blob: a9c4c0b8e81f4775eca42987e7578181c371570a [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include "third_party/googletest/src/googletest/include/gtest/gtest.h"
#include "./av1_rtcd.h"
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "test/acm_random.h"
#include "test/clear_system_state.h"
#include "test/register_state_check.h"
#include "test/util.h"
#include "av1/common/entropy.h"
#include "aom/aom_codec.h"
#include "aom/aom_integer.h"
#include "aom_ports/mem.h"
#include "aom_ports/msvc.h" // for round()
using libaom_test::ACMRandom;
namespace {
const int kNumCoeffs = 1024;
const double kPi = 3.141592653589793238462643383279502884;
void reference_32x32_dct_1d(const double in[32], double out[32]) {
const double kInvSqrt2 = 0.707106781186547524400844362104;
for (int k = 0; k < 32; k++) {
out[k] = 0.0;
for (int n = 0; n < 32; n++)
out[k] += in[n] * cos(kPi * (2 * n + 1) * k / 64.0);
if (k == 0) out[k] = out[k] * kInvSqrt2;
}
}
void reference_32x32_dct_2d(const int16_t input[kNumCoeffs],
double output[kNumCoeffs]) {
// First transform columns
for (int i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (int j = 0; j < 32; ++j) temp_in[j] = input[j * 32 + i];
reference_32x32_dct_1d(temp_in, temp_out);
for (int j = 0; j < 32; ++j) output[j * 32 + i] = temp_out[j];
}
// Then transform rows
for (int i = 0; i < 32; ++i) {
double temp_in[32], temp_out[32];
for (int j = 0; j < 32; ++j) temp_in[j] = output[j + i * 32];
reference_32x32_dct_1d(temp_in, temp_out);
// Scale by some magic number
for (int j = 0; j < 32; ++j) output[j + i * 32] = temp_out[j] / 4;
}
}
typedef void (*FwdTxfmFunc)(const int16_t *in, tran_low_t *out, int stride);
typedef void (*InvTxfmFunc)(const tran_low_t *in, uint8_t *out, int stride);
typedef std::tr1::tuple<FwdTxfmFunc, InvTxfmFunc, int, aom_bit_depth_t>
Trans32x32Param;
#if CONFIG_AOM_HIGHBITDEPTH
void idct32x32_10(const tran_low_t *in, uint8_t *out, int stride) {
aom_highbd_idct32x32_1024_add_c(in, out, stride, 10);
}
void idct32x32_12(const tran_low_t *in, uint8_t *out, int stride) {
aom_highbd_idct32x32_1024_add_c(in, out, stride, 12);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
class Trans32x32Test : public ::testing::TestWithParam<Trans32x32Param> {
public:
virtual ~Trans32x32Test() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
inv_txfm_ = GET_PARAM(1);
version_ = GET_PARAM(2); // 0: high precision forward transform
// 1: low precision version for rd loop
bit_depth_ = GET_PARAM(3);
mask_ = (1 << bit_depth_) - 1;
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
int version_;
aom_bit_depth_t bit_depth_;
int mask_;
FwdTxfmFunc fwd_txfm_;
InvTxfmFunc inv_txfm_;
};
TEST_P(Trans32x32Test, AccuracyCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
uint32_t max_error = 0;
int64_t total_error = 0;
const int count_test_block = 10000;
DECLARE_ALIGNED(16, int16_t, test_input_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, test_temp_block[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
#endif
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
test_input_block[j] = src[j] - dst[j];
#if CONFIG_AOM_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
test_input_block[j] = src16[j] - dst16[j];
#endif
}
}
ASM_REGISTER_STATE_CHECK(fwd_txfm_(test_input_block, test_temp_block, 32));
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(inv_txfm_(test_temp_block, dst, 32));
