| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| |
| #include "av1/common/blockd.h" |
| #include "av1/encoder/palette.h" |
| #include "av1/encoder/random.h" |
| |
| #ifndef AV1_K_MEANS_DIM |
| #error "This template requires AV1_K_MEANS_DIM to be defined" |
| #endif |
| |
| #define RENAME_(x, y) AV1_K_MEANS_RENAME(x, y) |
| #define RENAME(x) RENAME_(x, AV1_K_MEANS_DIM) |
| |
| // Though we want to compute the smallest L2 norm, in 1 dimension, |
| // it is equivalent to find the smallest L1 norm and then square it. |
| // This is preferrable for speed, especially on the SIMD side. |
| static int RENAME(calc_dist)(const int16_t *p1, const int16_t *p2) { |
| #if AV1_K_MEANS_DIM == 1 |
| return abs(p1[0] - p2[0]); |
| #else |
| int dist = 0; |
| for (int i = 0; i < AV1_K_MEANS_DIM; ++i) { |
| const int diff = p1[i] - p2[i]; |
| dist += diff * diff; |
| } |
| return dist; |
| #endif |
| } |
| |
| void RENAME(av1_calc_indices)(const int16_t *data, const int16_t *centroids, |
| uint8_t *indices, int64_t *dist, int n, int k) { |
| if (dist) { |
| *dist = 0; |
| } |
| for (int i = 0; i < n; ++i) { |
| int min_dist = RENAME(calc_dist)(data + i * AV1_K_MEANS_DIM, centroids); |
| indices[i] = 0; |
| for (int j = 1; j < k; ++j) { |
| const int this_dist = RENAME(calc_dist)(data + i * AV1_K_MEANS_DIM, |
| centroids + j * AV1_K_MEANS_DIM); |
| if (this_dist < min_dist) { |
| min_dist = this_dist; |
| indices[i] = j; |
| } |
| } |
| if (dist) { |
| #if AV1_K_MEANS_DIM == 1 |
| *dist += min_dist * min_dist; |
| #else |
| *dist += min_dist; |
| #endif |
| } |
| } |
| } |
| |
| static void RENAME(calc_centroids)(const int16_t *data, int16_t *centroids, |
| const uint8_t *indices, int n, int k) { |
| int i, j; |
| int count[PALETTE_MAX_SIZE] = { 0 }; |
| int centroids_sum[AV1_K_MEANS_DIM * PALETTE_MAX_SIZE]; |
| unsigned int rand_state = (unsigned int)data[0]; |
| assert(n <= 32768); |
| memset(centroids_sum, 0, sizeof(centroids_sum[0]) * k * AV1_K_MEANS_DIM); |
| |
| for (i = 0; i < n; ++i) { |
| const int index = indices[i]; |
| assert(index < k); |
| ++count[index]; |
| for (j = 0; j < AV1_K_MEANS_DIM; ++j) { |
| centroids_sum[index * AV1_K_MEANS_DIM + j] += |
| data[i * AV1_K_MEANS_DIM + j]; |
| } |
| } |
| |
| for (i = 0; i < k; ++i) { |
| if (count[i] == 0) { |
| memcpy(centroids + i * AV1_K_MEANS_DIM, |
| data + (lcg_rand16(&rand_state) % n) * AV1_K_MEANS_DIM, |
| sizeof(centroids[0]) * AV1_K_MEANS_DIM); |
| } else { |
| for (j = 0; j < AV1_K_MEANS_DIM; ++j) { |
| centroids[i * AV1_K_MEANS_DIM + j] = |
| DIVIDE_AND_ROUND(centroids_sum[i * AV1_K_MEANS_DIM + j], count[i]); |
| } |
| } |
| } |
| } |
| |
| void RENAME(av1_k_means)(const int16_t *data, int16_t *centroids, |
| uint8_t *indices, int n, int k, int max_itr) { |
| int16_t centroids_tmp[AV1_K_MEANS_DIM * PALETTE_MAX_SIZE]; |
| uint8_t indices_tmp[MAX_PALETTE_BLOCK_WIDTH * MAX_PALETTE_BLOCK_HEIGHT]; |
| int16_t *meta_centroids[2] = { centroids, centroids_tmp }; |
| uint8_t *meta_indices[2] = { indices, indices_tmp }; |
| int i, l = 0, prev_l, best_l = 0; |
| int64_t this_dist; |
| |
| assert(n <= MAX_PALETTE_BLOCK_WIDTH * MAX_PALETTE_BLOCK_HEIGHT); |
| |
| #if AV1_K_MEANS_DIM == 1 |
| av1_calc_indices_dim1(data, centroids, indices, &this_dist, n, k); |
| #else |
| av1_calc_indices_dim2(data, centroids, indices, &this_dist, n, k); |
| #endif |
| |
| for (i = 0; i < max_itr; ++i) { |
| const int64_t prev_dist = this_dist; |
| prev_l = l; |
| l = (l == 1) ? 0 : 1; |
| |
| RENAME(calc_centroids)(data, meta_centroids[l], meta_indices[prev_l], n, k); |
| if (!memcmp(meta_centroids[l], meta_centroids[prev_l], |
| sizeof(centroids[0]) * k * AV1_K_MEANS_DIM)) { |
| break; |
| } |
| #if AV1_K_MEANS_DIM == 1 |
| av1_calc_indices_dim1(data, meta_centroids[l], meta_indices[l], &this_dist, |
| n, k); |
| #else |
| av1_calc_indices_dim2(data, meta_centroids[l], meta_indices[l], &this_dist, |
| n, k); |
| #endif |
| |
| if (this_dist > prev_dist) { |
| best_l = prev_l; |
| break; |
| } |
| } |
| if (i == max_itr) best_l = l; |
| if (best_l != 0) { |
| memcpy(centroids, meta_centroids[1], |
| sizeof(centroids[0]) * k * AV1_K_MEANS_DIM); |
| memcpy(indices, meta_indices[1], sizeof(indices[0]) * n); |
| } |
| } |
| #undef RENAME_ |
| #undef RENAME |