| /* | 
 |  * Copyright (c) 2024, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <arm_neon.h> | 
 | #include <assert.h> | 
 | #include <stdint.h> | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_dsp/aom_filter.h" | 
 | #include "aom_dsp/arm/mem_neon.h" | 
 | #include "aom_dsp/arm/transpose_neon.h" | 
 | #include "av1/common/arm/convolve_scale_neon.h" | 
 | #include "av1/common/convolve.h" | 
 | #include "av1/common/filter.h" | 
 |  | 
 | static inline int16x4_t convolve8_4_h(const int16x4_t s0, const int16x4_t s1, | 
 |                                       const int16x4_t s2, const int16x4_t s3, | 
 |                                       const int16x4_t s4, const int16x4_t s5, | 
 |                                       const int16x4_t s6, const int16x4_t s7, | 
 |                                       const int16x8_t filter, | 
 |                                       const int32x4_t horiz_const) { | 
 |   int16x4_t filter_lo = vget_low_s16(filter); | 
 |   int16x4_t filter_hi = vget_high_s16(filter); | 
 |  | 
 |   int32x4_t sum = horiz_const; | 
 |   sum = vmlal_lane_s16(sum, s0, filter_lo, 0); | 
 |   sum = vmlal_lane_s16(sum, s1, filter_lo, 1); | 
 |   sum = vmlal_lane_s16(sum, s2, filter_lo, 2); | 
 |   sum = vmlal_lane_s16(sum, s3, filter_lo, 3); | 
 |   sum = vmlal_lane_s16(sum, s4, filter_hi, 0); | 
 |   sum = vmlal_lane_s16(sum, s5, filter_hi, 1); | 
 |   sum = vmlal_lane_s16(sum, s6, filter_hi, 2); | 
 |   sum = vmlal_lane_s16(sum, s7, filter_hi, 3); | 
 |  | 
 |   return vshrn_n_s32(sum, ROUND0_BITS); | 
 | } | 
 |  | 
 | static inline int16x8_t convolve8_8_h(const int16x8_t s0, const int16x8_t s1, | 
 |                                       const int16x8_t s2, const int16x8_t s3, | 
 |                                       const int16x8_t s4, const int16x8_t s5, | 
 |                                       const int16x8_t s6, const int16x8_t s7, | 
 |                                       const int16x8_t filter, | 
 |                                       const int16x8_t horiz_const) { | 
 |   int16x4_t filter_lo = vget_low_s16(filter); | 
 |   int16x4_t filter_hi = vget_high_s16(filter); | 
 |  | 
 |   int16x8_t sum = horiz_const; | 
 |   sum = vmlaq_lane_s16(sum, s0, filter_lo, 0); | 
 |   sum = vmlaq_lane_s16(sum, s1, filter_lo, 1); | 
 |   sum = vmlaq_lane_s16(sum, s2, filter_lo, 2); | 
 |   sum = vmlaq_lane_s16(sum, s3, filter_lo, 3); | 
 |   sum = vmlaq_lane_s16(sum, s4, filter_hi, 0); | 
 |   sum = vmlaq_lane_s16(sum, s5, filter_hi, 1); | 
 |   sum = vmlaq_lane_s16(sum, s6, filter_hi, 2); | 
 |   sum = vmlaq_lane_s16(sum, s7, filter_hi, 3); | 
 |  | 
 |   return vshrq_n_s16(sum, ROUND0_BITS - 1); | 
 | } | 
 |  | 
 | static inline void convolve_horiz_scale_8tap_neon(const uint8_t *src, | 
 |                                                   int src_stride, int16_t *dst, | 
 |                                                   int dst_stride, int w, int h, | 
 |                                                   const int16_t *x_filter, | 
 |                                                   const int subpel_x_qn, | 
 |                                                   const int x_step_qn) { | 
 |   DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); | 
 |   const int bd = 8; | 
 |  | 
 |   if (w == 4) { | 
 |     // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. | 
 |     const int32x4_t horiz_offset = | 
 |         vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); | 
 |  | 
 |     do { | 
 |       int x_qn = subpel_x_qn; | 
 |  | 
 |       // Process a 4x4 tile. | 
 |       for (int r = 0; r < 4; ++r) { | 
 |         const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; | 
 |  | 
 |         const ptrdiff_t filter_offset = | 
 |             SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
 |         const int16x8_t filter = vld1q_s16(x_filter + filter_offset); | 
 |  | 
 |         uint8x8_t t0, t1, t2, t3; | 
 |         load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); | 
 |  | 
 |         transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); | 
 |  | 
 |         int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); | 
 |         int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); | 
 |         int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); | 
