blob: 5209dcdb46e75ae2ac1cb9370493d847cf82dce4 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
// This is an example demonstrating how to implement a multi-layer VPx
// encoding scheme based on temporal scalability for video applications
// that benefit from a scalable bitstream.
#include <assert.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "./aom_config.h"
#include "../aom_ports/aom_timer.h"
#include "aom/aomcx.h"
#include "aom/aom_encoder.h"
#include "../tools_common.h"
#include "../video_writer.h"
static const char *exec_name;
void usage_exit(void) { exit(EXIT_FAILURE); }
// Denoiser states, for temporal denoising.
enum denoiserState {
kDenoiserOff,
kDenoiserOnYOnly,
kDenoiserOnYUV,
kDenoiserOnYUVAggressive,
kDenoiserOnAdaptive
};
static int mode_to_num_layers[12] = { 1, 2, 2, 3, 3, 3, 3, 5, 2, 3, 3, 3 };
// For rate control encoding stats.
struct RateControlMetrics {
// Number of input frames per layer.
int layer_input_frames[AOM_TS_MAX_LAYERS];
// Total (cumulative) number of encoded frames per layer.
int layer_tot_enc_frames[AOM_TS_MAX_LAYERS];
// Number of encoded non-key frames per layer.
int layer_enc_frames[AOM_TS_MAX_LAYERS];
// Framerate per layer layer (cumulative).
double layer_framerate[AOM_TS_MAX_LAYERS];
// Target average frame size per layer (per-frame-bandwidth per layer).
double layer_pfb[AOM_TS_MAX_LAYERS];
// Actual average frame size per layer.
double layer_avg_frame_size[AOM_TS_MAX_LAYERS];
// Average rate mismatch per layer (|target - actual| / target).
double layer_avg_rate_mismatch[AOM_TS_MAX_LAYERS];
// Actual encoding bitrate per layer (cumulative).
double layer_encoding_bitrate[AOM_TS_MAX_LAYERS];
// Average of the short-time encoder actual bitrate.
// TODO(marpan): Should we add these short-time stats for each layer?
double avg_st_encoding_bitrate;
// Variance of the short-time encoder actual bitrate.
double variance_st_encoding_bitrate;
// Window (number of frames) for computing short-timee encoding bitrate.
int window_size;
// Number of window measurements.
int window_count;
int layer_target_bitrate[AOM_MAX_LAYERS];
};
// Note: these rate control metrics assume only 1 key frame in the
// sequence (i.e., first frame only). So for temporal pattern# 7
// (which has key frame for every frame on base layer), the metrics
// computation will be off/wrong.
// TODO(marpan): Update these metrics to account for multiple key frames
// in the stream.
static void set_rate_control_metrics(struct RateControlMetrics *rc,
aom_codec_enc_cfg_t *cfg) {
unsigned int i = 0;
// Set the layer (cumulative) framerate and the target layer (non-cumulative)
// per-frame-bandwidth, for the rate control encoding stats below.
const double framerate = cfg->g_timebase.den / cfg->g_timebase.num;
rc->layer_framerate[0] = framerate / cfg->ts_rate_decimator[0];
rc->layer_pfb[0] =
1000.0 * rc->layer_target_bitrate[0] / rc->layer_framerate[0];
for (i = 0; i < cfg->ts_number_layers; ++i) {
if (i > 0) {
rc->layer_framerate[i] = framerate / cfg->ts_rate_decimator[i];
rc->layer_pfb[i] = 1000.0 * (rc->layer_target_bitrate[i] -
rc->layer_target_bitrate[i - 1]) /
(rc->layer_framerate[i] - rc->layer_framerate[i - 1]);
}
rc->layer_input_frames[i] = 0;
rc->layer_enc_frames[i] = 0;
rc->layer_tot_enc_frames[i] = 0;
rc->layer_encoding_bitrate[i] = 0.0;
rc->layer_avg_frame_size[i] = 0.0;
rc->layer_avg_rate_mismatch[i] = 0.0;
}
rc->window_count = 0;
rc->window_size = 15;
rc->avg_st_encoding_bitrate = 0.0;
rc->variance_st_encoding_bitrate = 0.0;
}
static void printout_rate_control_summary(struct RateControlMetrics *rc,
aom_codec_enc_cfg_t *cfg,
int frame_cnt) {
unsigned int i = 0;
int tot_num_frames = 0;
double perc_fluctuation = 0.0;
printf("Total number of processed frames: %d\n\n", frame_cnt - 1);
printf("Rate control layer stats for %d layer(s):\n\n",
cfg->ts_number_layers);
for (i = 0; i < cfg->ts_number_layers; ++i) {
const int num_dropped =
(i > 0) ? (rc->layer_input_frames[i] - rc->layer_enc_frames[i])
: (rc->layer_input_frames[i] - rc->layer_enc_frames[i] - 1);
tot_num_frames += rc->layer_input_frames[i];
rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[i] *
rc->layer_encoding_bitrate[i] /
tot_num_frames;
rc->layer_avg_frame_size[i] =
rc->layer_avg_frame_size[i] / rc->layer_enc_frames[i];
rc->layer_avg_rate_mismatch[i] =
100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[i];
printf("For layer#: %d \n", i);
printf("Bitrate (target vs actual): %d %f \n", rc->layer_target_bitrate[i],
rc->layer_encoding_bitrate[i]);
printf("Average frame size (target vs actual): %f %f \n", rc->layer_pfb[i],
rc->layer_avg_frame_size[i]);
printf("Average rate_mismatch: %f \n", rc->layer_avg_rate_mismatch[i]);
printf(
"Number of input frames, encoded (non-key) frames, "
"and perc dropped frames: %d %d %f \n",
rc->layer_input_frames[i], rc->layer_enc_frames[i],
100.0 * num_dropped / rc->layer_input_frames[i]);
printf("\n");
}
rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count;
