blob: 8b7bd39a60fc5314460036c4a87d1cab05e06c4d [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include "common/obudec.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_ports/mem_ops.h"
#include "av1/common/common.h"
#include "av1/common/obu_util.h"
#include "tools_common.h"
#define OBU_BUFFER_SIZE (500 * 1024)
#define OBU_HEADER_SIZE 1
#define OBU_EXTENSION_SIZE 1
#define OBU_MAX_LENGTH_FIELD_SIZE 8
#define OBU_MAX_HEADER_SIZE \
(OBU_HEADER_SIZE + OBU_EXTENSION_SIZE + 2 * OBU_MAX_LENGTH_FIELD_SIZE)
#define OBU_DETECTION_SIZE \
(OBU_HEADER_SIZE + OBU_EXTENSION_SIZE + 4 * OBU_MAX_LENGTH_FIELD_SIZE)
// Reads unsigned LEB128 integer and returns 0 upon successful read and decode.
// Stores raw bytes in 'value_buffer', length of the number in 'value_length',
// and decoded value in 'value'. If 'buffered' is true, it is buffered in the
// detect buffer first.
static int obudec_read_leb128(struct AvxInputContext *input_ctx,
uint8_t *value_buffer, size_t *value_length,
uint64_t *value, bool buffered) {
if (!input_ctx || !value_buffer || !value_length || !value) return -1;
size_t len;
for (len = 0; len < OBU_MAX_LENGTH_FIELD_SIZE; ++len) {
const size_t num_read =
buffer_input(input_ctx, 1, &value_buffer[len], buffered);
if (num_read == 0) {
if (len == 0 && input_eof(input_ctx)) {
*value_length = 0;
return 0;
}
// Ran out of data before completing read of value.
return -1;
}
if ((value_buffer[len] >> 7) == 0) {
++len;
*value_length = len;
break;
}
}
return aom_uleb_decode(value_buffer, len, value, NULL);
}
// Reads OBU header from 'input_ctx'. The 'buffer_capacity' passed in must be
// large enough to store an OBU header with extension (2 bytes). Raw OBU data is
// written to 'obu_data', parsed OBU header values are written to 'obu_header',
// and total bytes read from file are written to 'bytes_read'. Returns 0 for
// success, and non-zero on failure. When end of file is reached, the return
// value is 0 and the 'bytes_read' value is set to 0. If 'buffered' is true, it
// is buffered in the detect buffer first.
static int obudec_read_obu_header(struct AvxInputContext *input_ctx,
size_t buffer_capacity, int is_annexb,
uint8_t *obu_data, ObuHeader *obu_header,
size_t *bytes_read, bool buffered) {
if (!input_ctx || buffer_capacity < (OBU_HEADER_SIZE + OBU_EXTENSION_SIZE) ||
!obu_data || !obu_header || !bytes_read) {
return -1;
}
*bytes_read = buffer_input(input_ctx, 1, obu_data, buffered);
if (input_eof(input_ctx) && *bytes_read == 0) {
return 0;
} else if (*bytes_read != 1) {
fprintf(stderr, "obudec: Failure reading OBU header.\n");
return -1;
}
const int has_extension = (obu_data[0] >> 2) & 0x1;
if (has_extension) {
if (buffer_input(input_ctx, 1, &obu_data[1], buffered) != 1) {
fprintf(stderr, "obudec: Failure reading OBU extension.");
return -1;
}
++*bytes_read;
}
size_t obu_bytes_parsed = 0;
const aom_codec_err_t parse_result = aom_read_obu_header(
obu_data, *bytes_read, &obu_bytes_parsed, obu_header, is_annexb);
if (parse_result != AOM_CODEC_OK || *bytes_read != obu_bytes_parsed) {
fprintf(stderr, "obudec: Error parsing OBU header.\n");
return -1;
}
return 0;
}
// Reads OBU payload from 'input_ctx' and returns 0 for success when all payload
// bytes are read from the file. Payload data is written to 'obu_data', and
// actual bytes read added to 'bytes_read'. If 'buffered' is true, it is
// buffered in the detect buffer first.
