blob: 548709a38439ec6198d0ee396d324fb8ac37d0b7 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <limits.h>
#include <float.h>
#include <math.h>
#include <stdbool.h>
#include <stdio.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_writer.h"
#include "aom_ports/mem.h"
#include "aom_ports/aom_timer.h"
#if CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_MISMATCH_DEBUG
#include "av1/common/cfl.h"
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mv.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
#include "av1/common/tile_common.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/allintra_vis.h"
#include "av1/encoder/aq_complexity.h"
#include "av1/encoder/aq_cyclicrefresh.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/global_motion_facade.h"
#include "av1/encoder/encodeframe.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/extend.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/ml.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/partition_strategy.h"
#if !CONFIG_REALTIME_ONLY
#include "av1/encoder/partition_model_weights.h"
#endif
#include "av1/encoder/partition_search.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/segmentation.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/var_based_part.h"
#if CONFIG_TUNE_VMAF
#include "av1/encoder/tune_vmaf.h"
#endif
/*!\cond */
// This is used as a reference when computing the source variance for the
// purposes of activity masking.
// Eventually this should be replaced by custom no-reference routines,
// which will be faster.
const uint8_t AV1_VAR_OFFS[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static const uint16_t AV1_HIGH_VAR_OFFS_8[MAX_SB_SIZE] = {
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128,
128, 128, 128, 128, 128, 128, 128, 128
};
static const uint16_t AV1_HIGH_VAR_OFFS_10[MAX_SB_SIZE] = {
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4,
128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4, 128 * 4
};
static const uint16_t AV1_HIGH_VAR_OFFS_12[MAX_SB_SIZE] = {
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16, 128 * 16,
128 * 16, 128 * 16
};
/*!\endcond */
void av1_init_rtc_counters(MACROBLOCK *const x) {
av1_init_cyclic_refresh_counters(x);
x->cnt_zeromv = 0;
}
void av1_accumulate_rtc_counters(AV1_COMP *cpi, const MACROBLOCK *const x) {
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ)
av1_accumulate_cyclic_refresh_counters(cpi->cyclic_refresh, x);
cpi->rc.cnt_zeromv += x->cnt_zeromv;
}
unsigned int av1_get_perpixel_variance(const AV1_COMP *cpi,
const MACROBLOCKD *xd,
const struct buf_2d *ref,
BLOCK_SIZE bsize, int plane,
int use_hbd) {
const int subsampling_x = xd->plane[plane].subsampling_x;
const int subsampling_y = xd->plane[plane].subsampling_y;
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, subsampling_x, subsampling_y);
unsigned int var, sse;
if (use_hbd) {
const int bd = xd->bd;
assert(bd == 8 || bd == 10 || bd == 12);
const int off_index = (bd - 8) >> 1;
static const uint16_t *high_var_offs[3] = { AV1_HIGH_VAR_OFFS_8,
AV1_HIGH_VAR_OFFS_10,
AV1_HIGH_VAR_OFFS_12 };
var = cpi->ppi->fn_ptr[plane_bsize].vf(
ref->buf, ref->stride, CONVERT_TO_BYTEPTR(high_var_offs[off_index]), 0,
&sse);
} else {
var = cpi->ppi->fn_ptr[plane_bsize].vf(ref->buf, ref->stride, AV1_VAR_OFFS,
0, &sse);
}
return ROUND_POWER_OF_TWO(var, num_pels_log2_lookup[plane_bsize]);
}
unsigned int av1_get_perpixel_variance_facade(const AV1_COMP *cpi,
const MACROBLOCKD *xd,
const struct buf_2d *ref,
BLOCK_SIZE bsize, int plane) {
const int use_hbd = is_cur_buf_hbd(xd);
return av1_get_perpixel_variance(cpi, xd, ref, bsize, plane, use_hbd);
}
void av1_setup_src_planes(MACROBLOCK *x, const YV12_BUFFER_CONFIG *src,
int mi_row, int mi_col, const int num_planes,
BLOCK_SIZE bsize) {
// Set current frame pointer.
x->e_mbd.cur_buf = src;
// We use AOMMIN(num_planes, MAX_MB_PLANE) instead of num_planes to quiet
// the static analysis warnings.
for (int i = 0; i < AOMMIN(num_planes, MAX_MB_PLANE); i++) {
const int is_uv = i > 0;
setup_pred_plane(
&x->plane[i].src, bsize, src->buffers[i], src->crop_widths[is_uv],
src->crop_heights[is_uv], src->strides[is_uv], mi_row, mi_col, NULL,
x->e_mbd.plane[i].subsampling_x, x->e_mbd.plane[i].subsampling_y);
}
}
#if !CONFIG_REALTIME_ONLY
/*!\brief Assigns different quantization parameters to each super
* block based on its TPL weight.
*
* \ingroup tpl_modelling
*
* \param[in] cpi Top level encoder instance structure
* \param[in,out] td Thread data structure
* \param[in,out] x Macro block level data for this block.
* \param[in] tile_info Tile infromation / identification
* \param[in] mi_row Block row (in "MI_SIZE" units) index
* \param[in] mi_col Block column (in "MI_SIZE" units) index
* \param[out] num_planes Number of image planes (e.g. Y,U,V)
*
* \remark No return value but updates macroblock and thread data
* related to the q / q delta to be used.
*/
static AOM_INLINE void setup_delta_q(AV1_COMP *const cpi, ThreadData *td,
MACROBLOCK *const x,
const TileInfo *const tile_info,
int mi_row, int mi_col, int num_planes) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
assert(delta_q_info->delta_q_present_flag);
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
// Delta-q modulation based on variance
av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, sb_size);
const int delta_q_res = delta_q_info->delta_q_res;
int current_qindex = cm->quant_params.base_qindex;
if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL) {
if (DELTA_Q_PERCEPTUAL_MODULATION == 1) {
const int block_wavelet_energy_level =
av1_block_wavelet_energy_level(cpi, x, sb_size);
x->sb_energy_level = block_wavelet_energy_level;
current_qindex = av1_compute_q_from_energy_level_deltaq_mode(
cpi, block_wavelet_energy_level);
} else {
const int block_var_level = av1_log_block_var(cpi, x, sb_size);
x->sb_energy_level = block_var_level;
current_qindex =
av1_compute_q_from_energy_level_deltaq_mode(cpi, block_var_level);
}
} else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_OBJECTIVE &&
cpi->oxcf.algo_cfg.enable_tpl_model) {
// Setup deltaq based on tpl stats
current_qindex =
av1_get_q_for_deltaq_objective(cpi, td, NULL, sb_size, mi_row, mi_col);
} else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_PERCEPTUAL_AI) {
current_qindex = av1_get_sbq_perceptual_ai(cpi, sb_size, mi_row, mi_col);
} else if (cpi->oxcf.q_cfg.deltaq_mode == DELTA_Q_USER_RATING_BASED) {
current_qindex = av1_get_sbq_user_rating_based(cpi, mi_row, mi_col);
} else if (cpi->oxcf.q_cfg.enable_hdr_deltaq) {
current_qindex = av1_get_q_for_hdr(cpi, x, sb_size, mi_row, mi_col);
}
MACROBLOCKD *const xd = &x->e_mbd;
current_qindex = av1_adjust_q_from_delta_q_res(
delta_q_res, xd->current_base_qindex, current_qindex);
x->delta_qindex = current_qindex - cm->quant_params.base_qindex;
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
xd->mi[0]->current_qindex = current_qindex;
av1_init_plane_quantizers(cpi, x, xd->mi[0]->segment_id, 0);
// keep track of any non-zero delta-q used
td->deltaq_used |= (x->delta_qindex != 0);
if (cpi->oxcf.tool_cfg.enable_deltalf_mode) {
const int delta_lf_res = delta_q_info->delta_lf_res;
const int lfmask = ~(delta_lf_res - 1);
const int delta_lf_from_base =
((x->delta_qindex / 4 + delta_lf_res / 2) & lfmask);
const int8_t delta_lf =
(int8_t)clamp(delta_lf_from_base, -MAX_LOOP_FILTER, MAX_LOOP_FILTER);
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
const int mib_size = cm->seq_params->mib_size;
// pre-set the delta lf for loop filter. Note that this value is set
// before mi is assigned for each block in current superblock
for (int j = 0; j < AOMMIN(mib_size, mi_params->mi_rows - mi_row); j++) {
for (int k = 0; k < AOMMIN(mib_size, mi_params->mi_cols - mi_col); k++) {
const int grid_idx = get_mi_grid_idx(mi_params, mi_row + j, mi_col + k);
mi_params->mi_alloc[grid_idx].delta_lf_from_base = delta_lf;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) {
mi_params->mi_alloc[grid_idx].delta_lf[lf_id] = delta_lf;
}
}
}
}
}
static void init_ref_frame_space(AV1_COMP *cpi, ThreadData *td, int mi_row,
int mi_col) {
const AV1_COMMON *cm = &cpi->common;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
MACROBLOCK *x = &td->mb;
const int frame_idx = cpi->gf_frame_index;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
av1_zero(x->tpl_keep_ref_frame);
if (!av1_tpl_stats_ready(tpl_data, frame_idx)) return;
if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return;
if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return;
const int is_overlay =
cpi->ppi->gf_group.update_type[frame_idx] == OVERLAY_UPDATE;
if (is_overlay) {
memset(x->tpl_keep_ref_frame, 1, sizeof(x->tpl_keep_ref_frame));
return;
}
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
const int tpl_stride = tpl_frame->stride;
int64_t inter_cost[INTER_REFS_PER_FRAME] = { 0 };
const int step = 1 << block_mis_log2;
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
const int mi_row_end =
AOMMIN(mi_size_high[sb_size] + mi_row, mi_params->mi_rows);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
AOMMIN(coded_to_superres_mi(mi_col + mi_size_wide[sb_size],
cm->superres_scale_denominator),
mi_cols_sr);
const int row_step = step;
const int col_step_sr =
coded_to_superres_mi(step, cm->superres_scale_denominator);
for (int row = mi_row; row < mi_row_end; row += row_step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
const TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
int64_t tpl_pred_error[INTER_REFS_PER_FRAME] = { 0 };
// Find the winner ref frame idx for the current block
int64_t best_inter_cost = this_stats->pred_error[0];
int best_rf_idx = 0;
for (int idx = 1; idx < INTER_REFS_PER_FRAME; ++idx) {
if ((this_stats->pred_error[idx] < best_inter_cost) &&
(this_stats->pred_error[idx] != 0)) {
best_inter_cost = this_stats->pred_error[idx];
best_rf_idx = idx;
}
}
// tpl_pred_error is the pred_error reduction of best_ref w.r.t.
