| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include "av1/encoder/context_tree.h" |
| #include "av1/encoder/encoder.h" |
| |
| static const BLOCK_SIZE square[MAX_SB_SIZE_LOG2 - 1] = { |
| BLOCK_4X4, BLOCK_8X8, BLOCK_16X16, BLOCK_32X32, BLOCK_64X64, BLOCK_128X128, |
| }; |
| |
| static void alloc_mode_context(AV1_COMMON *cm, int num_pix, |
| PICK_MODE_CONTEXT *ctx) { |
| const int num_planes = av1_num_planes(cm); |
| int i; |
| const int num_blk = num_pix / 16; |
| ctx->num_4x4_blk = num_blk; |
| |
| CHECK_MEM_ERROR(cm, ctx->blk_skip, aom_calloc(num_blk, sizeof(uint8_t))); |
| for (i = 0; i < num_planes; ++i) { |
| CHECK_MEM_ERROR(cm, ctx->coeff[i], |
| aom_memalign(32, num_pix * sizeof(*ctx->coeff[i]))); |
| CHECK_MEM_ERROR(cm, ctx->qcoeff[i], |
| aom_memalign(32, num_pix * sizeof(*ctx->qcoeff[i]))); |
| CHECK_MEM_ERROR(cm, ctx->dqcoeff[i], |
| aom_memalign(32, num_pix * sizeof(*ctx->dqcoeff[i]))); |
| CHECK_MEM_ERROR(cm, ctx->eobs[i], |
| aom_memalign(32, num_blk * sizeof(*ctx->eobs[i]))); |
| CHECK_MEM_ERROR( |
| cm, ctx->txb_entropy_ctx[i], |
| aom_memalign(32, num_blk * sizeof(*ctx->txb_entropy_ctx[i]))); |
| } |
| |
| if (num_pix <= MAX_PALETTE_SQUARE) { |
| for (i = 0; i < 2; ++i) { |
| CHECK_MEM_ERROR( |
| cm, ctx->color_index_map[i], |
| aom_memalign(32, num_pix * sizeof(*ctx->color_index_map[i]))); |
| } |
| } |
| } |
| |
| static void free_mode_context(PICK_MODE_CONTEXT *ctx, const int num_planes) { |
| int i; |
| aom_free(ctx->blk_skip); |
| ctx->blk_skip = 0; |
| for (i = 0; i < num_planes; ++i) { |
| aom_free(ctx->coeff[i]); |
| ctx->coeff[i] = 0; |
| aom_free(ctx->qcoeff[i]); |
| ctx->qcoeff[i] = 0; |
| aom_free(ctx->dqcoeff[i]); |
| ctx->dqcoeff[i] = 0; |
| aom_free(ctx->eobs[i]); |
| ctx->eobs[i] = 0; |
| aom_free(ctx->txb_entropy_ctx[i]); |
| ctx->txb_entropy_ctx[i] = 0; |
| } |
| |
| for (i = 0; i < 2; ++i) { |
| aom_free(ctx->color_index_map[i]); |
| ctx->color_index_map[i] = 0; |
| } |
| } |
| |
| static void alloc_tree_contexts(AV1_COMMON *cm, PC_TREE *tree, int num_pix, |
| int is_leaf) { |
| alloc_mode_context(cm, num_pix, &tree->none); |
| |
| if (is_leaf) return; |
| |
| alloc_mode_context(cm, num_pix / 2, &tree->horizontal[0]); |
| alloc_mode_context(cm, num_pix / 2, &tree->vertical[0]); |
| |
| alloc_mode_context(cm, num_pix / 2, &tree->horizontal[1]); |
| alloc_mode_context(cm, num_pix / 2, &tree->vertical[1]); |
| |
| alloc_mode_context(cm, num_pix / 4, &tree->horizontala[0]); |
| alloc_mode_context(cm, num_pix / 4, &tree->horizontala[1]); |
| alloc_mode_context(cm, num_pix / 2, &tree->horizontala[2]); |
| |
| alloc_mode_context(cm, num_pix / 2, &tree->horizontalb[0]); |
| alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[1]); |
| alloc_mode_context(cm, num_pix / 4, &tree->horizontalb[2]); |
| |
| alloc_mode_context(cm, num_pix / 4, &tree->verticala[0]); |
| alloc_mode_context(cm, num_pix / 4, &tree->verticala[1]); |
| alloc_mode_context(cm, num_pix / 2, &tree->verticala[2]); |
| |
| alloc_mode_context(cm, num_pix / 2, &tree->verticalb[0]); |
| alloc_mode_context(cm, num_pix / 4, &tree->verticalb[1]); |
| alloc_mode_context(cm, num_pix / 4, &tree->verticalb[2]); |
| |
| for (int i = 0; i < 4; ++i) { |
| alloc_mode_context(cm, num_pix / 4, &tree->horizontal4[i]); |
| alloc_mode_context(cm, num_pix / 4, &tree->vertical4[i]); |
| } |
| } |
| |
| static void free_tree_contexts(PC_TREE *tree, const int num_planes) { |
| int i; |
| for (i = 0; i < 3; i++) { |
| free_mode_context(&tree->horizontala[i], num_planes); |
| free_mode_context(&tree->horizontalb[i], num_planes); |
| free_mode_context(&tree->verticala[i], num_planes); |
| free_mode_context(&tree->verticalb[i], num_planes); |
| } |