 |         int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); | 
 |         int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); | 
 |         int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); | 
 |         int16x4_t s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); | 
 |         int16x4_t s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); | 
 |  | 
 |         int16x4_t d0 = | 
 |             convolve8_4_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); | 
 |  | 
 |         vst1_s16(&temp[r * 4], d0); | 
 |         x_qn += x_step_qn; | 
 |       } | 
 |  | 
 |       // Transpose the 4x4 result tile and store. | 
 |       int16x4_t d0, d1, d2, d3; | 
 |       load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); | 
 |  | 
 |       transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); | 
 |  | 
 |       store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); | 
 |  | 
 |       dst += 4 * dst_stride; | 
 |       src += 4 * src_stride; | 
 |       h -= 4; | 
 |     } while (h > 0); | 
 |   } else { | 
 |     // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. | 
 |     // The additional -1 is needed because we are halving the filter values. | 
 |     const int16x8_t horiz_offset = | 
 |         vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); | 
 |  | 
 |     do { | 
 |       int x_qn = subpel_x_qn; | 
 |       int16_t *d = dst; | 
 |       int width = w; | 
 |  | 
 |       do { | 
 |         // Process an 8x8 tile. | 
 |         for (int r = 0; r < 8; ++r) { | 
 |           const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; | 
 |  | 
 |           const ptrdiff_t filter_offset = | 
 |               SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
 |           int16x8_t filter = vld1q_s16(x_filter + filter_offset); | 
 |           // Filter values are all even so halve them to allow convolution | 
 |           // kernel computations to stay in 16-bit element types. | 
 |           filter = vshrq_n_s16(filter, 1); | 
 |  | 
 |           uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; | 
 |           load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
 |  | 
 |           transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, | 
 |                                  &t3, &t4, &t5, &t6, &t7); | 
 |  | 
 |           int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); | 
 |           int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); | 
 |           int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); | 
 |           int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); | 
 |           int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); | 
 |           int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); | 
 |           int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); | 
 |           int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); | 
 |  | 
 |           int16x8_t d0 = convolve8_8_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, | 
 |                                        horiz_offset); | 
 |  | 
 |           vst1q_s16(&temp[r * 8], d0); | 
 |  | 
 |           x_qn += x_step_qn; | 
 |         } | 
 |  | 
 |         // Transpose the 8x8 result tile and store. | 
 |         int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; | 
 |         load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
 |  | 
 |         transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
 |  | 
 |         store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); | 
 |  | 
 |         d += 8; | 
 |         width -= 8; | 
 |       } while (width != 0); | 
 |  | 
 |       dst += 8 * dst_stride; | 
 |       src += 8 * src_stride; | 
 |       h -= 8; | 
 |     } while (h > 0); | 
 |   } | 
 | } | 
 |  | 
 | static inline int16x4_t convolve6_4_h(const int16x4_t s0, const int16x4_t s1, | 
 |                                       const int16x4_t s2, const int16x4_t s3, | 
 |                                       const int16x4_t s4, const int16x4_t s5, | 
 |                                       const int16x8_t filter, | 
 |                                       const int32x4_t horiz_const) { | 
 |   int16x4_t filter_lo = vget_low_s16(filter); | 
