| /* | 
 |  * Copyright (c) 2024, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <assert.h> | 
 | #include <arm_neon.h> | 
 | #include <stddef.h> | 
 | #include <stdint.h> | 
 |  | 
 | #include "config/aom_config.h" | 
 | #include "config/av1_rtcd.h" | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_dsp/aom_filter.h" | 
 | #include "aom_dsp/arm/mem_neon.h" | 
 | #include "aom_dsp/arm/transpose_neon.h" | 
 | #include "aom_ports/mem.h" | 
 | #include "av1/common/arm/convolve_scale_neon.h" | 
 | #include "av1/common/convolve.h" | 
 | #include "av1/common/enums.h" | 
 | #include "av1/common/filter.h" | 
 |  | 
 | // clang-format off | 
 | DECLARE_ALIGNED(16, static const uint8_t, kScale2DotProdPermuteTbl[32]) = { | 
 |   0, 1, 2, 3, 2, 3, 4, 5, 4, 5,  6,  7,  6,  7,  8,  9, | 
 |   4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 | 
 | }; | 
 | // clang-format on | 
 |  | 
 | static inline int16x4_t convolve8_4_h(const uint8x8_t s0, const uint8x8_t s1, | 
 |                                       const uint8x8_t s2, const uint8x8_t s3, | 
 |                                       const int8x8_t filter, | 
 |                                       const int32x4_t horiz_const) { | 
 |   const int8x16_t filters = vcombine_s8(filter, filter); | 
 |  | 
 |   uint8x16_t s01 = vcombine_u8(s0, s1); | 
 |   uint8x16_t s23 = vcombine_u8(s2, s3); | 
 |  | 
 |   // Transform sample range to [-128, 127] for 8-bit signed dot product. | 
 |   int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128))); | 
 |   int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128))); | 
 |  | 
 |   int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters); | 
 |   int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters); | 
 |  | 
 |   int32x4_t sum = vpaddq_s32(sum01, sum23); | 
 |  | 
 |   // We halved the filter values so -1 from right shift. | 
 |   return vshrn_n_s32(sum, ROUND0_BITS - 1); | 
 | } | 
 |  | 
 | static inline int16x8_t convolve8_8_h(const uint8x8_t s0, const uint8x8_t s1, | 
 |                                       const uint8x8_t s2, const uint8x8_t s3, | 
 |                                       const uint8x8_t s4, const uint8x8_t s5, | 
 |                                       const uint8x8_t s6, const uint8x8_t s7, | 
 |                                       const int8x8_t filter, | 
 |                                       const int32x4_t horiz_const) { | 
 |   const int8x16_t filters = vcombine_s8(filter, filter); | 
 |  | 
 |   uint8x16_t s01 = vcombine_u8(s0, s1); | 
 |   uint8x16_t s23 = vcombine_u8(s2, s3); | 
 |   uint8x16_t s45 = vcombine_u8(s4, s5); | 
 |   uint8x16_t s67 = vcombine_u8(s6, s7); | 
 |  | 
 |   // Transform sample range to [-128, 127] for 8-bit signed dot product. | 
 |   int8x16_t s01_128 = vreinterpretq_s8_u8(vsubq_u8(s01, vdupq_n_u8(128))); | 
 |   int8x16_t s23_128 = vreinterpretq_s8_u8(vsubq_u8(s23, vdupq_n_u8(128))); | 
 |   int8x16_t s45_128 = vreinterpretq_s8_u8(vsubq_u8(s45, vdupq_n_u8(128))); | 
 |   int8x16_t s67_128 = vreinterpretq_s8_u8(vsubq_u8(s67, vdupq_n_u8(128))); | 
 |  | 
 |   int32x4_t sum01 = vdotq_s32(horiz_const, s01_128, filters); | 
 |   int32x4_t sum23 = vdotq_s32(horiz_const, s23_128, filters); | 
 |   int32x4_t sum45 = vdotq_s32(horiz_const, s45_128, filters); | 
 |   int32x4_t sum67 = vdotq_s32(horiz_const, s67_128, filters); | 
 |  | 
 |   int32x4_t sum0123 = vpaddq_s32(sum01, sum23); | 
 |   int32x4_t sum4567 = vpaddq_s32(sum45, sum67); | 
 |  | 
 |   // We halved the filter values so -1 from right shift. | 
 |   return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), | 
 |                       vshrn_n_s32(sum4567, ROUND0_BITS - 1)); | 
 | } | 
 |  | 
 | static inline void convolve_horiz_scale_neon_dotprod( | 
 |     const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, | 
 |     int h, const int16_t *x_filter, const int subpel_x_qn, | 
 |     const int x_step_qn) { | 
 |   DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); | 
 |   const int bd = 8; | 
 |   // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
 |   // shifts - which are generally faster than rounding shifts on modern CPUs. | 
 |   const int32_t horiz_offset = | 
 |       (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)); | 
 |   // The shim of 128 << FILTER_BITS is needed because we are subtracting 128 | 
 |   // from every source value. | 
 |   const int32_t dotprod_offset = 128 << FILTER_BITS; | 
 |   // Divide the total by 4: we halved the filter values and will use a pairwise | 
 |   // add in the convolution kernel. | 
 |   const int32x4_t horiz_offset_vec = | 
 |       vdupq_n_s32((horiz_offset + dotprod_offset) >> 2); | 
 |  | 
 |   if (w == 4) { | 
 |     do { | 
 |       int x_qn = subpel_x_qn; | 
 |  | 