// LAST_FRAME.
tpl_pred_error[best_rf_idx] = this_stats->pred_error[best_rf_idx] -
this_stats->pred_error[LAST_FRAME - 1];
for (int rf_idx = 1; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx)
inter_cost[rf_idx] += tpl_pred_error[rf_idx];
}
}
int rank_index[INTER_REFS_PER_FRAME - 1];
for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) {
rank_index[idx] = idx + 1;
for (int i = idx; i > 0; --i) {
if (inter_cost[rank_index[i - 1]] > inter_cost[rank_index[i]]) {
const int tmp = rank_index[i - 1];
rank_index[i - 1] = rank_index[i];
rank_index[i] = tmp;
}
}
}
x->tpl_keep_ref_frame[INTRA_FRAME] = 1;
x->tpl_keep_ref_frame[LAST_FRAME] = 1;
int cutoff_ref = 0;
for (int idx = 0; idx < INTER_REFS_PER_FRAME - 1; ++idx) {
x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 1;
if (idx > 2) {
if (!cutoff_ref) {
// If the predictive coding gains are smaller than the previous more
// relevant frame over certain amount, discard this frame and all the
// frames afterwards.
if (llabs(inter_cost[rank_index[idx]]) <
llabs(inter_cost[rank_index[idx - 1]]) / 8 ||
inter_cost[rank_index[idx]] == 0)
cutoff_ref = 1;
}
if (cutoff_ref) x->tpl_keep_ref_frame[rank_index[idx] + LAST_FRAME] = 0;
}
}
}
static AOM_INLINE void adjust_rdmult_tpl_model(AV1_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col) {
const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size;
const int orig_rdmult = cpi->rd.RDMULT;
assert(IMPLIES(cpi->ppi->gf_group.size > 0,
cpi->gf_frame_index < cpi->ppi->gf_group.size));
const int gf_group_index = cpi->gf_frame_index;
if (cpi->oxcf.algo_cfg.enable_tpl_model && cpi->oxcf.q_cfg.aq_mode == NO_AQ &&
cpi->oxcf.q_cfg.deltaq_mode == NO_DELTA_Q && gf_group_index > 0 &&
cpi->ppi->gf_group.update_type[gf_group_index] == ARF_UPDATE) {
const int dr =
av1_get_rdmult_delta(cpi, sb_size, mi_row, mi_col, orig_rdmult);
x->rdmult = dr;
}
}
#endif // !CONFIG_REALTIME_ONLY
#if CONFIG_RT_ML_PARTITIONING
// Get a prediction(stored in x->est_pred) for the whole superblock.
static void get_estimated_pred(AV1_COMP *cpi, const TileInfo *const tile,
MACROBLOCK *x, int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int is_key_frame = frame_is_intra_only(cm);
MACROBLOCKD *xd = &x->e_mbd;
// TODO(kyslov) Extend to 128x128
assert(cm->seq_params->sb_size == BLOCK_64X64);
av1_set_offsets(cpi, tile, x, mi_row, mi_col, BLOCK_64X64);
if (!is_key_frame) {
MB_MODE_INFO *mi = xd->mi[0];
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME);
assert(yv12 != NULL);
av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col,
get_ref_scale_factors(cm, LAST_FRAME), 1);
mi->ref_frame[0] = LAST_FRAME;
mi->ref_frame[1] = NONE;
mi->bsize = BLOCK_64X64;
mi->mv[0].as_int = 0;
mi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]);
xd->plane[0].dst.buf = x->est_pred;
xd->plane[0].dst.stride = 64;
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
} else {
#if CONFIG_AV1_HIGHBITDEPTH
switch (xd->bd) {
case 8: memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0])); break;
case 10:
memset(x->est_pred, 128 * 4, 64 * 64 * sizeof(x->est_pred[0]));
break;
case 12:
memset(x->est_pred, 128 * 16, 64 * 64 * sizeof(x->est_pred[0]));
break;
}
#else
memset(x->est_pred, 128, 64 * 64 * sizeof(x->est_pred[0]));
#endif // CONFIG_VP9_HIGHBITDEPTH
}
}
#endif // CONFIG_RT_ML_PARTITIONING
#define AVG_CDF_WEIGHT_LEFT 3
#define AVG_CDF_WEIGHT_TOP_RIGHT 1
/*!\brief Encode a superblock (minimal RD search involved)
*
* \ingroup partition_search
* Encodes the superblock by a pre-determined partition pattern, only minor
* rd-based searches are allowed to adjust the initial pattern. It is only used
* by realtime encoding.
*/
static AOM_INLINE void encode_nonrd_sb(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp,
const int mi_row, const int mi_col,
const int seg_skip) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
const SPEED_FEATURES *const sf = &cpi->sf;
const TileInfo *const tile_info = &tile_data->tile_info;
MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
PC_TREE *const pc_root = td->rt_pc_root;
#if CONFIG_RT_ML_PARTITIONING
if (sf->part_sf.partition_search_type == ML_BASED_PARTITION) {
RD_STATS dummy_rdc;
get_estimated_pred(cpi, tile_info, x, mi_row, mi_col);
av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col,
BLOCK_64X64, &dummy_rdc, 1, INT64_MAX, pc_root);
return;
}
#endif
// Set the partition
if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) {
// set a fixed-size partition
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
const BLOCK_SIZE bsize =
seg_skip ? sb_size : sf->part_sf.fixed_partition_size;
av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
} else if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) {
// set a variance-based partition
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col);
}
assert(sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip ||
sf->part_sf.partition_search_type == VAR_BASED_PARTITION);
set_cb_offsets(td->mb.cb_offset, 0, 0);
// Initialize the flag to skip cdef to 1.
const int block64_in_sb = (sb_size == BLOCK_128X128) ? 2 : 1;
if (sf->rt_sf.skip_cdef_sb) {
// If 128x128 block is used, we need to set the flag for all 4 64x64 sub
// "blocks".
for (int r = 0; r < block64_in_sb; ++r) {
for (int c = 0; c < block64_in_sb; ++c) {
const int idx_in_sb =
r * MI_SIZE_64X64 * cm->mi_params.mi_stride + c * MI_SIZE_64X64;
if (mi[idx_in_sb]) mi[idx_in_sb]->cdef_strength = 1;
}
}
}
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, nonrd_use_partition_time);
#endif
av1_nonrd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
pc_root);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, nonrd_use_partition_time);
#endif
if (sf->rt_sf.skip_cdef_sb && block64_in_sb == 2) {
// If 128x128 block is used, we need to set the flag for all 4 64x64 sub
// "blocks".
const int skip = mi[0]->cdef_strength;
for (int r = 0; r < block64_in_sb; ++r) {
for (int c = 0; c < block64_in_sb; ++c) {
const int idx_in_sb =
r * MI_SIZE_64X64 * cm->mi_params.mi_stride + c * MI_SIZE_64X64;
if (mi[idx_in_sb]) mi[idx_in_sb]->cdef_strength = skip;
}
}
}
}
// This function initializes the stats for encode_rd_sb.
static INLINE void init_encode_rd_sb(AV1_COMP *cpi, ThreadData *td,
const TileDataEnc *tile_data,
SIMPLE_MOTION_DATA_TREE *sms_root,
RD_STATS *rd_cost, int mi_row, int mi_col,
int gather_tpl_data) {
const AV1_COMMON *cm = &cpi->common;
const TileInfo *tile_info = &tile_data->tile_info;
MACROBLOCK *x = &td->mb;
const SPEED_FEATURES *sf = &cpi->sf;
const int use_simple_motion_search =
(sf->part_sf.simple_motion_search_split ||
sf->part_sf.simple_motion_search_prune_rect ||
sf->part_sf.simple_motion_search_early_term_none ||
sf->part_sf.ml_early_term_after_part_split_level) &&
!frame_is_intra_only(cm);
if (use_simple_motion_search) {
av1_init_simple_motion_search_mvs_for_sb(cpi, tile_info, x, sms_root,
mi_row, mi_col);
}
#if !CONFIG_REALTIME_ONLY
if (!(has_no_stats_stage(cpi) && cpi->oxcf.mode == REALTIME &&
cpi->oxcf.gf_cfg.lag_in_frames == 0)) {
init_ref_frame_space(cpi, td, mi_row, mi_col);
x->sb_energy_level = 0;
x->part_search_info.cnn_output_valid = 0;
if (gather_tpl_data) {
if (cm->delta_q_info.delta_q_present_flag) {
const int num_planes = av1_num_planes(cm);
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
setup_delta_q(cpi, td, x, tile_info, mi_row, mi_col, num_planes);
av1_tpl_rdmult_setup_sb(cpi, x, sb_size, mi_row, mi_col);
}
// TODO(jingning): revisit this function.
if (cpi->oxcf.algo_cfg.enable_tpl_model && 0) {
adjust_rdmult_tpl_model(cpi, x, mi_row, mi_col);
}
}
}
#else
(void)tile_info;
(void)mi_row;
(void)mi_col;
(void)gather_tpl_data;
#endif
x->txfm_search_params.mode_eval_type = DEFAULT_EVAL;
reset_mb_rd_record(x->txfm_search_info.mb_rd_record);
av1_zero(x->picked_ref_frames_mask);
av1_invalid_rd_stats(rd_cost);
}
/*!\brief Encode a superblock (RD-search-based)
*
* \ingroup partition_search
* Conducts partition search for a superblock, based on rate-distortion costs,
* from scratch or adjusting from a pre-calculated partition pattern.