| for (i = 0; i < 4; ++i) { |
| free_mode_context(&tree->horizontal4[i], num_planes); |
| free_mode_context(&tree->vertical4[i], num_planes); |
| } |
| free_mode_context(&tree->none, num_planes); |
| free_mode_context(&tree->horizontal[0], num_planes); |
| free_mode_context(&tree->horizontal[1], num_planes); |
| free_mode_context(&tree->vertical[0], num_planes); |
| free_mode_context(&tree->vertical[1], num_planes); |
| } |
| |
| // This function sets up a tree of contexts such that at each square |
| // partition level. There are contexts for none, horizontal, vertical, and |
| // split. Along with a block_size value and a selected block_size which |
| // represents the state of our search. |
| void av1_setup_pc_tree(AV1_COMMON *cm, ThreadData *td) { |
| int i, j; |
| const int tree_nodes_inc = 1024; |
| const int leaf_factor = 4; |
| const int leaf_nodes = 256 * leaf_factor; |
| const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1; |
| int pc_tree_index = 0; |
| PC_TREE *this_pc; |
| int square_index = 1; |
| int nodes; |
| |
| aom_free(td->pc_tree); |
| CHECK_MEM_ERROR(cm, td->pc_tree, |
| aom_calloc(tree_nodes, sizeof(*td->pc_tree))); |
| this_pc = &td->pc_tree[0]; |
| |
| // Sets up all the leaf nodes in the tree. |
| for (pc_tree_index = 0; pc_tree_index < leaf_nodes; ++pc_tree_index) { |
| PC_TREE *const tree = &td->pc_tree[pc_tree_index]; |
| tree->block_size = square[0]; |
| alloc_tree_contexts(cm, tree, 16, 1); |
| } |
| |
| // Each node has 4 leaf nodes, fill each block_size level of the tree |
| // from leafs to the root. |
| for (nodes = leaf_nodes >> 2; nodes > 0; nodes >>= 2) { |
| for (i = 0; i < nodes; ++i) { |
| PC_TREE *const tree = &td->pc_tree[pc_tree_index]; |
| alloc_tree_contexts(cm, tree, 16 << (2 * square_index), 0); |
| tree->block_size = square[square_index]; |
| for (j = 0; j < 4; j++) tree->split[j] = this_pc++; |
| ++pc_tree_index; |
| } |
| ++square_index; |
| } |
| |
| // Set up the root node for the largest superblock size |
| i = MAX_MIB_SIZE_LOG2 - MIN_MIB_SIZE_LOG2; |
| td->pc_root[i] = &td->pc_tree[tree_nodes - 1]; |
| td->pc_root[i]->none.best_mode_index = 2; |
| // Set up the root nodes for the rest of the possible superblock sizes |
| while (--i >= 0) { |
| td->pc_root[i] = td->pc_root[i + 1]->split[0]; |
| td->pc_root[i]->none.best_mode_index = 2; |
| } |
| } |
| |
| void av1_free_pc_tree(ThreadData *td, const int num_planes) { |
| const int tree_nodes_inc = 1024; |
| |
| const int tree_nodes = tree_nodes_inc + 256 + 64 + 16 + 4 + 1; |
| int i; |
| for (i = 0; i < tree_nodes; ++i) |
| free_tree_contexts(&td->pc_tree[i], num_planes); |
| aom_free(td->pc_tree); |
| td->pc_tree = NULL; |
| } |
| |
| void av1_copy_tree_context(PICK_MODE_CONTEXT *dst_ctx, |
| PICK_MODE_CONTEXT *src_ctx) { |
| dst_ctx->mic = src_ctx->mic; |
| dst_ctx->mbmi_ext = src_ctx->mbmi_ext; |
| |
| dst_ctx->num_4x4_blk = src_ctx->num_4x4_blk; |
| dst_ctx->skip = src_ctx->skip; |
| dst_ctx->skippable = src_ctx->skippable; |
| dst_ctx->best_mode_index = src_ctx->best_mode_index; |
| |
| memcpy(dst_ctx->blk_skip, src_ctx->blk_skip, |
| sizeof(uint8_t) * src_ctx->num_4x4_blk); |
| |
| dst_ctx->hybrid_pred_diff = src_ctx->hybrid_pred_diff; |
| dst_ctx->comp_pred_diff = src_ctx->comp_pred_diff; |
| dst_ctx->single_pred_diff = src_ctx->single_pred_diff; |
| |
| dst_ctx->rate = src_ctx->rate; |
| dst_ctx->dist = src_ctx->dist; |
| dst_ctx->rdcost = src_ctx->rdcost; |
| dst_ctx->rd_mode_is_ready = src_ctx->rd_mode_is_ready; |
| |
| memcpy(dst_ctx->pred_mv, src_ctx->pred_mv, sizeof(MV) * REF_FRAMES); |
| dst_ctx->pred_interp_filter = src_ctx->pred_interp_filter; |
| |
| dst_ctx->partition = src_ctx->partition; |
| } |