 |       // Process a 4x4 tile. | 
 |       for (int r = 0; r < 4; r++) { | 
 |         const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; | 
 |  | 
 |         const ptrdiff_t filter_offset = | 
 |             SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
 |         // Filter values are all even so halve them to fit in int8_t. | 
 |         const int8x8_t filter = | 
 |             vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1); | 
 |  | 
 |         uint8x8_t t0, t1, t2, t3; | 
 |         load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); | 
 |  | 
 |         int16x4_t d0 = convolve8_4_h(t0, t1, t2, t3, filter, horiz_offset_vec); | 
 |  | 
 |         vst1_s16(&temp[r * 4], d0); | 
 |  | 
 |         x_qn += x_step_qn; | 
 |       } | 
 |  | 
 |       // Transpose the 4x4 result tile and store. | 
 |       int16x4_t d0, d1, d2, d3; | 
 |       load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); | 
 |  | 
 |       transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); | 
 |  | 
 |       store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); | 
 |  | 
 |       dst += 4 * dst_stride; | 
 |       src += 4 * src_stride; | 
 |       h -= 4; | 
 |     } while (h > 0); | 
 |   } else { | 
 |     do { | 
 |       int x_qn = subpel_x_qn; | 
 |       int16_t *d = dst; | 
 |       int width = w; | 
 |  | 
 |       do { | 
 |         // Process an 8x8 tile. | 
 |         for (int r = 0; r < 8; r++) { | 
 |           const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; | 
 |  | 
 |           const ptrdiff_t filter_offset = | 
 |               SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
 |           // Filter values are all even so halve them to fit in int8_t. | 
 |           int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1); | 
 |  | 
 |           uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; | 
 |           load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
 |  | 
 |           int16x8_t d0 = convolve8_8_h(t0, t1, t2, t3, t4, t5, t6, t7, filter, | 
 |                                        horiz_offset_vec); | 
 |  | 
 |           vst1q_s16(&temp[r * 8], d0); | 
 |  | 
 |           x_qn += x_step_qn; | 
 |         } | 
 |  | 
 |         // Transpose the 8x8 result tile and store. | 
 |         int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; | 
 |         load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
 |  | 
 |         transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
 |  | 
 |         store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); | 
 |  | 
 |         d += 8; | 
 |         width -= 8; | 
 |       } while (width != 0); | 
 |  | 
 |       dst += 8 * dst_stride; | 
 |       src += 8 * src_stride; | 
 |       h -= 8; | 
 |     } while (h > 0); | 
 |   } | 
 | } | 
 |  | 
 | static inline int16x4_t convolve8_4_h_scale_2(uint8x16_t samples, | 
 |                                               const int8x8_t filters, | 
 |                                               const int32x4_t horiz_const, | 
 |                                               const uint8x16x2_t permute_tbl) { | 
 |   // Transform sample range to [-128, 127] for 8-bit signed dot product. | 
 |   int8x16_t samples_128 = | 
 |       vreinterpretq_s8_u8(vsubq_u8(samples, vdupq_n_u8(128))); | 
 |  | 
 |   // Permute samples ready for dot product. | 
 |   // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5,  6,  7,  6,  7,  8,  9 } | 
 |   // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 } | 
 |   int8x16_t perm_samples[2] = { vqtbl1q_s8(samples_128, permute_tbl.val[0]), | 
 |                                 vqtbl1q_s8(samples_128, permute_tbl.val[1]) }; | 
 |  | 
 |   int32x4_t sum = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); | 
 |   sum = vdotq_lane_s32(sum, perm_samples[1], filters, 1); | 
 |  | 
 |   // We halved the filter values so -1 from right shift. | 
 |   return vshrn_n_s32(sum, ROUND0_BITS - 1); | 
 | } | 
 |  | 
 | static inline int16x8_t convolve8_8_h_scale_2(uint8x16_t samples[2], | 
 |                                               const int8x8_t filters, | 
 |                                               const int32x4_t horiz_const, | 
 |                                               const uint8x16x2_t permute_tbl) { | 
 |   // Transform sample range to [-128, 127] for 8-bit signed dot product. | 
 |   int8x16_t samples0_128 = | 
 |       vreinterpretq_s8_u8(vsubq_u8(samples[0], vdupq_n_u8(128))); | 
 |   int8x16_t samples1_128 = | 
 |       vreinterpretq_s8_u8(vsubq_u8(samples[1], vdupq_n_u8(128))); | 
 |  | 
 |   // Permute samples ready for dot product. | 
 |   // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5,  6,  7,  6,  7,  8,  9 } | 