*/
static AOM_INLINE void encode_rd_sb(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, TokenExtra **tp,
const int mi_row, const int mi_col,
const int seg_skip) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCK *const x = &td->mb;
const SPEED_FEATURES *const sf = &cpi->sf;
const TileInfo *const tile_info = &tile_data->tile_info;
MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
const int num_planes = av1_num_planes(cm);
int dummy_rate;
int64_t dummy_dist;
RD_STATS dummy_rdc;
SIMPLE_MOTION_DATA_TREE *const sms_root = td->sms_root;
#if CONFIG_REALTIME_ONLY
(void)seg_skip;
#endif // CONFIG_REALTIME_ONLY
init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row, mi_col,
1);
// Encode the superblock
if (sf->part_sf.partition_search_type == VAR_BASED_PARTITION) {
// partition search starting from a variance-based partition
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
av1_choose_var_based_partitioning(cpi, tile_info, td, x, mi_row, mi_col);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rd_use_partition_time);
#endif
PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size);
av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
&dummy_rate, &dummy_dist, 1, pc_root);
av1_free_pc_tree_recursive(pc_root, num_planes, 0, 0);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rd_use_partition_time);
#endif
}
#if !CONFIG_REALTIME_ONLY
else if (sf->part_sf.partition_search_type == FIXED_PARTITION || seg_skip) {
// partition search by adjusting a fixed-size partition
av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, sb_size);
const BLOCK_SIZE bsize =
seg_skip ? sb_size : sf->part_sf.fixed_partition_size;
av1_set_fixed_partitioning(cpi, tile_info, mi, mi_row, mi_col, bsize);
PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size);
av1_rd_use_partition(cpi, td, tile_data, mi, tp, mi_row, mi_col, sb_size,
&dummy_rate, &dummy_dist, 1, pc_root);
av1_free_pc_tree_recursive(pc_root, num_planes, 0, 0);
} else {
// The most exhaustive recursive partition search
SuperBlockEnc *sb_enc = &x->sb_enc;
// No stats for overlay frames. Exclude key frame.
av1_get_tpl_stats_sb(cpi, sb_size, mi_row, mi_col, sb_enc);
// Reset the tree for simple motion search data
av1_reset_simple_motion_tree_partition(sms_root, sb_size);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, rd_pick_partition_time);
#endif
// Estimate the maximum square partition block size, which will be used
// as the starting block size for partitioning the sb
set_max_min_partition_size(sb_enc, cpi, x, sf, sb_size, mi_row, mi_col);
// The superblock can be searched only once, or twice consecutively for
// better quality. Note that the meaning of passes here is different from
// the general concept of 1-pass/2-pass encoders.
const int num_passes =
cpi->oxcf.unit_test_cfg.sb_multipass_unit_test ? 2 : 1;
if (num_passes == 1) {
#if CONFIG_PARTITION_SEARCH_ORDER
if (cpi->ext_part_controller.ready && !frame_is_intra_only(cm)) {
av1_reset_part_sf(&cpi->sf.part_sf);
av1_reset_sf_for_ext_part(cpi);
RD_STATS this_rdc;
av1_rd_partition_search(cpi, td, tile_data, tp, sms_root, mi_row,
mi_col, sb_size, &this_rdc);
} else {
PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size);
av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
&dummy_rdc, dummy_rdc, pc_root, sms_root, NULL,
SB_SINGLE_PASS, NULL);
}
#else
PC_TREE *const pc_root = av1_alloc_pc_tree_node(sb_size);
av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
&dummy_rdc, dummy_rdc, pc_root, sms_root, NULL,
SB_SINGLE_PASS, NULL);
#endif // CONFIG_PARTITION_SEARCH_ORDER
} else {
// First pass
SB_FIRST_PASS_STATS sb_fp_stats;
av1_backup_sb_state(&sb_fp_stats, cpi, td, tile_data, mi_row, mi_col);
PC_TREE *const pc_root_p0 = av1_alloc_pc_tree_node(sb_size);
av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
&dummy_rdc, dummy_rdc, pc_root_p0, sms_root, NULL,
SB_DRY_PASS, NULL);
// Second pass
init_encode_rd_sb(cpi, td, tile_data, sms_root, &dummy_rdc, mi_row,
mi_col, 0);
av1_reset_mbmi(&cm->mi_params, sb_size, mi_row, mi_col);
av1_reset_simple_motion_tree_partition(sms_root, sb_size);
av1_restore_sb_state(&sb_fp_stats, cpi, td, tile_data, mi_row, mi_col);
PC_TREE *const pc_root_p1 = av1_alloc_pc_tree_node(sb_size);
av1_rd_pick_partition(cpi, td, tile_data, tp, mi_row, mi_col, sb_size,
&dummy_rdc, dummy_rdc, pc_root_p1, sms_root, NULL,
SB_WET_PASS, NULL);
}
// Reset to 0 so that it wouldn't be used elsewhere mistakenly.
sb_enc->tpl_data_count = 0;
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, rd_pick_partition_time);
#endif
}
#endif // !CONFIG_REALTIME_ONLY
// Update the inter rd model
// TODO(angiebird): Let inter_mode_rd_model_estimation support multi-tile.
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1 &&
cm->tiles.cols == 1 && cm->tiles.rows == 1) {
av1_inter_mode_data_fit(tile_data, x->rdmult);
}
}
/*!\brief Determine whether grading content can be skipped based on sad stat
*
* \ingroup partition_search
* \callgraph
* \callergraph
*/
static AOM_INLINE bool is_calc_src_content_needed(AV1_COMP *cpi,
MACROBLOCK *const x,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
bool do_calc_src_content = true;
if (cpi->oxcf.speed < 9) return do_calc_src_content;
// TODO(yunqing): Need to consider 4 64x64 results if later this is used for
// 128x128 sb size.
if (cpi->src_sad_blk_64x64 != NULL && AOMMIN(cm->width, cm->height) < 360) {
const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128)
? (cm->seq_params->mib_size >> 1)
: cm->seq_params->mib_size;
const int sb_cols =
(cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
const int sbi_col = mi_col / sb_size_by_mb;
const int sbi_row = mi_row / sb_size_by_mb;
// The threshold is determined based on kLowSad and kHighSad threshold and
// test results.
const uint64_t thresh_low = 15000;
const uint64_t thresh_high = 40000;
const uint64_t blk_sad =
cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols];
if (blk_sad > thresh_low && blk_sad < thresh_high) {
do_calc_src_content = false;
// Note: set x->content_state_sb.source_sad_rd as well if this is extended
// to RTC rd path.
x->content_state_sb.source_sad_nonrd = kMedSad;
}
}
return do_calc_src_content;
}
/*!\brief Determine whether grading content is needed based on sf and frame stat
*
* \ingroup partition_search
* \callgraph
* \callergraph
*/
// TODO(any): consolidate sfs to make interface cleaner
static AOM_INLINE void grade_source_content_sb(AV1_COMP *cpi,
MACROBLOCK *const x,
TileDataEnc *tile_data,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
bool calc_src_content = false;
if (cpi->sf.rt_sf.source_metrics_sb_nonrd &&
cpi->svc.number_spatial_layers <= 1 &&
cm->current_frame.frame_type != KEY_FRAME) {
if (!cpi->sf.rt_sf.check_scene_detection || cpi->rc.frame_source_sad > 0) {
calc_src_content = is_calc_src_content_needed(cpi, x, mi_row, mi_col);
} else {
x->content_state_sb.source_sad_nonrd = kZeroSad;
}
} else if ((cpi->sf.rt_sf.var_part_based_on_qidx >= 1) &&
(cm->width * cm->height <= 352 * 288)) {
if (cpi->rc.frame_source_sad > 0)
calc_src_content = true;
else
x->content_state_sb.source_sad_rd = kZeroSad;
}
if (calc_src_content)
av1_source_content_sb(cpi, x, tile_data, mi_row, mi_col);
}
/*!\brief Encode a superblock row by breaking it into superblocks
*
* \ingroup partition_search
* \callgraph
* \callergraph
* Do partition and mode search for an sb row: one row of superblocks filling up
* the width of the current tile.
