blob: ae31116e9daca17802d9f651c4a3391c1005bf27 [file] [log] [blame]
/*
* Copyright (c) 2019, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <emmintrin.h>
#include "config/aom_dsp_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/quantize.h"
#include "aom_dsp/x86/quantize_x86.h"
static INLINE __m128i highbd_invert_sign_64bit_sse2(__m128i a, __m128i sign) {
a = _mm_xor_si128(a, sign);
return _mm_sub_epi64(a, sign);
}
static INLINE void highbd_mul_shift_sse2(const __m128i *x, const __m128i *y,
__m128i *p, const int shift) {
__m128i sign = _mm_srai_epi32(*y, 31);
__m128i sign_lo = _mm_unpacklo_epi32(sign, sign);
__m128i sign_hi = _mm_unpackhi_epi32(sign, sign);
__m128i abs_y = invert_sign_32_sse2(*y, sign);
__m128i prod_lo = _mm_mul_epu32(*x, abs_y);
__m128i prod_hi = _mm_srli_epi64(*x, 32);
const __m128i mult_hi = _mm_srli_epi64(abs_y, 32);
prod_hi = _mm_mul_epu32(prod_hi, mult_hi);
prod_lo = highbd_invert_sign_64bit_sse2(prod_lo, sign_lo);
prod_hi = highbd_invert_sign_64bit_sse2(prod_hi, sign_hi);
prod_lo = _mm_srli_epi64(prod_lo, shift);
const __m128i mask = _mm_set_epi32(0, -1, 0, -1);
prod_lo = _mm_and_si128(prod_lo, mask);
prod_hi = _mm_srli_epi64(prod_hi, shift);
prod_hi = _mm_slli_epi64(prod_hi, 32);
*p = _mm_or_si128(prod_lo, prod_hi);
}
static INLINE void highbd_calculate_qcoeff(__m128i *coeff, const __m128i *round,
const __m128i *quant,
const __m128i *shift,
const int *log_scale) {
__m128i tmp, qcoeff;
qcoeff = _mm_add_epi32(*coeff, *round);
highbd_mul_shift_sse2(&qcoeff, quant, &tmp, 16);
qcoeff = _mm_add_epi32(tmp, qcoeff);
highbd_mul_shift_sse2(&qcoeff, shift, coeff, 16 - *log_scale);
}
static INLINE void highbd_update_mask1(__m128i *cmp_mask0,
const int16_t *iscan_ptr, int *is_found,
__m128i *mask) {
__m128i temp_mask = _mm_setzero_si128();
if (_mm_movemask_epi8(*cmp_mask0)) {
__m128i iscan0 = _mm_load_si128((const __m128i *)(iscan_ptr));
__m128i mask0 = _mm_and_si128(*cmp_mask0, iscan0);
temp_mask = mask0;
*is_found = 1;
}
*mask = _mm_max_epi16(temp_mask, *mask);
}
static INLINE void highbd_update_mask0(__m128i *qcoeff0, __m128i *qcoeff1,
__m128i *threshold,
const int16_t *iscan_ptr, int *is_found,
__m128i *mask) {
__m128i coeff[2], cmp_mask0, cmp_mask1;
coeff[0] = _mm_slli_epi32(*qcoeff0, AOM_QM_BITS);
cmp_mask0 = _mm_cmpgt_epi32(coeff[0], threshold[0]);
coeff[1] = _mm_slli_epi32(*qcoeff1, AOM_QM_BITS);
cmp_mask1 = _mm_cmpgt_epi32(coeff[1], threshold[1]);
cmp_mask0 = _mm_packs_epi32(cmp_mask0, cmp_mask1);
highbd_update_mask1(&cmp_mask0, iscan_ptr, is_found, mask);
}
static INLINE __m128i highbd_calculate_dqcoeff(__m128i qcoeff, __m128i dequant,
const int log_scale) {
__m128i coeff_sign = _mm_srai_epi32(qcoeff, 31);
__m128i abs_coeff = invert_sign_32_sse2(qcoeff, coeff_sign);
highbd_mul_shift_sse2(&abs_coeff, &dequant, &abs_coeff, log_scale);
return invert_sign_32_sse2(abs_coeff, coeff_sign);
}
void aom_highbd_quantize_b_adaptive_sse2(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
int index = 8;
const int log_scale = 0;
int non_zero_count = 0;
int non_zero_count_prescan_add_zero = 0;
int is_found0 = 0, is_found1 = 0;
int eob = -1;
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi32(1);
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1, coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1, cmp_mask;
__m128i all_zero;
__m128i mask0 = zero, mask1 = zero;
int prescan_add[2];
int thresh[4];
const qm_val_t wt = (1 << AOM_QM_BITS);
for (int i = 0; i < 2; ++i) {
prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7);
thresh[i] = (zbin_ptr[i] * wt + prescan_add[i]) - 1;
}
thresh[2] = thresh[3] = thresh[1];
__m128i threshold[2];
threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]);
threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]);
#if SKIP_EOB_FACTOR_ADJUST
int first = -1;
#endif
// Setup global values.
