC3TL1SLDropSetEnhER0Test();
}
// Check basic rate targeting for CBR, for 3 temporal layers, 3 spatial layers,
// with dropping set of enhancement layers (superframe TL 1 and TL2) in middle
// of sequence. Test that the error_resilient flag can be 0/off for all frames.
// This allows for successful decoding after dropping a set enhancement layer
// frames in the sequence.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL3SLDropSetEnhER0) {
BasicRateTargetingSVC3TL3SLDropSetEnhER0Test();
}
// Check basic rate targeting for CBR, for 3 temporal layers, 1 spatial layer,
// with compound prediction on, for pattern with two additional refereces
// (golden and altref), both updated on base TLO frames.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC3TL1SLMultiRefCompound) {
BasicRateTargetingSVC3TL1SLMultiRefCompoundTest();
}
// Check basic rate targeting for CBR, for 3 spatial layers, 1 temporal,
// with the top spatial layer starting disabled (0 bitrate) and then
// dynamically enabled after x frames with nonzero bitrate.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC1TL3SLDynEnabl) {
BasicRateTargetingSVC1TL3SLDynEnablTest();
}
// Check basic rate targeting for CBR, for 3 spatial layers, 1 temporal,
// with the top spatial layer dynamically disabled snd enabled during the
// middle of the sequence.
TEST_P(DatarateTestSVC, BasicRateTargetingSVC1TL3SLDynDisEnabl) {
BasicRateTargetingSVC1TL3SLDynDisEnablTest();
}
// Check basic rate targeting and encoder/decodermismatch, for RPS
// with 1 layer. A number of consecutive frames are lost midway in
// sequence, and encoder resorts to a longer term reference to recovery
// and continue decoding successfully.
TEST_P(DatarateTestSVC, BasicRateTargetingRPS1TL1SLDropFrames) {
BasicRateTargetingRPS1TL1SLDropFramesTest();
}
TEST(SvcParams, BitrateOverflow) {
uint8_t buf[6] = { 0 };
aom_image_t img;
aom_codec_ctx_t enc;
aom_codec_enc_cfg_t cfg;
EXPECT_EQ(&img, aom_img_wrap(&img, AOM_IMG_FMT_I420, 1, 1, 1, buf));
aom_codec_iface_t *const iface = aom_codec_av1_cx();
EXPECT_EQ(aom_codec_enc_config_default(iface, &cfg, AOM_USAGE_REALTIME),
AOM_CODEC_OK);
cfg.g_w = 1;
cfg.g_h = 1;
ASSERT_EQ(aom_codec_enc_init(&enc, iface, &cfg, 0), AOM_CODEC_OK);
aom_svc_params_t svc_params = {};
svc_params.framerate_factor[0] = 1;
svc_params.framerate_factor[1] = 2;
svc_params.number_spatial_layers = 1;
svc_params.number_temporal_layers = 2;
svc_params.layer_target_bitrate[0] = INT_MAX;
svc_params.layer_target_bitrate[1] = INT_MAX;
EXPECT_EQ(aom_codec_control(&enc, AV1E_SET_SVC_PARAMS, &svc_params),
AOM_CODEC_OK);
EXPECT_EQ(
aom_codec_encode(&enc, &img, /*pts=*/0, /*duration=*/1, /*flags=*/0),
AOM_CODEC_OK);
EXPECT_EQ(aom_codec_encode(&enc, /*img=*/nullptr, /*pts=*/0, /*duration=*/0,
/*flags=*/0),
AOM_CODEC_OK);
EXPECT_EQ(aom_codec_destroy(&enc), AOM_CODEC_OK);
}
AV1_INSTANTIATE_TEST_SUITE(DatarateTestSVC,
::testing::Values(::libaom_test::kRealTime),
::testing::Range(7, 12), ::testing::Values(0, 3),
::testing::Values(0, 1));
} // namespace
} // namespace datarate_test