*/
static AOM_INLINE void encode_sb_row(AV1_COMP *cpi, ThreadData *td,
TileDataEnc *tile_data, int mi_row,
TokenExtra **tp) {
AV1_COMMON *const cm = &cpi->common;
const TileInfo *const tile_info = &tile_data->tile_info;
MultiThreadInfo *const mt_info = &cpi->mt_info;
AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
AV1EncRowMultiThreadSync *const row_mt_sync = &tile_data->row_mt_sync;
bool row_mt_enabled = mt_info->row_mt_enabled;
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
const int sb_cols_in_tile = av1_get_sb_cols_in_tile(cm, tile_info);
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
const int mib_size = cm->seq_params->mib_size;
const int mib_size_log2 = cm->seq_params->mib_size_log2;
const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, encode_sb_row_time);
#endif
// Initialize the left context for the new SB row
av1_zero_left_context(xd);
// Reset delta for quantizer and loof filters at the beginning of every tile
if (mi_row == tile_info->mi_row_start || row_mt_enabled) {
if (cm->delta_q_info.delta_q_present_flag)
xd->current_base_qindex = cm->quant_params.base_qindex;
if (cm->delta_q_info.delta_lf_present_flag) {
av1_reset_loop_filter_delta(xd, av1_num_planes(cm));
}
}
reset_thresh_freq_fact(x);
// Code each SB in the row
for (int mi_col = tile_info->mi_col_start, sb_col_in_tile = 0;
mi_col < tile_info->mi_col_end; mi_col += mib_size, sb_col_in_tile++) {
// In realtime/allintra mode and when frequency of cost updates is off/tile,
// wait for the top superblock to finish encoding. Otherwise, wait for the
// top-right superblock to finish encoding.
enc_row_mt->sync_read_ptr(
row_mt_sync, sb_row, sb_col_in_tile - delay_wait_for_top_right_sb(cpi));
const int update_cdf = tile_data->allow_update_cdf && row_mt_enabled;
if (update_cdf && (tile_info->mi_row_start != mi_row)) {
if ((tile_info->mi_col_start == mi_col)) {
// restore frame context at the 1st column sb
memcpy(xd->tile_ctx, x->row_ctx, sizeof(*xd->tile_ctx));
} else {
// update context
int wt_left = AVG_CDF_WEIGHT_LEFT;
int wt_tr = AVG_CDF_WEIGHT_TOP_RIGHT;
if (tile_info->mi_col_end > (mi_col + mib_size))
av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile,
wt_left, wt_tr);
else
av1_avg_cdf_symbols(xd->tile_ctx, x->row_ctx + sb_col_in_tile - 1,
wt_left, wt_tr);
}
}
// Update the rate cost tables for some symbols
av1_set_cost_upd_freq(cpi, td, tile_info, mi_row, mi_col);
// Reset color coding related parameters
x->color_sensitivity_sb[0] = 0;
x->color_sensitivity_sb[1] = 0;
x->color_sensitivity_sb_g[0] = 0;
x->color_sensitivity_sb_g[1] = 0;
x->color_sensitivity[0] = 0;
x->color_sensitivity[1] = 0;
x->content_state_sb.source_sad_nonrd = kMedSad;
x->content_state_sb.source_sad_rd = kMedSad;
x->content_state_sb.lighting_change = 0;
x->content_state_sb.low_sumdiff = 0;
x->force_zeromv_skip_for_sb = 0;
if (cpi->oxcf.mode == ALLINTRA) {
x->intra_sb_rdmult_modifier = 128;
}
xd->cur_frame_force_integer_mv = cm->features.cur_frame_force_integer_mv;
x->source_variance = UINT_MAX;
td->mb.cb_coef_buff = av1_get_cb_coeff_buffer(cpi, mi_row, mi_col);
// Get segment id and skip flag
const struct segmentation *const seg = &cm->seg;
int seg_skip = 0;
if (seg->enabled) {
const uint8_t *const map =
seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
const int segment_id =
map ? get_segment_id(&cm->mi_params, map, sb_size, mi_row, mi_col)
: 0;
seg_skip = segfeature_active(seg, segment_id, SEG_LVL_SKIP);
}
produce_gradients_for_sb(cpi, x, sb_size, mi_row, mi_col);
init_src_var_info_of_4x4_sub_blocks(cpi, x->src_var_info_of_4x4_sub_blocks,
sb_size);
// Grade the temporal variation of the sb, the grade will be used to decide
// fast mode search strategy for coding blocks
grade_source_content_sb(cpi, x, tile_data, mi_row, mi_col);
// encode the superblock
if (use_nonrd_mode) {
encode_nonrd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip);
} else {
encode_rd_sb(cpi, td, tile_data, tp, mi_row, mi_col, seg_skip);
}
// Update the top-right context in row_mt coding
if (update_cdf && (tile_info->mi_row_end > (mi_row + mib_size))) {
if (sb_cols_in_tile == 1)
memcpy(x->row_ctx, xd->tile_ctx, sizeof(*xd->tile_ctx));
else if (sb_col_in_tile >= 1)
memcpy(x->row_ctx + sb_col_in_tile - 1, xd->tile_ctx,
sizeof(*xd->tile_ctx));
}
enc_row_mt->sync_write_ptr(row_mt_sync, sb_row, sb_col_in_tile,
sb_cols_in_tile);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, encode_sb_row_time);
#endif
}
static AOM_INLINE void init_encode_frame_mb_context(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &cpi->td.mb;
MACROBLOCKD *const xd = &x->e_mbd;
// Copy data over into macro block data structures.
av1_setup_src_planes(x, cpi->source, 0, 0, num_planes,
cm->seq_params->sb_size);
av1_setup_block_planes(xd, cm->seq_params->subsampling_x,
cm->seq_params->subsampling_y, num_planes);
}
void av1_alloc_tile_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
if (cpi->tile_data != NULL) aom_free(cpi->tile_data);
CHECK_MEM_ERROR(
cm, cpi->tile_data,
aom_memalign(32, tile_cols * tile_rows * sizeof(*cpi->tile_data)));
cpi->allocated_tiles = tile_cols * tile_rows;
}
void av1_init_tile_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int tile_col, tile_row;
TokenInfo *const token_info = &cpi->token_info;
TokenExtra *pre_tok = token_info->tile_tok[0][0];
TokenList *tplist = token_info->tplist[0][0];
unsigned int tile_tok = 0;
int tplist_count = 0;
if (!is_stat_generation_stage(cpi) &&
cm->features.allow_screen_content_tools) {
// Number of tokens for which token info needs to be allocated.
unsigned int tokens_required =
get_token_alloc(cm->mi_params.mb_rows, cm->mi_params.mb_cols,
MAX_SB_SIZE_LOG2, num_planes);
// Allocate/reallocate memory for token related info if the number of tokens
// required is more than the number of tokens already allocated. This could
// occur in case of the following:
// 1) If the memory is not yet allocated
// 2) If the frame dimensions have changed
const bool realloc_tokens = tokens_required > token_info->tokens_allocated;
if (realloc_tokens) {
free_token_info(token_info);
alloc_token_info(cm, token_info, tokens_required);
pre_tok = token_info->tile_tok[0][0];
tplist = token_info->tplist[0][0];
}
}
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const tile_data =
&cpi->tile_data[tile_row * tile_cols + tile_col];
TileInfo *const tile_info = &tile_data->tile_info;
av1_tile_init(tile_info, cm, tile_row, tile_col);
tile_data->firstpass_top_mv = kZeroMv;
tile_data->abs_sum_level = 0;
if (is_token_info_allocated(token_info)) {
token_info->tile_tok[tile_row][tile_col] = pre_tok + tile_tok;
pre_tok = token_info->tile_tok[tile_row][tile_col];
tile_tok = allocated_tokens(
tile_info, cm->seq_params->mib_size_log2 + MI_SIZE_LOG2,
num_planes);
token_info->tplist[tile_row][tile_col] = tplist + tplist_count;
tplist = token_info->tplist[tile_row][tile_col];
tplist_count = av1_get_sb_rows_in_tile(cm, tile_info);
}
tile_data->allow_update_cdf = !cm->tiles.large_scale;
tile_data->allow_update_cdf = tile_data->allow_update_cdf &&
!cm->features.disable_cdf_update &&
!delay_wait_for_top_right_sb(cpi);
tile_data->tctx = *cm->fc;
}
}
}
// Populate the start palette token info prior to encoding an SB row.
static AOM_INLINE void get_token_start(AV1_COMP *cpi, const TileInfo *tile_info,
int tile_row, int tile_col, int mi_row,
TokenExtra **tp) {
const TokenInfo *token_info = &cpi->token_info;
if (!is_token_info_allocated(token_info)) return;
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
TokenList *const tplist = cpi->token_info.tplist[tile_row][tile_col];
const int sb_row_in_tile =
(mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2;
get_start_tok(cpi, tile_row, tile_col, mi_row, tp,
cm->seq_params->mib_size_log2 + MI_SIZE_LOG2, num_planes);
assert(tplist != NULL);
tplist[sb_row_in_tile].start = *tp;
}
// Populate the token count after encoding an SB row.