 |   int16x4_t filter_hi = vget_high_s16(filter); | 
 |  | 
 |   int32x4_t sum = horiz_const; | 
 |   // Filter values at indices 0 and 7 are 0. | 
 |   sum = vmlal_lane_s16(sum, s0, filter_lo, 1); | 
 |   sum = vmlal_lane_s16(sum, s1, filter_lo, 2); | 
 |   sum = vmlal_lane_s16(sum, s2, filter_lo, 3); | 
 |   sum = vmlal_lane_s16(sum, s3, filter_hi, 0); | 
 |   sum = vmlal_lane_s16(sum, s4, filter_hi, 1); | 
 |   sum = vmlal_lane_s16(sum, s5, filter_hi, 2); | 
 |  | 
 |   return vshrn_n_s32(sum, ROUND0_BITS); | 
 | } | 
 |  | 
 | static inline int16x8_t convolve6_8_h(const int16x8_t s0, const int16x8_t s1, | 
 |                                       const int16x8_t s2, const int16x8_t s3, | 
 |                                       const int16x8_t s4, const int16x8_t s5, | 
 |                                       const int16x8_t filter, | 
 |                                       const int16x8_t horiz_const) { | 
 |   int16x4_t filter_lo = vget_low_s16(filter); | 
 |   int16x4_t filter_hi = vget_high_s16(filter); | 
 |  | 
 |   int16x8_t sum = horiz_const; | 
 |   // Filter values at indices 0 and 7 are 0. | 
 |   sum = vmlaq_lane_s16(sum, s0, filter_lo, 1); | 
 |   sum = vmlaq_lane_s16(sum, s1, filter_lo, 2); | 
 |   sum = vmlaq_lane_s16(sum, s2, filter_lo, 3); | 
 |   sum = vmlaq_lane_s16(sum, s3, filter_hi, 0); | 
 |   sum = vmlaq_lane_s16(sum, s4, filter_hi, 1); | 
 |   sum = vmlaq_lane_s16(sum, s5, filter_hi, 2); | 
 |  | 
 |   // We halved the filter values so -1 from right shift. | 
 |   return vshrq_n_s16(sum, ROUND0_BITS - 1); | 
 | } | 
 |  | 
 | static inline void convolve_horiz_scale_6tap_neon(const uint8_t *src, | 
 |                                                   int src_stride, int16_t *dst, | 
 |                                                   int dst_stride, int w, int h, | 
 |                                                   const int16_t *x_filter, | 
 |                                                   const int subpel_x_qn, | 
 |                                                   const int x_step_qn) { | 
 |   DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); | 
 |   const int bd = 8; | 
 |  | 
 |   if (w == 4) { | 
 |     // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. | 
 |     const int32x4_t horiz_offset = | 
 |         vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); | 
 |  | 
 |     do { | 
 |       int x_qn = subpel_x_qn; | 
 |  | 
 |       // Process a 4x4 tile. | 
 |       for (int r = 0; r < 4; ++r) { | 
 |         const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; | 
 |  | 
 |         const ptrdiff_t filter_offset = | 
 |             SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
 |         const int16x8_t filter = vld1q_s16(x_filter + filter_offset); | 
 |  | 
 |         uint8x8_t t0, t1, t2, t3; | 
 |         load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); | 
 |  | 
 |         transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); | 
 |  | 
 |         int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); | 
 |         int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); | 
 |         int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); | 
 |         int16x4_t s3 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); | 
 |         int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); | 
 |         int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); | 
 |  | 
 |         int16x4_t d0 = | 
 |             convolve6_4_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); | 
 |  | 
 |         vst1_s16(&temp[r * 4], d0); | 
 |         x_qn += x_step_qn; | 
 |       } | 
 |  | 
 |       // Transpose the 4x4 result tile and store. | 
 |       int16x4_t d0, d1, d2, d3; | 
 |       load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); | 
 |  | 
 |       transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); | 
 |  | 
 |       store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); | 
 |  | 
 |       dst += 4 * dst_stride; | 
 |       src += 4 * src_stride; | 
 |       h -= 4; | 
 |     } while (h > 0); | 
 |   } else { | 
 |     // The shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts. | 
 |     // The additional -1 is needed because we are halving the filter values. | 
 |     const int16x8_t horiz_offset = | 
