blob: 4185798ef87064753ebfd62ff88a3fd10769eecb [file] [log] [blame]
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at
/*! \file
* Declares various structs used to encode the current partition block.
#include "av1/common/blockd.h"
#include "av1/common/entropymv.h"
#include "av1/common/entropy.h"
#include "av1/common/enums.h"
#include "av1/common/mvref_common.h"
#include "av1/encoder/enc_enums.h"
#include "av1/encoder/mcomp_structs.h"
#include "av1/encoder/partition_cnn_weights.h"
#include "av1/encoder/hash_motion.h"
#ifdef __cplusplus
extern "C" {
//! Minimum linear dimension of a tpl block
#define MIN_TPL_BSIZE_1D 16
//! Maximum number of tpl block in a super block
//! Number of txfm hash records kept for the partition block.
/*! Maximum value taken by transform type probabilities */
#define MAX_TX_TYPE_PROB 1024
/*! \brief Superblock level encoder info
* SuperblockEnc stores superblock level information used by the encoder for
* more efficient encoding. Currently this is mostly used to store TPL data
* for the current superblock.
typedef struct {
//! Maximum partition size for the sb.
BLOCK_SIZE min_partition_size;
//! Minimum partition size for the sb.
BLOCK_SIZE max_partition_size;
* \name TPL Info
* Information gathered from tpl_model at tpl block precision for the
* superblock to speed up the encoding process..
//! Number of TPL blocks in this superblock.
int tpl_data_count;
//! TPL's estimate of inter cost for each tpl block.
int64_t tpl_inter_cost[MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB];
//! TPL's estimate of tpl cost for each tpl block.
int64_t tpl_intra_cost[MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB];
//! Motion vectors found by TPL model for each tpl block.
//! TPL's stride for the arrays in this struct.
int tpl_stride;
} SuperBlockEnc;
/*! \brief Stores the best performing modes.
typedef struct {
//! The mbmi used to reconstruct the winner mode.
//! Rdstats of the winner mode.
RD_STATS rd_cost;
//! Rdcost of the winner mode
int64_t rd;
//! Luma rate of the winner mode.
int rate_y;
//! Chroma rate of the winner mode.
int rate_uv;
//! The color map needed to reconstruct palette mode.
uint8_t color_index_map[MAX_SB_SQUARE];
//! The current winner mode.
THR_MODES mode_index;
} WinnerModeStats;
/*! \brief Each source plane of the current macroblock
* This struct also stores the txfm buffers and quantizer settings.
typedef struct macroblock_plane {
//! Stores source - pred so the txfm can be computed later
int16_t *src_diff;
//! Dequantized coefficients
tran_low_t *dqcoeff;
//! Quantized coefficients
tran_low_t *qcoeff;
//! Transformed coefficients
tran_low_t *coeff;
//! Location of the end of qcoeff (end of block).
uint16_t *eobs;
//! Contexts used to code the transform coefficients.
uint8_t *txb_entropy_ctx;
//! A buffer containing the source frame.
struct buf_2d src;
/*! \name Quantizer Settings
* \attention These are used/accessed only in the quantization process.
* RDO does not and *must not* depend on any of these values.
* All values below share the coefficient scale/shift used in TX.
//! Quantization step size used by AV1_XFORM_QUANT_FP.
const int16_t *quant_fp_QTX;
//! Offset used for rounding in the quantizer process by AV1_XFORM_QUANT_FP.
const int16_t *round_fp_QTX;
//! Quantization step size used by AV1_XFORM_QUANT_B.
const int16_t *quant_QTX;
//! Offset used for rounding in the quantizer process by AV1_XFORM_QUANT_B.
const int16_t *round_QTX;
//! Scale factor to shift coefficients toward zero. Only used by QUANT_B.
const int16_t *quant_shift_QTX;
//! Size of the quantization bin around 0. Only Used by QUANT_B
const int16_t *zbin_QTX;
//! Dequantizer
const int16_t *dequant_QTX;
/*! \brief Costs for encoding the coefficients within a level.
* Covers everything including txb_skip, eob, dc_sign,
typedef struct {
//! Cost to skip txfm for the current txfm block.
int txb_skip_cost[TXB_SKIP_CONTEXTS][2];
/*! \brief Cost for encoding the base_eob of a level.
* Decoder uses base_eob to derive the base_level as base_eob := base_eob+1.
int base_eob_cost[SIG_COEF_CONTEXTS_EOB][3];
/*! \brief Cost for encoding the base level of a coefficient.
* Decoder derives coeff_base as coeff_base := base_eob + 1.
int base_cost[SIG_COEF_CONTEXTS][8];
/*! \brief Cost for encoding the last non-zero coefficient.
* Eob is derived from eob_extra at the decoder as eob := eob_extra + 1
int eob_extra_cost[EOB_COEF_CONTEXTS][2];
//! Cost for encoding the dc_sign
int dc_sign_cost[DC_SIGN_CONTEXTS][2];
//! Cost for encoding an increment to the coefficient
/*! \brief Costs for encoding the eob.
typedef struct {
//! eob_cost.
int eob_cost[2][11];
/*! \brief Stores the transforms coefficients for the whole superblock.
typedef struct {
//! The transformed coefficients.
tran_low_t *tcoeff[MAX_MB_PLANE];
//! Where the transformed coefficients end.
uint16_t *eobs[MAX_MB_PLANE];
/*! \brief Transform block entropy contexts.
* Each element is used as a bit field.
