blob: 881f7b20a4f6b1421a8c083b2fb31a3238ede3ac [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "aom_ports/mem.h"
#include "av1/common/scan.h"
#include "av1/common/blockd.h"
#include "av1/common/idct.h"
#include "av1/common/pred_common.h"
#include "av1/encoder/bitstream.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/subexp.h"
#include "av1/encoder/tokenize.h"
#define TEST_OPTIMIZE_TXB 0
typedef struct LevelDownStats {
int update;
tran_low_t low_qc;
tran_low_t low_dqc;
int64_t dist0;
int rate;
int rate_low;
int64_t dist;
int64_t dist_low;
int64_t rd;
int64_t rd_low;
int nz_rate; // for eob
int64_t rd_diff;
int cost_diff;
int64_t dist_diff;
int new_eob;
} LevelDownStats;
void av1_alloc_txb_buf(AV1_COMP *cpi) {
#if 0
AV1_COMMON *cm = &cpi->common;
int mi_block_size = 1 << MI_SIZE_LOG2;
// TODO(angiebird): Make sure cm->subsampling_x/y is set correctly, and then
// use precise buffer size according to cm->subsampling_x/y
int pixel_stride = mi_block_size * cm->mi_cols;
int pixel_height = mi_block_size * cm->mi_rows;
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
CHECK_MEM_ERROR(
cm, cpi->tcoeff_buf[i],
aom_malloc(sizeof(*cpi->tcoeff_buf[i]) * pixel_stride * pixel_height));
}
#else
AV1_COMMON *cm = &cpi->common;
int size = ((cm->mi_rows >> MAX_MIB_SIZE_LOG2) + 1) *
((cm->mi_cols >> MAX_MIB_SIZE_LOG2) + 1);
av1_free_txb_buf(cpi);
// TODO(jingning): This should be further reduced.
CHECK_MEM_ERROR(cm, cpi->coeff_buffer_base,
aom_malloc(sizeof(*cpi->coeff_buffer_base) * size));
#endif
}
void av1_free_txb_buf(AV1_COMP *cpi) {
#if 0
int i;
for (i = 0; i < MAX_MB_PLANE; ++i) {
aom_free(cpi->tcoeff_buf[i]);
}
#else
aom_free(cpi->coeff_buffer_base);
#endif
}
void av1_set_coeff_buffer(const AV1_COMP *const cpi, MACROBLOCK *const x,
int mi_row, int mi_col) {
int stride = (cpi->common.mi_cols >> MAX_MIB_SIZE_LOG2) + 1;
int offset =
(mi_row >> MAX_MIB_SIZE_LOG2) * stride + (mi_col >> MAX_MIB_SIZE_LOG2);
CB_COEFF_BUFFER *coeff_buf = &cpi->coeff_buffer_base[offset];
const int txb_offset = x->cb_offset / (TX_SIZE_W_MIN * TX_SIZE_H_MIN);
for (int plane = 0; plane < MAX_MB_PLANE; ++plane) {
x->mbmi_ext->tcoeff[plane] = coeff_buf->tcoeff[plane] + x->cb_offset;
x->mbmi_ext->eobs[plane] = coeff_buf->eobs[plane] + txb_offset;
x->mbmi_ext->txb_skip_ctx[plane] =
coeff_buf->txb_skip_ctx[plane] + txb_offset;
x->mbmi_ext->dc_sign_ctx[plane] =
coeff_buf->dc_sign_ctx[plane] + txb_offset;
}
}
static void write_golomb(aom_writer *w, int level) {
int x = level + 1;
int i = x;
int length = 0;
while (i) {
i >>= 1;
++length;
}
assert(length > 0);
for (i = 0; i < length - 1; ++i) aom_write_bit(w, 0);
for (i = length - 1; i >= 0; --i) aom_write_bit(w, (x >> i) & 0x01);
}
static INLINE tran_low_t get_lower_coeff(tran_low_t qc) {
if (qc == 0) {
return 0;
}
return qc > 0 ? qc - 1 : qc + 1;
}
static INLINE tran_low_t qcoeff_to_dqcoeff(tran_low_t qc, int dqv, int shift) {
int sgn = qc < 0 ? -1 : 1;
return sgn * ((abs(qc) * dqv) >> shift);
}
static INLINE int64_t get_coeff_dist(tran_low_t tcoeff, tran_low_t dqcoeff,
int shift) {
#if CONFIG_DAALA_TX
int depth_shift = (TX_COEFF_DEPTH - 11) * 2;
int depth_round = depth_shift > 1 ? (1 << (depth_shift - 1)) : 0;
const int64_t diff = tcoeff - dqcoeff;
const int64_t error = diff * diff + depth_round >> depth_shift;
(void)shift;
#else
const int64_t diff = (tcoeff - dqcoeff) * (1 << shift);
const int64_t error = diff * diff;
#endif
return error;
}
void av1_update_eob_context(int eob, int seg_eob, TX_SIZE tx_size,
TX_TYPE tx_type, PLANE_TYPE plane,
FRAME_CONTEXT *ec_ctx, FRAME_COUNTS *counts,
uint8_t allow_update_cdf) {
int16_t eob_extra;
int16_t eob_pt = get_eob_pos_token(eob, &eob_extra);
int16_t dummy;
int16_t max_eob_pt = get_eob_pos_token(seg_eob, &dummy);
TX_SIZE txs_ctx = get_txsize_context(tx_size);
for (int i = 1; i < max_eob_pt; i++) {
int eob_pos_ctx = av1_get_eob_pos_ctx(tx_type, i);
counts->eob_flag[txs_ctx][plane][eob_pos_ctx][eob_pt == i]++;
if (allow_update_cdf)
update_cdf(ec_ctx->eob_flag_cdf[txs_ctx][plane][eob_pos_ctx], eob_pt == i,
2);
if (eob_pt == i) {
break;
}
}
if (k_eob_offset_bits[eob_pt] > 0) {
int eob_shift = k_eob_offset_bits[eob_pt] - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
counts->eob_extra[txs_ctx][plane][eob_pt][bit]++;
if (allow_update_cdf)
update_cdf(ec_ctx->eob_extra_cdf[txs_ctx][plane][eob_pt], bit, 2);
}
}
static int get_eob_cost(int eob, int seg_eob,
const LV_MAP_COEFF_COST *txb_costs, TX_TYPE tx_type) {
int16_t eob_extra;
int16_t eob_pt = get_eob_pos_token(eob, &eob_extra);
int16_t dummy;
int16_t max_eob_pt = get_eob_pos_token(seg_eob, &dummy);
int eob_cost = 0;
// printf("Enc: [%d, %d], (%d, %d) ", seg_eob, eob, eob_pt, eob_extra);
for (int i = 1; i < max_eob_pt; i++) {
int eob_pos_ctx = av1_get_eob_pos_ctx(tx_type, i);
eob_cost += txb_costs->eob_cost[eob_pos_ctx][eob_pt == i];
if (eob_pt == i) {
break;
}
}
if (k_eob_offset_bits[eob_pt] > 0) {
int eob_shift = k_eob_offset_bits[eob_pt] - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
eob_cost += txb_costs->eob_extra_cost[eob_pt][bit];
for (int i = 1; i < k_eob_offset_bits[eob_pt]; i++) {
eob_shift = k_eob_offset_bits[eob_pt] - 1 - i;
bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
eob_cost += av1_cost_bit(128, bit);
}
}
return eob_cost;
}
static int get_coeff_cost(const tran_low_t qc, const int scan_idx,
#if CONFIG_LV_MAP_MULTI
const int is_eob,
#endif
const TxbInfo *const txb_info,
const LV_MAP_COEFF_COST *const txb_costs);
static void get_dist_cost_stats(LevelDownStats *stats, int scan_idx,
#if CONFIG_LV_MAP_MULTI
const int is_eob,
#endif
const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info) {
const int16_t *scan = txb_info->scan_order->scan;
const int coeff_idx = scan[scan_idx];
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const uint8_t *const levels = txb_info->levels;
stats->new_eob = -1;
stats->update = 0;
const tran_low_t tqc = txb_info->tcoeff[coeff_idx];
const int dqv = txb_info->dequant[coeff_idx != 0];
const tran_low_t dqc = qcoeff_to_dqcoeff(qc, dqv, txb_info->shift);
const int64_t dqc_dist = get_coeff_dist(tqc, dqc, txb_info->shift);
#if CONFIG_LV_MAP_MULTI
const int qc_cost = get_coeff_cost(qc, scan_idx, is_eob, txb_info, txb_costs);
#else
const int qc_cost = get_coeff_cost(qc, scan_idx, txb_info, txb_costs);
#endif
// distortion difference when coefficient is quantized to 0
const tran_low_t dqc0 = qcoeff_to_dqcoeff(0, dqv, txb_info->shift);
stats->dist0 = get_coeff_dist(tqc, dqc0, txb_info->shift);
stats->dist = dqc_dist - stats->dist0;
stats->rate = qc_cost;
if (qc == 0) {
return;
}
stats->rd = RDCOST(txb_info->rdmult, stats->rate, stats->dist);
stats->low_qc = get_lower_coeff(qc);
stats->low_dqc = qcoeff_to_dqcoeff(stats->low_qc, dqv, txb_info->shift);
const int64_t low_dqc_dist =
get_coeff_dist(tqc, stats->low_dqc, txb_info->shift);
#if CONFIG_LV_MAP_MULTI
const int low_qc_cost =
get_coeff_cost(stats->low_qc, scan_idx, is_eob, txb_info, txb_costs);
#else
const int low_qc_cost =
get_coeff_cost(stats->low_qc, scan_idx, txb_info, txb_costs);
#endif
stats->dist_low = low_dqc_dist - stats->dist0;
stats->rate_low = low_qc_cost;
stats->rd_low = RDCOST(txb_info->rdmult, stats->rate_low, stats->dist_low);
#if CONFIG_LV_MAP_MULTI
(void)levels;
if ((stats->rd_low < stats->rd) && (stats->low_qc == 0)) {
stats->nz_rate = low_qc_cost;
} else {
if (stats->rd_low < stats->rd) {
const int low_qc_eob_cost =
get_coeff_cost(stats->low_qc, scan_idx, 1, txb_info, txb_costs);
stats->nz_rate = low_qc_cost - low_qc_eob_cost;