static AOM_INLINE void populate_token_count(AV1_COMP *cpi,
const TileInfo *tile_info,
int tile_row, int tile_col,
int mi_row, TokenExtra *tok) {
const TokenInfo *token_info = &cpi->token_info;
if (!is_token_info_allocated(token_info)) return;
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
TokenList *const tplist = token_info->tplist[tile_row][tile_col];
const int sb_row_in_tile =
(mi_row - tile_info->mi_row_start) >> cm->seq_params->mib_size_log2;
const int tile_mb_cols =
(tile_info->mi_col_end - tile_info->mi_col_start + 2) >> 2;
const int num_mb_rows_in_sb =
((1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2)) + 8) >> 4;
tplist[sb_row_in_tile].count =
(unsigned int)(tok - tplist[sb_row_in_tile].start);
assert((unsigned int)(tok - tplist[sb_row_in_tile].start) <=
get_token_alloc(num_mb_rows_in_sb, tile_mb_cols,
cm->seq_params->mib_size_log2 + MI_SIZE_LOG2,
num_planes));
(void)num_planes;
(void)tile_mb_cols;
(void)num_mb_rows_in_sb;
}
/*!\brief Encode a superblock row
*
* \ingroup partition_search
*/
void av1_encode_sb_row(AV1_COMP *cpi, ThreadData *td, int tile_row,
int tile_col, int mi_row) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
TileDataEnc *this_tile = &cpi->tile_data[tile_row * tile_cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
TokenExtra *tok = NULL;
get_token_start(cpi, tile_info, tile_row, tile_col, mi_row, &tok);
encode_sb_row(cpi, td, this_tile, mi_row, &tok);
populate_token_count(cpi, tile_info, tile_row, tile_col, mi_row, tok);
}
/*!\brief Encode a tile
*
* \ingroup partition_search
*/
void av1_encode_tile(AV1_COMP *cpi, ThreadData *td, int tile_row,
int tile_col) {
AV1_COMMON *const cm = &cpi->common;
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
const TileInfo *const tile_info = &this_tile->tile_info;
if (!cpi->sf.rt_sf.use_nonrd_pick_mode) av1_inter_mode_data_init(this_tile);
av1_zero_above_context(cm, &td->mb.e_mbd, tile_info->mi_col_start,
tile_info->mi_col_end, tile_row);
av1_init_above_context(&cm->above_contexts, av1_num_planes(cm), tile_row,
&td->mb.e_mbd);
if (cpi->oxcf.intra_mode_cfg.enable_cfl_intra)
cfl_init(&td->mb.e_mbd.cfl, cm->seq_params);
if (td->mb.txfm_search_info.mb_rd_record != NULL) {
av1_crc32c_calculator_init(
&td->mb.txfm_search_info.mb_rd_record->crc_calculator);
}
for (int mi_row = tile_info->mi_row_start; mi_row < tile_info->mi_row_end;
mi_row += cm->seq_params->mib_size) {
av1_encode_sb_row(cpi, td, tile_row, tile_col, mi_row);
}
this_tile->abs_sum_level = td->abs_sum_level;
}
/*!\brief Break one frame into tiles and encode the tiles
*
* \ingroup partition_search
*
* \param[in] cpi Top-level encoder structure
*/
static AOM_INLINE void encode_tiles(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int tile_cols = cm->tiles.cols;
const int tile_rows = cm->tiles.rows;
int tile_col, tile_row;
MACROBLOCK *const mb = &cpi->td.mb;
assert(IMPLIES(cpi->tile_data == NULL,
cpi->allocated_tiles < tile_cols * tile_rows));
if (cpi->allocated_tiles < tile_cols * tile_rows) av1_alloc_tile_data(cpi);
av1_init_tile_data(cpi);
av1_alloc_mb_data(cpi, mb);
for (tile_row = 0; tile_row < tile_rows; ++tile_row) {
for (tile_col = 0; tile_col < tile_cols; ++tile_col) {
TileDataEnc *const this_tile =
&cpi->tile_data[tile_row * cm->tiles.cols + tile_col];
cpi->td.intrabc_used = 0;
cpi->td.deltaq_used = 0;
cpi->td.abs_sum_level = 0;
cpi->td.rd_counts.seg_tmp_pred_cost[0] = 0;
cpi->td.rd_counts.seg_tmp_pred_cost[1] = 0;
cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx;
cpi->td.mb.tile_pb_ctx = &this_tile->tctx;
av1_init_rtc_counters(&cpi->td.mb);
av1_encode_tile(cpi, &cpi->td, tile_row, tile_col);
if (!frame_is_intra_only(&cpi->common))
av1_accumulate_rtc_counters(cpi, &cpi->td.mb);
cpi->intrabc_used |= cpi->td.intrabc_used;
cpi->deltaq_used |= cpi->td.deltaq_used;
}
}
av1_dealloc_mb_data(cm, mb);
}
// Set the relative distance of a reference frame w.r.t. current frame
static AOM_INLINE void set_rel_frame_dist(
const AV1_COMMON *const cm, RefFrameDistanceInfo *const ref_frame_dist_info,
const int ref_frame_flags) {
MV_REFERENCE_FRAME ref_frame;
int min_past_dist = INT32_MAX, min_future_dist = INT32_MAX;
ref_frame_dist_info->nearest_past_ref = NONE_FRAME;
ref_frame_dist_info->nearest_future_ref = NONE_FRAME;
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = 0;
if (ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
int dist = av1_encoder_get_relative_dist(
cm->cur_frame->ref_display_order_hint[ref_frame - LAST_FRAME],
cm->current_frame.display_order_hint);
ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] = dist;
// Get the nearest ref_frame in the past
if (abs(dist) < min_past_dist && dist < 0) {
ref_frame_dist_info->nearest_past_ref = ref_frame;
min_past_dist = abs(dist);
}
// Get the nearest ref_frame in the future
if (dist < min_future_dist && dist > 0) {
ref_frame_dist_info->nearest_future_ref = ref_frame;
min_future_dist = dist;
}
}
}
}
static INLINE int refs_are_one_sided(const AV1_COMMON *cm) {
assert(!frame_is_intra_only(cm));
int one_sided_refs = 1;
const int cur_display_order_hint = cm->current_frame.display_order_hint;
for (int ref = LAST_FRAME; ref <= ALTREF_FRAME; ++ref) {
const RefCntBuffer *const buf = get_ref_frame_buf(cm, ref);
if (buf == NULL) continue;
if (av1_encoder_get_relative_dist(buf->display_order_hint,
cur_display_order_hint) > 0) {
one_sided_refs = 0; // bwd reference
break;
}
}
return one_sided_refs;
}
static INLINE void get_skip_mode_ref_offsets(const AV1_COMMON *cm,
int ref_order_hint[2]) {
const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info;
ref_order_hint[0] = ref_order_hint[1] = 0;
if (!skip_mode_info->skip_mode_allowed) return;
const RefCntBuffer *const buf_0 =
get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_0);
const RefCntBuffer *const buf_1 =
get_ref_frame_buf(cm, LAST_FRAME + skip_mode_info->ref_frame_idx_1);
assert(buf_0 != NULL && buf_1 != NULL);
ref_order_hint[0] = buf_0->order_hint;
ref_order_hint[1] = buf_1->order_hint;
}
static int check_skip_mode_enabled(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
av1_setup_skip_mode_allowed(cm);
if (!cm->current_frame.skip_mode_info.skip_mode_allowed) return 0;
// Turn off skip mode if the temporal distances of the reference pair to the
// current frame are different by more than 1 frame.
const int cur_offset = (int)cm->current_frame.order_hint;
int ref_offset[2];
get_skip_mode_ref_offsets(cm, ref_offset);
const int cur_to_ref0 = get_relative_dist(&cm->seq_params->order_hint_info,
cur_offset, ref_offset[0]);
const int cur_to_ref1 = abs(get_relative_dist(
&cm->seq_params->order_hint_info, cur_offset, ref_offset[1]));
if (abs(cur_to_ref0 - cur_to_ref1) > 1) return 0;
// High Latency: Turn off skip mode if all refs are fwd.
if (cpi->all_one_sided_refs && cpi->oxcf.gf_cfg.lag_in_frames > 0) return 0;
static const int flag_list[REF_FRAMES] = { 0,
AOM_LAST_FLAG,
AOM_LAST2_FLAG,
AOM_LAST3_FLAG,
AOM_GOLD_FLAG,
AOM_BWD_FLAG,
AOM_ALT2_FLAG,
AOM_ALT_FLAG };
const int ref_frame[2] = {
cm->current_frame.skip_mode_info.ref_frame_idx_0 + LAST_FRAME,
cm->current_frame.skip_mode_info.ref_frame_idx_1 + LAST_FRAME
};
if (!(cpi->ref_frame_flags & flag_list[ref_frame[0]]) ||
!(cpi->ref_frame_flags & flag_list[ref_frame[1]]))
return 0;
return 1;
}
static AOM_INLINE void set_default_interp_skip_flags(
const AV1_COMMON *cm, InterpSearchFlags *interp_search_flags) {
const int num_planes = av1_num_planes(cm);
interp_search_flags->default_interp_skip_flags =
(num_planes == 1) ? INTERP_SKIP_LUMA_EVAL_CHROMA
: INTERP_SKIP_LUMA_SKIP_CHROMA;
}
static AOM_INLINE void setup_prune_ref_frame_mask(AV1_COMP *cpi) {
if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp ||
cpi->sf.inter_sf.disable_onesided_comp) &&
cpi->all_one_sided_refs) {
// Disable all compound references
cpi->prune_ref_frame_mask = (1 << MODE_CTX_REF_FRAMES) - (1 << REF_FRAMES);
} else if (!cpi->sf.rt_sf.use_nonrd_pick_mode &&
cpi->sf.inter_sf.selective_ref_frame >= 2) {
AV1_COMMON *const cm = &cpi->common;
const int cur_frame_display_order_hint =
cm->current_frame.display_order_hint;
unsigned int *ref_display_order_hint =
cm->cur_frame->ref_display_order_hint;
const int arf2_dist = av1_encoder_get_relative_dist(
ref_display_order_hint[ALTREF2_FRAME - LAST_FRAME],
cur_frame_display_order_hint);
const int bwd_dist = av1_encoder_get_relative_dist(
ref_display_order_hint[BWDREF_FRAME - LAST_FRAME],
cur_frame_display_order_hint);
for (int ref_idx = REF_FRAMES; ref_idx < MODE_CTX_REF_FRAMES; ++ref_idx) {
MV_REFERENCE_FRAME rf[2];
av1_set_ref_frame(rf, ref_idx);
if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) ||
!(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]])) {
continue;
}
if (!cpi->all_one_sided_refs) {
int ref_dist[2];
for (int i = 0; i < 2; ++i) {
ref_dist[i] = av1_encoder_get_relative_dist(
ref_display_order_hint[rf[i] - LAST_FRAME],
cur_frame_display_order_hint);
}
// One-sided compound is used only when all reference frames are
// one-sided.