#if CONFIG_AOM_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(
inv_txfm_(test_temp_block, CONVERT_TO_BYTEPTR(dst16), 32));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_AOM_HIGHBITDEPTH
const int32_t diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int32_t diff = dst[j] - src[j];
#endif
const uint32_t error = diff * diff;
if (max_error < error) max_error = error;
total_error += error;
}
}
if (version_ == 1) {
max_error /= 2;
total_error /= 45;
}
EXPECT_GE(1u << 2 * (bit_depth_ - 8), max_error)
<< "Error: 32x32 FDCT/IDCT has an individual round-trip error > 1";
EXPECT_GE(count_test_block << 2 * (bit_depth_ - 8), total_error)
<< "Error: 32x32 FDCT/IDCT has average round-trip error > 1 per block";
}
TEST_P(Trans32x32Test, CoeffCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, input_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
for (int j = 0; j < kNumCoeffs; ++j)
input_block[j] = (rnd.Rand16() & mask_) - (rnd.Rand16() & mask_);
const int stride = 32;
aom_fdct32x32_c(input_block, output_ref_block, stride);
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input_block, output_block, stride));
if (version_ == 0) {
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_EQ(output_block[j], output_ref_block[j])
<< "Error: 32x32 FDCT versions have mismatched coefficients";
} else {
for (int j = 0; j < kNumCoeffs; ++j)
EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
<< "Error: 32x32 FDCT rd has mismatched coefficients";
}
}
}
TEST_P(Trans32x32Test, MemCheck) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 2000;
DECLARE_ALIGNED(16, int16_t, input_extreme_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_ref_block[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output_block[kNumCoeffs]);
for (int i = 0; i < count_test_block; ++i) {
// Initialize a test block with input range [-mask_, mask_].
for (int j = 0; j < kNumCoeffs; ++j) {
input_extreme_block[j] = rnd.Rand8() & 1 ? mask_ : -mask_;
}
if (i == 0) {
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = mask_;
} else if (i == 1) {
for (int j = 0; j < kNumCoeffs; ++j) input_extreme_block[j] = -mask_;
}
const int stride = 32;
aom_fdct32x32_c(input_extreme_block, output_ref_block, stride);
ASM_REGISTER_STATE_CHECK(
fwd_txfm_(input_extreme_block, output_block, stride));
// The minimum quant value is 4.
for (int j = 0; j < kNumCoeffs; ++j) {
if (version_ == 0) {
EXPECT_EQ(output_block[j], output_ref_block[j])
<< "Error: 32x32 FDCT versions have mismatched coefficients";
} else {
EXPECT_GE(6, abs(output_block[j] - output_ref_block[j]))
<< "Error: 32x32 FDCT rd has mismatched coefficients";
}
EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_ref_block[j]))
<< "Error: 32x32 FDCT C has coefficient larger than 4*DCT_MAX_VALUE";
EXPECT_GE(4 * DCT_MAX_VALUE << (bit_depth_ - 8), abs(output_block[j]))
<< "Error: 32x32 FDCT has coefficient larger than "
<< "4*DCT_MAX_VALUE";
}
}
}
TEST_P(Trans32x32Test, InverseAccuracy) {
ACMRandom rnd(ACMRandom::DeterministicSeed());
const int count_test_block = 1000;
DECLARE_ALIGNED(16, int16_t, in[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, coeff[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, dst[kNumCoeffs]);
DECLARE_ALIGNED(16, uint8_t, src[kNumCoeffs]);
#if CONFIG_AOM_HIGHBITDEPTH
DECLARE_ALIGNED(16, uint16_t, dst16[kNumCoeffs]);
