blob: 6251606e6c5a9b5de79d119830b655bb4a7984c0 [file] [log] [blame]
/*
* Copyright (c) 2021, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <emmintrin.h> // SSE2
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "aom_dsp/x86/mem_sse2.h"
#include "aom_dsp/x86/synonyms.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/blockd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/reconinter_enc.h"
void aom_upsampled_pred_sse2(MACROBLOCKD *xd, const struct AV1Common *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred, int width, int height,
int subpel_x_q3, int subpel_y_q3,
const uint8_t *ref, int ref_stride,
int subpel_search) {
// expect xd == NULL only in tests
if (xd != NULL) {
const MB_MODE_INFO *mi = xd->mi[0];
const int ref_num = 0;
const int is_intrabc = is_intrabc_block(mi);
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref_num];
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int plane = 0;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const struct buf_2d *const dst_buf = &pd->dst;
const struct buf_2d *const pre_buf =
is_intrabc ? dst_buf : &pd->pre[ref_num];
InterPredParams inter_pred_params;
inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd);
const int_interpfilters filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
av1_init_inter_params(
&inter_pred_params, width, height, mi_y >> pd->subsampling_y,
mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y,
xd->bd, is_cur_buf_hbd(xd), is_intrabc, sf, pre_buf, filters);
av1_enc_build_one_inter_predictor(comp_pred, width, mv,
&inter_pred_params);
return;
}
}
const InterpFilterParams *filter = av1_get_filter(subpel_search);
// (TODO:yunqing) 2-tap case uses 4-tap functions since there is no SIMD for
// 2-tap yet.
int filter_taps = (subpel_search <= USE_4_TAPS) ? 4 : SUBPEL_TAPS;
if (!subpel_x_q3 && !subpel_y_q3) {
if (width >= 16) {
int i;
assert(!(width & 15));
/*Read 16 pixels one row at a time.*/
for (i = 0; i < height; i++) {
int j;
for (j = 0; j < width; j += 16) {
xx_storeu_128(comp_pred, xx_loadu_128(ref));
comp_pred += 16;
ref += 16;
}
ref += ref_stride - width;
}
} else if (width >= 8) {
int i;
assert(!(width & 7));
assert(!(height & 1));
/*Read 8 pixels two rows at a time.*/
for (i = 0; i < height; i += 2) {
__m128i s0 = xx_loadl_64(ref + 0 * ref_stride);
__m128i s1 = xx_loadl_64(ref + 1 * ref_stride);
xx_storeu_128(comp_pred, _mm_unpacklo_epi64(s0, s1));
comp_pred += 16;
ref += 2 * ref_stride;
}
} else {
int i;
assert(!(width & 3));
assert(!(height & 3));
/*Read 4 pixels four rows at a time.*/
for (i = 0; i < height; i++) {
const __m128i row0 = xx_loadl_64(ref + 0 * ref_stride);
const __m128i row1 = xx_loadl_64(ref + 1 * ref_stride);
const __m128i row2 = xx_loadl_64(ref + 2 * ref_stride);
const __m128i row3 = xx_loadl_64(ref + 3 * ref_stride);
const __m128i reg = _mm_unpacklo_epi64(_mm_unpacklo_epi32(row0, row1),
_mm_unpacklo_epi32(row2, row3));
xx_storeu_128(comp_pred, reg);
comp_pred += 16;
ref += 4 * ref_stride;
}
}
} else if (!subpel_y_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
aom_convolve8_horiz(ref, ref_stride, comp_pred, width, kernel, 16, NULL, -1,
width, height);
} else if (!subpel_x_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
aom_convolve8_vert(ref, ref_stride, comp_pred, width, NULL, -1, kernel, 16,
width, height);
} else {
DECLARE_ALIGNED(16, uint8_t,
temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
const int16_t *const kernel_x =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