} else {
const int qc_eob_cost =
get_coeff_cost(qc, scan_idx, 1, txb_info, txb_costs);
stats->nz_rate = qc_cost - qc_eob_cost;
}
}
#else
int coeff_ctx = get_nz_map_ctx(levels, scan_idx, scan, txb_info->bwl,
txb_info->height, txb_info->tx_type);
if ((stats->rd_low < stats->rd) && (stats->low_qc == 0)) {
stats->nz_rate = txb_costs->nz_map_cost[coeff_ctx][0];
} else {
stats->nz_rate = txb_costs->nz_map_cost[coeff_ctx][1];
}
#endif
}
static INLINE void update_qcoeff(const int coeff_idx, const tran_low_t qc,
const TxbInfo *const txb_info) {
txb_info->qcoeff[coeff_idx] = qc;
txb_info->levels[get_paded_idx(coeff_idx, txb_info->bwl)] =
(uint8_t)clamp(abs(qc), 0, INT8_MAX);
}
static INLINE void update_coeff(const int coeff_idx, const tran_low_t qc,
const TxbInfo *const txb_info) {
update_qcoeff(coeff_idx, qc, txb_info);
const int dqv = txb_info->dequant[coeff_idx != 0];
txb_info->dqcoeff[coeff_idx] = qcoeff_to_dqcoeff(qc, dqv, txb_info->shift);
}
static INLINE void av1_txb_init_levels(const tran_low_t *const coeff,
const int width, const int height,
uint8_t *const levels) {
const int stride = width + TX_PAD_HOR;
uint8_t *ls = levels;
memset(levels - TX_PAD_TOP * stride, 0,
sizeof(*levels) * TX_PAD_TOP * stride);
memset(levels + stride * height, 0,
sizeof(*levels) * (TX_PAD_BOTTOM * stride + TX_PAD_END));
for (int i = 0; i < height; i++) {
for (int j = 0; j < width; j++) {
*ls++ = (uint8_t)clamp(abs(coeff[i * width + j]), 0, INT8_MAX);
}
for (int j = 0; j < TX_PAD_HOR; j++) {
*ls++ = 0;
}
}
}
void av1_write_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCKD *xd,
aom_writer *w, int blk_row, int blk_col, int block,
int plane, TX_SIZE tx_size, const tran_low_t *tcoeff,
uint16_t eob, TXB_CTX *txb_ctx) {
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE txs_ctx = get_txsize_context(tx_size);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
const int16_t *scan = scan_order->scan;
const int seg_eob = av1_get_max_eob(tx_size);
int c;
const int bwl = tx_size_wide_log2[tx_size];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
int update_eob = -1;
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
DECLARE_ALIGNED(16, uint8_t, level_counts[MAX_TX_SQUARE]);
(void)blk_row;
(void)blk_col;
aom_write_bin(w, eob == 0,
ec_ctx->txb_skip_cdf[txs_ctx][txb_ctx->txb_skip_ctx], 2);
if (eob == 0) return;
av1_txb_init_levels(tcoeff, width, height, levels);
#if CONFIG_TXK_SEL
av1_write_tx_type(cm, xd, blk_row, blk_col, block, plane,
get_min_tx_size(tx_size), w);
#endif
int16_t eob_extra;
int16_t eob_pt = get_eob_pos_token(eob, &eob_extra);
int16_t dummy;
int16_t max_eob_pt = get_eob_pos_token(seg_eob, &dummy);
// printf("Enc: [%d, %d], (%d, %d) ", seg_eob, eob, eob_pt, eob_extra);
for (int i = 1; i < max_eob_pt; i++) {
int eob_pos_ctx = av1_get_eob_pos_ctx(tx_type, i);
aom_write_bin(w, eob_pt == i,
ec_ctx->eob_flag_cdf[txs_ctx][plane_type][eob_pos_ctx], 2);
// aom_write_symbol(w, eob_pt == i,
// ec_ctx->eob_flag_cdf[AOMMIN(txs_ctx,3)][plane_type][eob_pos_ctx], 2);
if (eob_pt == i) {
break;
}
}
if (k_eob_offset_bits[eob_pt] > 0) {
int eob_shift = k_eob_offset_bits[eob_pt] - 1;
int bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
aom_write_bin(w, bit, ec_ctx->eob_extra_cdf[txs_ctx][plane_type][eob_pt],
2);
for (int i = 1; i < k_eob_offset_bits[eob_pt]; i++) {
eob_shift = k_eob_offset_bits[eob_pt] - 1 - i;
bit = (eob_extra & (1 << eob_shift)) ? 1 : 0;
aom_write_bit(w, bit);
// printf("%d ", bit);
}
}
#if USE_CAUSAL_BASE_CTX
int coeff_ctx = 0;
for (int i = 0; i < eob; ++i) {
c = eob - 1 - i;
#if CONFIG_LV_MAP_MULTI
coeff_ctx =
get_nz_map_ctx(levels, c, scan, bwl, height, tx_type, c == eob - 1);
tran_low_t v = tcoeff[scan[c]];
#if USE_BASE_EOB_ALPHABET
if (c == eob - 1) {
aom_write_symbol(
w, AOMMIN(abs(v), 3) - 1,
ec_ctx->coeff_base_eob_cdf[txs_ctx][plane_type]
[coeff_ctx - SIG_COEF_CONTEXTS +
SIG_COEF_CONTEXTS_EOB],
3);
} else {
aom_write_symbol(w, AOMMIN(abs(v), 3),
ec_ctx->coeff_base_cdf[txs_ctx][plane_type][coeff_ctx],
4);
}
#else
aom_write_symbol(w, AOMMIN(abs(v), 3),
ec_ctx->coeff_base_cdf[txs_ctx][plane_type][coeff_ctx], 4);
#endif
#else
coeff_ctx = get_nz_map_ctx(levels, c, scan, bwl, height, tx_type);
tran_low_t v = tcoeff[scan[c]];
int is_nz = (v != 0);
if (c < eob - 1) {
aom_write_bin(w, is_nz,
ec_ctx->nz_map_cdf[txs_ctx][plane_type][coeff_ctx], 2);
}
if (is_nz) {
const int level = abs(v);
int k;
for (k = 0; k < NUM_BASE_LEVELS; ++k) {
int is_k = (level > (k + 1));
int ctx = coeff_ctx;
aom_write_bin(w, is_k,
ec_ctx->coeff_base_cdf[txs_ctx][plane_type][k][ctx], 2);
if (is_k == 0) break;
}
}
#endif
}
update_eob = eob - 1;
#else
for (int i = 1; i < eob; ++i) {
c = eob - 1 - i;
int coeff_ctx = get_nz_map_ctx(levels, c, scan, bwl, height, tx_type);
tran_low_t v = tcoeff[scan[c]];
int is_nz = (v != 0);
aom_write_bin(w, is_nz, ec_ctx->nz_map_cdf[txs_ctx][plane_type][coeff_ctx],
2);
}
for (int i = 0; i < NUM_BASE_LEVELS; ++i) {
av1_get_base_level_counts(levels, i, width, height, level_counts);
for (c = eob - 1; c >= 0; --c) {
const tran_low_t level = abs(tcoeff[scan[c]]);
int ctx;
if (level <= i) continue;
ctx = get_base_ctx(levels, scan[c], bwl, i, level_counts[scan[c]]);
if (level == i + 1) {
aom_write_bin(w, 1, ec_ctx->coeff_base_cdf[txs_ctx][plane_type][i][ctx],
2);
continue;
}
aom_write_bin(w, 0, ec_ctx->coeff_base_cdf[txs_ctx][plane_type][i][ctx],
2);
update_eob = AOMMAX(update_eob, c);
}
}
#endif
// Loop to code all signs in the transform block,
// starting with the sign of DC (if applicable)
for (c = 0; c < eob; ++c) {
const tran_low_t v = tcoeff[scan[c]];
const tran_low_t level = abs(v);
const int sign = (v < 0) ? 1 : 0;
if (level == 0) continue;
if (c == 0) {
#if LV_MAP_PROB
aom_write_bin(w, sign,
ec_ctx->dc_sign_cdf[plane_type][txb_ctx->dc_sign_ctx], 2);
#else
aom_write(w, sign, ec_ctx->dc_sign[plane_type][txb_ctx->dc_sign_ctx]);
#endif
} else {
aom_write_bit(w, sign);
}
}
if (update_eob >= 0) {
av1_get_br_level_counts(levels, width, height, level_counts);
for (c = update_eob; c >= 0; --c) {
const tran_low_t level = abs(tcoeff[scan[c]]);
int idx;
int ctx;
if (level <= NUM_BASE_LEVELS) continue;
// level is above 1.
ctx = get_br_ctx(levels, scan[c], bwl, level_counts[scan[c]]);
int base_range = level - 1 - NUM_BASE_LEVELS;
#if CONFIG_LV_MAP_MULTI
for (idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) {
int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1);
aom_write_symbol(w, k, ec_ctx->coeff_br_cdf[txs_ctx][plane_type][ctx],
BR_CDF_SIZE);
if (k < BR_CDF_SIZE - 1) break;
}
if (base_range < COEFF_BASE_RANGE) continue;
#else
int br_set_idx = 0;
int br_base = 0;
int br_offset = 0;
if (base_range >= COEFF_BASE_RANGE)
br_set_idx = BASE_RANGE_SETS;
else
br_set_idx = coeff_to_br_index[base_range];
for (idx = 0; idx < BASE_RANGE_SETS; ++idx) {
// printf("br: %d %d %d %d\n", txs_ctx, plane_type, idx, ctx);
aom_write_bin(w, idx == br_set_idx,
ec_ctx->coeff_br_cdf[txs_ctx][plane_type][idx][ctx], 2);
if (idx == br_set_idx) {
br_base = br_index_to_coeff[br_set_idx];
br_offset = base_range - br_base;
int extra_bits = (1 << br_extra_bits[idx]) - 1;
for (int tok = 0; tok < extra_bits; ++tok) {
if (tok == br_offset) {
aom_write_bin(w, 1,
ec_ctx->coeff_lps_cdf[txs_ctx][plane_type][ctx], 2);
break;
}
aom_write_bin(w, 0, ec_ctx->coeff_lps_cdf[txs_ctx][plane_type][ctx],
2);
}
// aom_write_literal(w, br_offset, br_extra_bits[idx]);
break;
}
}
if (br_set_idx < BASE_RANGE_SETS) continue;
#endif
// use 0-th order Golomb code to handle the residual level.