DECLARE_ALIGNED(16, uint16_t, src16[kNumCoeffs]);
#endif
for (int i = 0; i < count_test_block; ++i) {
double out_r[kNumCoeffs];
// Initialize a test block with input range [-255, 255]
for (int j = 0; j < kNumCoeffs; ++j) {
if (bit_depth_ == AOM_BITS_8) {
src[j] = rnd.Rand8();
dst[j] = rnd.Rand8();
in[j] = src[j] - dst[j];
#if CONFIG_AOM_HIGHBITDEPTH
} else {
src16[j] = rnd.Rand16() & mask_;
dst16[j] = rnd.Rand16() & mask_;
in[j] = src16[j] - dst16[j];
#endif
}
}
reference_32x32_dct_2d(in, out_r);
for (int j = 0; j < kNumCoeffs; ++j)
coeff[j] = static_cast<tran_low_t>(round(out_r[j]));
if (bit_depth_ == AOM_BITS_8) {
ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, dst, 32));
#if CONFIG_AOM_HIGHBITDEPTH
} else {
ASM_REGISTER_STATE_CHECK(inv_txfm_(coeff, CONVERT_TO_BYTEPTR(dst16), 32));
#endif
}
for (int j = 0; j < kNumCoeffs; ++j) {
#if CONFIG_AOM_HIGHBITDEPTH
const int diff =
bit_depth_ == AOM_BITS_8 ? dst[j] - src[j] : dst16[j] - src16[j];
#else
const int diff = dst[j] - src[j];
#endif
const int error = diff * diff;
EXPECT_GE(1, error) << "Error: 32x32 IDCT has error " << error
<< " at index " << j;
}
}
}
class PartialTrans32x32Test
: public ::testing::TestWithParam<
std::tr1::tuple<FwdTxfmFunc, aom_bit_depth_t> > {
public:
virtual ~PartialTrans32x32Test() {}
virtual void SetUp() {
fwd_txfm_ = GET_PARAM(0);
bit_depth_ = GET_PARAM(1);
}
virtual void TearDown() { libaom_test::ClearSystemState(); }
protected:
aom_bit_depth_t bit_depth_;
FwdTxfmFunc fwd_txfm_;
};
TEST_P(PartialTrans32x32Test, Extremes) {
#if CONFIG_AOM_HIGHBITDEPTH
const int16_t maxval =
static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_));
#else
const int16_t maxval = 255;
#endif
const int minval = -maxval;
DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]);
for (int i = 0; i < kNumCoeffs; ++i) input[i] = maxval;
output[0] = 0;
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32));
EXPECT_EQ((maxval * kNumCoeffs) >> 3, output[0]);
for (int i = 0; i < kNumCoeffs; ++i) input[i] = minval;
output[0] = 0;
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32));
EXPECT_EQ((minval * kNumCoeffs) >> 3, output[0]);
}
TEST_P(PartialTrans32x32Test, Random) {
#if CONFIG_AOM_HIGHBITDEPTH
const int16_t maxval =
static_cast<int16_t>(clip_pixel_highbd(1 << 30, bit_depth_));
#else
const int16_t maxval = 255;
#endif
DECLARE_ALIGNED(16, int16_t, input[kNumCoeffs]);
DECLARE_ALIGNED(16, tran_low_t, output[kNumCoeffs]);
ACMRandom rnd(ACMRandom::DeterministicSeed());
int sum = 0;
for (int i = 0; i < kNumCoeffs; ++i) {
const int val = (i & 1) ? -rnd(maxval + 1) : rnd(maxval + 1);
input[i] = val;
sum += val;
}
output[0] = 0;
ASM_REGISTER_STATE_CHECK(fwd_txfm_(input, output, 32));
EXPECT_EQ(sum >> 3, output[0]);
}
using std::tr1::make_tuple;
#if CONFIG_AOM_HIGHBITDEPTH
INSTANTIATE_TEST_CASE_P(
C, Trans32x32Test,
::testing::Values(
make_tuple(&aom_highbd_fdct32x32_c, &idct32x32_10, 0, AOM_BITS_10),
make_tuple(&aom_highbd_fdct32x32_rd_c, &idct32x32_10, 1, AOM_BITS_10),
make_tuple(&aom_highbd_fdct32x32_c, &idct32x32_12, 0, AOM_BITS_12),
make_tuple(&aom_highbd_fdct32x32_rd_c, &idct32x32_12, 1, AOM_BITS_12),
make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, 0, AOM_BITS_8),
make_tuple(&aom_fdct32x32_rd_c, &aom_idct32x32_1024_add_c, 1,
AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(
C, PartialTrans32x32Test,