const int16_t *const kernel_y =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
const uint8_t *ref_start = ref - ref_stride * ((filter_taps >> 1) - 1);
uint8_t *temp_start_horiz = (subpel_search <= USE_4_TAPS)
? temp + (filter_taps >> 1) * MAX_SB_SIZE
: temp;
uint8_t *temp_start_vert = temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1);
int intermediate_height =
(((height - 1) * 8 + subpel_y_q3) >> 3) + filter_taps;
assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16);
aom_convolve8_horiz(ref_start, ref_stride, temp_start_horiz, MAX_SB_SIZE,
kernel_x, 16, NULL, -1, width, intermediate_height);
aom_convolve8_vert(temp_start_vert, MAX_SB_SIZE, comp_pred, width, NULL, -1,
kernel_y, 16, width, height);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
static inline void highbd_compute_dist_wtd_comp_avg(__m128i *p0, __m128i *p1,
const __m128i *w0,
const __m128i *w1,
const __m128i *r,
void *const result) {
assert(DIST_PRECISION_BITS <= 4);
__m128i mult0 = _mm_mullo_epi16(*p0, *w0);
__m128i mult1 = _mm_mullo_epi16(*p1, *w1);
__m128i sum = _mm_adds_epu16(mult0, mult1);
__m128i round = _mm_adds_epu16(sum, *r);
__m128i shift = _mm_srli_epi16(round, DIST_PRECISION_BITS);
xx_storeu_128(result, shift);
}
void aom_highbd_upsampled_pred_sse2(MACROBLOCKD *xd,
const struct AV1Common *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred8, int width, int height,
int subpel_x_q3, int subpel_y_q3,
const uint8_t *ref8, int ref_stride, int bd,
int subpel_search) {
// expect xd == NULL only in tests
if (xd != NULL) {
const MB_MODE_INFO *mi = xd->mi[0];
const int ref_num = 0;
const int is_intrabc = is_intrabc_block(mi);
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref_num];
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int plane = 0;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const struct buf_2d *const dst_buf = &pd->dst;
const struct buf_2d *const pre_buf =
is_intrabc ? dst_buf : &pd->pre[ref_num];
InterPredParams inter_pred_params;
inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd);
const int_interpfilters filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
av1_init_inter_params(
&inter_pred_params, width, height, mi_y >> pd->subsampling_y,
mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y,
xd->bd, is_cur_buf_hbd(xd), is_intrabc, sf, pre_buf, filters);
av1_enc_build_one_inter_predictor(comp_pred8, width, mv,
&inter_pred_params);
return;
}
}
const InterpFilterParams *filter = av1_get_filter(subpel_search);
int filter_taps = (subpel_search <= USE_4_TAPS) ? 4 : SUBPEL_TAPS;
if (!subpel_x_q3 && !subpel_y_q3) {
uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
if (width >= 8) {
int i;
assert(!(width & 7));
/*Read 8 pixels one row at a time.*/
for (i = 0; i < height; i++) {
int j;
for (j = 0; j < width; j += 8) {
__m128i s0 = _mm_loadu_si128((const __m128i *)ref);
_mm_storeu_si128((__m128i *)comp_pred, s0);
comp_pred += 8;
ref += 8;
}
ref += ref_stride - width;
}
} else {
int i;
assert(!(width & 3));
/*Read 4 pixels two rows at a time.*/
for (i = 0; i < height; i += 2) {
__m128i s0 = _mm_loadl_epi64((const __m128i *)ref);
__m128i s1 = _mm_loadl_epi64((const __m128i *)(ref + ref_stride));
__m128i t0 = _mm_unpacklo_epi64(s0, s1);
_mm_storeu_si128((__m128i *)comp_pred, t0);
comp_pred += 8;
ref += 2 * ref_stride;
}
}
} else if (!subpel_y_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
aom_highbd_convolve8_horiz(ref8, ref_stride, comp_pred8, width, kernel, 16,
NULL, -1, width, height, bd);