rc->variance_st_encoding_bitrate =
rc->variance_st_encoding_bitrate / rc->window_count -
(rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate);
perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) /
rc->avg_st_encoding_bitrate;
printf("Short-time stats, for window of %d frames: \n", rc->window_size);
printf("Average, rms-variance, and percent-fluct: %f %f %f \n",
rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate),
perc_fluctuation);
if ((frame_cnt - 1) != tot_num_frames)
die("Error: Number of input frames not equal to output! \n");
}
// Temporal scaling parameters:
// NOTE: The 3 prediction frames cannot be used interchangeably due to
// differences in the way they are handled throughout the code. The
// frames should be allocated to layers in the order LAST, GF, ARF.
// Other combinations work, but may produce slightly inferior results.
static void set_temporal_layer_pattern(int layering_mode,
aom_codec_enc_cfg_t *cfg,
int *layer_flags,
int *flag_periodicity) {
switch (layering_mode) {
case 0: {
// 1-layer.
int ids[1] = { 0 };
cfg->ts_periodicity = 1;
*flag_periodicity = 1;
cfg->ts_number_layers = 1;
cfg->ts_rate_decimator[0] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// Update L only.
layer_flags[0] =
AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF;
break;
}
case 1: {
// 2-layers, 2-frame period.
int ids[2] = { 0, 1 };
cfg->ts_periodicity = 2;
*flag_periodicity = 2;
cfg->ts_number_layers = 2;
cfg->ts_rate_decimator[0] = 2;
cfg->ts_rate_decimator[1] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
#if 1
// 0=L, 1=GF, Intra-layer prediction enabled.
layer_flags[0] = AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_REF_GF |
AOM_EFLAG_NO_REF_ARF;
layer_flags[1] =
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_REF_ARF;
#else
// 0=L, 1=GF, Intra-layer prediction disabled.
layer_flags[0] = AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_REF_GF |
AOM_EFLAG_NO_REF_ARF;
layer_flags[1] = AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_LAST |
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_REF_LAST;
#endif
break;
}
case 2: {
// 2-layers, 3-frame period.
int ids[3] = { 0, 1, 1 };
cfg->ts_periodicity = 3;
*flag_periodicity = 3;
cfg->ts_number_layers = 2;
cfg->ts_rate_decimator[0] = 3;
cfg->ts_rate_decimator[1] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, Intra-layer prediction enabled.
layer_flags[0] = AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_REF_GF |
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF;
layer_flags[1] = layer_flags[2] =
AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_ARF |
AOM_EFLAG_NO_UPD_LAST;
break;
}
case 3: {
// 3-layers, 6-frame period.
int ids[6] = { 0, 2, 2, 1, 2, 2 };
cfg->ts_periodicity = 6;
*flag_periodicity = 6;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 6;
cfg->ts_rate_decimator[1] = 3;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
layer_flags[0] = AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_REF_GF |
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF;
layer_flags[3] =
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_LAST;
layer_flags[1] = layer_flags[2] = layer_flags[4] = layer_flags[5] =
AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_LAST;
break;
}
case 4: {
// 3-layers, 4-frame period.
int ids[4] = { 0, 2, 1, 2 };
cfg->ts_periodicity = 4;
*flag_periodicity = 4;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF, Intra-layer prediction disabled.
layer_flags[0] = AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_REF_GF |
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF;
layer_flags[2] = AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF |
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_LAST;
layer_flags[1] = layer_flags[3] =
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF;
break;
}
case 5: {
// 3-layers, 4-frame period.
int ids[4] = { 0, 2, 1, 2 };
cfg->ts_periodicity = 4;
*flag_periodicity = 4;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled in layer 1, disabled
// in layer 2.
layer_flags[0] = AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_REF_GF |
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF;
layer_flags[2] =
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_ARF;
layer_flags[1] = layer_flags[3] =
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF;
break;
}
case 6: {
// 3-layers, 4-frame period.
int ids[4] = { 0, 2, 1, 2 };
cfg->ts_periodicity = 4;
*flag_periodicity = 4;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF, Intra-layer prediction enabled.
layer_flags[0] = AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_REF_GF |
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF;
layer_flags[2] =
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_ARF;
layer_flags[1] = layer_flags[3] =
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF;
break;
}
case 7: {
// NOTE: Probably of academic interest only.