write_golomb(
w, abs(tcoeff[scan[c]]) - COEFF_BASE_RANGE - 1 - NUM_BASE_LEVELS);
}
}
}
void av1_write_coeffs_mb(const AV1_COMMON *const cm, MACROBLOCK *x,
aom_writer *w, int plane) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
BLOCK_SIZE bsize = mbmi->sb_type;
struct macroblockd_plane *pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize =
AOMMAX(BLOCK_4X4, get_plane_block_size(bsize, pd));
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const int bkw = tx_size_wide_unit[tx_size];
const int bkh = tx_size_high_unit[tx_size];
const int step = tx_size_wide_unit[tx_size] * tx_size_high_unit[tx_size];
int row, col;
int block = 0;
for (row = 0; row < max_blocks_high; row += bkh) {
for (col = 0; col < max_blocks_wide; col += bkw) {
tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block);
uint16_t eob = x->mbmi_ext->eobs[plane][block];
TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block],
x->mbmi_ext->dc_sign_ctx[plane][block] };
av1_write_coeffs_txb(cm, xd, w, row, col, block, plane, tx_size, tcoeff,
eob, &txb_ctx);
block += step;
}
}
}
#if !USE_CAUSAL_BASE_CTX
static INLINE void get_base_ctx_set(const uint8_t *const levels,
const int c, // raster order
const int bwl,
int ctx_set[NUM_BASE_LEVELS]) {
const int row = c >> bwl;
const int col = c - (row << bwl);
const int width = 1 << bwl;
const int stride = width + TX_PAD_HOR;
int mag_count[NUM_BASE_LEVELS] = { 0 };
int nb_mag[NUM_BASE_LEVELS][3] = { { 0 } };
int idx;
int i;
for (idx = 0; idx < BASE_CONTEXT_POSITION_NUM; ++idx) {
const int ref_row = row + base_ref_offset[idx][0];
const int ref_col = col + base_ref_offset[idx][1];
const int pos = ref_row * stride + ref_col;
const uint8_t abs_coeff = levels[pos];
for (i = 0; i < NUM_BASE_LEVELS; ++i) {
ctx_set[i] += abs_coeff > i;
if (base_ref_offset[idx][0] == 0 && base_ref_offset[idx][1] == 1)
nb_mag[i][0] = abs_coeff;
if (base_ref_offset[idx][0] == 1 && base_ref_offset[idx][1] == 0)
nb_mag[i][1] = abs_coeff;
if (base_ref_offset[idx][0] == 1 && base_ref_offset[idx][1] == 1)
nb_mag[i][2] = abs_coeff;
}
}
for (i = 0; i < NUM_BASE_LEVELS; ++i) {
for (idx = 0; idx < 3; ++idx) mag_count[i] += nb_mag[i][idx] > i + 1;
ctx_set[i] = get_base_ctx_from_count_mag(row, col, ctx_set[i],
AOMMIN(2, mag_count[i]));
}
return;
}
#endif
static INLINE int get_br_cost(tran_low_t abs_qc, int ctx,
const int *coeff_lps) {
const tran_low_t min_level = 1 + NUM_BASE_LEVELS;
const tran_low_t max_level = 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE;
(void)ctx;
if (abs_qc >= min_level) {
if (abs_qc >= max_level)
return coeff_lps[COEFF_BASE_RANGE]; // COEFF_BASE_RANGE * cost0;
else
return coeff_lps[(abs_qc - min_level)]; // * cost0 + cost1;
} else {
return 0;
}
}
static INLINE int get_base_cost(tran_low_t abs_qc, int ctx,
const int coeff_base[2], int base_idx) {
const int level = base_idx + 1;
(void)ctx;
if (abs_qc < level)
return 0;
else
return coeff_base[abs_qc == level];
}
int av1_cost_coeffs_txb(const AV1_COMMON *const cm, MACROBLOCK *x, int plane,
int blk_row, int blk_col, int block, TX_SIZE tx_size,
TXB_CTX *txb_ctx) {
MACROBLOCKD *const xd = &x->e_mbd;
TX_SIZE txs_ctx = get_txsize_context(tx_size);
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size);
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const struct macroblock_plane *p = &x->plane[plane];
const int eob = p->eobs[block];
const tran_low_t *const qcoeff = BLOCK_OFFSET(p->qcoeff, block);
int c, cost;
int txb_skip_ctx = txb_ctx->txb_skip_ctx;
const int bwl = tx_size_wide_log2[tx_size];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
const int16_t *scan = scan_order->scan;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
DECLARE_ALIGNED(16, uint8_t, level_counts[MAX_TX_SQUARE]);
LV_MAP_COEFF_COST *coeff_costs = &x->coeff_costs[txs_ctx][plane_type];
cost = 0;
if (eob == 0) {
cost = coeff_costs->txb_skip_cost[txb_skip_ctx][1];
return cost;
}
cost = coeff_costs->txb_skip_cost[txb_skip_ctx][0];
av1_txb_init_levels(qcoeff, width, height, levels);
#if CONFIG_TXK_SEL
cost += av1_tx_type_cost(cm, x, xd, mbmi->sb_type, plane, tx_size, tx_type);
#endif
const int seg_eob = av1_get_max_eob(tx_size);
int eob_cost = get_eob_cost(eob, seg_eob, coeff_costs, tx_type);
av1_get_br_level_counts(levels, width, height, level_counts);
cost += eob_cost;
#if USE_CAUSAL_BASE_CTX
int coeff_ctx = 0;
#endif
for (c = eob - 1; c >= 0; --c) {
tran_low_t v = qcoeff[scan[c]];
int is_nz = (v != 0);
int level = abs(v);
#if CONFIG_LV_MAP_MULTI
coeff_ctx =
get_nz_map_ctx(levels, c, scan, bwl, height, tx_type, c == eob - 1);
#if USE_BASE_EOB_ALPHABET
if (c == eob - 1) {
cost += coeff_costs
->base_eob_cost[coeff_ctx - SIG_COEF_CONTEXTS +
SIG_COEF_CONTEXTS_EOB][AOMMIN(level, 3) - 1];
} else {
cost += coeff_costs->base_cost[coeff_ctx][AOMMIN(level, 3)];
}
#else
cost += coeff_costs->base_cost[coeff_ctx][AOMMIN(level, 3)];
#endif
#else // CONFIG_LV_MAP_MULTI
#if USE_CAUSAL_BASE_CTX
coeff_ctx = get_nz_map_ctx(levels, c, scan, bwl, height, tx_type);
#endif
if (c < eob - 1) {
#if !USE_CAUSAL_BASE_CTX
int coeff_ctx = get_nz_map_ctx(levels, c, scan, bwl, height, tx_type);
#endif
cost += coeff_costs->nz_map_cost[coeff_ctx][is_nz];
}
#endif // CONFIG_LV_MAP_MULTI
if (is_nz) {
#if !USE_CAUSAL_BASE_CTX
int ctx_ls[NUM_BASE_LEVELS] = { 0 };
#endif
int sign = (v < 0) ? 1 : 0;
// sign bit cost
if (c == 0) {
int dc_sign_ctx = txb_ctx->dc_sign_ctx;
cost += coeff_costs->dc_sign_cost[dc_sign_ctx][sign];
} else {
cost += av1_cost_bit(128, sign);
}
#if !CONFIG_LV_MAP_MULTI
#if USE_CAUSAL_BASE_CTX
int k;
for (k = 0; k < NUM_BASE_LEVELS; ++k) {
int is_k = (level > (k + 1));
int ctx = coeff_ctx;
// get_base_ctx_from_b(c, k, b0, b1, b2);
cost += coeff_costs->base_cost[k][ctx][is_k];
if (is_k == 0) break;
}
#else
get_base_ctx_set(levels, scan[c], bwl, ctx_ls);
int i;
for (i = 0; i < NUM_BASE_LEVELS; ++i) {
if (level <= i) continue;
if (level == i + 1) {
cost += coeff_costs->base_cost[i][ctx_ls[i]][1];
continue;
}
cost += coeff_costs->base_cost[i][ctx_ls[i]][0];
}
#endif
#endif // CONFIG_LV_MAP_MULTI
if (level > NUM_BASE_LEVELS) {
int ctx;
ctx = get_br_ctx(levels, scan[c], bwl, level_counts[scan[c]]);
int base_range = level - 1 - NUM_BASE_LEVELS;
if (base_range < COEFF_BASE_RANGE) {
cost += coeff_costs->lps_cost[ctx][base_range];
} else {
cost += coeff_costs->lps_cost[ctx][COEFF_BASE_RANGE];
}
if (level >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
// residual cost
int r = level - COEFF_BASE_RANGE - NUM_BASE_LEVELS;
int ri = r;
int length = 0;
while (ri) {
ri >>= 1;
++length;
}
for (ri = 0; ri < length - 1; ++ri) cost += av1_cost_bit(128, 0);
for (ri = length - 1; ri >= 0; --ri)
cost += av1_cost_bit(128, (r >> ri) & 0x01);
}
}
}
}
return cost;
}
static INLINE int has_base(tran_low_t qc, int base_idx) {
const int level = base_idx + 1;
return abs(qc) >= level;
}
static INLINE int has_br(tran_low_t qc) {
return abs(qc) >= 1 + NUM_BASE_LEVELS;
}
static INLINE int get_sign_bit_cost(tran_low_t qc, int coeff_idx,
const int (*dc_sign_cost)[2],
int dc_sign_ctx) {
const int sign = (qc < 0) ? 1 : 0;
// sign bit cost
if (coeff_idx == 0) {
return dc_sign_cost[dc_sign_ctx][sign];
} else {
return av1_cost_bit(128, sign);
}
}
static INLINE int get_golomb_cost(int abs_qc) {
if (abs_qc >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
// residual cost
int r = abs_qc - COEFF_BASE_RANGE - NUM_BASE_LEVELS;
int ri = r;
int length = 0;
while (ri) {
ri >>= 1;
++length;
}
return av1_cost_literal(2 * length - 1);
} else {
return 0;
}
}
void gen_txb_cache(TxbCache *txb_cache, TxbInfo *txb_info) {
// gen_nz_count_arr
const int16_t *scan = txb_info->scan_order->scan;
const int bwl = txb_info->bwl;
const int height = txb_info->height;
const tran_low_t *const qcoeff = txb_info->qcoeff;
const uint8_t *const levels = txb_info->levels;
const BASE_CTX_TABLE *base_ctx_table =
txb_info->coeff_ctx_table->base_ctx_table;
for (int c = 0; c < txb_info->eob; ++c) {
const int coeff_idx = scan[c]; // raster order
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
txb_cache->nz_count_arr[coeff_idx] =
get_nz_count(levels, bwl, row, col, get_tx_class(txb_info->tx_type));
const int nz_count = txb_cache->nz_count_arr[coeff_idx];
txb_cache->nz_ctx_arr[coeff_idx] =
get_nz_map_ctx_from_count(nz_count, coeff_idx, bwl, height,
#if USE_CAUSAL_BASE_CTX
0,
#endif
txb_info->tx_type);
// gen_base_count_mag_arr
if (!has_base(qcoeff[coeff_idx], 0)) continue;
int *base_mag = txb_cache->base_mag_arr[coeff_idx];
int count[NUM_BASE_LEVELS];
get_base_count_mag(base_mag, count, qcoeff, bwl, height, row, col);
for (int i = 0; i < NUM_BASE_LEVELS; ++i) {
if (!has_base(qcoeff[coeff_idx], i)) break;
txb_cache->base_count_arr[i][coeff_idx] = count[i];
const int level = i + 1;
txb_cache->base_ctx_arr[i][coeff_idx] =
base_ctx_table[row != 0][col != 0][base_mag[0] > level][count[i]];
}
// gen_br_count_mag_arr
if (!has_br(qcoeff[coeff_idx])) continue;
int *br_count = txb_cache->br_count_arr + coeff_idx;
int *br_mag = txb_cache->br_mag_arr[coeff_idx];
*br_count = get_br_count_mag(br_mag, qcoeff, bwl, height, row, col,
NUM_BASE_LEVELS);
txb_cache->br_ctx_arr[coeff_idx] =
get_br_ctx_from_count_mag(row, col, *br_count, br_mag[0]);
}
}
static INLINE const int *get_level_prob(int level, int coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs) {
#if CONFIG_LV_MAP_MULTI
if (level < 1 + NUM_BASE_LEVELS) {
const int ctx = txb_cache->nz_ctx_arr[coeff_idx];
return &txb_costs->base_cost[ctx][level];
#else
if (level == 0) {
const int ctx = txb_cache->nz_ctx_arr[coeff_idx];
return txb_costs->nz_map_cost[ctx];
} else if (level >= 1 && level < 1 + NUM_BASE_LEVELS) {
const int idx = level - 1;
const int ctx = txb_cache->base_ctx_arr[idx][coeff_idx];
return txb_costs->base_cost[idx][ctx];
#endif
} else if (level >= 1 + NUM_BASE_LEVELS &&
level < 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
const int ctx = txb_cache->br_ctx_arr[coeff_idx];
return txb_costs->lps_cost[ctx];
} else if (level >= 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
// printf("get_level_prob does not support golomb\n");
assert(0);
return 0;
} else {
assert(0);
return 0;
}
}
static INLINE void update_mag_arr(int *mag_arr, int abs_qc) {
if (mag_arr[0] == abs_qc) {
mag_arr[1] -= 1;
assert(mag_arr[1] >= 0);
}
}
static INLINE int get_mag_from_mag_arr(const int *mag_arr) {
int mag;
if (mag_arr[1] > 0) {
mag = mag_arr[0];
} else if (mag_arr[0] > 0) {
mag = mag_arr[0] - 1;
} else {