zbin = _mm_load_si128((const __m128i *)zbin_ptr);
round = _mm_load_si128((const __m128i *)round_ptr);
quant = _mm_load_si128((const __m128i *)quant_ptr);
dequant = _mm_load_si128((const __m128i *)dequant_ptr);
shift = _mm_load_si128((const __m128i *)quant_shift_ptr);
__m128i zbin_sign = _mm_srai_epi16(zbin, 15);
__m128i round_sign = _mm_srai_epi16(round, 15);
__m128i quant_sign = _mm_srai_epi16(quant, 15);
__m128i dequant_sign = _mm_srai_epi16(dequant, 15);
__m128i shift_sign = _mm_srai_epi16(shift, 15);
zbin = _mm_unpacklo_epi16(zbin, zbin_sign);
round = _mm_unpacklo_epi16(round, round_sign);
quant = _mm_unpacklo_epi16(quant, quant_sign);
dequant = _mm_unpacklo_epi16(dequant, dequant_sign);
shift = _mm_unpacklo_epi16(shift, shift_sign);
zbin = _mm_sub_epi32(zbin, one);
// Do DC and first 15 AC.
coeff0 = _mm_load_si128((__m128i *)(coeff_ptr));
coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4));
coeff0_sign = _mm_srai_epi32(coeff0, 31);
coeff1_sign = _mm_srai_epi32(coeff1, 31);
qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign);
highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0);
cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin);
cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1);
highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1);
threshold[0] = threshold[1];
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale);
// Reinsert signs
qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
_mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0);
_mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1);
coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale);
dequant = _mm_unpackhi_epi64(dequant, dequant);
coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale);
_mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1);
}
// AC only loop.
while (index < n_coeffs) {
coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index));
coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4));
coeff0_sign = _mm_srai_epi32(coeff0, 31);
coeff1_sign = _mm_srai_epi32(coeff1, 31);
qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign);
highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index,
&is_found0, &mask0);
cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin);
cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1);
highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero);
index += 8;
continue;
}
highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale);
highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale);
qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
_mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1);
coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale);
coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1);
index += 8;
}
if (is_found0) non_zero_count = calculate_non_zero_count(mask0);
if (is_found1)
non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1);
for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) {
const int rc = scan[i];
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
for (int i = non_zero_count - 1; i >= 0; i--) {
const int rc = scan[i];
if (qcoeff_ptr[rc]) {
eob = i;
break;
}
}
*eob_ptr = eob + 1;
#if SKIP_EOB_FACTOR_ADJUST
// TODO(Aniket): Experiment the following loop with intrinsic by combining
// with the quantization loop above
for (int i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int qcoeff = qcoeff_ptr[rc];
if (qcoeff) {
first = i;
break;
}
}
if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) {
const int rc = scan[(*eob_ptr - 1)];
if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) {
const int coeff = coeff_ptr[rc] * wt;
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST;
const int prescan_add_val =
ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7);
if (abs_coeff <
(zbin_ptr[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
*eob_ptr = 0;
}
}
}
#endif
}
void aom_highbd_quantize_b_32x32_adaptive_sse2(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
int index = 8;
const int log_scale = 1;
int non_zero_count = 0;
int non_zero_count_prescan_add_zero = 0;
int is_found0 = 0, is_found1 = 0;
int eob = -1;
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi32(1);
const __m128i log_scale_vec = _mm_set1_epi32(log_scale);
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1, coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1, cmp_mask;
__m128i all_zero;
__m128i mask0 = zero, mask1 = zero;
const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale),
ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) };
int prescan_add[2];
int thresh[4];
const qm_val_t wt = (1 << AOM_QM_BITS);
for (int i = 0; i < 2; ++i) {
prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7);
thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1;
}
thresh[2] = thresh[3] = thresh[1];
__m128i threshold[2];
threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]);
threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]);
#if SKIP_EOB_FACTOR_ADJUST
int first = -1;
#endif
// Setup global values.