 |         vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); | 
 |  | 
 |     do { | 
 |       int x_qn = subpel_x_qn; | 
 |       int16_t *d = dst; | 
 |       int width = w; | 
 |  | 
 |       do { | 
 |         // Process an 8x8 tile. | 
 |         for (int r = 0; r < 8; ++r) { | 
 |           const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; | 
 |  | 
 |           const ptrdiff_t filter_offset = | 
 |               SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
 |           int16x8_t filter = vld1q_s16(x_filter + filter_offset); | 
 |           // Filter values are all even so halve them to allow convolution | 
 |           // kernel computations to stay in 16-bit element types. | 
 |           filter = vshrq_n_s16(filter, 1); | 
 |  | 
 |           uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; | 
 |           load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
 |  | 
 |           transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, | 
 |                                  &t3, &t4, &t5, &t6, &t7); | 
 |  | 
 |           int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t1)); | 
 |           int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t2)); | 
 |           int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t3)); | 
 |           int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t4)); | 
 |           int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t5)); | 
 |           int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t6)); | 
 |  | 
 |           int16x8_t d0 = | 
 |               convolve6_8_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); | 
 |  | 
 |           vst1q_s16(&temp[r * 8], d0); | 
 |  | 
 |           x_qn += x_step_qn; | 
 |         } | 
 |  | 
 |         // Transpose the 8x8 result tile and store. | 
 |         int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; | 
 |         load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
 |  | 
 |         transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
 |  | 
 |         store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); | 
 |  | 
 |         d += 8; | 
 |         width -= 8; | 
 |       } while (width != 0); | 
 |  | 
 |       dst += 8 * dst_stride; | 
 |       src += 8 * src_stride; | 
 |       h -= 8; | 
 |     } while (h > 0); | 
 |   } | 
 | } | 
 |  | 
 | static inline void convolve_horiz_scale_2_8tap_neon( | 
 |     const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, | 
 |     int h, const int16_t *x_filter) { | 
 |   const int bd = 8; | 
 |  | 
 |   if (w == 4) { | 
 |     // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
 |     // shifts - which are generally faster than rounding shifts on modern CPUs. | 
 |     const int32x4_t horiz_offset = | 
 |         vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); | 
 |     const int16x8_t filter = vld1q_s16(x_filter); | 
 |  | 
 |     do { | 
 |       uint8x16_t t0, t1, t2, t3; | 
 |       load_u8_16x4(src, src_stride, &t0, &t1, &t2, &t3); | 
 |       transpose_elems_inplace_u8_16x4(&t0, &t1, &t2, &t3); | 
 |  | 
 |       int16x8_t tt0 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0))); | 
 |       int16x8_t tt1 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t1))); | 
 |       int16x8_t tt2 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t2))); | 
 |       int16x8_t tt3 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t3))); | 
 |       int16x8_t tt4 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0))); | 
 |       int16x8_t tt5 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t1))); | 
 |       int16x8_t tt6 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t2))); | 
 |       int16x8_t tt7 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t3))); | 
 |  | 
 |       int16x4_t s0 = vget_low_s16(tt0); | 
 |       int16x4_t s1 = vget_low_s16(tt1); | 
 |       int16x4_t s2 = vget_low_s16(tt2); | 
 |       int16x4_t s3 = vget_low_s16(tt3); | 
 |       int16x4_t s4 = vget_high_s16(tt0); | 
 |       int16x4_t s5 = vget_high_s16(tt1); | 
 |       int16x4_t s6 = vget_high_s16(tt2); | 
 |       int16x4_t s7 = vget_high_s16(tt3); | 
 |       int16x4_t s8 = vget_low_s16(tt4); | 
 |       int16x4_t s9 = vget_low_s16(tt5); | 