static int obudec_read_obu_payload(struct AvxInputContext *input_ctx,
size_t payload_length, uint8_t *obu_data,
size_t *bytes_read, bool buffered) {
if (!input_ctx || payload_length == 0 || !obu_data || !bytes_read) return -1;
if (buffer_input(input_ctx, payload_length, obu_data, buffered) !=
payload_length) {
fprintf(stderr, "obudec: Failure reading OBU payload.\n");
return -1;
}
*bytes_read += payload_length;
return 0;
}
static int obudec_read_obu_header_and_size(
struct AvxInputContext *input_ctx, size_t buffer_capacity, int is_annexb,
uint8_t *buffer, size_t *bytes_read, size_t *payload_length,
ObuHeader *obu_header, bool buffered) {
const size_t kMinimumBufferSize = OBU_MAX_HEADER_SIZE;
if (!input_ctx || !buffer || !bytes_read || !payload_length || !obu_header ||
buffer_capacity < kMinimumBufferSize) {
return -1;
}
size_t leb128_length_obu = 0;
size_t leb128_length_payload = 0;
uint64_t obu_size = 0;
if (is_annexb) {
if (obudec_read_leb128(input_ctx, &buffer[0], &leb128_length_obu, &obu_size,
buffered) != 0) {
fprintf(stderr, "obudec: Failure reading OBU size length.\n");
return -1;
} else if (leb128_length_obu == 0) {
*payload_length = 0;
return 0;
}
if (obu_size > UINT32_MAX) {
fprintf(stderr, "obudec: OBU payload length too large.\n");
return -1;
}
}
size_t header_size = 0;
if (obudec_read_obu_header(input_ctx, buffer_capacity - leb128_length_obu,
is_annexb, buffer + leb128_length_obu, obu_header,
&header_size, buffered) != 0) {
return -1;
} else if (header_size == 0) {
*payload_length = 0;
return 0;
}
if (!obu_header->has_size_field) {
assert(is_annexb);
if (obu_size < header_size) {
fprintf(stderr, "obudec: OBU size is too small.\n");
return -1;
}
*payload_length = (size_t)obu_size - header_size;
} else {
uint64_t u64_payload_length = 0;
if (obudec_read_leb128(input_ctx, &buffer[leb128_length_obu + header_size],
&leb128_length_payload, &u64_payload_length,
buffered) != 0) {
fprintf(stderr, "obudec: Failure reading OBU payload length.\n");
return -1;
}
if (u64_payload_length > UINT32_MAX) {
fprintf(stderr, "obudec: OBU payload length too large.\n");
return -1;
}
*payload_length = (size_t)u64_payload_length;
}
*bytes_read = leb128_length_obu + header_size + leb128_length_payload;
return 0;
}
static int obudec_grow_buffer(size_t growth_amount, uint8_t **obu_buffer,
size_t *obu_buffer_capacity) {
if (!*obu_buffer || !obu_buffer_capacity || growth_amount == 0) {
return -1;
}
const size_t capacity = *obu_buffer_capacity;
if (SIZE_MAX - growth_amount < capacity) {
fprintf(stderr, "obudec: cannot grow buffer, capacity will roll over.\n");
return -1;
}
const size_t new_capacity = capacity + growth_amount;
#if defined AOM_MAX_ALLOCABLE_MEMORY
if (new_capacity > AOM_MAX_ALLOCABLE_MEMORY) {
fprintf(stderr, "obudec: OBU size exceeds max alloc size.\n");
return -1;
}
#endif
uint8_t *new_buffer = (uint8_t *)realloc(*obu_buffer, new_capacity);
if (!new_buffer) {
fprintf(stderr, "obudec: Failed to allocate compressed data buffer.\n");
return -1;
}
*obu_buffer = new_buffer;
*obu_buffer_capacity = new_capacity;
return 0;
}
static int obudec_read_one_obu(struct AvxInputContext *input_ctx,
uint8_t **obu_buffer, size_t obu_bytes_buffered,
size_t *obu_buffer_capacity, size_t *obu_length,
ObuHeader *obu_header, int is_annexb,
bool buffered) {
if (!input_ctx || !(*obu_buffer) || !obu_buffer_capacity || !obu_length ||
!obu_header) {
return -1;
}
size_t bytes_read = 0;
size_t obu_payload_length = 0;
size_t available_buffer_capacity = *obu_buffer_capacity - obu_bytes_buffered;