if ((ref_dist[0] > 0) == (ref_dist[1] > 0)) {
cpi->prune_ref_frame_mask |= 1 << ref_idx;
}
}
if (cpi->sf.inter_sf.selective_ref_frame >= 4 &&
(rf[0] == ALTREF2_FRAME || rf[1] == ALTREF2_FRAME) &&
(cpi->ref_frame_flags & av1_ref_frame_flag_list[BWDREF_FRAME])) {
// Check if both ALTREF2_FRAME and BWDREF_FRAME are future references.
if (arf2_dist > 0 && bwd_dist > 0 && bwd_dist <= arf2_dist) {
// Drop ALTREF2_FRAME as a reference if BWDREF_FRAME is a closer
// reference to the current frame than ALTREF2_FRAME
cpi->prune_ref_frame_mask |= 1 << ref_idx;
}
}
}
}
}
static int allow_deltaq_mode(AV1_COMP *cpi) {
#if !CONFIG_REALTIME_ONLY
AV1_COMMON *const cm = &cpi->common;
BLOCK_SIZE sb_size = cm->seq_params->sb_size;
int sbs_wide = mi_size_wide[sb_size];
int sbs_high = mi_size_high[sb_size];
int64_t delta_rdcost = 0;
for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += sbs_high) {
for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += sbs_wide) {
int64_t this_delta_rdcost = 0;
av1_get_q_for_deltaq_objective(cpi, &cpi->td, &this_delta_rdcost, sb_size,
mi_row, mi_col);
delta_rdcost += this_delta_rdcost;
}
}
return delta_rdcost < 0;
#else
(void)cpi;
return 1;
#endif // !CONFIG_REALTIME_ONLY
}
#define FORCE_ZMV_SKIP_128X128_BLK_DIFF 10000
#define FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF 4
// Populates block level thresholds for force zeromv-skip decision
static void populate_thresh_to_force_zeromv_skip(AV1_COMP *cpi) {
if (cpi->sf.rt_sf.part_early_exit_zeromv == 0) return;
// Threshold for forcing zeromv-skip decision is as below:
// For 128x128 blocks, threshold is 10000 and per pixel threshold is 0.6103.
// For 64x64 blocks, threshold is 5000 and per pixel threshold is 1.221
// allowing slightly higher error for smaller blocks.
// Per Pixel Threshold of 64x64 block Area of 64x64 block 1 1
// ------------------------------------=sqrt(---------------------)=sqrt(-)=-
// Per Pixel Threshold of 128x128 block Area of 128x128 block 4 2
// Thus, per pixel thresholds for blocks of size 32x32, 16x16,... can be
// chosen as 2.442, 4.884,.... As the per pixel error tends to be higher for
// small blocks, the same is clipped to 4.
const unsigned int thresh_exit_128x128_part = FORCE_ZMV_SKIP_128X128_BLK_DIFF;
const int num_128x128_pix =
block_size_wide[BLOCK_128X128] * block_size_high[BLOCK_128X128];
for (BLOCK_SIZE bsize = BLOCK_4X4; bsize < BLOCK_SIZES_ALL; bsize++) {
const int num_block_pix = block_size_wide[bsize] * block_size_high[bsize];
// Calculate the threshold for zeromv-skip decision based on area of the
// partition
unsigned int thresh_exit_part_blk =
(unsigned int)(thresh_exit_128x128_part *
sqrt((double)num_block_pix / num_128x128_pix) +
0.5);
thresh_exit_part_blk = AOMMIN(
thresh_exit_part_blk,
(unsigned int)(FORCE_ZMV_SKIP_MAX_PER_PIXEL_DIFF * num_block_pix));
cpi->zeromv_skip_thresh_exit_part[bsize] = thresh_exit_part_blk;
}
}
/*!\brief Encoder setup(only for the current frame), encoding, and recontruction
* for a single frame
*
* \ingroup high_level_algo
*/
static AOM_INLINE void encode_frame_internal(AV1_COMP *cpi) {
ThreadData *const td = &cpi->td;
MACROBLOCK *const x = &td->mb;
AV1_COMMON *const cm = &cpi->common;
CommonModeInfoParams *const mi_params = &cm->mi_params;
FeatureFlags *const features = &cm->features;
MACROBLOCKD *const xd = &x->e_mbd;
RD_COUNTS *const rdc = &cpi->td.rd_counts;
#if CONFIG_FPMT_TEST
FrameProbInfo *const temp_frame_probs = &cpi->ppi->temp_frame_probs;
FrameProbInfo *const temp_frame_probs_simulation =
&cpi->ppi->temp_frame_probs_simulation;
#endif
FrameProbInfo *const frame_probs = &cpi->ppi->frame_probs;
IntraBCHashInfo *const intrabc_hash_info = &x->intrabc_hash_info;
MultiThreadInfo *const mt_info = &cpi->mt_info;
AV1EncRowMultiThreadInfo *const enc_row_mt = &mt_info->enc_row_mt;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
const DELTAQ_MODE deltaq_mode = oxcf->q_cfg.deltaq_mode;
int i;
if (!cpi->sf.rt_sf.use_nonrd_pick_mode) {
mi_params->setup_mi(mi_params);
}
set_mi_offsets(mi_params, xd, 0, 0);
av1_zero(*td->counts);
av1_zero(rdc->tx_type_used);
av1_zero(rdc->obmc_used);
av1_zero(rdc->warped_used);
av1_zero(rdc->seg_tmp_pred_cost);
// Reset the flag.
cpi->intrabc_used = 0;
// Need to disable intrabc when superres is selected
if (av1_superres_scaled(cm)) {
features->allow_intrabc = 0;
}
features->allow_intrabc &= (oxcf->kf_cfg.enable_intrabc);
if (features->allow_warped_motion &&
cpi->sf.inter_sf.prune_warped_prob_thresh > 0) {
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
int warped_probability =
#if CONFIG_FPMT_TEST
cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE
? temp_frame_probs->warped_probs[update_type]
:
#endif // CONFIG_FPMT_TEST
frame_probs->warped_probs[update_type];
if (warped_probability < cpi->sf.inter_sf.prune_warped_prob_thresh)
features->allow_warped_motion = 0;
}
int hash_table_created = 0;
if (!is_stat_generation_stage(cpi) && av1_use_hash_me(cpi) &&
!cpi->sf.rt_sf.use_nonrd_pick_mode) {
// TODO(any): move this outside of the recoding loop to avoid recalculating
// the hash table.
// add to hash table
const int pic_width = cpi->source->y_crop_width;
const int pic_height = cpi->source->y_crop_height;
uint32_t *block_hash_values[2][2];
int8_t *is_block_same[2][3];
int k, j;
for (k = 0; k < 2; k++) {
for (j = 0; j < 2; j++) {
CHECK_MEM_ERROR(cm, block_hash_values[k][j],
aom_malloc(sizeof(uint32_t) * pic_width * pic_height));
}
for (j = 0; j < 3; j++) {
CHECK_MEM_ERROR(cm, is_block_same[k][j],
aom_malloc(sizeof(int8_t) * pic_width * pic_height));
}
}
av1_hash_table_init(intrabc_hash_info);
if (!av1_hash_table_create(&intrabc_hash_info->intrabc_hash_table)) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Error allocating intrabc_hash_table");
}
hash_table_created = 1;
av1_generate_block_2x2_hash_value(intrabc_hash_info, cpi->source,
block_hash_values[0], is_block_same[0]);
// Hash data generated for screen contents is used for intraBC ME
const int min_alloc_size = block_size_wide[mi_params->mi_alloc_bsize];
const int max_sb_size =
(1 << (cm->seq_params->mib_size_log2 + MI_SIZE_LOG2));
int src_idx = 0;
bool error = false;
for (int size = 4; size <= max_sb_size; size *= 2, src_idx = !src_idx) {
const int dst_idx = !src_idx;
av1_generate_block_hash_value(
intrabc_hash_info, cpi->source, size, block_hash_values[src_idx],
block_hash_values[dst_idx], is_block_same[src_idx],
is_block_same[dst_idx]);
if (size >= min_alloc_size) {
if (!av1_add_to_hash_map_by_row_with_precal_data(
&intrabc_hash_info->intrabc_hash_table,
block_hash_values[dst_idx], is_block_same[dst_idx][2],
pic_width, pic_height, size)) {
error = true;
break;
}
}
}
for (k = 0; k < 2; k++) {
for (j = 0; j < 2; j++) {
aom_free(block_hash_values[k][j]);
}
for (j = 0; j < 3; j++) {
aom_free(is_block_same[k][j]);
}
}
if (error) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Error adding data to intrabc_hash_table");
}
}
const CommonQuantParams *quant_params = &cm->quant_params;
for (i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex =
cm->seg.enabled ? av1_get_qindex(&cm->seg, i, quant_params->base_qindex)
: quant_params->base_qindex;
xd->lossless[i] =
qindex == 0 && quant_params->y_dc_delta_q == 0 &&
quant_params->u_dc_delta_q == 0 && quant_params->u_ac_delta_q == 0 &&
quant_params->v_dc_delta_q == 0 && quant_params->v_ac_delta_q == 0;
if (xd->lossless[i]) cpi->enc_seg.has_lossless_segment = 1;
xd->qindex[i] = qindex;
if (xd->lossless[i]) {
cpi->optimize_seg_arr[i] = NO_TRELLIS_OPT;
} else {
cpi->optimize_seg_arr[i] = cpi->sf.rd_sf.optimize_coefficients;
}
}
features->coded_lossless = is_coded_lossless(cm, xd);
features->all_lossless = features->coded_lossless && !av1_superres_scaled(cm);
// Fix delta q resolution for the moment
cm->delta_q_info.delta_q_res = 0;
if (cpi->oxcf.q_cfg.aq_mode != CYCLIC_REFRESH_AQ) {
if (deltaq_mode == DELTA_Q_OBJECTIVE)
cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_OBJECTIVE;
else if (deltaq_mode == DELTA_Q_PERCEPTUAL)
cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
else if (deltaq_mode == DELTA_Q_PERCEPTUAL_AI)
cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
else if (deltaq_mode == DELTA_Q_USER_RATING_BASED)
cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
else if (deltaq_mode == DELTA_Q_HDR)
cm->delta_q_info.delta_q_res = DEFAULT_DELTA_Q_RES_PERCEPTUAL;
// Set delta_q_present_flag before it is used for the first time
cm->delta_q_info.delta_lf_res = DEFAULT_DELTA_LF_RES;
cm->delta_q_info.delta_q_present_flag = deltaq_mode != NO_DELTA_Q;
// Turn off cm->delta_q_info.delta_q_present_flag if objective delta_q
// is used for ineligible frames. That effectively will turn off row_mt
// usage. Note objective delta_q and tpl eligible frames are only altref
// frames currently.