* - Bits 0~3: txb_skip_ctx
* - Bits 4~5: dc_sign_ctx.
uint8_t *entropy_ctx[MAX_MB_PLANE];
/*! \brief Extended mode info derived from mbmi.
typedef struct {
// TODO(angiebird): Reduce the buffer size according to sb_type
//! The reference mv list for the current block.
//! The weights used to compute the ref mvs.
//! Number of ref mvs in the drl.
uint8_t ref_mv_count[MODE_CTX_REF_FRAMES];
//! Global mvs
int_mv global_mvs[REF_FRAMES];
//! Context used to encode the current mode.
int16_t mode_context[MODE_CTX_REF_FRAMES];
/*! \brief Stores best extended mode information at frame level.
* The frame level in here is used in bitstream preparation stage. The
* information in \ref MB_MODE_INFO_EXT are copied to this struct to save
* memory.
typedef struct {
//! \copydoc MB_MODE_INFO_EXT::ref_mv_stack
//! \copydoc MB_MODE_INFO_EXT::weight
uint16_t weight[USABLE_REF_MV_STACK_SIZE];
//! \copydoc MB_MODE_INFO_EXT::ref_mv_count
uint8_t ref_mv_count;
// TODO(Ravi/Remya): Reduce the buffer size of global_mvs
//! \copydoc MB_MODE_INFO_EXT::global_mvs
int_mv global_mvs[REF_FRAMES];
//! \copydoc MB_MODE_INFO_EXT::mode_context
int16_t mode_context;
//! Offset of current coding block's coeff buffer relative to the sb.
uint16_t cb_offset[PLANE_TYPES];
/*! \brief Inter-mode txfm results for a partition block.
typedef struct {
//! Txfm size used if the current mode is intra mode.
TX_SIZE tx_size;
//! Txfm sizes used if the current mode is inter mode.
//! Map showing which txfm block skips the txfm process.
uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
//! Map showing the txfm types for each block.
uint8_t tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
//! Rd_stats for the whole partition block.
RD_STATS rd_stats;
//! Hash value of the current record.
uint32_t hash_value;
/*! \brief Hash records of the inter-mode transform results
* Hash records of the inter-mode transform results for a whole partition block
* based on the residue. Since this operates on the partition block level, this
* can give us a whole txfm partition tree.
typedef struct {
/*! Circular buffer that stores the inter-mode txfm results of a partition
* block.
//! Index to insert the newest rd record.
int index_start;
//! Number of info stored in this record.
int num;
//! Hash function
CRC32C crc_calculator;
//! Number of compound rd stats
#define MAX_COMP_RD_STATS 64
/*! \brief Rdcost stats in compound mode.
typedef struct {
//! Rate of the compound modes.
int32_t rate[COMPOUND_TYPES];
//! Distortion of the compound modes.
int64_t dist[COMPOUND_TYPES];
//! Estimated rate of the compound modes.
int32_t model_rate[COMPOUND_TYPES];
//! Estimated distortion of the compound modes.
int64_t model_dist[COMPOUND_TYPES];
//! Rate need to send the mask type.
int comp_rs2[COMPOUND_TYPES];
//! Motion vector for each predictor.
int_mv mv[2];
//! Ref frame for each predictor.
MV_REFERENCE_FRAME ref_frames[2];
//! Current prediction mode.
//! Current interpolation filter.
int_interpfilters filter;
//! Refmv index in the drl.
int ref_mv_idx;
//! Whether the predictors are GLOBALMV.
int is_global[2];
//! Current parameters for interinter mode.
/*! \brief Contains buffers used to speed up rdopt for obmc.
* See the comments for calc_target_weighted_pred for details.
typedef struct {
/*! \brief A new source weighted with the above and left predictors.
* Used to efficiently construct multiple obmc predictors during rdopt.
int32_t *wsrc;
/*! \brief A new mask constructed from the original horz/vert mask.
* \copydetails wsrc
int32_t *mask;
/*! \brief Prediction from the up predictor.
* Used to build the obmc predictor.
uint8_t *above_pred;
/*! \brief Prediction from the up predictor.
* \copydetails above_pred
uint8_t *left_pred;
} OBMCBuffer;
/*! \brief Contains color maps used in palette mode.
typedef struct {
//! The best color map found.
uint8_t best_palette_color_map[MAX_PALETTE_SQUARE];
//! A temporary buffer used for k-means clustering.
int16_t kmeans_data_buf[2 * MAX_PALETTE_SQUARE];
/*! \brief Contains buffers used by av1_compound_type_rd()
* For sizes and alignment of these arrays, refer to
* alloc_compound_type_rd_buffers() function.
typedef struct {
//! First prediction.
uint8_t *pred0;
//! Second prediction.
uint8_t *pred1;
//! Source - first prediction.
int16_t *residual1;
//! Second prediction - first prediction.
int16_t *diff10;
//! Backup of the best segmentation mask.
uint8_t *tmp_best_mask_buf;
} CompoundTypeRdBuffers;
/*! \brief Holds some parameters related to partitioning schemes in AV1.
// TODO( Consolidate this with SIMPLE_MOTION_DATA_TREE
typedef struct {
// The following 4 parameters are used for cnn-based partitioning on intra
// frame.
/*! \brief Current index on the partition block quad tree.
* Used to index into the cnn buffer for partition decision.
int quad_tree_idx;
//! Whether the CNN buffer contains valid output.
int cnn_output_valid;
//! A buffer used by our segmentation CNN for intra-frame partitioning.
float cnn_buffer[CNN_OUT_BUF_SIZE];
//! log of the quantization parameter of the ancestor BLOCK_64X64.
float log_q;
/*! \brief Variance of the subblocks in the superblock.