if (available_buffer_capacity < OBU_MAX_HEADER_SIZE) {
if (obudec_grow_buffer(AOMMAX(*obu_buffer_capacity, OBU_MAX_HEADER_SIZE),
obu_buffer, obu_buffer_capacity) != 0) {
*obu_length = bytes_read;
return -1;
}
available_buffer_capacity +=
AOMMAX(*obu_buffer_capacity, OBU_MAX_HEADER_SIZE);
}
const int status = obudec_read_obu_header_and_size(
input_ctx, available_buffer_capacity, is_annexb,
*obu_buffer + obu_bytes_buffered, &bytes_read, &obu_payload_length,
obu_header, buffered);
if (status < 0) return status;
if (obu_payload_length > SIZE_MAX - bytes_read) return -1;
if (obu_payload_length > 256 * 1024 * 1024) {
fprintf(stderr, "obudec: Read invalid OBU size (%u)\n",
(unsigned int)obu_payload_length);
*obu_length = bytes_read + obu_payload_length;
return -1;
}
if (bytes_read + obu_payload_length > available_buffer_capacity &&
obudec_grow_buffer(AOMMAX(*obu_buffer_capacity, obu_payload_length),
obu_buffer, obu_buffer_capacity) != 0) {
*obu_length = bytes_read + obu_payload_length;
return -1;
}
if (obu_payload_length > 0 &&
obudec_read_obu_payload(input_ctx, obu_payload_length,
*obu_buffer + obu_bytes_buffered + bytes_read,
&bytes_read, buffered) != 0) {
return -1;
}
*obu_length = bytes_read;
return 0;
}
int file_is_obu(struct ObuDecInputContext *obu_ctx) {
if (!obu_ctx || !obu_ctx->avx_ctx) return 0;
struct AvxInputContext *avx_ctx = obu_ctx->avx_ctx;
uint8_t detect_buf[OBU_DETECTION_SIZE] = { 0 };
const int is_annexb = obu_ctx->is_annexb;
size_t payload_length = 0;
ObuHeader obu_header;
memset(&obu_header, 0, sizeof(obu_header));
size_t length_of_unit_size = 0;
size_t annexb_header_length = 0;
uint64_t unit_size = 0;
if (is_annexb) {
// read the size of first temporal unit
if (obudec_read_leb128(avx_ctx, &detect_buf[0], &length_of_unit_size,
&unit_size, /*buffered=*/true) != 0) {
fprintf(stderr, "obudec: Failure reading temporal unit header\n");
rewind_detect(avx_ctx);
return 0;
}
// read the size of first frame unit
if (obudec_read_leb128(avx_ctx, &detect_buf[length_of_unit_size],
&annexb_header_length, &unit_size,
/*buffered=*/true) != 0) {
fprintf(stderr, "obudec: Failure reading frame unit header\n");
rewind_detect(avx_ctx);
return 0;
}
annexb_header_length += length_of_unit_size;
}
size_t bytes_read = 0;
if (obudec_read_obu_header_and_size(
avx_ctx, OBU_DETECTION_SIZE - annexb_header_length, is_annexb,
&detect_buf[annexb_header_length], &bytes_read, &payload_length,
&obu_header, /*buffered=*/true) != 0) {
fprintf(stderr, "obudec: Failure reading first OBU.\n");
rewind_detect(avx_ctx);
return 0;
}
if (is_annexb) {
bytes_read += annexb_header_length;
}
if (obu_header.type != OBU_TEMPORAL_DELIMITER &&
obu_header.type != OBU_SEQUENCE_HEADER) {
rewind_detect(avx_ctx);
return 0;
}
if (obu_header.has_size_field) {
if (obu_header.type == OBU_TEMPORAL_DELIMITER && payload_length != 0) {
fprintf(
stderr,
"obudec: Invalid OBU_TEMPORAL_DELIMITER payload length (non-zero).");
rewind_detect(avx_ctx);
return 0;
}
} else if (!is_annexb) {
fprintf(stderr, "obudec: OBU size fields required, cannot decode input.\n");
rewind_detect(avx_ctx);
return 0;
}
// Appears that input is valid Section 5 AV1 stream.
obu_ctx->buffer = (uint8_t *)malloc(OBU_BUFFER_SIZE);
if (!obu_ctx->buffer) {
fprintf(stderr, "Out of memory.\n");
rewind_detect(avx_ctx);
return 0;
}
obu_ctx->buffer_capacity = OBU_BUFFER_SIZE;
memcpy(obu_ctx->buffer, &detect_buf[0], bytes_read);
obu_ctx->bytes_buffered = bytes_read;
// If the first OBU is a SEQUENCE_HEADER, then it will have a payload.