 |       int16x4_t s10 = vget_low_s16(tt6); | 
 |       int16x4_t s11 = vget_low_s16(tt7); | 
 |       int16x4_t s12 = vget_high_s16(tt4); | 
 |       int16x4_t s13 = vget_high_s16(tt5); | 
 |  | 
 |       int16x4_t d0 = | 
 |           convolve8_4_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); | 
 |       int16x4_t d1 = | 
 |           convolve8_4_h(s2, s3, s4, s5, s6, s7, s8, s9, filter, horiz_offset); | 
 |       int16x4_t d2 = | 
 |           convolve8_4_h(s4, s5, s6, s7, s8, s9, s10, s11, filter, horiz_offset); | 
 |       int16x4_t d3 = convolve8_4_h(s6, s7, s8, s9, s10, s11, s12, s13, filter, | 
 |                                    horiz_offset); | 
 |  | 
 |       transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); | 
 |  | 
 |       store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); | 
 |  | 
 |       dst += 4 * dst_stride; | 
 |       src += 4 * src_stride; | 
 |       h -= 4; | 
 |     } while (h > 0); | 
 |   } else { | 
 |     // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
 |     // shifts - which are generally faster than rounding shifts on modern CPUs. | 
 |     // The additional -1 is needed because we are halving the filter values. | 
 |     const int16x8_t horiz_offset = | 
 |         vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); | 
 |     // Filter values are all even so halve them to allow convolution | 
 |     // kernel computations to stay in 16-bit element types. | 
 |     const int16x8_t filter = vshrq_n_s16(vld1q_s16(x_filter), 1); | 
 |  | 
 |     do { | 
 |       const uint8_t *s = src; | 
 |       int16_t *d = dst; | 
 |       int width = w; | 
 |  | 
 |       uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; | 
 |       load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
 |       transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3, | 
 |                              &t4, &t5, &t6, &t7); | 
 |  | 
 |       s += 8; | 
 |  | 
 |       int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); | 
 |       int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); | 
 |       int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); | 
 |       int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); | 
 |       int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); | 
 |       int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); | 
 |       int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); | 
 |       int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); | 
 |  | 
 |       do { | 
 |         uint8x8_t t8, t9, t10, t11, t12, t13, t14, t15; | 
 |         load_u8_8x8(s, src_stride, &t8, &t9, &t10, &t11, &t12, &t13, &t14, | 
 |                     &t15); | 
 |         transpose_elems_u8_8x8(t8, t9, t10, t11, t12, t13, t14, t15, &t8, &t9, | 
 |                                &t10, &t11, &t12, &t13, &t14, &t15); | 
 |  | 
 |         int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t8)); | 
 |         int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t9)); | 
 |         int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t10)); | 
 |         int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t11)); | 
 |         int16x8_t s12 = vreinterpretq_s16_u16(vmovl_u8(t12)); | 
 |         int16x8_t s13 = vreinterpretq_s16_u16(vmovl_u8(t13)); | 
 |         int16x8_t s14 = vreinterpretq_s16_u16(vmovl_u8(t14)); | 
 |         int16x8_t s15 = vreinterpretq_s16_u16(vmovl_u8(t15)); | 
 |  | 
 |         int16x8_t d0 = | 
 |             convolve8_8_h(s0, s1, s2, s3, s4, s5, s6, s7, filter, horiz_offset); | 
 |         int16x8_t d1 = | 
 |             convolve8_8_h(s2, s3, s4, s5, s6, s7, s8, s9, filter, horiz_offset); | 
 |         int16x8_t d2 = convolve8_8_h(s4, s5, s6, s7, s8, s9, s10, s11, filter, | 
 |                                      horiz_offset); | 
 |         int16x8_t d3 = convolve8_8_h(s6, s7, s8, s9, s10, s11, s12, s13, filter, | 
 |                                      horiz_offset); | 
 |  | 
 |         transpose_elems_inplace_s16_8x4(&d0, &d1, &d2, &d3); | 
 |  | 
 |         store_s16_4x8(d, dst_stride, vget_low_s16(d0), vget_low_s16(d1), | 
 |                       vget_low_s16(d2), vget_low_s16(d3), vget_high_s16(d0), | 
 |                       vget_high_s16(d1), vget_high_s16(d2), vget_high_s16(d3)); | 