* This is used by rt mode for variance based partitioning.
* The indices corresponds to the following block sizes:
* - 0 - 128x128
* - 1-2 - 128x64
* - 3-4 - 64x128
* - 5-8 - 64x64
* - 9-16 - 64x32
* - 17-24 - 32x64
* - 25-40 - 32x32
* - 41-104 - 16x16
uint8_t variance_low[105];
} PartitionSearchInfo;
/*!\cond */
enum {
* Do not prune transform depths.
* Prune largest transform (depth 0) based on NN model.
* Prune split transforms (depth>=1) based on NN model.
/*!\endcond */
/*! \brief Defines the parameters used to perform txfm search.
* For the most part, this determines how various speed features are used.
typedef struct {
/*! \brief Whether to limit the intra txfm search type to the default txfm.
* This could either be a result of either sequence parameter or speed
* features.
int use_default_intra_tx_type;
/*! Probability threshold used for conditionally forcing tx type*/
int default_inter_tx_type_prob_thresh;
//! Whether to prune 2d transforms based on 1d transform results.
int prune_2d_txfm_mode;
/*! \brief Variable from \ref WinnerModeParams based on current eval mode.
* See the documentation for \ref WinnerModeParams for more detail.
unsigned int coeff_opt_thresholds[2];
/*! \copydoc coeff_opt_thresholds */
unsigned int tx_domain_dist_threshold;
/*! \copydoc coeff_opt_thresholds */
TX_SIZE_SEARCH_METHOD tx_size_search_method;
/*! \copydoc coeff_opt_thresholds */
unsigned int use_transform_domain_distortion;
/*! \copydoc coeff_opt_thresholds */
unsigned int skip_txfm_level;
/*! \brief How to search for the optimal tx_size
* If ONLY_4X4, use TX_4X4; if TX_MODE_LARGEST, use the largest tx_size for
* the current partition block; if TX_MODE_SELECT, search through the whole
* tree.
* \attention
* Although this looks suspicious similar to a bitstream element, this
* tx_mode_search_type is only used internally by the encoder, and is *not*
* written to the bitstream. It determines what kind of tx_mode would be
* searched. For example, we might set it to TX_MODE_LARGEST to find a good
* candidate, then code it as TX_MODE_SELECT.
TX_MODE tx_mode_search_type;
* Determines whether a block can be predicted as transform skip or DC only
* based on residual mean and variance.
* Type 0 : No skip block or DC only block prediction
* Type 1 : Prediction of skip block based on residual mean and variance
* Type 2 : Prediction of skip block or DC only block based on residual mean
* and variance
unsigned int predict_dc_level;
* Whether or not we should use the quantization matrix as weights for PSNR
* during RD search.
int use_qm_dist_metric;
* Keep track of previous mode evaluation stage type. This will be used to
* reset mb rd hash record when mode evaluation type changes.
int mode_eval_type;
//! Indicates the transform depths for which RD evaluation is skipped.
TX_PRUNE_TYPE nn_prune_depths_for_intra_tx;
/*! \brief Indicates if NN model should be invoked to prune transform depths.
* Used to signal whether NN model should be evaluated to prune the R-D
* evaluation of specific transform depths.
bool enable_nn_prune_intra_tx_depths;
} TxfmSearchParams;
/*!\cond */
#define MAX_NUM_8X8_TXBS ((MAX_MIB_SIZE >> 1) * (MAX_MIB_SIZE >> 1))
#define MAX_NUM_16X16_TXBS ((MAX_MIB_SIZE >> 2) * (MAX_MIB_SIZE >> 2))
#define MAX_NUM_32X32_TXBS ((MAX_MIB_SIZE >> 3) * (MAX_MIB_SIZE >> 3))
#define MAX_NUM_64X64_TXBS ((MAX_MIB_SIZE >> 4) * (MAX_MIB_SIZE >> 4))
/*!\endcond */
/*! \brief Stores various encoding/search decisions related to txfm search.
* This struct contains a cache of previous txfm results, and some buffers for
* the current txfm decision.
typedef struct {
//! Whether to skip transform and quantization on a partition block level.
uint8_t skip_txfm;
/*! \brief Whether to skip transform and quantization on a txfm block level.
* Skips transform and quantization on a transform block level inside the
* current partition block. Each element of this array is used as a bit-field.
* So for example, the we are skipping on the luma plane, then the last bit
* would be set to 1.
uint8_t blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
/*! \brief Transform types inside the partition block
* Keeps a record of what kind of transform to use for each of the transform
* block inside the partition block.
* \attention The buffer here is *never* directly used. Instead, this just
* allocates the memory for MACROBLOCKD::tx_type_map during rdopt on the
* partition block. So if we need to save memory, we could move the allocation
* to pick_sb_mode instead.
uint8_t tx_type_map_[MAX_MIB_SIZE * MAX_MIB_SIZE];
//! Txfm hash records of inter-modes.
MB_RD_RECORD *mb_rd_record;
/*! \brief Number of txb splits.
* Keep track of how many times we've used split tx partition for transform
* blocks. Somewhat misleadingly, this parameter doesn't actually keep track
* of the count of the current block. Instead, it's a cumulative count across
* of the whole frame. The main usage is that if txb_split_count is zero, then
* we can signal TX_MODE_LARGEST at frame level.