// no neighbor
assert(mag_arr[0] == 0 && mag_arr[1] == 0);
mag = 0;
}
return mag;
}
static int neighbor_level_down_update(int *new_count, int *new_mag, int count,
const int *mag, int coeff_idx,
tran_low_t abs_nb_coeff, int nb_coeff_idx,
int level, const TxbInfo *txb_info) {
*new_count = count;
*new_mag = get_mag_from_mag_arr(mag);
int update = 0;
// check if br_count changes
if (abs_nb_coeff == level) {
update = 1;
*new_count -= 1;
assert(*new_count >= 0);
}
const int row = coeff_idx >> txb_info->bwl;
const int col = coeff_idx - (row << txb_info->bwl);
const int nb_row = nb_coeff_idx >> txb_info->bwl;
const int nb_col = nb_coeff_idx - (nb_row << txb_info->bwl);
// check if mag changes
if (nb_row >= row && nb_col >= col) {
if (abs_nb_coeff == mag[0]) {
assert(mag[1] > 0);
if (mag[1] == 1) {
// the nb is the only qc with max mag
*new_mag -= 1;
assert(*new_mag >= 0);
update = 1;
}
}
}
return update;
}
static int try_neighbor_level_down_br(int coeff_idx, int nb_coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
const TxbInfo *txb_info) {
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const tran_low_t abs_qc = abs(qc);
const int level = NUM_BASE_LEVELS + 1;
if (abs_qc < level) return 0;
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
const tran_low_t abs_nb_coeff = abs(nb_coeff);
const int count = txb_cache->br_count_arr[coeff_idx];
const int *mag = txb_cache->br_mag_arr[coeff_idx];
int new_count;
int new_mag;
const int update =
neighbor_level_down_update(&new_count, &new_mag, count, mag, coeff_idx,
abs_nb_coeff, nb_coeff_idx, level, txb_info);
if (update) {
const int row = coeff_idx >> txb_info->bwl;
const int col = coeff_idx - (row << txb_info->bwl);
const int ctx = txb_cache->br_ctx_arr[coeff_idx];
const int org_cost = get_br_cost(abs_qc, ctx, txb_costs->lps_cost[ctx]);
const int new_ctx = get_br_ctx_from_count_mag(row, col, new_count, new_mag);
const int new_cost =
get_br_cost(abs_qc, new_ctx, txb_costs->lps_cost[new_ctx]);
const int cost_diff = -org_cost + new_cost;
return cost_diff;
} else {
return 0;
}
}
static int try_neighbor_level_down_base(int coeff_idx, int nb_coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
const TxbInfo *txb_info) {
#if CONFIG_LV_MAP_MULTI
// TODO(olah): not implemented yet
(void)coeff_idx;
(void)nb_coeff_idx;
(void)txb_cache;
(void)txb_costs;
(void)txb_info;
return 0;
#else
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const tran_low_t abs_qc = abs(qc);
const BASE_CTX_TABLE *base_ctx_table =
txb_info->coeff_ctx_table->base_ctx_table;
int cost_diff = 0;
for (int base_idx = 0; base_idx < NUM_BASE_LEVELS; ++base_idx) {
const int level = base_idx + 1;
if (abs_qc < level) continue;
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
const tran_low_t abs_nb_coeff = abs(nb_coeff);
const int count = txb_cache->base_count_arr[base_idx][coeff_idx];
const int *mag = txb_cache->base_mag_arr[coeff_idx];
int new_count;
int new_mag;
const int update =
neighbor_level_down_update(&new_count, &new_mag, count, mag, coeff_idx,
abs_nb_coeff, nb_coeff_idx, level, txb_info);
if (update) {
const int row = coeff_idx >> txb_info->bwl;
const int col = coeff_idx - (row << txb_info->bwl);
const int ctx = txb_cache->base_ctx_arr[base_idx][coeff_idx];
const int org_cost = get_base_cost(
abs_qc, ctx, txb_costs->base_cost[base_idx][ctx], base_idx);
const int new_ctx =
base_ctx_table[row != 0][col != 0][new_mag > level][new_count];
const int new_cost = get_base_cost(
abs_qc, new_ctx, txb_costs->base_cost[base_idx][new_ctx], base_idx);
cost_diff += -org_cost + new_cost;
}
}
return cost_diff;
#endif
}
static int try_neighbor_level_down_nz(int coeff_idx, int nb_coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info) {
// assume eob doesn't change
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const tran_low_t abs_qc = abs(qc);
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
const tran_low_t abs_nb_coeff = abs(nb_coeff);
if (abs_nb_coeff != 1) return 0;
const int16_t *iscan = txb_info->scan_order->iscan;
const int scan_idx = iscan[coeff_idx];
if (scan_idx == txb_info->seg_eob) return 0;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < scan_idx) {
const int count = txb_cache->nz_count_arr[coeff_idx];
assert(count > 0);
update_qcoeff(nb_coeff_idx, get_lower_coeff(nb_coeff), txb_info);
const int new_ctx = get_nz_map_ctx_from_count(
count - 1, coeff_idx, txb_info->bwl, txb_info->height,
#if USE_CAUSAL_BASE_CTX
0,
#endif
txb_info->tx_type);
update_qcoeff(nb_coeff_idx, nb_coeff, txb_info);
const int ctx = txb_cache->nz_ctx_arr[coeff_idx];
#if CONFIG_LV_MAP_MULTI
const int org_cost = txb_costs->base_cost[ctx][AOMMIN(abs_qc, 3)];
const int new_cost = txb_costs->base_cost[new_ctx][AOMMIN(abs_qc, 3)];
#else
const int is_nz = abs_qc > 0;
const int org_cost = txb_costs->nz_map_cost[ctx][is_nz];
const int new_cost = txb_costs->nz_map_cost[new_ctx][is_nz];
#endif
const int cost_diff = new_cost - org_cost;
return cost_diff;
} else {
return 0;
}
}
static int try_self_level_down(tran_low_t *low_coeff, int coeff_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info) {
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
if (qc == 0) {
*low_coeff = 0;
return 0;
}
const tran_low_t abs_qc = abs(qc);
*low_coeff = get_lower_coeff(qc);
int cost_diff;
if (*low_coeff == 0) {
const int scan_idx = txb_info->scan_order->iscan[coeff_idx];
const int *level_cost =
get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs);
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
if (scan_idx < txb_info->eob - 1) {
// When level-0, we code the binary of abs_qc > level
// but when level-k k > 0 we code the binary of abs_qc == level
// That's why wee need this special treatment for level-0 map
// TODO(angiebird): make leve-0 consistent to other levels
cost_diff = -level_cost[1] + low_level_cost[0] - low_level_cost[1];
} else {
cost_diff = -level_cost[1];
}
const int sign_cost = get_sign_bit_cost(
qc, coeff_idx, txb_costs->dc_sign_cost, txb_info->txb_ctx->dc_sign_ctx);
cost_diff -= sign_cost;
} else if (abs_qc <= NUM_BASE_LEVELS) {
const int *level_cost =
get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs);
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
cost_diff = -level_cost[1] + low_level_cost[1] - low_level_cost[0];
} else if (abs_qc == NUM_BASE_LEVELS + 1) {
const int *level_cost =
get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs);
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
cost_diff = -level_cost[0] + low_level_cost[1] - low_level_cost[0];
} else if (abs_qc < 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
const int *level_cost =
get_level_prob(abs_qc, coeff_idx, txb_cache, txb_costs);
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
cost_diff = -level_cost[abs_qc - 1 - NUM_BASE_LEVELS] +
low_level_cost[abs(*low_coeff) - 1 - NUM_BASE_LEVELS];
} else if (abs_qc == 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE) {
const int *low_level_cost =
get_level_prob(abs(*low_coeff), coeff_idx, txb_cache, txb_costs);
cost_diff = -get_golomb_cost(abs_qc) - low_level_cost[COEFF_BASE_RANGE] +
low_level_cost[COEFF_BASE_RANGE - 1];
} else {
assert(abs_qc > 1 + NUM_BASE_LEVELS + COEFF_BASE_RANGE);
const tran_low_t abs_low_coeff = abs(*low_coeff);
cost_diff = -get_golomb_cost(abs_qc) + get_golomb_cost(abs_low_coeff);
}
return cost_diff;
}
#define COST_MAP_SIZE 5
#define COST_MAP_OFFSET 2
static INLINE int check_nz_neighbor(tran_low_t qc) { return abs(qc) == 1; }
static INLINE int check_base_neighbor(tran_low_t qc) {
return abs(qc) <= 1 + NUM_BASE_LEVELS;
}
static INLINE int check_br_neighbor(tran_low_t qc) {
return abs(qc) > BR_MAG_OFFSET;
}
#define FAST_OPTIMIZE_TXB 1
#if FAST_OPTIMIZE_TXB
#define ALNB_REF_OFFSET_NUM 2
static const int alnb_ref_offset[ALNB_REF_OFFSET_NUM][2] = {
{ -1, 0 }, { 0, -1 },
};
#define NB_REF_OFFSET_NUM 4
static const int nb_ref_offset[NB_REF_OFFSET_NUM][2] = {
{ -1, 0 }, { 0, -1 }, { 1, 0 }, { 0, 1 },
};
#endif // FAST_OPTIMIZE_TXB
// TODO(angiebird): add static to this function once it's called
int try_level_down(int coeff_idx, const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs, TxbInfo *txb_info,
int (*cost_map)[COST_MAP_SIZE], int fast_mode) {
#if !FAST_OPTIMIZE_TXB
(void)fast_mode;
#endif
if (cost_map) {
for (int i = 0; i < COST_MAP_SIZE; ++i) av1_zero(cost_map[i]);
}
tran_low_t qc = txb_info->qcoeff[coeff_idx];
tran_low_t low_coeff;
if (qc == 0) return 0;
int accu_cost_diff = 0;
const int16_t *iscan = txb_info->scan_order->iscan;
const int eob = txb_info->eob;
const int scan_idx = iscan[coeff_idx];
if (scan_idx < eob) {
const int cost_diff = try_self_level_down(&low_coeff, coeff_idx, txb_cache,
txb_costs, txb_info);
if (cost_map)
cost_map[0 + COST_MAP_OFFSET][0 + COST_MAP_OFFSET] = cost_diff;
accu_cost_diff += cost_diff;
}
const int row = coeff_idx >> txb_info->bwl;
const int col = coeff_idx - (row << txb_info->bwl);
if (check_nz_neighbor(qc)) {
#if FAST_OPTIMIZE_TXB
const int(*ref_offset)[2];
int ref_num;
if (fast_mode) {
ref_offset = alnb_ref_offset;
ref_num = ALNB_REF_OFFSET_NUM;
} else {
ref_offset = sig_ref_offset;
ref_num = SIG_REF_OFFSET_NUM;
}
#else
const int(*ref_offset)[2] = sig_ref_offset;
const int ref_num = SIG_REF_OFFSET_NUM;
#endif
for (int i = 0; i < ref_num; ++i) {
const int nb_row = row - ref_offset[i][0];
const int nb_col = col - ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (nb_row < 0 || nb_col < 0 || nb_row >= txb_info->height ||
nb_col >= txb_info->width)
continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
const int cost_diff = try_neighbor_level_down_nz(
nb_coeff_idx, coeff_idx, txb_cache, txb_costs, txb_info);
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] += cost_diff;
accu_cost_diff += cost_diff;
}
}
}
if (check_base_neighbor(qc)) {
#if FAST_OPTIMIZE_TXB
const int(*ref_offset)[2];
int ref_num;
if (fast_mode) {
ref_offset = nb_ref_offset;
ref_num = NB_REF_OFFSET_NUM;
} else {
ref_offset = base_ref_offset;
ref_num = BASE_CONTEXT_POSITION_NUM;
}
#else
const int(*ref_offset)[2] = base_ref_offset;
int ref_num = BASE_CONTEXT_POSITION_NUM;
#endif
for (int i = 0; i < ref_num; ++i) {
const int nb_row = row - ref_offset[i][0];
const int nb_col = col - ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (nb_row < 0 || nb_col < 0 || nb_row >= txb_info->height ||
nb_col >= txb_info->width)
continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
const int cost_diff = try_neighbor_level_down_base(