 |  | 
 |         s0 = s8; | 
 |         s1 = s9; | 
 |         s2 = s10; | 
 |         s3 = s11; | 
 |         s4 = s12; | 
 |         s5 = s13; | 
 |         s6 = s14; | 
 |         s7 = s15; | 
 |  | 
 |         s += 8; | 
 |         d += 4; | 
 |         width -= 4; | 
 |       } while (width != 0); | 
 |  | 
 |       dst += 8 * dst_stride; | 
 |       src += 8 * src_stride; | 
 |       h -= 8; | 
 |     } while (h > 0); | 
 |   } | 
 | } | 
 |  | 
 | static inline void convolve_horiz_scale_2_6tap_neon( | 
 |     const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, | 
 |     int h, const int16_t *x_filter) { | 
 |   const int bd = 8; | 
 |  | 
 |   if (w == 4) { | 
 |     // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
 |     // shifts - which are generally faster than rounding shifts on modern CPUs. | 
 |     const int32x4_t horiz_offset = | 
 |         vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); | 
 |     const int16x8_t filter = vld1q_s16(x_filter); | 
 |  | 
 |     do { | 
 |       uint8x16_t t0, t1, t2, t3; | 
 |       load_u8_16x4(src, src_stride, &t0, &t1, &t2, &t3); | 
 |       transpose_elems_inplace_u8_16x4(&t0, &t1, &t2, &t3); | 
 |  | 
 |       int16x8_t tt0 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t1))); | 
 |       int16x8_t tt1 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t2))); | 
 |       int16x8_t tt2 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t3))); | 
 |       int16x8_t tt3 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0))); | 
 |       int16x8_t tt4 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0))); | 
 |       int16x8_t tt5 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t1))); | 
 |       int16x8_t tt6 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t2))); | 
 |       int16x8_t tt7 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t3))); | 
 |  | 
 |       int16x4_t s0 = vget_low_s16(tt0); | 
 |       int16x4_t s1 = vget_low_s16(tt1); | 
 |       int16x4_t s2 = vget_low_s16(tt2); | 
 |       int16x4_t s3 = vget_high_s16(tt3); | 
 |       int16x4_t s4 = vget_high_s16(tt0); | 
 |       int16x4_t s5 = vget_high_s16(tt1); | 
 |       int16x4_t s6 = vget_high_s16(tt2); | 
 |       int16x4_t s7 = vget_low_s16(tt4); | 
 |       int16x4_t s8 = vget_low_s16(tt5); | 
 |       int16x4_t s9 = vget_low_s16(tt6); | 
 |       int16x4_t s10 = vget_low_s16(tt7); | 
 |       int16x4_t s11 = vget_high_s16(tt4); | 
 |  | 
 |       int16x4_t d0 = | 
 |           convolve6_4_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); | 
 |       int16x4_t d1 = | 
 |           convolve6_4_h(s2, s3, s4, s5, s6, s7, filter, horiz_offset); | 
 |       int16x4_t d2 = | 
 |           convolve6_4_h(s4, s5, s6, s7, s8, s9, filter, horiz_offset); | 
 |       int16x4_t d3 = | 
 |           convolve6_4_h(s6, s7, s8, s9, s10, s11, filter, horiz_offset); | 
 |  | 
 |       transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); | 
 |  | 
 |       store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); | 
 |  | 
 |       dst += 4 * dst_stride; | 
 |       src += 4 * src_stride; | 
 |       h -= 4; | 
 |     } while (h > 0); | 
 |   } else { | 
 |     // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
 |     // shifts - which are generally faster than rounding shifts on modern CPUs. | 
 |     // The additional -1 is needed because we are halving the filter values. | 
 |     const int16x8_t horiz_offset = | 
 |         vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); | 
 |     // Filter values are all even so halve them to allow convolution | 
 |     // kernel computations to stay in 16-bit element types. | 
 |     const int16x8_t filter = vshrq_n_s16(vld1q_s16(x_filter), 1); | 
 |  | 
 |     do { | 
 |       const uint8_t *s = src; | 
 |       int16_t *d = dst; | 
 |       int width = w; | 
 |  | 
 |       uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; | 
 |       load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
 |       transpose_elems_u8_8x8(t0, t1, t2, t3, t4, t5, t6, t7, &t0, &t1, &t2, &t3, | 
 |                              &t4, &t5, &t6, &t7); | 
 |  | 
 |       s += 8; | 
 |  | 
 |       int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t1)); | 
 |       int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t2)); | 