// TODO( Move this to a more appropriate location such
// as ThreadData.
unsigned int txb_split_count;
//! For debugging. Used to check how many txfm searches we are doing.
unsigned int tx_search_count;
} TxfmSearchInfo;
#undef MAX_NUM_8X8_TXBS
#undef MAX_NUM_16X16_TXBS
#undef MAX_NUM_32X32_TXBS
#undef MAX_NUM_64X64_TXBS
/*! \brief Holds the entropy costs for various modes sent to the bitstream.
* \attention This does not include the costs for mv and transformed
* coefficients.
typedef struct {
* \name Partition Costs
//! Cost for coding the partition.
* \name Intra Costs: General
//! Luma mode cost for inter frame.
//! Luma mode cost for intra frame.
//! Chroma mode cost
//! filter_intra_cost
int filter_intra_cost[BLOCK_SIZES_ALL][2];
//! filter_intra_mode_cost
int filter_intra_mode_cost[FILTER_INTRA_MODES];
//! angle_delta_cost
int angle_delta_cost[DIRECTIONAL_MODES][2 * MAX_ANGLE_DELTA + 1];
//! Rate rate associated with each alpha codeword
* \name Intra Costs: Screen Contents
//! intrabc_cost
int intrabc_cost[2];
//! palette_y_size_cost
int palette_y_size_cost[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
//! palette_uv_size_cost
int palette_uv_size_cost[PALATTE_BSIZE_CTXS][PALETTE_SIZES];
//! palette_y_color_cost
//! palette_uv_color_cost
//! palette_y_mode_cost
int palette_y_mode_cost[PALATTE_BSIZE_CTXS][PALETTE_Y_MODE_CONTEXTS][2];
//! palette_uv_mode_cost
int palette_uv_mode_cost[PALETTE_UV_MODE_CONTEXTS][2];
* \name Inter Costs: MV Modes
//! skip_mode_cost
int skip_mode_cost[SKIP_MODE_CONTEXTS][2];
//! newmv_mode_cost
int newmv_mode_cost[NEWMV_MODE_CONTEXTS][2];
//! zeromv_mode_cost
int zeromv_mode_cost[GLOBALMV_MODE_CONTEXTS][2];
//! refmv_mode_cost
int refmv_mode_cost[REFMV_MODE_CONTEXTS][2];
//! drl_mode_cost0
int drl_mode_cost0[DRL_MODE_CONTEXTS][2];
* \name Inter Costs: Ref Frame Types
//! single_ref_cost
int single_ref_cost[REF_CONTEXTS][SINGLE_REFS - 1][2];
//! comp_inter_cost
int comp_inter_cost[COMP_INTER_CONTEXTS][2];
//! comp_ref_type_cost
int comp_ref_type_cost[COMP_REF_TYPE_CONTEXTS]
//! uni_comp_ref_cost
int uni_comp_ref_cost[UNI_COMP_REF_CONTEXTS][UNIDIR_COMP_REFS - 1]
/*! \brief Cost for signaling ref_frame[0] in bidir-comp mode
int comp_ref_cost[REF_CONTEXTS][FWD_REFS - 1][2];
/*! \brief Cost for signaling ref_frame[1] in bidir-comp mode
int comp_bwdref_cost[REF_CONTEXTS][BWD_REFS - 1][2];
* \name Inter Costs: Compound Types
//! intra_inter_cost
int intra_inter_cost[INTRA_INTER_CONTEXTS][2];
//! inter_compound_mode_cost
int inter_compound_mode_cost[INTER_MODE_CONTEXTS][INTER_COMPOUND_MODES];
//! compound_type_cost
//! wedge_idx_cost
int wedge_idx_cost[BLOCK_SIZES_ALL][16];
//! interintra_cost
int interintra_cost[BLOCK_SIZE_GROUPS][2];
//! wedge_interintra_cost
int wedge_interintra_cost[BLOCK_SIZES_ALL][2];
//! interintra_mode_cost
int interintra_mode_cost[BLOCK_SIZE_GROUPS][INTERINTRA_MODES];
* \name Inter Costs: Compound Masks
//! comp_idx_cost
int comp_idx_cost[COMP_INDEX_CONTEXTS][2];
//! comp_group_idx_cost
int comp_group_idx_cost[COMP_GROUP_IDX_CONTEXTS][2];
* \name Inter Costs: Motion Modes/Filters
//! motion_mode_cost
int motion_mode_cost[BLOCK_SIZES_ALL][MOTION_MODES];
//! motion_mode_cost1
int motion_mode_cost1[BLOCK_SIZES_ALL][2];
//! switchable_interp_costs
* \name Txfm Mode Costs
//! skip_txfm_cost
int skip_txfm_cost[SKIP_CONTEXTS][2];
//! tx_size_cost
int tx_size_cost[TX_SIZES - 1][TX_SIZE_CONTEXTS][TX_SIZES];
//! txfm_partition_cost
int txfm_partition_cost[TXFM_PARTITION_CONTEXTS][2];
//! inter_tx_type_costs
int inter_tx_type_costs[EXT_TX_SETS_INTER][EXT_TX_SIZES][TX_TYPES];
//! intra_tx_type_costs
int intra_tx_type_costs[EXT_TX_SETS_INTRA][EXT_TX_SIZES][INTRA_MODES]
* \name Restoration Mode Costs
//! switchable_restore_cost
int switchable_restore_cost[RESTORE_SWITCHABLE_TYPES];
//! wiener_restore_cost
int wiener_restore_cost[2];
//! sgrproj_restore_cost
int sgrproj_restore_cost[2];
* \name Segmentation Mode Costs
//! tmp_pred_cost
int tmp_pred_cost[SEG_TEMPORAL_PRED_CTXS][2];
//! spatial_pred_cost
} ModeCosts;
/*! \brief Holds mv costs for encoding and motion search.
typedef struct {
* \name Encoding Costs
* Here are the entropy costs needed to encode a given mv.