// We need to read this in so that our buffer only contains complete OBUs.
if (payload_length > 0) {
if (payload_length > (obu_ctx->buffer_capacity - bytes_read)) {
fprintf(stderr, "obudec: First OBU's payload is too large\n");
rewind_detect(avx_ctx);
obudec_free(obu_ctx);
return 0;
}
size_t payload_bytes = 0;
const int status = obudec_read_obu_payload(
avx_ctx, payload_length, &obu_ctx->buffer[bytes_read], &payload_bytes,
/*buffered=*/false);
if (status < 0) {
rewind_detect(avx_ctx);
obudec_free(obu_ctx);
return 0;
}
obu_ctx->bytes_buffered += payload_bytes;
}
return 1;
}
int obudec_read_temporal_unit(struct ObuDecInputContext *obu_ctx,
uint8_t **buffer, size_t *bytes_read,
size_t *buffer_size) {
FILE *f = obu_ctx->avx_ctx->file;
if (!f) return -1;
*buffer_size = 0;
*bytes_read = 0;
if (input_eof(obu_ctx->avx_ctx)) {
return 1;
}
size_t tu_size;
size_t obu_size = 0;
size_t length_of_temporal_unit_size = 0;
uint8_t tuheader[OBU_MAX_LENGTH_FIELD_SIZE] = { 0 };
if (obu_ctx->is_annexb) {
uint64_t size = 0;
if (obu_ctx->bytes_buffered == 0) {
if (obudec_read_leb128(obu_ctx->avx_ctx, &tuheader[0],
&length_of_temporal_unit_size, &size,
/*buffered=*/false) != 0) {
fprintf(stderr, "obudec: Failure reading temporal unit header\n");
return -1;
}
if (size == 0 && input_eof(obu_ctx->avx_ctx)) {
return 1;
}
} else {
// temporal unit size was already stored in buffer
if (aom_uleb_decode(obu_ctx->buffer, obu_ctx->bytes_buffered, &size,
&length_of_temporal_unit_size) != 0) {
fprintf(stderr, "obudec: Failure reading temporal unit header\n");
return -1;
}
}
if (size > UINT32_MAX || size + length_of_temporal_unit_size > UINT32_MAX) {
fprintf(stderr, "obudec: TU too large.\n");
return -1;
}
size += length_of_temporal_unit_size;
tu_size = (size_t)size;
} else {
while (1) {
ObuHeader obu_header;
memset(&obu_header, 0, sizeof(obu_header));
if (obudec_read_one_obu(obu_ctx->avx_ctx, &obu_ctx->buffer,
obu_ctx->bytes_buffered,
&obu_ctx->buffer_capacity, &obu_size, &obu_header,
0, /*buffered=*/false) != 0) {
fprintf(stderr, "obudec: read_one_obu failed in TU loop\n");
return -1;
}
if (obu_header.type == OBU_TEMPORAL_DELIMITER || obu_size == 0) {
tu_size = obu_ctx->bytes_buffered;
break;
} else {
obu_ctx->bytes_buffered += obu_size;
}
}
}
#if defined AOM_MAX_ALLOCABLE_MEMORY
if (tu_size > AOM_MAX_ALLOCABLE_MEMORY) {
fprintf(stderr, "obudec: Temporal Unit size exceeds max alloc size.\n");
return -1;
}
#endif
if (tu_size > 0) {
uint8_t *new_buffer = (uint8_t *)realloc(*buffer, tu_size);
if (!new_buffer) {
free(*buffer);
fprintf(stderr, "obudec: Out of memory.\n");
return -1;
}
*buffer = new_buffer;
}
*bytes_read = tu_size;
*buffer_size = tu_size;
if (!obu_ctx->is_annexb) {
memcpy(*buffer, obu_ctx->buffer, tu_size);
// At this point, (obu_ctx->buffer + obu_ctx->bytes_buffered + obu_size)
// points to the end of the buffer.
memmove(obu_ctx->buffer, obu_ctx->buffer + obu_ctx->bytes_buffered,
obu_size);
obu_ctx->bytes_buffered = obu_size;
} else {
if (!input_eof(obu_ctx->avx_ctx)) {
size_t data_size;
size_t offset;
if (!obu_ctx->bytes_buffered) {
data_size = tu_size - length_of_temporal_unit_size;
memcpy(*buffer, &tuheader[0], length_of_temporal_unit_size);
offset = length_of_temporal_unit_size;
} else {
const size_t copy_size = AOMMIN(obu_ctx->bytes_buffered, tu_size);
memcpy(*buffer, obu_ctx->buffer, copy_size);
offset = copy_size;
data_size = tu_size - copy_size;
obu_ctx->bytes_buffered -= copy_size;
}
if (read_from_input(obu_ctx->avx_ctx, data_size, *buffer + offset) !=
data_size) {
fprintf(stderr, "obudec: Failed to read full temporal unit\n");
return -1;
}
}
}
return 0;
}
void obudec_free(struct ObuDecInputContext *obu_ctx) {
free(obu_ctx->buffer);
obu_ctx->buffer = NULL;
obu_ctx->buffer_capacity = 0;
obu_ctx->bytes_buffered = 0;
}