 |   // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 } | 
 |   int8x16_t perm_samples[4] = { vqtbl1q_s8(samples0_128, permute_tbl.val[0]), | 
 |                                 vqtbl1q_s8(samples0_128, permute_tbl.val[1]), | 
 |                                 vqtbl1q_s8(samples1_128, permute_tbl.val[0]), | 
 |                                 vqtbl1q_s8(samples1_128, permute_tbl.val[1]) }; | 
 |  | 
 |   // First 4 output values. | 
 |   int32x4_t sum0123 = vdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); | 
 |   sum0123 = vdotq_lane_s32(sum0123, perm_samples[1], filters, 1); | 
 |   // Second 4 output values. | 
 |   int32x4_t sum4567 = vdotq_lane_s32(horiz_const, perm_samples[2], filters, 0); | 
 |   sum4567 = vdotq_lane_s32(sum4567, perm_samples[3], filters, 1); | 
 |  | 
 |   // We halved the filter values so -1 from right shift. | 
 |   return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), | 
 |                       vshrn_n_s32(sum4567, ROUND0_BITS - 1)); | 
 | } | 
 |  | 
 | static inline void convolve_horiz_scale_2_neon_dotprod( | 
 |     const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, | 
 |     int h, const int16_t *x_filter) { | 
 |   const int bd = 8; | 
 |   // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
 |   // shifts - which are generally faster than rounding shifts on modern CPUs. | 
 |   const int32_t horiz_offset = | 
 |       (1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)); | 
 |   // The shim of 128 << FILTER_BITS is needed because we are subtracting 128 | 
 |   // from every source value. | 
 |   const int32_t dotprod_offset = 128 << FILTER_BITS; | 
 |   // Divide the total by 2 because we halved the filter values. | 
 |   const int32x4_t horiz_offset_vec = | 
 |       vdupq_n_s32((horiz_offset + dotprod_offset) >> 1); | 
 |  | 
 |   const uint8x16x2_t permute_tbl = vld1q_u8_x2(kScale2DotProdPermuteTbl); | 
 |   // Filter values are all even so halve them to fit in int8_t. | 
 |   const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter), 1); | 
 |  | 
 |   if (w == 4) { | 
 |     do { | 
 |       const uint8_t *s = src; | 
 |       int16_t *d = dst; | 
 |       int width = w; | 
 |  | 
 |       do { | 
 |         uint8x16_t s0, s1, s2, s3; | 
 |         load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
 |  | 
 |         int16x4_t d0 = | 
 |             convolve8_4_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl); | 
 |         int16x4_t d1 = | 
 |             convolve8_4_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl); | 
 |         int16x4_t d2 = | 
 |             convolve8_4_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl); | 
 |         int16x4_t d3 = | 
 |             convolve8_4_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl); | 
 |  | 
 |         store_s16_4x4(d, dst_stride, d0, d1, d2, d3); | 
 |  | 
 |         s += 8; | 
 |         d += 4; | 
 |         width -= 4; | 
 |       } while (width != 0); | 
 |  | 
 |       dst += 4 * dst_stride; | 
 |       src += 4 * src_stride; | 
 |       h -= 4; | 
 |     } while (h > 0); | 
 |   } else { | 
 |     do { | 
 |       const uint8_t *s = src; | 
 |       int16_t *d = dst; | 
 |       int width = w; | 
 |  | 
 |       do { | 
 |         uint8x16_t s0[2], s1[2], s2[2], s3[2]; | 
 |         load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); | 
 |         load_u8_16x4(s + 8, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); | 
 |  | 
 |         int16x8_t d0 = | 
 |             convolve8_8_h_scale_2(s0, filter, horiz_offset_vec, permute_tbl); | 
 |         int16x8_t d1 = | 
 |             convolve8_8_h_scale_2(s1, filter, horiz_offset_vec, permute_tbl); | 
 |         int16x8_t d2 = | 
 |             convolve8_8_h_scale_2(s2, filter, horiz_offset_vec, permute_tbl); | 
 |         int16x8_t d3 = | 
 |             convolve8_8_h_scale_2(s3, filter, horiz_offset_vec, permute_tbl); | 
 |  | 
 |         store_s16_8x4(d, dst_stride, d0, d1, d2, d3); | 
 |  | 
 |         s += 16; | 
 |         d += 8; | 
 |         width -= 8; | 
 |       } while (width != 0); | 
 |  | 
 |       dst += 4 * dst_stride; | 
 |       src += 4 * src_stride; | 
 |       h -= 4; | 
 |     } while (h > 0); | 
 |   } | 
 | } | 
 |  | 
 | void av1_convolve_2d_scale_neon_dotprod( | 
 |     const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, | 
 |     int h, const InterpFilterParams *filter_params_x, | 
 |     const InterpFilterParams *filter_params_y, const int subpel_x_qn, | 
 |     const int x_step_qn, const int subpel_y_qn, const int y_step_qn, | 
 |     ConvolveParams *conv_params) { | 
 |   if (w < 4 || h < 4) { | 
 |     av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h, | 
 |                             filter_params_x, filter_params_y, subpel_x_qn, | 