* \ref nmv_cost_alloc and \ref nmv_cost_hp_alloc are two arrays that holds
* the memory for holding the mv cost. But since the motion vectors can be
* negative, we shift them to the middle and store the resulting pointer in
* \ref nmv_cost and \ref nmv_cost_hp for easier referencing. Finally, \ref
* mv_cost_stack points to the \ref nmv_cost with the mv precision we are
* currently working with. In essence, only \ref mv_cost_stack is needed for
* motion search, the other can be considered private.
//! Costs for coding the zero components.
int nmv_joint_cost[MV_JOINTS];
//! Allocates memory for 1/4-pel motion vector costs.
int nmv_cost_alloc[2][MV_VALS];
//! Allocates memory for 1/8-pel motion vector costs.
int nmv_cost_hp_alloc[2][MV_VALS];
//! Points to the middle of \ref nmv_cost_alloc
int *nmv_cost[2];
//! Points to the middle of \ref nmv_cost_hp_alloc
int *nmv_cost_hp[2];
//! Points to the nmv_cost_hp in use.
int **mv_cost_stack;
} MvCosts;
/*! \brief Holds mv costs for intrabc.
typedef struct {
/*! Costs for coding the joint mv. */
int joint_mv[MV_JOINTS];
/*! \brief Cost of transmitting the actual motion vector.
* dv_costs_alloc[0][i] is the cost of motion vector with horizontal
* component (mv_row) equal to i - MV_MAX. dv_costs_alloc[1][i] is the cost of
* motion vector with vertical component (mv_col) equal to i - MV_MAX.
int dv_costs_alloc[2][MV_VALS];
/*! Points to the middle of \ref dv_costs_alloc. */
int *dv_costs[2];
} IntraBCMVCosts;
/*! \brief Holds the costs needed to encode the coefficients
typedef struct {
//! Costs for coding the coefficients.
//! Costs for coding the eobs.
LV_MAP_EOB_COST eob_costs[7][2];
} CoeffCosts;
/*!\cond */
#define SINGLE_REF_MODES ((REF_FRAMES - 1) * 4)
/*!\endcond */
struct inter_modes_info;
/*! \brief Holds the motion samples for warp motion model estimation
typedef struct {
//! Number of samples.
int num;
//! Sample locations in current frame.
int pts[16];
//! Sample location in the reference frame.
int pts_inref[16];
/*!\cond */
typedef enum {
kZeroSad = 0,
kVeryLowSad = 1,
kLowSad = 2,
kMedSad = 3,
kHighSad = 4
typedef struct {
//! SAD levels in non-rd path
SOURCE_SAD source_sad_nonrd;
//! SAD levels in rd-path for var-based part qindex thresholds
SOURCE_SAD source_sad_rd;
int lighting_change;
int low_sumdiff;
// Structure to hold pixel level gradient info.
typedef struct {
uint16_t abs_dx_abs_dy_sum;
int8_t hist_bin_idx;
bool is_dx_zero;
} PixelLevelGradientInfo;
// Structure to hold the variance and log(1 + variance) for 4x4 sub-blocks.
typedef struct {
double log_var;
int var;
} Block4x4VarInfo;
#ifndef NDEBUG
typedef struct SetOffsetsLoc {
int mi_row;
int mi_col;
} SetOffsetsLoc;
#endif // NDEBUG
/*!\endcond */
/*! \brief Encoder's parameters related to the current coding block.
* This struct contains most of the information the encoder needs to encode the
* current coding block. This includes the src and pred buffer, a copy of the
* decoder's view of the current block, the txfm coefficients. This struct also
* contains various buffers and data used to speed up the encoding process.
typedef struct macroblock {
* \name Source, Buffers and Decoder
/*! \brief Each of the encoding plane.
* An array holding the src buffer for each of plane of the current block. It
* also contains the txfm and quantized txfm coefficients.
struct macroblock_plane plane[MAX_MB_PLANE];
/*! \brief Decoder's view of current coding block.
* Contains the encoder's copy of what the decoder sees in the current block.
* Most importantly, this struct contains pointers to mbmi that is used in
* final bitstream packing.
/*! \brief Derived coding information.
* Contains extra information not transmitted in the bitstream but are
* derived. For example, this contains the stack of ref_mvs.
MB_MODE_INFO_EXT mbmi_ext;
/*! \brief Finalized mbmi_ext for the whole frame.
* Contains the finalized info in mbmi_ext that gets used at the frame level
* for bitstream packing.
MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame;
//! Entropy context for the current row.
/*! \brief Entropy context for the current tile.
* This context will be used to update color_map_cdf pointer which would be
* used during pack bitstream. For single thread and tile-multithreading case
* this pointer will be same as xd->tile_ctx, but for the case of row-mt:
* xd->tile_ctx will point to a temporary context while tile_pb_ctx will point
* to the accurate tile context.
FRAME_CONTEXT *tile_pb_ctx;
/*! \brief Buffer of transformed coefficients
* Points to cb_coef_buff in the AV1_COMP struct, which contains the finalized
* coefficients. This is here to conveniently copy the best coefficients to
* frame level for bitstream packing. Since CB_COEFF_BUFFER is allocated on a
* superblock level, we need to combine it with cb_offset to get the proper
* position for the current coding block.