nb_coeff_idx, coeff_idx, txb_cache, txb_costs, txb_info);
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] += cost_diff;
accu_cost_diff += cost_diff;
}
}
}
if (check_br_neighbor(qc)) {
#if FAST_OPTIMIZE_TXB
const int(*ref_offset)[2];
int ref_num;
if (fast_mode) {
ref_offset = nb_ref_offset;
ref_num = NB_REF_OFFSET_NUM;
} else {
ref_offset = br_ref_offset;
ref_num = BR_CONTEXT_POSITION_NUM;
}
#else
const int(*ref_offset)[2] = br_ref_offset;
const int ref_num = BR_CONTEXT_POSITION_NUM;
#endif
for (int i = 0; i < ref_num; ++i) {
const int nb_row = row - ref_offset[i][0];
const int nb_col = col - ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (nb_row < 0 || nb_col < 0 || nb_row >= txb_info->height ||
nb_col >= txb_info->width)
continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
const int cost_diff = try_neighbor_level_down_br(
nb_coeff_idx, coeff_idx, txb_cache, txb_costs, txb_info);
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] += cost_diff;
accu_cost_diff += cost_diff;
}
}
}
return accu_cost_diff;
}
static int get_low_coeff_cost(int coeff_idx, const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
const TxbInfo *txb_info) {
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const int abs_qc = abs(qc);
assert(abs_qc <= 1);
int cost = 0;
#if CONFIG_LV_MAP_MULTI
const int ctx = txb_cache->nz_ctx_arr[coeff_idx];
cost += txb_costs->base_cost[ctx][AOMMIN(abs_qc, 3)];
if (qc != 0) {
cost += get_sign_bit_cost(qc, coeff_idx, txb_costs->dc_sign_cost,
txb_info->txb_ctx->dc_sign_ctx);
}
#else
const int scan_idx = txb_info->scan_order->iscan[coeff_idx];
if (scan_idx < txb_info->eob - 1) {
const int *level_cost = get_level_prob(0, coeff_idx, txb_cache, txb_costs);
cost += level_cost[qc != 0];
}
if (qc != 0) {
const int base_idx = 0;
const int ctx = txb_cache->base_ctx_arr[base_idx][coeff_idx];
cost += get_base_cost(abs_qc, ctx, txb_costs->base_cost[base_idx][ctx],
base_idx);
cost += get_sign_bit_cost(qc, coeff_idx, txb_costs->dc_sign_cost,
txb_info->txb_ctx->dc_sign_ctx);
}
#endif
return cost;
}
static INLINE void set_eob(TxbInfo *txb_info, int eob) {
txb_info->eob = eob;
txb_info->seg_eob = av1_get_max_eob(txb_info->tx_size);
}
// TODO(angiebird): add static to this function once it's called
int try_change_eob(int *new_eob, int coeff_idx, const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs, TxbInfo *txb_info,
int fast_mode) {
assert(txb_info->eob > 0);
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const int abs_qc = abs(qc);
if (abs_qc != 1) {
*new_eob = -1;
return 0;
}
const int16_t *iscan = txb_info->scan_order->iscan;
const int16_t *scan = txb_info->scan_order->scan;
const int scan_idx = iscan[coeff_idx];
*new_eob = 0;
int cost_diff = 0;
cost_diff -= get_low_coeff_cost(coeff_idx, txb_cache, txb_costs, txb_info);
// int coeff_cost =
// get_coeff_cost(qc, scan_idx, txb_info, txb_probs);
// if (-cost_diff != coeff_cost) {
// printf("-cost_diff %d coeff_cost %d\n", -cost_diff, coeff_cost);
// get_low_coeff_cost(coeff_idx, txb_cache, txb_probs, txb_info);
// get_coeff_cost(qc, scan_idx, txb_info, txb_probs);
// }
for (int si = scan_idx - 1; si >= 0; --si) {
const int ci = scan[si];
if (txb_info->qcoeff[ci] != 0) {
*new_eob = si + 1;
break;
} else {
cost_diff -= get_low_coeff_cost(ci, txb_cache, txb_costs, txb_info);
}
}
const int org_eob = txb_info->eob;
set_eob(txb_info, *new_eob);
cost_diff += try_level_down(coeff_idx, txb_cache, txb_costs, txb_info, NULL,
fast_mode);
set_eob(txb_info, org_eob);
if (*new_eob > 0) {
// Note that get_eob_ctx does NOT actually account for qcoeff, so we don't
// need to lower down the qcoeff here
const int eob_ctx =
get_eob_ctx(scan[*new_eob - 1], txb_info->txs_ctx, txb_info->tx_type);
cost_diff -= txb_costs->eob_cost[eob_ctx][0];
cost_diff += txb_costs->eob_cost[eob_ctx][1];
} else {
const int txb_skip_ctx = txb_info->txb_ctx->txb_skip_ctx;
cost_diff -= txb_costs->txb_skip_cost[txb_skip_ctx][0];
cost_diff += txb_costs->txb_skip_cost[txb_skip_ctx][1];
}
return cost_diff;
}
// TODO(angiebird): add static to this function it's called
void update_level_down(const int coeff_idx, TxbCache *const txb_cache,
TxbInfo *const txb_info) {
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
const int abs_qc = abs(qc);
if (qc == 0) return;
const tran_low_t low_coeff = get_lower_coeff(qc);
update_coeff(coeff_idx, low_coeff, txb_info);
const int row = coeff_idx >> txb_info->bwl;
const int col = coeff_idx - (row << txb_info->bwl);
const int eob = txb_info->eob;
const int16_t *iscan = txb_info->scan_order->iscan;
for (int i = 0; i < SIG_REF_OFFSET_NUM; ++i) {
const int nb_row = row - sig_ref_offset[i][0];
const int nb_col = col - sig_ref_offset[i][1];
if (!(nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height &&
nb_col < txb_info->width))
continue;
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
const int scan_idx = iscan[coeff_idx];
if (scan_idx < nb_scan_idx) {
const int level = 1;
if (abs_qc == level) {
txb_cache->nz_count_arr[nb_coeff_idx] -= 1;
assert(txb_cache->nz_count_arr[nb_coeff_idx] >= 0);
}
const int count = txb_cache->nz_count_arr[nb_coeff_idx];
txb_cache->nz_ctx_arr[nb_coeff_idx] = get_nz_map_ctx_from_count(
count, nb_coeff_idx, txb_info->bwl, txb_info->height,
#if USE_CAUSAL_BASE_CTX
0,
#endif
txb_info->tx_type);
// int ref_ctx = get_nz_map_ctx(txb_info->levels, nb_coeff_idx,
// txb_info->bwl, tx_type);
// if (ref_ctx != txb_cache->nz_ctx_arr[nb_coeff_idx])
// printf("nz ctx %d ref_ctx %d\n",
// txb_cache->nz_ctx_arr[nb_coeff_idx], ref_ctx);
}
}
}
const BASE_CTX_TABLE *base_ctx_table =
txb_info->coeff_ctx_table->base_ctx_table;
for (int i = 0; i < BASE_CONTEXT_POSITION_NUM; ++i) {
const int nb_row = row - base_ref_offset[i][0];
const int nb_col = col - base_ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (!(nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height &&
nb_col < txb_info->width))
continue;
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
if (!has_base(nb_coeff, 0)) continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
if (nb_scan_idx < eob) {
if (row >= nb_row && col >= nb_col)
update_mag_arr(txb_cache->base_mag_arr[nb_coeff_idx], abs_qc);
const int mag =
get_mag_from_mag_arr(txb_cache->base_mag_arr[nb_coeff_idx]);
for (int base_idx = 0; base_idx < NUM_BASE_LEVELS; ++base_idx) {
if (!has_base(nb_coeff, base_idx)) continue;
const int level = base_idx + 1;
if (abs_qc == level) {
txb_cache->base_count_arr[base_idx][nb_coeff_idx] -= 1;
assert(txb_cache->base_count_arr[base_idx][nb_coeff_idx] >= 0);
}
const int count = txb_cache->base_count_arr[base_idx][nb_coeff_idx];
txb_cache->base_ctx_arr[base_idx][nb_coeff_idx] =
base_ctx_table[nb_row != 0][nb_col != 0][mag > level][count];
// int ref_ctx = get_base_ctx(txb_info->qcoeff, nb_coeff_idx,
// txb_info->bwl, level - 1);
// if (ref_ctx != txb_cache->base_ctx_arr[base_idx][nb_coeff_idx]) {
// printf("base ctx %d ref_ctx %d\n",
// txb_cache->base_ctx_arr[base_idx][nb_coeff_idx], ref_ctx);
// }
}
}
}
for (int i = 0; i < BR_CONTEXT_POSITION_NUM; ++i) {
const int nb_row = row - br_ref_offset[i][0];
const int nb_col = col - br_ref_offset[i][1];
const int nb_coeff_idx = nb_row * txb_info->width + nb_col;
if (!(nb_row >= 0 && nb_col >= 0 && nb_row < txb_info->height &&
nb_col < txb_info->width))
continue;
const int nb_scan_idx = iscan[nb_coeff_idx];
const tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
if (!has_br(nb_coeff)) continue;
if (nb_scan_idx < eob) {
const int level = 1 + NUM_BASE_LEVELS;
if (abs_qc == level) {
txb_cache->br_count_arr[nb_coeff_idx] -= 1;
assert(txb_cache->br_count_arr[nb_coeff_idx] >= 0);
}
if (row >= nb_row && col >= nb_col)
update_mag_arr(txb_cache->br_mag_arr[nb_coeff_idx], abs_qc);
const int count = txb_cache->br_count_arr[nb_coeff_idx];
const int mag = get_mag_from_mag_arr(txb_cache->br_mag_arr[nb_coeff_idx]);
txb_cache->br_ctx_arr[nb_coeff_idx] =
get_br_ctx_from_count_mag(nb_row, nb_col, count, mag);
// int ref_ctx = get_level_ctx(txb_info->qcoeff, nb_coeff_idx,
// txb_info->bwl);
// if (ref_ctx != txb_cache->br_ctx_arr[nb_coeff_idx]) {
// printf("base ctx %d ref_ctx %d\n",
// txb_cache->br_ctx_arr[nb_coeff_idx], ref_ctx);
// }
}
}
}
static int get_coeff_cost(const tran_low_t qc, const int scan_idx,
#if CONFIG_LV_MAP_MULTI
const int is_eob,
#endif
const TxbInfo *const txb_info,
const LV_MAP_COEFF_COST *const txb_costs) {
const TXB_CTX *txb_ctx = txb_info->txb_ctx;
const int is_nz = (qc != 0);
const tran_low_t abs_qc = abs(qc);
int cost = 0;
const int16_t *scan = txb_info->scan_order->scan;
#if CONFIG_LV_MAP_MULTI
int coeff_ctx =
get_nz_map_ctx(txb_info->levels, scan_idx, scan, txb_info->bwl,
txb_info->height, txb_info->tx_type, is_eob);
#if USE_BASE_EOB_ALPHABET
if (is_eob) {
cost +=
txb_costs->base_eob_cost[coeff_ctx - SIG_COEF_CONTEXTS +
SIG_COEF_CONTEXTS_EOB][AOMMIN(abs_qc, 3) - 1];
} else {
cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)];
}
#else
cost += txb_costs->base_cost[coeff_ctx][AOMMIN(abs_qc, 3)];
#endif
#else
#if USE_CAUSAL_BASE_CTX
int coeff_ctx =
get_nz_map_ctx(txb_info->levels, scan_idx, scan, txb_info->bwl,
txb_info->height, txb_info->tx_type);
#endif
if (scan_idx < txb_info->eob - 1) {
#if !USE_CAUSAL_BASE_CTX
int coeff_ctx =
get_nz_map_ctx(txb_info->levels, scan_idx, scan, txb_info->bwl,
txb_info->height, txb_info->tx_type);
#endif
cost += txb_costs->nz_map_cost[coeff_ctx][is_nz];
}
#endif
if (is_nz) {
cost += get_sign_bit_cost(qc, scan_idx, txb_costs->dc_sign_cost,
txb_ctx->dc_sign_ctx);
#if !CONFIG_LV_MAP_MULTI
#if USE_CAUSAL_BASE_CTX
int k;
for (k = 0; k < NUM_BASE_LEVELS; ++k) {
int ctx = coeff_ctx;
int is_k = (abs_qc > (k + 1));
cost += txb_costs->base_cost[k][ctx][is_k];
if (is_k == 0) break;
}
#else
int ctx_ls[NUM_BASE_LEVELS] = { 0 };
get_base_ctx_set(txb_info->levels, scan[scan_idx], txb_info->bwl, ctx_ls);
int i;
for (i = 0; i < NUM_BASE_LEVELS; ++i) {
cost += get_base_cost(abs_qc, ctx_ls[i],
txb_costs->base_cost[i][ctx_ls[i]], i);
}
#endif
#endif
if (abs_qc > NUM_BASE_LEVELS) {
const int row = scan[scan_idx] >> txb_info->bwl;
const int col = scan[scan_idx] - (row << txb_info->bwl);
const int count = get_level_count(
txb_info->levels, (1 << txb_info->bwl) + TX_PAD_HOR, row, col,
NUM_BASE_LEVELS, br_ref_offset, BR_CONTEXT_POSITION_NUM);
const int ctx =
get_br_ctx(txb_info->levels, scan[scan_idx], txb_info->bwl, count);
cost += get_br_cost(abs_qc, ctx, txb_costs->lps_cost[ctx]);