zbin = _mm_load_si128((const __m128i *)zbin_ptr);
round = _mm_load_si128((const __m128i *)round_ptr);
quant = _mm_load_si128((const __m128i *)quant_ptr);
dequant = _mm_load_si128((const __m128i *)dequant_ptr);
shift = _mm_load_si128((const __m128i *)quant_shift_ptr);
__m128i zbin_sign = _mm_srai_epi16(zbin, 15);
__m128i round_sign = _mm_srai_epi16(round, 15);
__m128i quant_sign = _mm_srai_epi16(quant, 15);
__m128i dequant_sign = _mm_srai_epi16(dequant, 15);
__m128i shift_sign = _mm_srai_epi16(shift, 15);
zbin = _mm_unpacklo_epi16(zbin, zbin_sign);
round = _mm_unpacklo_epi16(round, round_sign);
quant = _mm_unpacklo_epi16(quant, quant_sign);
dequant = _mm_unpacklo_epi16(dequant, dequant_sign);
shift = _mm_unpacklo_epi16(shift, shift_sign);
// Shift with rounding.
zbin = _mm_add_epi32(zbin, log_scale_vec);
round = _mm_add_epi32(round, log_scale_vec);
zbin = _mm_srli_epi32(zbin, log_scale);
round = _mm_srli_epi32(round, log_scale);
zbin = _mm_sub_epi32(zbin, one);
// Do DC and first 15 AC.
coeff0 = _mm_load_si128((__m128i *)(coeff_ptr));
coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4));
coeff0_sign = _mm_srai_epi32(coeff0, 31);
coeff1_sign = _mm_srai_epi32(coeff1, 31);
qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign);
highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0);
cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin);
cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1);
highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1);
threshold[0] = threshold[1];
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale);
// Reinsert signs
qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
_mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0);
_mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1);
coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale);
dequant = _mm_unpackhi_epi64(dequant, dequant);
coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale);
_mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1);
}
// AC only loop.
while (index < n_coeffs) {
coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index));
coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4));
coeff0_sign = _mm_srai_epi32(coeff0, 31);
coeff1_sign = _mm_srai_epi32(coeff1, 31);
qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign);
highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index,
&is_found0, &mask0);
cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin);
cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1);
highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero);
index += 8;
continue;
}
highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale);
highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale);
qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
_mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1);
coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale);
coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1);
index += 8;
}
if (is_found0) non_zero_count = calculate_non_zero_count(mask0);
if (is_found1)
non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1);
for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) {
const int rc = scan[i];
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
for (int i = non_zero_count - 1; i >= 0; i--) {
const int rc = scan[i];
if (qcoeff_ptr[rc]) {
eob = i;
break;
}
}
*eob_ptr = eob + 1;
#if SKIP_EOB_FACTOR_ADJUST
// TODO(Aniket): Experiment the following loop with intrinsic by combining
// with the quantization loop above
for (int i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int qcoeff = qcoeff_ptr[rc];
if (qcoeff) {
first = i;
break;
}
}
if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) {
const int rc = scan[(*eob_ptr - 1)];
if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) {
const int coeff = coeff_ptr[rc] * wt;
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST;
const int prescan_add_val =
ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7);
if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
*eob_ptr = 0;
}
}
}
#endif
}