CB_COEFF_BUFFER *cb_coef_buff;
//! Offset of current coding block's coeff buffer relative to the sb.
uint16_t cb_offset[PLANE_TYPES];
//! Modified source and masks used for fast OBMC search.
OBMCBuffer obmc_buffer;
//! Buffer to store the best palette map.
PALETTE_BUFFER *palette_buffer;
//! Buffer used for compound_type_rd().
CompoundTypeRdBuffers comp_rd_buffer;
//! Buffer to store convolution during averaging process in compound mode.
CONV_BUF_TYPE *tmp_conv_dst;
/*! \brief Temporary buffer to hold prediction.
* Points to a buffer that is used to hold temporary prediction results. This
* is used in two ways:
* - This is a temporary buffer used to ping-pong the prediction in
* handle_inter_mode.
* - xd->tmp_obmc_bufs also points to this buffer, and is used in ombc
* prediction.
uint8_t *tmp_pred_bufs[2];
* \name Rdopt Costs
/*! \brief Quantization index for the current partition block.
* This is used to as the index to find quantization parameter for luma and
* chroma transformed coefficients.
int qindex;
/*! \brief Difference between frame-level qindex and current qindex.
* This is used to track whether a non-zero delta for qindex is used at least
* once in the current frame.
int delta_qindex;
/*! \brief Difference between frame-level qindex and qindex used to
* compute rdmult (lambda).
* rdmult_delta_qindex is assigned the same as delta_qindex before qp sweep.
* During qp sweep, delta_qindex is changed and used to calculate the actual
* quant params, while rdmult_delta_qindex remains the same, and is used to
* calculate the rdmult in "set_deltaq_rdmult".
int rdmult_delta_qindex;
/*! \brief Current qindex (before being adjusted by delta_q_res) used to
* derive rdmult_delta_qindex.
int rdmult_cur_qindex;
/*! \brief Rate-distortion multiplier.
* The rd multiplier used to determine the rate-distortion trade-off. This is
* roughly proportional to the inverse of q-index for a given frame, but this
* can be manipulated for better rate-control. For example, in tune_ssim
* mode, this is scaled by a factor related to the variance of the current
* block.
int rdmult;
//! Intra only, per sb rd adjustment.
int intra_sb_rdmult_modifier;
//! Superblock level distortion propagation factor.
double rb;
//! Energy in the current source coding block. Used to calculate \ref rdmult
int mb_energy;
//! Energy in the current source superblock. Used to calculate \ref rdmult
int sb_energy_level;
//! The rate needed to signal a mode to the bitstream.
ModeCosts mode_costs;
//! The rate needed to encode a new motion vector to the bitstream and some
//! multipliers for motion search.
MvCosts *mv_costs;
/*! The rate needed to encode a new motion vector to the bitstream in intrabc
* mode.
IntraBCMVCosts *dv_costs;
//! The rate needed to signal the txfm coefficients to the bitstream.
CoeffCosts coeff_costs;
* \name Rate to Distortion Multipliers
//! A multiplier that converts mv cost to l2 error.
int errorperbit;
//! A multiplier that converts mv cost to l1 error.
int sadperbit;
* \name Segmentation
/*! \brief Skip mode for the segment
* A syntax element of the segmentation mode. In skip_block mode, all mvs are
* set 0 and all txfms are skipped.
int seg_skip_block;
/*! \brief Number of segment 1 blocks
* Actual number of (4x4) blocks that were applied delta-q,
* for segment 1.
int actual_num_seg1_blocks;
/*!\brief Number of segment 2 blocks
* Actual number of (4x4) blocks that were applied delta-q,
* for segment 2.
int actual_num_seg2_blocks;
/*!\brief Number of zero motion vectors
int cnt_zeromv;
/*!\brief Flag to force zeromv-skip at superblock level, for nonrd path.
* 0/1 imply zeromv-skip is disabled/enabled. 2 implies that the blocks
* in the superblock may be marked as zeromv-skip at block level.
int force_zeromv_skip_for_sb;
/*!\brief Flag to force zeromv-skip at block level, for nonrd path.
int force_zeromv_skip_for_blk;
/*! \brief Previous segment id for which qmatrices were updated.
* This is used to bypass setting of qmatrices if no change in qindex.
int prev_segment_id;
* \name Superblock
//! Information on a whole superblock level.
// TODO( Refactor this out of macroblock
SuperBlockEnc sb_enc;
/*! \brief Characteristics of the current superblock.
* Characteristics like whether the block has high sad, low sad, etc. This is
* only used by av1 realtime mode.
CONTENT_STATE_SB content_state_sb;
* \name Reference Frame Search
/*! \brief Sum absolute distortion of the predicted mv for each ref frame.
* This is used to measure how viable a reference frame is.
int pred_mv_sad[REF_FRAMES];
/*! \brief The minimum of \ref pred_mv_sad.
* Index 0 stores the minimum \ref pred_mv_sad across past reference frames.
* Index 1 stores the minimum \ref pred_mv_sad across future reference frames.
int best_pred_mv_sad[2];
//! The sad of the 1st mv ref (nearest).
int pred_mv0_sad[REF_FRAMES];
//! The sad of the 2nd mv ref (near).
int pred_mv1_sad[REF_FRAMES];
/*! \brief Disables certain ref frame pruning based on tpl.
* Determines whether a given ref frame is "good" based on data from the TPL
* model. If so, this stops selective_ref frame from pruning the given ref
* frame at block level.
uint8_t tpl_keep_ref_frame[REF_FRAMES];
/*! \brief Warp motion samples buffer.
* Store the motion samples used for warp motion.