 |                             x_step_qn, subpel_y_qn, y_step_qn, conv_params); | 
 |     return; | 
 |   } | 
 |  | 
 |   // For the interpolation 8-tap filters are used. | 
 |   assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8); | 
 |  | 
 |   DECLARE_ALIGNED(32, int16_t, | 
 |                   im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); | 
 |   int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + | 
 |              filter_params_y->taps; | 
 |   int im_stride = MAX_SB_SIZE; | 
 |   CONV_BUF_TYPE *dst16 = conv_params->dst; | 
 |   const int dst16_stride = conv_params->dst_stride; | 
 |  | 
 |   // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2 | 
 |   // lines post both horizontally and vertically. | 
 |   const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1; | 
 |   const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride; | 
 |  | 
 |   // Horizontal filter | 
 |   if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) { | 
 |     convolve_horiz_scale_neon_dotprod( | 
 |         src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, | 
 |         im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); | 
 |   } else { | 
 |     assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS)); | 
 |     // The filter index is calculated using the | 
 |     // ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS | 
 |     // equation, where the values of x are from 0 to w. If x_step_qn is a | 
 |     // multiple of SCALE_SUBPEL_MASK we can leave it out of the equation. | 
 |     const ptrdiff_t filter_offset = | 
 |         SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
 |     const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset; | 
 |  | 
 |     // The source index is calculated using the (subpel_x_qn + x * x_step_qn) >> | 
 |     // SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If subpel_x_qn | 
 |     // < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << SCALE_SUBPEL_BITS) == 0, | 
 |     // the source index can be determined using the value x * (x_step_qn / | 
 |     // (1 << SCALE_SUBPEL_BITS)). | 
 |     convolve_horiz_scale_2_neon_dotprod(src - horiz_offset - vert_offset, | 
 |                                         src_stride, im_block, im_stride, w, | 
 |                                         im_h, x_filter); | 
 |   } | 
 |  | 
 |   // Vertical filter | 
 |   if (filter_params_y->interp_filter == MULTITAP_SHARP) { | 
 |     if (UNLIKELY(conv_params->is_compound)) { | 
 |       if (conv_params->do_average) { | 
 |         if (conv_params->use_dist_wtd_comp_avg) { | 
 |           compound_dist_wtd_convolve_vert_scale_8tap_neon( | 
 |               im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, | 
 |               filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); | 
 |         } else { | 
 |           compound_avg_convolve_vert_scale_8tap_neon( | 
 |               im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, | 
 |               filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
 |         } | 
 |       } else { | 
 |         compound_convolve_vert_scale_8tap_neon( | 
 |             im_block, im_stride, dst16, dst16_stride, w, h, | 
 |             filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
 |       } | 
 |     } else { | 
 |       convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, | 
 |                                     filter_params_y->filter_ptr, subpel_y_qn, | 
 |                                     y_step_qn); | 
 |     } | 
 |   } else { | 
 |     if (UNLIKELY(conv_params->is_compound)) { | 
 |       if (conv_params->do_average) { | 
 |         if (conv_params->use_dist_wtd_comp_avg) { | 
 |           compound_dist_wtd_convolve_vert_scale_6tap_neon( | 
 |               im_block + im_stride, im_stride, dst, dst_stride, dst16, | 
 |               dst16_stride, w, h, filter_params_y->filter_ptr, conv_params, | 
 |               subpel_y_qn, y_step_qn); | 
 |         } else { | 
 |           compound_avg_convolve_vert_scale_6tap_neon( | 
 |               im_block + im_stride, im_stride, dst, dst_stride, dst16, | 
 |               dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, | 
 |               y_step_qn); | 
 |         } | 
 |       } else { | 
 |         compound_convolve_vert_scale_6tap_neon( | 
 |             im_block + im_stride, im_stride, dst16, dst16_stride, w, h, | 
 |             filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
 |       } | 
 |     } else { | 
 |       convolve_vert_scale_6tap_neon( | 
 |           im_block + im_stride, im_stride, dst, dst_stride, w, h, | 
 |           filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
 |     } | 
 |   } | 
 | } |