void aom_highbd_quantize_b_64x64_adaptive_sse2(
const tran_low_t *coeff_ptr, intptr_t n_coeffs, const int16_t *zbin_ptr,
const int16_t *round_ptr, const int16_t *quant_ptr,
const int16_t *quant_shift_ptr, tran_low_t *qcoeff_ptr,
tran_low_t *dqcoeff_ptr, const int16_t *dequant_ptr, uint16_t *eob_ptr,
const int16_t *scan, const int16_t *iscan) {
int index = 8;
const int log_scale = 2;
int non_zero_count = 0;
int non_zero_count_prescan_add_zero = 0;
int is_found0 = 0, is_found1 = 0;
int eob = -1;
const __m128i zero = _mm_setzero_si128();
const __m128i one = _mm_set1_epi32(1);
const __m128i log_scale_vec = _mm_set1_epi32(log_scale);
__m128i zbin, round, quant, dequant, shift;
__m128i coeff0, coeff1, coeff0_sign, coeff1_sign;
__m128i qcoeff0, qcoeff1;
__m128i cmp_mask0, cmp_mask1, cmp_mask;
__m128i all_zero;
__m128i mask0 = zero, mask1 = zero;
const int zbins[2] = { ROUND_POWER_OF_TWO(zbin_ptr[0], log_scale),
ROUND_POWER_OF_TWO(zbin_ptr[1], log_scale) };
int prescan_add[2];
int thresh[4];
const qm_val_t wt = (1 << AOM_QM_BITS);
for (int i = 0; i < 2; ++i) {
prescan_add[i] = ROUND_POWER_OF_TWO(dequant_ptr[i] * EOB_FACTOR, 7);
thresh[i] = (zbins[i] * wt + prescan_add[i]) - 1;
}
thresh[2] = thresh[3] = thresh[1];
__m128i threshold[2];
threshold[0] = _mm_loadu_si128((__m128i *)&thresh[0]);
threshold[1] = _mm_unpackhi_epi64(threshold[0], threshold[0]);
#if SKIP_EOB_FACTOR_ADJUST
int first = -1;
#endif
// Setup global values.
zbin = _mm_load_si128((const __m128i *)zbin_ptr);
round = _mm_load_si128((const __m128i *)round_ptr);
quant = _mm_load_si128((const __m128i *)quant_ptr);
dequant = _mm_load_si128((const __m128i *)dequant_ptr);
shift = _mm_load_si128((const __m128i *)quant_shift_ptr);
__m128i zbin_sign = _mm_srai_epi16(zbin, 15);
__m128i round_sign = _mm_srai_epi16(round, 15);
__m128i quant_sign = _mm_srai_epi16(quant, 15);
__m128i dequant_sign = _mm_srai_epi16(dequant, 15);
__m128i shift_sign = _mm_srai_epi16(shift, 15);
zbin = _mm_unpacklo_epi16(zbin, zbin_sign);
round = _mm_unpacklo_epi16(round, round_sign);
quant = _mm_unpacklo_epi16(quant, quant_sign);
dequant = _mm_unpacklo_epi16(dequant, dequant_sign);
shift = _mm_unpacklo_epi16(shift, shift_sign);
// Shift with rounding.
zbin = _mm_add_epi32(zbin, log_scale_vec);
round = _mm_add_epi32(round, log_scale_vec);
zbin = _mm_srli_epi32(zbin, log_scale);
round = _mm_srli_epi32(round, log_scale);
zbin = _mm_sub_epi32(zbin, one);
// Do DC and first 15 AC.
coeff0 = _mm_load_si128((__m128i *)(coeff_ptr));
coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + 4));
coeff0_sign = _mm_srai_epi32(coeff0, 31);
coeff1_sign = _mm_srai_epi32(coeff1, 31);
qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign);
highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan, &is_found0, &mask0);
cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin);
zbin = _mm_unpackhi_epi64(zbin, zbin); // Switch DC to AC
cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin);
cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1);
highbd_update_mask1(&cmp_mask, iscan, &is_found1, &mask1);
threshold[0] = threshold[1];
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 4), zero);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
dequant = _mm_unpackhi_epi64(dequant, dequant);
} else {
highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale);
round = _mm_unpackhi_epi64(round, round);
quant = _mm_unpackhi_epi64(quant, quant);
shift = _mm_unpackhi_epi64(shift, shift);
highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale);
// Reinsert signs
qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign);
// Mask out zbin threshold coeffs
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
_mm_store_si128((__m128i *)(qcoeff_ptr), qcoeff0);
_mm_store_si128((__m128i *)(qcoeff_ptr + 4), qcoeff1);
coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale);
dequant = _mm_unpackhi_epi64(dequant, dequant);
coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale);
_mm_store_si128((__m128i *)(dqcoeff_ptr), coeff0);
_mm_store_si128((__m128i *)(dqcoeff_ptr + 4), coeff1);
}
// AC only loop.