WARP_SAMPLE_INFO warp_sample_info[REF_FRAMES];
/*! \brief Reference frames picked by the square subblocks in a superblock.
* Keeps track of ref frames that are selected by square partition blocks
* within a superblock, in MI resolution. They can be used to prune ref frames
* for rectangular blocks.
int picked_ref_frames_mask[MAX_MIB_SIZE * MAX_MIB_SIZE];
/*! \brief Prune ref frames in real-time mode.
* Determines whether to prune reference frames in real-time mode. For the
* most part, this is the same as nonrd_prune_ref_frame_search in
* cpi->sf.rt_sf.nonrd_prune_ref_frame_search, but this can be selectively
* turned off if the only frame available is GOLDEN_FRAME.
int nonrd_prune_ref_frame_search;
* \name Partition Search
//! Stores some partition-search related buffers.
PartitionSearchInfo part_search_info;
/*! \brief Whether to disable some features to force a mode in current block.
* In some cases, our speed features can be overly aggressive and remove all
* modes search in the superblock. When this happens, we set
* must_find_valid_partition to 1 to reduce the number of speed features, and
* recode the superblock again.
int must_find_valid_partition;
* \name Prediction Mode Search
/*! \brief Inter skip mode.
* Skip mode tries to use the closest forward and backward references for
* inter prediction. Skip here means to skip transmitting the reference
* frames, not to be confused with skip_txfm.
int skip_mode;
/*! \brief Factors used for rd-thresholding.
* Determines a rd threshold to determine whether to continue searching the
* current mode. If the current best rd is already <= threshold, then we skip
* the current mode.
int thresh_freq_fact[BLOCK_SIZES_ALL][MAX_MODES];
/*! \brief Tracks the winner modes in the current coding block.
* Winner mode is a two-pass strategy to find the best prediction mode. In the
* first pass, we search the prediction modes with a limited set of txfm
* options, and keep the top modes. These modes are called the winner modes.
* In the second pass, we retry the winner modes with more thorough txfm
* options.
WinnerModeStats *winner_mode_stats;
//! Tracks how many winner modes there are.
int winner_mode_count;
/*! \brief The model used for rd-estimation to avoid txfm
* These are for inter_mode_rd_model_estimation, which is another two pass
* approach. In this speed feature, we collect data in the first couple frames
* to build an rd model to estimate the rdcost of a prediction model based on
* the residue error. Once enough data is collected, this speed feature uses
* the estimated rdcost to find the most performant prediction mode. Then we
* follow up with a second pass find the best transform for the mode.
* Determines if one would go with reduced complexity transform block
* search model to select prediction modes, or full complexity model
* to select transform kernel.
TXFM_RD_MODEL rd_model;
/*! \brief Stores the inter mode information needed to build an rd model.
* These are for inter_mode_rd_model_estimation, which is another two pass
* approach. In this speed feature, we collect data in the first couple frames
* to build an rd model to estimate the rdcost of a prediction model based on
* the residue error. Once enough data is collected, this speed feature uses
* the estimated rdcost to find the most performant prediction mode. Then we
* follow up with a second pass find the best transform for the mode.
// TODO(any): try to consolidate this speed feature with winner mode
// processing.
struct inter_modes_info *inter_modes_info;
//! How to blend the compound predictions.
uint8_t compound_idx;
//! A caches of results of compound type search so they can be reused later.
//! The idx for the latest compound mode in the cache \ref comp_rd_stats.
int comp_rd_stats_idx;
/*! \brief Whether to recompute the luma prediction.
* In interpolation search, we can usually skip recalculating the luma
* prediction because it is already calculated by a previous predictor. This
* flag signifies that some modes might have been skipped, so we need to
* rebuild the prediction.
int recalc_luma_mc_data;
/*! \brief Data structure to speed up intrabc search.
* Contains the hash table, hash function, and buffer used for intrabc.
IntraBCHashInfo intrabc_hash_info;
/*! \brief Whether to reuse the mode stored in mb_mode_cache. */
int use_mb_mode_cache;
/*! \brief The mode to reuse during \ref av1_rd_pick_intra_mode_sb and
* \ref av1_rd_pick_inter_mode. */
const MB_MODE_INFO *mb_mode_cache;
/*! \brief Pointer to the buffer which caches gradient information.
* Pointer to the array of structures to store gradient information of each
* pixel in a superblock. The buffer constitutes of MAX_SB_SQUARE pixel level
* structures for each of the plane types (PLANE_TYPE_Y and PLANE_TYPE_UV).
PixelLevelGradientInfo *pixel_gradient_info;
/*! \brief Flags indicating the availability of cached gradient info. */
bool is_sb_gradient_cached[PLANE_TYPES];
/*! \brief Flag to reuse predicted samples of inter block. */
bool reuse_inter_pred;
* \name MV Search
/*! \brief Context used to determine the initial step size in motion search.
* This context is defined as the \f$l_\inf\f$ norm of the best ref_mvs for
* each frame.
unsigned int max_mv_context[REF_FRAMES];
/*! \brief Limit for the range of motion vectors.
* These define limits to motion vector components to prevent them from
* extending outside the UMV borders
FullMvLimits mv_limits;
/*! \brief Buffer for storing the search site config.
* When resize mode or super resolution mode is on, the stride of the
* reference frame does not always match what's specified in \ref
* MotionVectorSearchParams::search_site_cfg. When his happens, we update the
* search_sine_config buffer here and use it for motion search.
search_site_config search_site_cfg_buf[NUM_DISTINCT_SEARCH_METHODS];
* \name Txfm Search
/*! \brief Parameters that control how motion search is done.