 |       int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t3)); | 
 |       int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t4)); | 
 |       int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t5)); | 
 |       int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t6)); | 
 |       int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t7)); | 
 |  | 
 |       do { | 
 |         uint8x8_t t8, t9, t10, t11, t12, t13, t14, t15; | 
 |         load_u8_8x8(s, src_stride, &t8, &t9, &t10, &t11, &t12, &t13, &t14, | 
 |                     &t15); | 
 |         transpose_elems_u8_8x8(t8, t9, t10, t11, t12, t13, t14, t15, &t8, &t9, | 
 |                                &t10, &t11, &t12, &t13, &t14, &t15); | 
 |  | 
 |         int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t8)); | 
 |         int16x8_t s8 = vreinterpretq_s16_u16(vmovl_u8(t9)); | 
 |         int16x8_t s9 = vreinterpretq_s16_u16(vmovl_u8(t10)); | 
 |         int16x8_t s10 = vreinterpretq_s16_u16(vmovl_u8(t11)); | 
 |         int16x8_t s11 = vreinterpretq_s16_u16(vmovl_u8(t12)); | 
 |         int16x8_t s12 = vreinterpretq_s16_u16(vmovl_u8(t13)); | 
 |         int16x8_t s13 = vreinterpretq_s16_u16(vmovl_u8(t14)); | 
 |         int16x8_t s14 = vreinterpretq_s16_u16(vmovl_u8(t15)); | 
 |  | 
 |         int16x8_t d0 = | 
 |             convolve6_8_h(s0, s1, s2, s3, s4, s5, filter, horiz_offset); | 
 |         int16x8_t d1 = | 
 |             convolve6_8_h(s2, s3, s4, s5, s6, s7, filter, horiz_offset); | 
 |         int16x8_t d2 = | 
 |             convolve6_8_h(s4, s5, s6, s7, s8, s9, filter, horiz_offset); | 
 |         int16x8_t d3 = | 
 |             convolve6_8_h(s6, s7, s8, s9, s10, s11, filter, horiz_offset); | 
 |  | 
 |         transpose_elems_inplace_s16_8x4(&d0, &d1, &d2, &d3); | 
 |  | 
 |         store_s16_4x8(d, dst_stride, vget_low_s16(d0), vget_low_s16(d1), | 
 |                       vget_low_s16(d2), vget_low_s16(d3), vget_high_s16(d0), | 
 |                       vget_high_s16(d1), vget_high_s16(d2), vget_high_s16(d3)); | 
 |  | 
 |         s0 = s8; | 
 |         s1 = s9; | 
 |         s2 = s10; | 
 |         s3 = s11; | 
 |         s4 = s12; | 
 |         s5 = s13; | 
 |         s6 = s14; | 
 |  | 
 |         s += 8; | 
 |         d += 4; | 
 |         width -= 4; | 
 |       } while (width != 0); | 
 |  | 
 |       dst += 8 * dst_stride; | 
 |       src += 8 * src_stride; | 
 |       h -= 8; | 
 |     } while (h > 0); | 
 |   } | 
 | } | 
 |  | 
 | void av1_convolve_2d_scale_neon(const uint8_t *src, int src_stride, | 
 |                                 uint8_t *dst, int dst_stride, int w, int h, | 
 |                                 const InterpFilterParams *filter_params_x, | 
 |                                 const InterpFilterParams *filter_params_y, | 
 |                                 const int subpel_x_qn, const int x_step_qn, | 
 |                                 const int subpel_y_qn, const int y_step_qn, | 
 |                                 ConvolveParams *conv_params) { | 
 |   if (w < 4 || h < 4) { | 
 |     av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h, | 
 |                             filter_params_x, filter_params_y, subpel_x_qn, | 
 |                             x_step_qn, subpel_y_qn, y_step_qn, conv_params); | 
 |     return; | 
 |   } | 
 |  | 
 |   // For the interpolation 8-tap filters are used. | 
 |   assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8); | 
 |  | 
 |   DECLARE_ALIGNED(32, int16_t, | 
 |                   im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); | 
 |   int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + | 
 |              filter_params_y->taps; | 
 |   int im_stride = MAX_SB_SIZE; | 
 |   CONV_BUF_TYPE *dst16 = conv_params->dst; | 
 |   const int dst16_stride = conv_params->dst_stride; | 
 |  | 
 |   // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2 | 
 |   // lines post both horizontally and vertically. | 
 |   const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1; | 
 |   const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride; | 
 |  | 
 |   // Horizontal filter | 
 |  | 
 |   if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) { | 
 |     if (filter_params_x->interp_filter == MULTITAP_SHARP) { | 