::testing::Values(make_tuple(&aom_highbd_fdct32x32_1_c, AOM_BITS_8),
make_tuple(&aom_highbd_fdct32x32_1_c, AOM_BITS_10),
make_tuple(&aom_highbd_fdct32x32_1_c, AOM_BITS_12)));
#else
INSTANTIATE_TEST_CASE_P(
C, Trans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_c, 0,
AOM_BITS_8),
make_tuple(&aom_fdct32x32_rd_c, &aom_idct32x32_1024_add_c,
1, AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(C, PartialTrans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_1_c,
AOM_BITS_8)));
#endif // CONFIG_AOM_HIGHBITDEPTH
#if HAVE_NEON && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
NEON, Trans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_c, &aom_idct32x32_1024_add_neon,
0, AOM_BITS_8),
make_tuple(&aom_fdct32x32_rd_c,
&aom_idct32x32_1024_add_neon, 1, AOM_BITS_8)));
#endif // HAVE_NEON && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
SSE2, Trans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_sse2,
&aom_idct32x32_1024_add_sse2, 0, AOM_BITS_8),
make_tuple(&aom_fdct32x32_rd_sse2,
&aom_idct32x32_1024_add_sse2, 1, AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_1_sse2,
AOM_BITS_8)));
#endif // HAVE_SSE2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_AVX2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(AVX2, PartialTrans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_1_avx2,
AOM_BITS_8)));
#endif // HAVE_AVX2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_SSE2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
SSE2, Trans32x32Test,
::testing::Values(
make_tuple(&aom_highbd_fdct32x32_sse2, &idct32x32_10, 0, AOM_BITS_10),
make_tuple(&aom_highbd_fdct32x32_rd_sse2, &idct32x32_10, 1,
AOM_BITS_10),
make_tuple(&aom_highbd_fdct32x32_sse2, &idct32x32_12, 0, AOM_BITS_12),
make_tuple(&aom_highbd_fdct32x32_rd_sse2, &idct32x32_12, 1,
AOM_BITS_12),
make_tuple(&aom_fdct32x32_sse2, &aom_idct32x32_1024_add_c, 0,
AOM_BITS_8),
make_tuple(&aom_fdct32x32_rd_sse2, &aom_idct32x32_1024_add_c, 1,
AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(SSE2, PartialTrans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_1_sse2,
AOM_BITS_8)));
#endif // HAVE_SSE2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_AVX2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
AVX2, Trans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_avx2,
&aom_idct32x32_1024_add_sse2, 0, AOM_BITS_8),
make_tuple(&aom_fdct32x32_rd_avx2,
&aom_idct32x32_1024_add_sse2, 1, AOM_BITS_8)));
#endif // HAVE_AVX2 && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_AVX2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
AVX2, Trans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_avx2,
&aom_idct32x32_1024_add_sse2, 0, AOM_BITS_8),
make_tuple(&aom_fdct32x32_rd_avx2,
&aom_idct32x32_1024_add_sse2, 1, AOM_BITS_8)));
#endif // HAVE_AVX2 && CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
#if HAVE_MSA && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
INSTANTIATE_TEST_CASE_P(
MSA, Trans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_msa,
&aom_idct32x32_1024_add_msa, 0, AOM_BITS_8),
make_tuple(&aom_fdct32x32_rd_msa,
&aom_idct32x32_1024_add_msa, 1, AOM_BITS_8)));
INSTANTIATE_TEST_CASE_P(MSA, PartialTrans32x32Test,
::testing::Values(make_tuple(&aom_fdct32x32_1_msa,
AOM_BITS_8)));
#endif // HAVE_MSA && !CONFIG_AOM_HIGHBITDEPTH && !CONFIG_EMULATE_HARDWARE
} // namespace