cost += get_golomb_cost(abs_qc);
}
}
return cost;
}
#if TEST_OPTIMIZE_TXB
#define ALL_REF_OFFSET_NUM 17
static const int all_ref_offset[ALL_REF_OFFSET_NUM][2] = {
{ 0, 0 }, { -2, -1 }, { -2, 0 }, { -2, 1 }, { -1, -2 }, { -1, -1 },
{ -1, 0 }, { -1, 1 }, { 0, -2 }, { 0, -1 }, { 1, -2 }, { 1, -1 },
{ 1, 0 }, { 2, 0 }, { 0, 1 }, { 0, 2 }, { 1, 1 },
};
static int try_level_down_ref(int coeff_idx, const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info,
int (*cost_map)[COST_MAP_SIZE]) {
if (cost_map) {
for (int i = 0; i < COST_MAP_SIZE; ++i) av1_zero(cost_map[i]);
}
tran_low_t qc = txb_info->qcoeff[coeff_idx];
if (qc == 0) return 0;
int row = coeff_idx >> txb_info->bwl;
int col = coeff_idx - (row << txb_info->bwl);
int org_cost = 0;
for (int i = 0; i < ALL_REF_OFFSET_NUM; ++i) {
int nb_row = row - all_ref_offset[i][0];
int nb_col = col - all_ref_offset[i][1];
int nb_coeff_idx = nb_row * txb_info->width + nb_col;
int nb_scan_idx = txb_info->scan_order->iscan[nb_coeff_idx];
if (nb_scan_idx < txb_info->eob && nb_row >= 0 && nb_col >= 0 &&
nb_row < txb_info->height && nb_col < txb_info->width) {
tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
#if CONFIG_LV_MAP_MULTI
int cost =
get_coeff_cost(nb_coeff, nb_scan_idx, is_eob, txb_info, txb_costs);
#else
int cost = get_coeff_cost(nb_coeff, nb_scan_idx, txb_info, txb_costs);
#endif
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] -= cost;
org_cost += cost;
}
}
update_qcoeff(coeff_idx, get_lower_coeff(qc), txb_info);
int new_cost = 0;
for (int i = 0; i < ALL_REF_OFFSET_NUM; ++i) {
int nb_row = row - all_ref_offset[i][0];
int nb_col = col - all_ref_offset[i][1];
int nb_coeff_idx = nb_row * txb_info->width + nb_col;
int nb_scan_idx = txb_info->scan_order->iscan[nb_coeff_idx];
if (nb_scan_idx < txb_info->eob && nb_row >= 0 && nb_col >= 0 &&
nb_row < txb_info->height && nb_col < txb_info->width) {
tran_low_t nb_coeff = txb_info->qcoeff[nb_coeff_idx];
#if CONFIG_LV_MAP_MULTI
int cost =
get_coeff_cost(nb_coeff, nb_scan_idx, is_eob, txb_info, txb_costs);
#else
int cost = get_coeff_cost(nb_coeff, nb_scan_idx, txb_info, txb_costs);
#endif
if (cost_map)
cost_map[nb_row - row + COST_MAP_OFFSET]
[nb_col - col + COST_MAP_OFFSET] += cost;
new_cost += cost;
}
}
update_qcoeff(coeff_idx, qc, txb_info);
return new_cost - org_cost;
}
static void test_level_down(int coeff_idx, const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info) {
int cost_map[COST_MAP_SIZE][COST_MAP_SIZE];
int ref_cost_map[COST_MAP_SIZE][COST_MAP_SIZE];
const int cost_diff =
try_level_down(coeff_idx, txb_cache, txb_costs, txb_info, cost_map, 0);
const int cost_diff_ref =
try_level_down_ref(coeff_idx, txb_costs, txb_info, ref_cost_map);
if (cost_diff != cost_diff_ref) {
printf("qc %d cost_diff %d cost_diff_ref %d\n", txb_info->qcoeff[coeff_idx],
cost_diff, cost_diff_ref);
for (int r = 0; r < COST_MAP_SIZE; ++r) {
for (int c = 0; c < COST_MAP_SIZE; ++c) {
printf("%d:%d ", cost_map[r][c], ref_cost_map[r][c]);
}
printf("\n");
}
}
}
#endif
// TODO(angiebird): make this static once it's called
int get_txb_cost(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs) {
int cost = 0;
int txb_skip_ctx = txb_info->txb_ctx->txb_skip_ctx;
const int16_t *scan = txb_info->scan_order->scan;
if (txb_info->eob == 0) {
cost = txb_costs->txb_skip_cost[txb_skip_ctx][1];
return cost;
}
cost = txb_costs->txb_skip_cost[txb_skip_ctx][0];
for (int c = 0; c < txb_info->eob; ++c) {
tran_low_t qc = txb_info->qcoeff[scan[c]];
#if CONFIG_LV_MAP_MULTI
int coeff_cost =
get_coeff_cost(qc, c, c == txb_info->eob - 1, txb_info, txb_costs);
#else
int coeff_cost = get_coeff_cost(qc, c, txb_info, txb_costs);
#endif
cost += coeff_cost;
}
return cost;
}
#if TEST_OPTIMIZE_TXB
void test_try_change_eob(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
TxbCache *txb_cache) {
int eob = txb_info->eob;
const int16_t *scan = txb_info->scan_order->scan;
if (eob > 0) {
int last_si = eob - 1;
int last_ci = scan[last_si];
int last_coeff = txb_info->qcoeff[last_ci];
if (abs(last_coeff) == 1) {
int new_eob;
int cost_diff =
try_change_eob(&new_eob, last_ci, txb_cache, txb_costs, txb_info, 0);
int org_eob = txb_info->eob;
int cost = get_txb_cost(txb_info, txb_costs);
update_qcoeff(last_ci, get_lower_coeff(last_coeff), txb_info);
set_eob(txb_info, new_eob);
int new_cost = get_txb_cost(txb_info, txb_costs);
set_eob(txb_info, org_eob);
update_qcoeff(last_ci, last_coeff, txb_info);
int ref_cost_diff = -cost + new_cost;
if (cost_diff != ref_cost_diff)
printf("org_eob %d new_eob %d cost_diff %d ref_cost_diff %d\n", org_eob,
new_eob, cost_diff, ref_cost_diff);
}
}
}
#endif
void try_level_down_facade(LevelDownStats *stats, int scan_idx,
const TxbCache *txb_cache,
const LV_MAP_COEFF_COST *txb_costs,
TxbInfo *txb_info, int fast_mode) {
const int16_t *scan = txb_info->scan_order->scan;
const int coeff_idx = scan[scan_idx];
const tran_low_t qc = txb_info->qcoeff[coeff_idx];
stats->new_eob = -1;
stats->update = 0;
if (qc == 0) {
return;
}
const tran_low_t tqc = txb_info->tcoeff[coeff_idx];
const int dqv = txb_info->dequant[coeff_idx != 0];
const tran_low_t dqc = qcoeff_to_dqcoeff(qc, dqv, txb_info->shift);
if (scan_idx != txb_info->eob - 1)
if (abs(dqc) < abs(tqc)) return;
const int64_t dqc_dist = get_coeff_dist(tqc, dqc, txb_info->shift);
stats->low_qc = get_lower_coeff(qc);
stats->low_dqc = qcoeff_to_dqcoeff(stats->low_qc, dqv, txb_info->shift);
const int64_t low_dqc_dist =
get_coeff_dist(tqc, stats->low_dqc, txb_info->shift);
stats->dist_diff = -dqc_dist + low_dqc_dist;
stats->cost_diff = 0;
stats->new_eob = txb_info->eob;
if (scan_idx == txb_info->eob - 1 && abs(qc) == 1) {
stats->cost_diff = try_change_eob(&stats->new_eob, coeff_idx, txb_cache,
txb_costs, txb_info, fast_mode);
} else {
stats->cost_diff = try_level_down(coeff_idx, txb_cache, txb_costs, txb_info,
NULL, fast_mode);
#if TEST_OPTIMIZE_TXB
test_level_down(coeff_idx, txb_cache, txb_costs, txb_info);
#endif
}
stats->rd_diff = RDCOST(txb_info->rdmult, stats->cost_diff, stats->dist_diff);
if (stats->rd_diff < 0) stats->update = 1;
return;
}
#if 1
static int optimize_txb(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
TxbCache *txb_cache, int dry_run, int fast_mode) {
(void)fast_mode;
(void)txb_cache;
int update = 0;
// return update; //TODO: training only.
if (txb_info->eob == 0) return update;
const int max_eob = av1_get_max_eob(txb_info->tx_size);
#if TEST_OPTIMIZE_TXB
int64_t sse;
int64_t org_dist =
av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) *
(1 << (2 * txb_info->shift));
int org_cost = get_txb_cost(txb_info, txb_probs);
#endif
tran_low_t *org_qcoeff = txb_info->qcoeff;
tran_low_t *org_dqcoeff = txb_info->dqcoeff;
uint8_t *const org_levels = txb_info->levels;
tran_low_t tmp_qcoeff[MAX_TX_SQUARE];
tran_low_t tmp_dqcoeff[MAX_TX_SQUARE];
uint8_t tmp_levels_buf[TX_PAD_2D];
uint8_t *const tmp_levels = set_levels(tmp_levels_buf, txb_info->width);
const int org_eob = txb_info->eob;
if (dry_run) {
const int stride = txb_info->width + TX_PAD_HOR;
const int levels_size =
(stride * (txb_info->height + TX_PAD_VER) + TX_PAD_END);
memcpy(tmp_qcoeff, org_qcoeff, sizeof(org_qcoeff[0]) * max_eob);
memcpy(tmp_dqcoeff, org_dqcoeff, sizeof(org_dqcoeff[0]) * max_eob);
memcpy(tmp_levels, org_levels - TX_PAD_TOP * stride,
sizeof(org_levels[0]) * levels_size);
txb_info->qcoeff = tmp_qcoeff;
txb_info->dqcoeff = tmp_dqcoeff;
txb_info->levels = tmp_levels;
}
const int16_t *scan = txb_info->scan_order->scan;
// forward optimize the nz_map`
const int init_eob = txb_info->eob;
const int seg_eob = txb_info->seg_eob;
int eob_cost = get_eob_cost(init_eob, seg_eob, txb_costs, txb_info->tx_type);
// backward optimize the level-k map
int64_t accu_rate = eob_cost;
int64_t accu_dist = 0;
int64_t prev_eob_rd_cost = INT64_MAX;
int64_t cur_eob_rd_cost = 0;
for (int si = init_eob - 1; si >= 0; --si) {
const int coeff_idx = scan[si];
tran_low_t qc = txb_info->qcoeff[coeff_idx];
LevelDownStats stats;
#if CONFIG_LV_MAP_MULTI
get_dist_cost_stats(&stats, si, si == init_eob - 1, txb_costs, txb_info);
#else
get_dist_cost_stats(&stats, si, txb_costs, txb_info);
#endif
if (qc == 0) {
accu_rate += stats.rate;
} else {
// check if it is better to make this the last significant coefficient
int cur_eob_rate =
get_eob_cost(si + 1, seg_eob, txb_costs, txb_info->tx_type);
cur_eob_rd_cost = RDCOST(txb_info->rdmult, cur_eob_rate, 0);
prev_eob_rd_cost =
RDCOST(txb_info->rdmult, accu_rate + stats.nz_rate, accu_dist);
if (cur_eob_rd_cost <= prev_eob_rd_cost) {
update = 1;
for (int j = si + 1; j < txb_info->eob; j++) {
const int coeff_pos_j = scan[j];
update_coeff(coeff_pos_j, 0, txb_info);
}
txb_info->eob = si + 1;
// rerun cost calculation due to change of eob
accu_rate = cur_eob_rate;
accu_dist = 0;
#if CONFIG_LV_MAP_MULTI
get_dist_cost_stats(&stats, si, 1, txb_costs, txb_info);
#else
get_dist_cost_stats(&stats, si, txb_costs, txb_info);
#endif
}
int bUpdCoeff = 0;
if (stats.rd_low < stats.rd) {
if ((stats.low_qc != 0) || (si < txb_info->eob - 1)) {
bUpdCoeff = 1;
update = 1;
}
}
if (bUpdCoeff) {
update_coeff(coeff_idx, stats.low_qc, txb_info);
accu_rate += stats.rate_low;
accu_dist += stats.dist_low;
} else {
accu_rate += stats.rate;
accu_dist += stats.dist;
}
}
} // for (si)
int non_zero_blk_rate =
txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][0];
prev_eob_rd_cost =
RDCOST(txb_info->rdmult, accu_rate + non_zero_blk_rate, accu_dist);
int zero_blk_rate =
txb_costs->txb_skip_cost[txb_info->txb_ctx->txb_skip_ctx][1];
int64_t zero_blk_rd_cost = RDCOST(txb_info->rdmult, zero_blk_rate, 0);
if (zero_blk_rd_cost <= prev_eob_rd_cost) {
update = 1;
for (int j = 0; j < txb_info->eob; j++) {
const int coeff_pos_j = scan[j];
update_coeff(coeff_pos_j, 0, txb_info);
}
txb_info->eob = 0;
}
#if TEST_OPTIMIZE_TXB
int cost_diff = 0;
int64_t dist_diff = 0;
int64_t rd_diff = 0;
int64_t new_dist =
av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) *
(1 << (2 * txb_info->shift));
int new_cost = get_txb_cost(txb_info, txb_probs);
int64_t ref_dist_diff = new_dist - org_dist;
int ref_cost_diff = new_cost - org_cost;
if (cost_diff != ref_cost_diff || dist_diff != ref_dist_diff)
printf(
"overall rd_diff %ld\ncost_diff %d ref_cost_diff%d\ndist_diff %ld "
"ref_dist_diff %ld\neob %d new_eob %d\n\n",
rd_diff, cost_diff, ref_cost_diff, dist_diff, ref_dist_diff, org_eob,
txb_info->eob);
#endif
if (dry_run) {
txb_info->qcoeff = org_qcoeff;
