| /* | 
 |  * Copyright (c) 2020, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 | #include <immintrin.h>  // AVX2 | 
 |  | 
 | #include "config/av1_rtcd.h" | 
 | #include "aom_dsp/x86/synonyms.h" | 
 |  | 
 | static int64_t k_means_horizontal_sum_avx2(__m256i a) { | 
 |   const __m128i low = _mm256_castsi256_si128(a); | 
 |   const __m128i high = _mm256_extracti128_si256(a, 1); | 
 |   const __m128i sum = _mm_add_epi64(low, high); | 
 |   const __m128i sum_high = _mm_unpackhi_epi64(sum, sum); | 
 |   int64_t res; | 
 |   _mm_storel_epi64((__m128i *)&res, _mm_add_epi64(sum, sum_high)); | 
 |   return res; | 
 | } | 
 |  | 
 | void av1_calc_indices_dim1_avx2(const int16_t *data, const int16_t *centroids, | 
 |                                 uint8_t *indices, int64_t *total_dist, int n, | 
 |                                 int k) { | 
 |   const __m256i v_zero = _mm256_setzero_si256(); | 
 |   __m256i sum = _mm256_setzero_si256(); | 
 |   __m256i cents[PALETTE_MAX_SIZE]; | 
 |   for (int j = 0; j < k; ++j) { | 
 |     cents[j] = _mm256_set1_epi16(centroids[j]); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < n; i += 16) { | 
 |     const __m256i in = _mm256_loadu_si256((__m256i *)data); | 
 |     __m256i ind = _mm256_setzero_si256(); | 
 |     // Compute the distance to the first centroid. | 
 |     __m256i d1 = _mm256_sub_epi16(in, cents[0]); | 
 |     __m256i dist_min = _mm256_abs_epi16(d1); | 
 |  | 
 |     for (int j = 1; j < k; ++j) { | 
 |       // Compute the distance to the centroid. | 
 |       d1 = _mm256_sub_epi16(in, cents[j]); | 
 |       const __m256i dist = _mm256_abs_epi16(d1); | 
 |       // Compare to the minimal one. | 
 |       const __m256i cmp = _mm256_cmpgt_epi16(dist_min, dist); | 
 |       dist_min = _mm256_min_epi16(dist_min, dist); | 
 |       const __m256i ind1 = _mm256_set1_epi16(j); | 
 |       ind = _mm256_or_si256(_mm256_andnot_si256(cmp, ind), | 
 |                             _mm256_and_si256(cmp, ind1)); | 
 |     } | 
 |  | 
 |     const __m256i p1 = _mm256_packus_epi16(ind, v_zero); | 
 |     const __m256i px = _mm256_permute4x64_epi64(p1, 0x58); | 
 |     const __m128i d2 = _mm256_extracti128_si256(px, 0); | 
 |  | 
 |     _mm_storeu_si128((__m128i *)indices, d2); | 
 |  | 
 |     if (total_dist) { | 
 |       // Square, convert to 32 bit and add together. | 
 |       dist_min = _mm256_madd_epi16(dist_min, dist_min); | 
 |       // Convert to 64 bit and add to sum. | 
 |       const __m256i dist1 = _mm256_unpacklo_epi32(dist_min, v_zero); | 
 |       const __m256i dist2 = _mm256_unpackhi_epi32(dist_min, v_zero); | 
 |       sum = _mm256_add_epi64(sum, dist1); | 
 |       sum = _mm256_add_epi64(sum, dist2); | 
 |     } | 
 |  | 
 |     indices += 16; | 
 |     data += 16; | 
 |   } | 
 |   if (total_dist) { | 
 |     *total_dist = k_means_horizontal_sum_avx2(sum); | 
 |   } | 
 | } | 
 |  | 
 | void av1_calc_indices_dim2_avx2(const int16_t *data, const int16_t *centroids, | 
 |                                 uint8_t *indices, int64_t *total_dist, int n, | 
 |                                 int k) { | 
 |   const __m256i v_zero = _mm256_setzero_si256(); | 
 |   const __m256i permute = _mm256_set_epi32(0, 0, 0, 0, 5, 1, 4, 0); | 
 |   __m256i sum = _mm256_setzero_si256(); | 
 |   __m256i ind[2]; | 
 |   __m256i cents[PALETTE_MAX_SIZE]; | 
 |   for (int j = 0; j < k; ++j) { | 
 |     const int16_t cx = centroids[2 * j], cy = centroids[2 * j + 1]; | 
 |     cents[j] = _mm256_set_epi16(cy, cx, cy, cx, cy, cx, cy, cx, cy, cx, cy, cx, | 
 |                                 cy, cx, cy, cx); | 
 |   } | 
 |  | 
 |   for (int i = 0; i < n; i += 16) { | 
 |     for (int l = 0; l < 2; ++l) { | 
 |       const __m256i in = _mm256_loadu_si256((__m256i *)data); | 
 |       ind[l] = _mm256_setzero_si256(); | 
 |       // Compute the distance to the first centroid. | 
 |       __m256i d1 = _mm256_sub_epi16(in, cents[0]); | 
 |       __m256i dist_min = _mm256_madd_epi16(d1, d1); | 
 |  | 
 |       for (int j = 1; j < k; ++j) { | 
 |         // Compute the distance to the centroid. | 
 |         d1 = _mm256_sub_epi16(in, cents[j]); | 
 |         const __m256i dist = _mm256_madd_epi16(d1, d1); | 
 |         // Compare to the minimal one. | 
 |         const __m256i cmp = _mm256_cmpgt_epi32(dist_min, dist); | 
 |         dist_min = _mm256_min_epi32(dist_min, dist); | 
 |         const __m256i ind1 = _mm256_set1_epi32(j); | 
 |         ind[l] = _mm256_or_si256(_mm256_andnot_si256(cmp, ind[l]), | 
 |                                  _mm256_and_si256(cmp, ind1)); | 
 |       } | 
 |       if (total_dist) { | 
 |         // Convert to 64 bit and add to sum. | 
 |         const __m256i dist1 = _mm256_unpacklo_epi32(dist_min, v_zero); | 
 |         const __m256i dist2 = _mm256_unpackhi_epi32(dist_min, v_zero); | 
 |         sum = _mm256_add_epi64(sum, dist1); | 
 |         sum = _mm256_add_epi64(sum, dist2); | 
 |       } | 
 |       data += 16; | 
 |     } | 
 |     // Cast to 8 bit and store. | 
 |     const __m256i d2 = _mm256_packus_epi32(ind[0], ind[1]); | 
 |     const __m256i d3 = _mm256_packus_epi16(d2, v_zero); | 
 |     const __m256i d4 = _mm256_permutevar8x32_epi32(d3, permute); | 
 |     const __m128i d5 = _mm256_extracti128_si256(d4, 0); | 
 |     _mm_storeu_si128((__m128i *)indices, d5); | 
 |     indices += 16; | 
 |   } | 
 |   if (total_dist) { | 
 |     *total_dist = k_means_horizontal_sum_avx2(sum); | 
 |   } | 
 | } |