const GF_GROUP *gf_group = &cpi->ppi->gf_group;
if (cm->delta_q_info.delta_q_present_flag) {
if (deltaq_mode == DELTA_Q_OBJECTIVE &&
gf_group->update_type[cpi->gf_frame_index] == LF_UPDATE)
cm->delta_q_info.delta_q_present_flag = 0;
if (deltaq_mode == DELTA_Q_OBJECTIVE &&
cm->delta_q_info.delta_q_present_flag) {
cm->delta_q_info.delta_q_present_flag &= allow_deltaq_mode(cpi);
}
}
// Reset delta_q_used flag
cpi->deltaq_used = 0;
cm->delta_q_info.delta_lf_present_flag =
cm->delta_q_info.delta_q_present_flag &&
oxcf->tool_cfg.enable_deltalf_mode;
cm->delta_q_info.delta_lf_multi = DEFAULT_DELTA_LF_MULTI;
// update delta_q_present_flag and delta_lf_present_flag based on
// base_qindex
cm->delta_q_info.delta_q_present_flag &= quant_params->base_qindex > 0;
cm->delta_q_info.delta_lf_present_flag &= quant_params->base_qindex > 0;
} else {
cpi->cyclic_refresh->actual_num_seg1_blocks = 0;
cpi->cyclic_refresh->actual_num_seg2_blocks = 0;
cpi->rc.cnt_zeromv = 0;
}
av1_frame_init_quantizer(cpi);
init_encode_frame_mb_context(cpi);
set_default_interp_skip_flags(cm, &cpi->interp_search_flags);
if (cm->prev_frame && cm->prev_frame->seg.enabled)
cm->last_frame_seg_map = cm->prev_frame->seg_map;
else
cm->last_frame_seg_map = NULL;
if (features->allow_intrabc || features->coded_lossless) {
av1_set_default_ref_deltas(cm->lf.ref_deltas);
av1_set_default_mode_deltas(cm->lf.mode_deltas);
} else if (cm->prev_frame) {
memcpy(cm->lf.ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
memcpy(cm->lf.mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
}
memcpy(cm->cur_frame->ref_deltas, cm->lf.ref_deltas, REF_FRAMES);
memcpy(cm->cur_frame->mode_deltas, cm->lf.mode_deltas, MAX_MODE_LF_DELTAS);
cpi->all_one_sided_refs =
frame_is_intra_only(cm) ? 0 : refs_are_one_sided(cm);
cpi->prune_ref_frame_mask = 0;
// Figure out which ref frames can be skipped at frame level.
setup_prune_ref_frame_mask(cpi);
x->txfm_search_info.txb_split_count = 0;
#if CONFIG_SPEED_STATS
x->txfm_search_info.tx_search_count = 0;
#endif // CONFIG_SPEED_STATS
#if !CONFIG_REALTIME_ONLY
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_compute_global_motion_time);
#endif
av1_compute_global_motion_facade(cpi);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_compute_global_motion_time);
#endif
#endif // !CONFIG_REALTIME_ONLY
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_setup_motion_field_time);
#endif
av1_calculate_ref_frame_side(cm);
if (features->allow_ref_frame_mvs) av1_setup_motion_field(cm);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_setup_motion_field_time);
#endif
cm->current_frame.skip_mode_info.skip_mode_flag =
check_skip_mode_enabled(cpi);
// Initialization of skip mode cost depends on the value of
// 'skip_mode_flag'. This initialization happens in the function
// av1_fill_mode_rates(), which is in turn called in
// av1_initialize_rd_consts(). Thus, av1_initialize_rd_consts()
// has to be called after 'skip_mode_flag' is initialized.
av1_initialize_rd_consts(cpi);
av1_set_sad_per_bit(cpi, &x->sadperbit, quant_params->base_qindex);
populate_thresh_to_force_zeromv_skip(cpi);
enc_row_mt->sync_read_ptr = av1_row_mt_sync_read_dummy;
enc_row_mt->sync_write_ptr = av1_row_mt_sync_write_dummy;
mt_info->row_mt_enabled = 0;
mt_info->pack_bs_mt_enabled = AOMMIN(mt_info->num_mod_workers[MOD_PACK_BS],
cm->tiles.cols * cm->tiles.rows) > 1;
if (oxcf->row_mt && (mt_info->num_workers > 1)) {
mt_info->row_mt_enabled = 1;
enc_row_mt->sync_read_ptr = av1_row_mt_sync_read;
enc_row_mt->sync_write_ptr = av1_row_mt_sync_write;
av1_encode_tiles_row_mt(cpi);
} else {
if (AOMMIN(mt_info->num_workers, cm->tiles.cols * cm->tiles.rows) > 1) {
av1_encode_tiles_mt(cpi);
} else {
// Preallocate the pc_tree for realtime coding to reduce the cost of
// memory allocation.
const int use_nonrd_mode = cpi->sf.rt_sf.use_nonrd_pick_mode;
td->rt_pc_root = use_nonrd_mode
? av1_alloc_pc_tree_node(cm->seq_params->sb_size)
: NULL;
encode_tiles(cpi);
av1_free_pc_tree_recursive(td->rt_pc_root, av1_num_planes(cm), 0, 0);
}
}
// If intrabc is allowed but never selected, reset the allow_intrabc flag.
if (features->allow_intrabc && !cpi->intrabc_used) {
features->allow_intrabc = 0;
}
if (features->allow_intrabc) {
cm->delta_q_info.delta_lf_present_flag = 0;
}
if (cm->delta_q_info.delta_q_present_flag && cpi->deltaq_used == 0) {
cm->delta_q_info.delta_q_present_flag = 0;
}
// Set the transform size appropriately before bitstream creation
const MODE_EVAL_TYPE eval_type =
cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch
? WINNER_MODE_EVAL
: DEFAULT_EVAL;
const TX_SIZE_SEARCH_METHOD tx_search_type =
cpi->winner_mode_params.tx_size_search_methods[eval_type];
assert(oxcf->txfm_cfg.enable_tx64 || tx_search_type != USE_LARGESTALL);
features->tx_mode = select_tx_mode(cm, tx_search_type);
// Retain the frame level probability update conditions for parallel frames.
// These conditions will be consumed during postencode stage to update the
// probability.
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
cpi->do_update_frame_probs_txtype[cpi->num_frame_recode] =
cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats;
cpi->do_update_frame_probs_obmc[cpi->num_frame_recode] =
(cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 &&
cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX);
cpi->do_update_frame_probs_warp[cpi->num_frame_recode] =
(features->allow_warped_motion &&
cpi->sf.inter_sf.prune_warped_prob_thresh > 0);
cpi->do_update_frame_probs_interpfilter[cpi->num_frame_recode] =
(cm->current_frame.frame_type != KEY_FRAME &&
cpi->sf.interp_sf.adaptive_interp_filter_search == 2 &&
features->interp_filter == SWITCHABLE);
}
if (cpi->sf.tx_sf.tx_type_search.prune_tx_type_using_stats ||
((cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh !=
INT_MAX) &&
(cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != 0))) {
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
for (i = 0; i < TX_SIZES_ALL; i++) {
int sum = 0;
int j;
int left = MAX_TX_TYPE_PROB;
for (j = 0; j < TX_TYPES; j++)
sum += cpi->td.rd_counts.tx_type_used[i][j];
for (j = TX_TYPES - 1; j >= 0; j--) {
int update_txtype_frameprobs = 1;
const int new_prob =
sum ? MAX_TX_TYPE_PROB * cpi->td.rd_counts.tx_type_used[i][j] / sum
: (j ? 0 : MAX_TX_TYPE_PROB);
#if CONFIG_FPMT_TEST
if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] ==
0) {
int prob =
(temp_frame_probs_simulation->tx_type_probs[update_type][i][j] +
new_prob) >>
1;
left -= prob;
if (j == 0) prob += left;
temp_frame_probs_simulation->tx_type_probs[update_type][i][j] =
prob;
// Copy temp_frame_probs_simulation to temp_frame_probs
for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
update_type_idx++) {
temp_frame_probs->tx_type_probs[update_type_idx][i][j] =
temp_frame_probs_simulation
->tx_type_probs[update_type_idx][i][j];
}
}
update_txtype_frameprobs = 0;
}
#endif // CONFIG_FPMT_TEST
// Track the frame probabilities of parallel encode frames to update
// during postencode stage.