txb_info->dqcoeff = org_dqcoeff;
txb_info->levels = org_levels;
set_eob(txb_info, org_eob);
}
return update;
}
#else
static int optimize_txb(TxbInfo *txb_info, const LV_MAP_COEFF_COST *txb_costs,
TxbCache *txb_cache, int dry_run, int fast_mode) {
int update = 0;
if (txb_info->eob == 0) return update;
int cost_diff = 0;
int64_t dist_diff = 0;
int64_t rd_diff = 0;
const int max_eob = av1_get_max_eob(txb_info->tx_size);
#if TEST_OPTIMIZE_TXB
int64_t sse;
int64_t org_dist =
av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) *
(1 << (2 * txb_info->shift));
int org_cost = get_txb_cost(txb_info, txb_costs);
#endif
tran_low_t *org_qcoeff = txb_info->qcoeff;
tran_low_t *org_dqcoeff = txb_info->dqcoeff;
uint8_t *const org_levels = txb_info->levels;
tran_low_t tmp_qcoeff[MAX_TX_SQUARE];
tran_low_t tmp_dqcoeff[MAX_TX_SQUARE];
uint8_t tmp_levels_buf[TX_PAD_2D];
uint8_t *const tmp_levels = set_levels(tmp_levels_buf, txb_info->width);
const int org_eob = txb_info->eob;
if (dry_run) {
const int stride = txb_info->width + TX_PAD_HOR;
const int levels_size =
(stride * (txb_info->height + TX_PAD_VER) + TX_PAD_END);
memcpy(tmp_qcoeff, org_qcoeff, sizeof(org_qcoeff[0]) * max_eob);
memcpy(tmp_dqcoeff, org_dqcoeff, sizeof(org_dqcoeff[0]) * max_eob);
memcpy(tmp_levels, org_levels - TX_PAD_TOP * stride,
sizeof(org_levels[0]) * levels_size);
txb_info->qcoeff = tmp_qcoeff;
txb_info->dqcoeff = tmp_dqcoeff;
txb_info->levels = tmp_levels;
}
const int16_t *scan = txb_info->scan_order->scan;
// forward optimize the nz_map
const int cur_eob = txb_info->eob;
for (int si = 0; si < cur_eob; ++si) {
const int coeff_idx = scan[si];
tran_low_t qc = txb_info->qcoeff[coeff_idx];
if (abs(qc) == 1) {
LevelDownStats stats;
try_level_down_facade(&stats, si, txb_cache, txb_costs, txb_info,
fast_mode);
if (stats.update) {
update = 1;
cost_diff += stats.cost_diff;
dist_diff += stats.dist_diff;
rd_diff += stats.rd_diff;
update_level_down(coeff_idx, txb_cache, txb_info);
set_eob(txb_info, stats.new_eob);
}
}
}
// backward optimize the level-k map
int eob_fix = 0;
for (int si = txb_info->eob - 1; si >= 0; --si) {
const int coeff_idx = scan[si];
if (eob_fix == 1 && txb_info->qcoeff[coeff_idx] == 1) {
// when eob is fixed, there is not need to optimize again when
// abs(qc) == 1
continue;
}
LevelDownStats stats;
try_level_down_facade(&stats, si, txb_cache, txb_costs, txb_info,
fast_mode);
if (stats.update) {
#if TEST_OPTIMIZE_TXB
// printf("si %d low_qc %d cost_diff %d dist_diff %ld rd_diff %ld eob %d new_eob
// %d\n", si, stats.low_qc, stats.cost_diff, stats.dist_diff, stats.rd_diff,
// txb_info->eob, stats.new_eob);
#endif
update = 1;
cost_diff += stats.cost_diff;
dist_diff += stats.dist_diff;
rd_diff += stats.rd_diff;
update_level_down(coeff_idx, txb_cache, txb_info);
set_eob(txb_info, stats.new_eob);
}
if (eob_fix == 0 && txb_info->qcoeff[coeff_idx] != 0) eob_fix = 1;
if (si > txb_info->eob) si = txb_info->eob;
}
#if TEST_OPTIMIZE_TXB
int64_t new_dist =
av1_block_error_c(txb_info->tcoeff, txb_info->dqcoeff, max_eob, &sse) *
(1 << (2 * txb_info->shift));
int new_cost = get_txb_cost(txb_info, txb_costs);
int64_t ref_dist_diff = new_dist - org_dist;
int ref_cost_diff = new_cost - org_cost;
if (cost_diff != ref_cost_diff || dist_diff != ref_dist_diff)
printf(
"overall rd_diff %ld\ncost_diff %d ref_cost_diff%d\ndist_diff %ld "
"ref_dist_diff %ld\neob %d new_eob %d\n\n",
rd_diff, cost_diff, ref_cost_diff, dist_diff, ref_dist_diff, org_eob,
txb_info->eob);
#endif
if (dry_run) {
txb_info->qcoeff = org_qcoeff;
txb_info->dqcoeff = org_dqcoeff;
txb_info->levels = org_levels;
set_eob(txb_info, org_eob);
}
return update;
}
#endif
// These numbers are empirically obtained.
static const int plane_rd_mult[REF_TYPES][PLANE_TYPES] = {
{ 17, 13 }, { 16, 10 },
};
int av1_optimize_txb(const AV1_COMMON *cm, MACROBLOCK *x, int plane,
int blk_row, int blk_col, int block, TX_SIZE tx_size,
TXB_CTX *txb_ctx, int fast_mode) {
MACROBLOCKD *const xd = &x->e_mbd;
const PLANE_TYPE plane_type = get_plane_type(plane);
const TX_SIZE txs_ctx = get_txsize_context(tx_size);
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size);
const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
const struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const int eob = p->eobs[block];
tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block);
const tran_low_t *tcoeff = BLOCK_OFFSET(p->coeff, block);
const int16_t *dequant = p->dequant_QTX;
const int seg_eob = av1_get_max_eob(tx_size);
const int bwl = tx_size_wide_log2[tx_size];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
const int is_inter = is_inter_block(mbmi);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
const LV_MAP_COEFF_COST txb_costs = x->coeff_costs[txs_ctx][plane_type];
const int shift = av1_get_tx_scale(tx_size);
const int64_t rdmult =
((x->rdmult * plane_rd_mult[is_inter][plane_type] << (2 * (xd->bd - 8))) +
2) >>
2;
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
assert(width == (1 << bwl));
TxbInfo txb_info = {
qcoeff, levels, dqcoeff, tcoeff, dequant, shift,
tx_size, txs_ctx, tx_type, bwl, width, height,
eob, seg_eob, scan_order, txb_ctx, rdmult, &cm->coeff_ctx_table
};
av1_txb_init_levels(qcoeff, width, height, levels);
const int update = optimize_txb(&txb_info, &txb_costs, NULL, 0, fast_mode);
if (update) p->eobs[block] = txb_info.eob;
return txb_info.eob;
}
int av1_get_txb_entropy_context(const tran_low_t *qcoeff,
const SCAN_ORDER *scan_order, int eob) {
const int16_t *scan = scan_order->scan;
int cul_level = 0;
int c;
if (eob == 0) return 0;
for (c = 0; c < eob; ++c) {
cul_level += abs(qcoeff[scan[c]]);
}
cul_level = AOMMIN(COEFF_CONTEXT_MASK, cul_level);
set_dc_sign(&cul_level, qcoeff[0]);
return cul_level;
}
void av1_update_txb_context_b(int plane, int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
void *arg) {
struct tokenize_b_args *const args = arg;
const AV1_COMP *cpi = args->cpi;
const AV1_COMMON *cm = &cpi->common;
ThreadData *const td = args->td;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
const uint16_t eob = p->eobs[block];
const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
const PLANE_TYPE plane_type = pd->plane_type;
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
(void)plane_bsize;
int cul_level = av1_get_txb_entropy_context(qcoeff, scan_order, eob);
av1_set_contexts(xd, pd, plane, tx_size, cul_level, blk_col, blk_row);
}
void av1_update_and_record_txb_context(int plane, int block, int blk_row,
int blk_col, BLOCK_SIZE plane_bsize,
TX_SIZE tx_size, void *arg) {
struct tokenize_b_args *const args = arg;
const AV1_COMP *cpi = args->cpi;
const AV1_COMMON *cm = &cpi->common;
ThreadData *const td = args->td;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *p = &x->plane[plane];
struct macroblockd_plane *pd = &xd->plane[plane];
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
int eob = p->eobs[block], update_eob = -1;
const PLANE_TYPE plane_type = pd->plane_type;
const tran_low_t *qcoeff = BLOCK_OFFSET(p->qcoeff, block);
tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block);
const int segment_id = mbmi->segment_id;
const TX_TYPE tx_type =
av1_get_tx_type(plane_type, xd, blk_row, blk_col, block, tx_size);
const SCAN_ORDER *const scan_order = get_scan(cm, tx_size, tx_type, mbmi);
const int16_t *scan = scan_order->scan;
const int seg_eob = av1_get_tx_eob(&cpi->common.seg, segment_id, tx_size);
int c;
TXB_CTX txb_ctx;
get_txb_ctx(plane_bsize, tx_size, plane, pd->above_context + blk_col,
pd->left_context + blk_row, &txb_ctx);
const int bwl = tx_size_wide_log2[tx_size];
const int width = tx_size_wide[tx_size];
const int height = tx_size_high[tx_size];
uint8_t levels_buf[TX_PAD_2D];
uint8_t *const levels = set_levels(levels_buf, width);
DECLARE_ALIGNED(16, uint8_t, level_counts[MAX_TX_SQUARE]);
const uint8_t allow_update_cdf = args->allow_update_cdf;
TX_SIZE txsize_ctx = get_txsize_context(tx_size);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
memcpy(tcoeff, qcoeff, sizeof(*tcoeff) * seg_eob);
++td->counts->txb_skip[txsize_ctx][txb_ctx.txb_skip_ctx][eob == 0];
if (allow_update_cdf)
update_bin(ec_ctx->txb_skip_cdf[txsize_ctx][txb_ctx.txb_skip_ctx], eob == 0,
2);
x->mbmi_ext->txb_skip_ctx[plane][block] = txb_ctx.txb_skip_ctx;
x->mbmi_ext->eobs[plane][block] = eob;
if (eob == 0) {
av1_set_contexts(xd, pd, plane, tx_size, 0, blk_col, blk_row);
return;
}
av1_txb_init_levels(tcoeff, width, height, levels);
#if CONFIG_TXK_SEL
av1_update_tx_type_count(cm, xd, blk_row, blk_col, block, plane,
mbmi->sb_type, get_min_tx_size(tx_size), td->counts,
allow_update_cdf);
#endif
unsigned int(*nz_map_count)[SIG_COEF_CONTEXTS][2] =
&(td->counts->nz_map[txsize_ctx][plane_type]);
av1_update_eob_context(eob, seg_eob, tx_size, tx_type, plane_type, ec_ctx,
td->counts, allow_update_cdf);
#if USE_CAUSAL_BASE_CTX
int coeff_ctx = 0;
update_eob = eob - 1;
#endif
for (c = eob - 1; c >= 0; --c) {
tran_low_t v = qcoeff[scan[c]];
int is_nz = (v != 0);
#if CONFIG_LV_MAP_MULTI
(void)is_nz;
(void)nz_map_count;
coeff_ctx =
get_nz_map_ctx(levels, c, scan, bwl, height, tx_type, c == eob - 1);
#if USE_BASE_EOB_ALPHABET
if (c == eob - 1) {
update_cdf(ec_ctx->coeff_base_eob_cdf[txsize_ctx][plane_type]
[coeff_ctx - SIG_COEF_CONTEXTS +
SIG_COEF_CONTEXTS_EOB],
AOMMIN(abs(v), 3) - 1, 3);
} else {
update_cdf(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][coeff_ctx],
AOMMIN(abs(v), 3), 4);
}
#else
update_cdf(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][coeff_ctx],
AOMMIN(abs(v), 3), 4);
#endif
#elif USE_CAUSAL_BASE_CTX
coeff_ctx = get_nz_map_ctx(levels, c, scan, bwl, height, tx_type);
if (c < eob - 1) {
++(*nz_map_count)[coeff_ctx][is_nz];
if (allow_update_cdf)
update_cdf(ec_ctx->nz_map_cdf[txsize_ctx][plane_type][coeff_ctx], is_nz,
2);
}
if (is_nz) {
int k;
for (k = 0; k < NUM_BASE_LEVELS; ++k) {
int ctx = coeff_ctx;
int is_k = (abs(v) > (k + 1));
++td->counts->coeff_base[txsize_ctx][plane_type][k][ctx][is_k];
if (allow_update_cdf)
update_bin(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][k][ctx],
is_k, 2);
if (is_k == 0) break;
}
}
#else
int coeff_ctx = get_nz_map_ctx(levels, c, scan, bwl, height, tx_type);
if (c == eob - 1) continue;
++(*nz_map_count)[coeff_ctx][is_nz];
if (allow_update_cdf)
update_cdf(ec_ctx->nz_map_cdf[txsize_ctx][plane_type][coeff_ctx], is_nz,
2);
#endif
}
#if !USE_CAUSAL_BASE_CTX
// Reverse process order to handle coefficient level and sign.