 |       convolve_horiz_scale_8tap_neon( | 
 |           src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, | 
 |           im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); | 
 |     } else { | 
 |       convolve_horiz_scale_6tap_neon( | 
 |           src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, | 
 |           im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); | 
 |     } | 
 |   } else { | 
 |     assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS)); | 
 |     // The filter index is calculated using the | 
 |     // ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS | 
 |     // equation, where the values of x are from 0 to w. If x_step_qn is a | 
 |     // multiple of SCALE_SUBPEL_MASK we can leave it out of the equation. | 
 |     const ptrdiff_t filter_offset = | 
 |         SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
 |     const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset; | 
 |  | 
 |     // The source index is calculated using the (subpel_x_qn + x * x_step_qn) | 
 |     // >> SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If | 
 |     // subpel_x_qn < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << | 
 |     // SCALE_SUBPEL_BITS) == 0, the source index can be determined using the | 
 |     // value x * (x_step_qn / (1 << SCALE_SUBPEL_BITS)). | 
 |     if (filter_params_x->interp_filter == MULTITAP_SHARP) { | 
 |       convolve_horiz_scale_2_8tap_neon(src - horiz_offset - vert_offset, | 
 |                                        src_stride, im_block, im_stride, w, im_h, | 
 |                                        x_filter); | 
 |     } else { | 
 |       convolve_horiz_scale_2_6tap_neon(src - horiz_offset - vert_offset, | 
 |                                        src_stride, im_block, im_stride, w, im_h, | 
 |                                        x_filter); | 
 |     } | 
 |   } | 
 |  | 
 |   // Vertical filter | 
 |   if (filter_params_y->interp_filter == MULTITAP_SHARP) { | 
 |     if (UNLIKELY(conv_params->is_compound)) { | 
 |       if (conv_params->do_average) { | 
 |         if (conv_params->use_dist_wtd_comp_avg) { | 
 |           compound_dist_wtd_convolve_vert_scale_8tap_neon( | 
 |               im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, | 
 |               filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); | 
 |         } else { | 
 |           compound_avg_convolve_vert_scale_8tap_neon( | 
 |               im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, | 
 |               filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
 |         } | 
 |       } else { | 
 |         compound_convolve_vert_scale_8tap_neon( | 
 |             im_block, im_stride, dst16, dst16_stride, w, h, | 
 |             filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
 |       } | 
 |     } else { | 
 |       convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, | 
 |                                     filter_params_y->filter_ptr, subpel_y_qn, | 
 |                                     y_step_qn); | 
 |     } | 
 |   } else { | 
 |     if (UNLIKELY(conv_params->is_compound)) { | 
 |       if (conv_params->do_average) { | 
 |         if (conv_params->use_dist_wtd_comp_avg) { | 
 |           compound_dist_wtd_convolve_vert_scale_6tap_neon( | 
 |               im_block + im_stride, im_stride, dst, dst_stride, dst16, | 
 |               dst16_stride, w, h, filter_params_y->filter_ptr, conv_params, | 
 |               subpel_y_qn, y_step_qn); | 
 |         } else { | 
 |           compound_avg_convolve_vert_scale_6tap_neon( | 
 |               im_block + im_stride, im_stride, dst, dst_stride, dst16, | 
 |               dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, | 
 |               y_step_qn); | 
 |         } | 
 |       } else { | 
 |         compound_convolve_vert_scale_6tap_neon( | 
 |             im_block + im_stride, im_stride, dst16, dst16_stride, w, h, | 
 |             filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
 |       } | 
 |     } else { | 
 |       convolve_vert_scale_6tap_neon( | 
 |           im_block + im_stride, im_stride, dst, dst_stride, w, h, | 
 |           filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
 |     } | 
 |   } | 
 | } |