while (index < n_coeffs) {
coeff0 = _mm_load_si128((__m128i *)(coeff_ptr + index));
coeff1 = _mm_load_si128((__m128i *)(coeff_ptr + index + 4));
coeff0_sign = _mm_srai_epi32(coeff0, 31);
coeff1_sign = _mm_srai_epi32(coeff1, 31);
qcoeff0 = invert_sign_32_sse2(coeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(coeff1, coeff1_sign);
highbd_update_mask0(&qcoeff0, &qcoeff1, threshold, iscan + index,
&is_found0, &mask0);
cmp_mask0 = _mm_cmpgt_epi32(qcoeff0, zbin);
cmp_mask1 = _mm_cmpgt_epi32(qcoeff1, zbin);
cmp_mask = _mm_packs_epi32(cmp_mask0, cmp_mask1);
highbd_update_mask1(&cmp_mask, iscan + index, &is_found1, &mask1);
all_zero = _mm_or_si128(cmp_mask0, cmp_mask1);
if (_mm_movemask_epi8(all_zero) == 0) {
_mm_store_si128((__m128i *)(qcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index), zero);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), zero);
index += 8;
continue;
}
highbd_calculate_qcoeff(&qcoeff0, &round, &quant, &shift, &log_scale);
highbd_calculate_qcoeff(&qcoeff1, &round, &quant, &shift, &log_scale);
qcoeff0 = invert_sign_32_sse2(qcoeff0, coeff0_sign);
qcoeff1 = invert_sign_32_sse2(qcoeff1, coeff1_sign);
qcoeff0 = _mm_and_si128(qcoeff0, cmp_mask0);
qcoeff1 = _mm_and_si128(qcoeff1, cmp_mask1);
_mm_store_si128((__m128i *)(qcoeff_ptr + index), qcoeff0);
_mm_store_si128((__m128i *)(qcoeff_ptr + index + 4), qcoeff1);
coeff0 = highbd_calculate_dqcoeff(qcoeff0, dequant, log_scale);
coeff1 = highbd_calculate_dqcoeff(qcoeff1, dequant, log_scale);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index), coeff0);
_mm_store_si128((__m128i *)(dqcoeff_ptr + index + 4), coeff1);
index += 8;
}
if (is_found0) non_zero_count = calculate_non_zero_count(mask0);
if (is_found1)
non_zero_count_prescan_add_zero = calculate_non_zero_count(mask1);
for (int i = non_zero_count_prescan_add_zero - 1; i >= non_zero_count; i--) {
const int rc = scan[i];
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
}
for (int i = non_zero_count - 1; i >= 0; i--) {
const int rc = scan[i];
if (qcoeff_ptr[rc]) {
eob = i;
break;
}
}
*eob_ptr = eob + 1;
#if SKIP_EOB_FACTOR_ADJUST
// TODO(Aniket): Experiment the following loop with intrinsic by combining
// with the quantization loop above
for (int i = 0; i < non_zero_count; i++) {
const int rc = scan[i];
const int qcoeff = qcoeff_ptr[rc];
if (qcoeff) {
first = i;
break;
}
}
if ((*eob_ptr - 1) >= 0 && first == (*eob_ptr - 1)) {
const int rc = scan[(*eob_ptr - 1)];
if (qcoeff_ptr[rc] == 1 || qcoeff_ptr[rc] == -1) {
const int coeff = coeff_ptr[rc] * wt;
const int coeff_sign = AOMSIGN(coeff);
const int abs_coeff = (coeff ^ coeff_sign) - coeff_sign;
const int factor = EOB_FACTOR + SKIP_EOB_FACTOR_ADJUST;
const int prescan_add_val =
ROUND_POWER_OF_TWO(dequant_ptr[rc != 0] * factor, 7);
if (abs_coeff < (zbins[rc != 0] * (1 << AOM_QM_BITS) + prescan_add_val)) {
qcoeff_ptr[rc] = 0;
dqcoeff_ptr[rc] = 0;
*eob_ptr = 0;
}
}
}
#endif
}