* Stores various txfm search related parameters such as txfm_type, txfm_size,
* trellis eob search, etc.
TxfmSearchParams txfm_search_params;
/*! \brief Results of the txfm searches that have been done.
* Caches old txfm search results and keeps the current txfm decisions to
* facilitate rdopt.
TxfmSearchInfo txfm_search_info;
/*! \brief Whether there is a strong color activity.
* Used in REALTIME coding mode to enhance the visual quality at the boundary
* of moving color objects.
uint8_t color_sensitivity_sb[2];
//! Color sensitivity flag for the superblock for golden reference.
uint8_t color_sensitivity_sb_g[2];
//! Color sensitivity flag for the coding block.
uint8_t color_sensitivity[2];
* \name Misc
//! Variance of the source frame.
unsigned int source_variance;
//! SSE of the current predictor.
unsigned int pred_sse[REF_FRAMES];
//! Prediction for ML based partition.
DECLARE_ALIGNED(16, uint8_t, est_pred[128 * 128]);
/*! \brief NONE partition evaluated for merge.
* In variance based partitioning scheme, NONE & SPLIT partitions are
* evaluated to check the SPLIT can be merged as NONE. This flag signifies the
* partition is evaluated in the scheme.
int try_merge_partition;
/*! \brief Pointer to buffer which caches sub-block variances in a superblock.
* Pointer to the array of structures to store source variance information of
* each 4x4 sub-block in a superblock. Block4x4VarInfo structure is used to
* store source variance and log of source variance of each 4x4 sub-block.
Block4x4VarInfo *src_var_info_of_4x4_sub_blocks;
#ifndef NDEBUG
/*! \brief A hash to make sure av1_set_offsets is called */
SetOffsetsLoc last_set_offsets_loc;
#endif // NDEBUG
/*!\cond */
// Zeroes out 'n_stats' elements in the array x->winner_mode_stats.
// It only zeroes out what is necessary in 'color_index_map' (just the block
// size, not the whole array).
static INLINE void zero_winner_mode_stats(BLOCK_SIZE bsize, int n_stats,
WinnerModeStats *stats) {
// When winner mode stats are not required, the memory allocation is avoided
// for x->winner_mode_stats. The stats pointer will be NULL in such cases.
if (stats == NULL) return;
const int block_height = block_size_high[bsize];
const int block_width = block_size_wide[bsize];
for (int i = 0; i < n_stats; ++i) {
WinnerModeStats *const stat = &stats[i];
memset(&stat->mbmi, 0, sizeof(stat->mbmi));
memset(&stat->rd_cost, 0, sizeof(stat->rd_cost));
memset(&stat->rd, 0, sizeof(stat->rd));
memset(&stat->rate_y, 0, sizeof(stat->rate_y));
memset(&stat->rate_uv, 0, sizeof(stat->rate_uv));
// Do not reset the whole array as it is CPU intensive.
memset(&stat->color_index_map, 0,
block_width * block_height * sizeof(stat->color_index_map[0]));
memset(&stat->mode_index, 0, sizeof(stat->mode_index));
static INLINE int is_rect_tx_allowed_bsize(BLOCK_SIZE bsize) {
static const char LUT[BLOCK_SIZES_ALL] = {
0, // BLOCK_4X4
1, // BLOCK_4X8
1, // BLOCK_8X4
0, // BLOCK_8X8
1, // BLOCK_8X16
1, // BLOCK_16X8
0, // BLOCK_16X16
1, // BLOCK_16X32
1, // BLOCK_32X16
0, // BLOCK_32X32
1, // BLOCK_32X64
1, // BLOCK_64X32
0, // BLOCK_64X64
0, // BLOCK_64X128
0, // BLOCK_128X64
0, // BLOCK_128X128
1, // BLOCK_4X16
1, // BLOCK_16X4
1, // BLOCK_8X32
1, // BLOCK_32X8
1, // BLOCK_16X64
1, // BLOCK_64X16
return LUT[bsize];
static INLINE int is_rect_tx_allowed(const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
return is_rect_tx_allowed_bsize(mbmi->bsize) &&
static INLINE int tx_size_to_depth(TX_SIZE tx_size, BLOCK_SIZE bsize) {
TX_SIZE ctx_size = max_txsize_rect_lookup[bsize];
int depth = 0;
while (tx_size != ctx_size) {
ctx_size = sub_tx_size_map[ctx_size];
assert(depth <= MAX_TX_DEPTH);
return depth;
static INLINE void set_blk_skip(uint8_t txb_skip[], int plane, int blk_idx,
int skip) {
if (skip)
txb_skip[blk_idx] |= 1UL << plane;
txb_skip[blk_idx] &= ~(1UL << plane);
#ifndef NDEBUG
// Set chroma planes to uninitialized states when luma is set to check if
// it will be set later
if (plane == 0) {
txb_skip[blk_idx] |= 1UL << (1 + 4);
txb_skip[blk_idx] |= 1UL << (2 + 4);
// Clear the initialization checking bit
txb_skip[blk_idx] &= ~(1UL << (plane + 4));
static INLINE int is_blk_skip(uint8_t *txb_skip, int plane, int blk_idx) {
#ifndef NDEBUG
// Check if this is initialized
assert(!(txb_skip[blk_idx] & (1UL << (plane + 4))));
// The magic number is 0x77, this is to test if there is garbage data
assert((txb_skip[blk_idx] & 0x88) == 0);
return (txb_skip[blk_idx] >> plane) & 1;
/*!\endcond */
#ifdef __cplusplus
} // extern "C"