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
update_txtype_frameprobs = 0;
cpi->frame_new_probs[cpi->num_frame_recode]
.tx_type_probs[update_type][i][j] = new_prob;
}
if (update_txtype_frameprobs) {
int prob =
(frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1;
left -= prob;
if (j == 0) prob += left;
frame_probs->tx_type_probs[update_type][i][j] = prob;
}
}
}
}
if (cm->seg.enabled) {
cm->seg.temporal_update = 1;
if (rdc->seg_tmp_pred_cost[0] < rdc->seg_tmp_pred_cost[1])
cm->seg.temporal_update = 0;
}
if (cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 &&
cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) {
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
for (i = 0; i < BLOCK_SIZES_ALL; i++) {
int sum = 0;
int update_obmc_frameprobs = 1;
for (int j = 0; j < 2; j++) sum += cpi->td.rd_counts.obmc_used[i][j];
const int new_prob =
sum ? 128 * cpi->td.rd_counts.obmc_used[i][1] / sum : 0;
#if CONFIG_FPMT_TEST
if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) {
temp_frame_probs_simulation->obmc_probs[update_type][i] =
(temp_frame_probs_simulation->obmc_probs[update_type][i] +
new_prob) >>
1;
// Copy temp_frame_probs_simulation to temp_frame_probs
for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
update_type_idx++) {
temp_frame_probs->obmc_probs[update_type_idx][i] =
temp_frame_probs_simulation->obmc_probs[update_type_idx][i];
}
}
update_obmc_frameprobs = 0;
}
#endif // CONFIG_FPMT_TEST
// Track the frame probabilities of parallel encode frames to update
// during postencode stage.
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
update_obmc_frameprobs = 0;
cpi->frame_new_probs[cpi->num_frame_recode].obmc_probs[update_type][i] =
new_prob;
}
if (update_obmc_frameprobs) {
frame_probs->obmc_probs[update_type][i] =
(frame_probs->obmc_probs[update_type][i] + new_prob) >> 1;
}
}
}
if (features->allow_warped_motion &&
cpi->sf.inter_sf.prune_warped_prob_thresh > 0) {
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
int update_warp_frameprobs = 1;
int sum = 0;
for (i = 0; i < 2; i++) sum += cpi->td.rd_counts.warped_used[i];
const int new_prob = sum ? 128 * cpi->td.rd_counts.warped_used[1] / sum : 0;
#if CONFIG_FPMT_TEST
if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] == 0) {
temp_frame_probs_simulation->warped_probs[update_type] =
(temp_frame_probs_simulation->warped_probs[update_type] +
new_prob) >>
1;
// Copy temp_frame_probs_simulation to temp_frame_probs
for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
update_type_idx++) {
temp_frame_probs->warped_probs[update_type_idx] =
temp_frame_probs_simulation->warped_probs[update_type_idx];
}
}
update_warp_frameprobs = 0;
}
#endif // CONFIG_FPMT_TEST
// Track the frame probabilities of parallel encode frames to update
// during postencode stage.
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
update_warp_frameprobs = 0;
cpi->frame_new_probs[cpi->num_frame_recode].warped_probs[update_type] =
new_prob;
}
if (update_warp_frameprobs) {
frame_probs->warped_probs[update_type] =
(frame_probs->warped_probs[update_type] + new_prob) >> 1;
}
}
if (cm->current_frame.frame_type != KEY_FRAME &&
cpi->sf.interp_sf.adaptive_interp_filter_search == 2 &&
features->interp_filter == SWITCHABLE) {
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) {
int sum = 0;
int j;
int left = 1536;
for (j = 0; j < SWITCHABLE_FILTERS; j++) {
sum += cpi->td.counts->switchable_interp[i][j];
}
for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) {
int update_interpfilter_frameprobs = 1;
const int new_prob =
sum ? 1536 * cpi->td.counts->switchable_interp[i][j] / sum
: (j ? 0 : 1536);
#if CONFIG_FPMT_TEST
if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) {
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] ==
0) {
int prob = (temp_frame_probs_simulation
->switchable_interp_probs[update_type][i][j] +
new_prob) >>
1;
left -= prob;
if (j == 0) prob += left;
temp_frame_probs_simulation
->switchable_interp_probs[update_type][i][j] = prob;
// Copy temp_frame_probs_simulation to temp_frame_probs
for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES;
update_type_idx++) {
temp_frame_probs->switchable_interp_probs[update_type_idx][i][j] =
temp_frame_probs_simulation
->switchable_interp_probs[update_type_idx][i][j];
}
}
update_interpfilter_frameprobs = 0;
}
#endif // CONFIG_FPMT_TEST
// Track the frame probabilities of parallel encode frames to update
// during postencode stage.
if (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) {
update_interpfilter_frameprobs = 0;
cpi->frame_new_probs[cpi->num_frame_recode]
.switchable_interp_probs[update_type][i][j] = new_prob;
}
if (update_interpfilter_frameprobs) {
int prob = (frame_probs->switchable_interp_probs[update_type][i][j] +
new_prob) >>
1;
left -= prob;
if (j == 0) prob += left;
frame_probs->switchable_interp_probs[update_type][i][j] = prob;
}
}
}
}
if (hash_table_created) {
av1_hash_table_destroy(&intrabc_hash_info->intrabc_hash_table);
}
}
/*!\brief Setup reference frame buffers and encode a frame
*
* \ingroup high_level_algo
* \callgraph
* \callergraph
*
* \param[in] cpi Top-level encoder structure
*/
void av1_encode_frame(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
CurrentFrame *const current_frame = &cm->current_frame;
FeatureFlags *const features = &cm->features;
const int num_planes = av1_num_planes(cm);
RD_COUNTS *const rdc = &cpi->td.rd_counts;
const AV1EncoderConfig *const oxcf = &cpi->oxcf;
// Indicates whether or not to use a default reduced set for ext-tx
// rather than the potential full set of 16 transforms
features->reduced_tx_set_used = oxcf->txfm_cfg.reduced_tx_type_set;
// Make sure segment_id is no larger than last_active_segid.
if (cm->seg.enabled && cm->seg.update_map) {
const int mi_rows = cm->mi_params.mi_rows;
const int mi_cols = cm->mi_params.mi_cols;
const int last_active_segid = cm->seg.last_active_segid;
uint8_t *map = cpi->enc_seg.map;
for (int mi_row = 0; mi_row < mi_rows; ++mi_row) {
for (int mi_col = 0; mi_col < mi_cols; ++mi_col) {
map[mi_col] = AOMMIN(map[mi_col], last_active_segid);
}
map += mi_cols;
}
}
av1_setup_frame_buf_refs(cm);
enforce_max_ref_frames(cpi, &cpi->ref_frame_flags,
cm->cur_frame->ref_display_order_hint,
cm->current_frame.display_order_hint);
set_rel_frame_dist(&cpi->common, &cpi->ref_frame_dist_info,
cpi->ref_frame_flags);
av1_setup_frame_sign_bias(cm);
#if CONFIG_MISMATCH_DEBUG
mismatch_reset_frame(num_planes);
#else
(void)num_planes;
#endif
rdc->newmv_or_intra_blocks = 0;
if (cpi->sf.hl_sf.frame_parameter_update ||
cpi->sf.rt_sf.use_comp_ref_nonrd) {
if (frame_is_intra_only(cm))
current_frame->reference_mode = SINGLE_REFERENCE;
else
current_frame->reference_mode = REFERENCE_MODE_SELECT;
features->interp_filter = SWITCHABLE;
if (cm->tiles.large_scale) features->interp_filter = EIGHTTAP_REGULAR;
features->switchable_motion_mode = is_switchable_motion_mode_allowed(
features->allow_warped_motion, oxcf->motion_mode_cfg.enable_obmc);
rdc->compound_ref_used_flag = 0;
rdc->skip_mode_used_flag = 0;
encode_frame_internal(cpi);
if (current_frame->reference_mode == REFERENCE_MODE_SELECT) {
// Use a flag that includes 4x4 blocks
if (rdc->compound_ref_used_flag == 0) {
current_frame->reference_mode = SINGLE_REFERENCE;
#if CONFIG_ENTROPY_STATS
av1_zero(cpi->td.counts->comp_inter);
#endif // CONFIG_ENTROPY_STATS
}
}
// Re-check on the skip mode status as reference mode may have been
// changed.
SkipModeInfo *const skip_mode_info = &current_frame->skip_mode_info;
if (frame_is_intra_only(cm) ||
current_frame->reference_mode == SINGLE_REFERENCE) {
skip_mode_info->skip_mode_allowed = 0;
skip_mode_info->skip_mode_flag = 0;
}
if (skip_mode_info->skip_mode_flag && rdc->skip_mode_used_flag == 0)
skip_mode_info->skip_mode_flag = 0;
if (!cm->tiles.large_scale) {
if (features->tx_mode == TX_MODE_SELECT &&
cpi->td.mb.txfm_search_info.txb_split_count == 0)
features->tx_mode = TX_MODE_LARGEST;
}
} else {
// This is needed if real-time speed setting is changed on the fly
// from one using compound prediction to one using single reference.
if (current_frame->reference_mode == REFERENCE_MODE_SELECT)
current_frame->reference_mode = SINGLE_REFERENCE;
encode_frame_internal(cpi);
}
}