} else if (!subpel_x_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
aom_highbd_convolve8_vert(ref8, ref_stride, comp_pred8, width, NULL, -1,
kernel, 16, width, height, bd);
} else {
DECLARE_ALIGNED(16, uint16_t,
temp[((MAX_SB_SIZE + 16) + 16) * MAX_SB_SIZE]);
const int16_t *const kernel_x =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
const int16_t *const kernel_y =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
const uint8_t *ref_start = ref8 - ref_stride * ((filter_taps >> 1) - 1);
uint16_t *temp_start_horiz = (subpel_search <= USE_4_TAPS)
? temp + (filter_taps >> 1) * MAX_SB_SIZE
: temp;
uint16_t *temp_start_vert = temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1);
const int intermediate_height =
(((height - 1) * 8 + subpel_y_q3) >> 3) + filter_taps;
assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16);
aom_highbd_convolve8_horiz(
ref_start, ref_stride, CONVERT_TO_BYTEPTR(temp_start_horiz),
MAX_SB_SIZE, kernel_x, 16, NULL, -1, width, intermediate_height, bd);
aom_highbd_convolve8_vert(CONVERT_TO_BYTEPTR(temp_start_vert), MAX_SB_SIZE,
comp_pred8, width, NULL, -1, kernel_y, 16, width,
height, bd);
}
}
void aom_highbd_comp_avg_upsampled_pred_sse2(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8,
int ref_stride, int bd, int subpel_search) {
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred8, width,
height, subpel_x_q3, subpel_y_q3, ref8, ref_stride,
bd, subpel_search);
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
uint16_t *comp_pred16 = CONVERT_TO_SHORTPTR(comp_pred8);
/*The total number of pixels must be a multiple of 8 (e.g., 4x4).*/
assert(!(width * height & 7));
int n = width * height >> 3;
for (int i = 0; i < n; i++) {
__m128i s0 = _mm_loadu_si128((const __m128i *)comp_pred16);
__m128i p0 = _mm_loadu_si128((const __m128i *)pred);
_mm_storeu_si128((__m128i *)comp_pred16, _mm_avg_epu16(s0, p0));
comp_pred16 += 8;
pred += 8;
}
}
void aom_highbd_dist_wtd_comp_avg_upsampled_pred_sse2(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8,
int ref_stride, int bd, const DIST_WTD_COMP_PARAMS *jcp_param,
int subpel_search) {
uint16_t *pred = CONVERT_TO_SHORTPTR(pred8);
int n;
int i;
aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred8, width,
height, subpel_x_q3, subpel_y_q3, ref8, ref_stride,
bd, subpel_search);
assert(!(width * height & 7));
n = width * height >> 3;
const int16_t wt0 = (int16_t)jcp_param->fwd_offset;
const int16_t wt1 = (int16_t)jcp_param->bck_offset;
const __m128i w0 = _mm_set1_epi16(wt0);
const __m128i w1 = _mm_set1_epi16(wt1);
const int16_t round = (int16_t)((1 << DIST_PRECISION_BITS) >> 1);
const __m128i r = _mm_set1_epi16(round);
uint16_t *comp_pred16 = CONVERT_TO_SHORTPTR(comp_pred8);
for (i = 0; i < n; i++) {
__m128i p0 = xx_loadu_128(comp_pred16);
__m128i p1 = xx_loadu_128(pred);
highbd_compute_dist_wtd_comp_avg(&p0, &p1, &w0, &w1, &r, comp_pred16);
comp_pred16 += 8;
pred += 8;
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
void aom_comp_avg_upsampled_pred_sse2(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref,
int ref_stride, int subpel_search) {
int n;
int i;
aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height,
subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search);
/*The total number of pixels must be a multiple of 16 (e.g., 4x4).*/
assert(!(width * height & 15));
n = width * height >> 4;
for (i = 0; i < n; i++) {
__m128i s0 = xx_loadu_128(comp_pred);
__m128i p0 = xx_loadu_128(pred);
xx_storeu_128(comp_pred, _mm_avg_epu8(s0, p0));
comp_pred += 16;
pred += 16;
}
}