for (int i = 0; i < NUM_BASE_LEVELS; ++i) {
av1_get_base_level_counts(levels, i, width, height, level_counts);
for (c = eob - 1; c >= 0; --c) {
const tran_low_t level = abs(tcoeff[scan[c]]);
int ctx;
if (level <= i) continue;
ctx = get_base_ctx(levels, scan[c], bwl, i, level_counts[scan[c]]);
if (level == i + 1) {
++td->counts->coeff_base[txsize_ctx][plane_type][i][ctx][1];
if (allow_update_cdf)
update_bin(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][i][ctx], 1,
2);
continue;
}
++td->counts->coeff_base[txsize_ctx][plane_type][i][ctx][0];
if (allow_update_cdf)
update_bin(ec_ctx->coeff_base_cdf[txsize_ctx][plane_type][i][ctx], 0,
2);
update_eob = AOMMAX(update_eob, c);
}
}
#endif
c = 0; // Update the context needed to code the DC sign (if applicable)
const int sign = (tcoeff[scan[c]] < 0) ? 1 : 0;
if (tcoeff[scan[c]] != 0) {
int dc_sign_ctx = txb_ctx.dc_sign_ctx;
++td->counts->dc_sign[plane_type][dc_sign_ctx][sign];
#if LV_MAP_PROB
if (allow_update_cdf)
update_bin(ec_ctx->dc_sign_cdf[plane_type][dc_sign_ctx], sign, 2);
#endif
x->mbmi_ext->dc_sign_ctx[plane][block] = dc_sign_ctx;
}
if (update_eob >= 0) {
av1_get_br_level_counts(levels, width, height, level_counts);
for (c = update_eob; c >= 0; --c) {
const tran_low_t level = abs(tcoeff[scan[c]]);
int idx;
int ctx;
if (level <= NUM_BASE_LEVELS) continue;
// level is above 1.
ctx = get_br_ctx(levels, scan[c], bwl, level_counts[scan[c]]);
int base_range = level - 1 - NUM_BASE_LEVELS;
#if CONFIG_LV_MAP_MULTI
for (idx = 0; idx < COEFF_BASE_RANGE; idx += BR_CDF_SIZE - 1) {
int k = AOMMIN(base_range - idx, BR_CDF_SIZE - 1);
// printf("br_update: %d %d %2d : %2d %d\n", txsize_ctx, plane, ctx,
// base_range, k);
update_cdf(ec_ctx->coeff_br_cdf[txsize_ctx][plane_type][ctx], k,
BR_CDF_SIZE);
if (k < BR_CDF_SIZE - 1) break;
}
#else
int br_set_idx = base_range < COEFF_BASE_RANGE
? coeff_to_br_index[base_range]
: BASE_RANGE_SETS;
for (idx = 0; idx < BASE_RANGE_SETS; ++idx) {
if (idx == br_set_idx) {
int br_base = br_index_to_coeff[br_set_idx];
int br_offset = base_range - br_base;
++td->counts->coeff_br[txsize_ctx][plane_type][idx][ctx][1];
if (allow_update_cdf)
update_bin(ec_ctx->coeff_br_cdf[txsize_ctx][plane_type][idx][ctx],
1, 2);
int extra_bits = (1 << br_extra_bits[idx]) - 1;
for (int tok = 0; tok < extra_bits; ++tok) {
if (br_offset == tok) {
++td->counts->coeff_lps[txsize_ctx][plane_type][ctx][1];
if (allow_update_cdf)
update_bin(ec_ctx->coeff_lps_cdf[txsize_ctx][plane_type][ctx],
1, 2);
break;
}
++td->counts->coeff_lps[txsize_ctx][plane_type][ctx][0];
if (allow_update_cdf)
update_bin(ec_ctx->coeff_lps_cdf[txsize_ctx][plane_type][ctx], 0,
2);
}
break;
}
++td->counts->coeff_br[txsize_ctx][plane_type][idx][ctx][0];
if (allow_update_cdf)
update_bin(ec_ctx->coeff_br_cdf[txsize_ctx][plane_type][idx][ctx], 0,
2);
}
#endif
// use 0-th order Golomb code to handle the residual level.
}
}
int cul_level = av1_get_txb_entropy_context(tcoeff, scan_order, eob);
av1_set_contexts(xd, pd, plane, tx_size, cul_level, blk_col, blk_row);
#if CONFIG_ADAPT_SCAN
// Since dqcoeff is not available here, we pass qcoeff into
// av1_update_scan_count_facade(). The update behavior should be the same
// because av1_update_scan_count_facade() only cares if coefficients are zero
// or not.
av1_update_scan_count_facade((AV1_COMMON *)cm, td->counts, tx_size, tx_type,
qcoeff, eob);
#endif
}
void av1_update_txb_context(const AV1_COMP *cpi, ThreadData *td,
RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate,
int mi_row, int mi_col, uint8_t allow_update_cdf) {
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi;
struct tokenize_b_args arg = { cpi, td, NULL, 0, allow_update_cdf };
(void)rate;
(void)mi_row;
(void)mi_col;
if (mbmi->skip) {
av1_reset_skip_context(xd, mi_row, mi_col, bsize);
return;
}
if (!dry_run) {
av1_foreach_transformed_block(xd, bsize, mi_row, mi_col,
av1_update_and_record_txb_context, &arg);
} else if (dry_run == DRY_RUN_NORMAL) {
av1_foreach_transformed_block(xd, bsize, mi_row, mi_col,
av1_update_txb_context_b, &arg);
} else {
printf("DRY_RUN_COSTCOEFFS is not supported yet\n");
assert(0);
}
}
#if CONFIG_TXK_SEL
int64_t av1_search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane,
int block, int blk_row, int blk_col,
BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
const ENTROPY_CONTEXT *a, const ENTROPY_CONTEXT *l,
int use_fast_coef_costing, RD_STATS *rd_stats) {
const AV1_COMMON *cm = &cpi->common;
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi;
TX_TYPE txk_start = DCT_DCT;
TX_TYPE txk_end = TX_TYPES - 1;
TX_TYPE best_tx_type = txk_start;
int64_t best_rd = INT64_MAX;
uint8_t best_eob = 0;
const int coeff_ctx = combine_entropy_contexts(*a, *l);
RD_STATS best_rd_stats;
TX_TYPE tx_type;
av1_invalid_rd_stats(&best_rd_stats);
for (tx_type = txk_start; tx_type <= txk_end; ++tx_type) {
if (plane == 0) mbmi->txk_type[(blk_row << 4) + blk_col] = tx_type;
TX_TYPE ref_tx_type = av1_get_tx_type(get_plane_type(plane), xd, blk_row,
blk_col, block, tx_size);
if (tx_type != ref_tx_type) {
// use av1_get_tx_type() to check if the tx_type is valid for the current
// mode if it's not, we skip it here.
continue;
}
const int is_inter = is_inter_block(mbmi);
const TxSetType tx_set_type =
get_ext_tx_set_type(get_min_tx_size(tx_size), mbmi->sb_type, is_inter,
cm->reduced_tx_set_used);
if (!av1_ext_tx_used[tx_set_type][tx_type]) continue;
RD_STATS this_rd_stats;
av1_invalid_rd_stats(&this_rd_stats);
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
coeff_ctx, AV1_XFORM_QUANT_FP);
av1_optimize_b(cm, x, plane, blk_row, blk_col, block, plane_bsize, tx_size,
a, l, 1);
av1_dist_block(cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size,
&this_rd_stats.dist, &this_rd_stats.sse,
OUTPUT_HAS_PREDICTED_PIXELS);
const SCAN_ORDER *scan_order = get_scan(cm, tx_size, tx_type, mbmi);
this_rd_stats.rate =
av1_cost_coeffs(cpi, x, plane, blk_row, blk_col, block, tx_size,
scan_order, a, l, use_fast_coef_costing);
int rd = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist);
if (rd < best_rd) {
best_rd = rd;
best_rd_stats = this_rd_stats;
best_tx_type = tx_type;
best_eob = x->plane[plane].txb_entropy_ctx[block];
}
}
av1_merge_rd_stats(rd_stats, &best_rd_stats);
if (best_eob == 0 && is_inter_block(mbmi)) best_tx_type = DCT_DCT;
if (plane == 0) mbmi->txk_type[(blk_row << 4) + blk_col] = best_tx_type;
x->plane[plane].txb_entropy_ctx[block] = best_eob;
if (!is_inter_block(mbmi)) {
// intra mode needs decoded result such that the next transform block
// can use it for prediction.
av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size,
coeff_ctx, AV1_XFORM_QUANT_FP);
av1_optimize_b(cm, x, plane, blk_row, blk_col, block, plane_bsize, tx_size,
a, l, 1);
av1_inverse_transform_block_facade(xd, plane, block, blk_row, blk_col,
x->plane[plane].eobs[block]);
}
return best_rd;
}
#endif // CONFIG_TXK_SEL