// 5-layers, 16-frame period.
int ids[16] = { 0, 4, 3, 4, 2, 4, 3, 4, 1, 4, 3, 4, 2, 4, 3, 4 };
cfg->ts_periodicity = 16;
*flag_periodicity = 16;
cfg->ts_number_layers = 5;
cfg->ts_rate_decimator[0] = 16;
cfg->ts_rate_decimator[1] = 8;
cfg->ts_rate_decimator[2] = 4;
cfg->ts_rate_decimator[3] = 2;
cfg->ts_rate_decimator[4] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
layer_flags[0] = AOM_EFLAG_FORCE_KF;
layer_flags[1] = layer_flags[3] = layer_flags[5] = layer_flags[7] =
layer_flags[9] = layer_flags[11] = layer_flags[13] = layer_flags[15] =
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF;
layer_flags[2] = layer_flags[6] = layer_flags[10] = layer_flags[14] =
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_GF;
layer_flags[4] = layer_flags[12] =
AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_UPD_ARF;
layer_flags[8] = AOM_EFLAG_NO_REF_LAST | AOM_EFLAG_NO_REF_GF;
break;
}
case 8: {
// 2-layers, with sync point at first frame of layer 1.
int ids[2] = { 0, 1 };
cfg->ts_periodicity = 2;
*flag_periodicity = 8;
cfg->ts_number_layers = 2;
cfg->ts_rate_decimator[0] = 2;
cfg->ts_rate_decimator[1] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF.
// ARF is used as predictor for all frames, and is only updated on
// key frame. Sync point every 8 frames.
// Layer 0: predict from L and ARF, update L and G.
layer_flags[0] =
AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_UPD_ARF;
// Layer 1: sync point: predict from L and ARF, and update G.
layer_flags[1] =
AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_ARF;
// Layer 0, predict from L and ARF, update L.
layer_flags[2] =
AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF;
// Layer 1: predict from L, G and ARF, and update G.
layer_flags[3] = AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_LAST |
AOM_EFLAG_NO_UPD_ENTROPY;
// Layer 0.
layer_flags[4] = layer_flags[2];
// Layer 1.
layer_flags[5] = layer_flags[3];
// Layer 0.
layer_flags[6] = layer_flags[4];
// Layer 1.
layer_flags[7] = layer_flags[5];
break;
}
case 9: {
// 3-layers: Sync points for layer 1 and 2 every 8 frames.
int ids[4] = { 0, 2, 1, 2 };
cfg->ts_periodicity = 4;
*flag_periodicity = 8;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF.
layer_flags[0] = AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_REF_GF |
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF;
layer_flags[1] = AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF |
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF;
layer_flags[2] = AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF |
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_ARF;
layer_flags[3] = layer_flags[5] =
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF;
layer_flags[4] = AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_REF_ARF |
AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF;
layer_flags[6] =
AOM_EFLAG_NO_REF_ARF | AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_ARF;
layer_flags[7] = AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_ENTROPY;
break;
}
case 10: {
// 3-layers structure where ARF is used as predictor for all frames,
// and is only updated on key frame.
// Sync points for layer 1 and 2 every 8 frames.
int ids[4] = { 0, 2, 1, 2 };
cfg->ts_periodicity = 4;
*flag_periodicity = 8;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF.
// Layer 0: predict from L and ARF; update L and G.
layer_flags[0] =
AOM_EFLAG_FORCE_KF | AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_REF_GF;
// Layer 2: sync point: predict from L and ARF; update none.
layer_flags[1] = AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_UPD_GF |
AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_LAST |
AOM_EFLAG_NO_UPD_ENTROPY;
// Layer 1: sync point: predict from L and ARF; update G.
layer_flags[2] =
AOM_EFLAG_NO_REF_GF | AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_LAST;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[3] = AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF |
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_ENTROPY;
// Layer 0: predict from L and ARF; update L.
layer_flags[4] =
AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_REF_GF;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[5] = layer_flags[3];
// Layer 1: predict from L, G, ARF; update G.
layer_flags[6] = AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_LAST;
// Layer 2: predict from L, G, ARF; update none.
layer_flags[7] = layer_flags[3];
break;
}
case 11:
default: {
// 3-layers structure as in case 10, but no sync/refresh points for
// layer 1 and 2.
int ids[4] = { 0, 2, 1, 2 };
cfg->ts_periodicity = 4;
*flag_periodicity = 8;
cfg->ts_number_layers = 3;
cfg->ts_rate_decimator[0] = 4;
cfg->ts_rate_decimator[1] = 2;
cfg->ts_rate_decimator[2] = 1;
memcpy(cfg->ts_layer_id, ids, sizeof(ids));
// 0=L, 1=GF, 2=ARF.
// Layer 0: predict from L and ARF; update L.
layer_flags[0] =
AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_REF_GF;
layer_flags[4] = layer_flags[0];
// Layer 1: predict from L, G, ARF; update G.
layer_flags[2] = AOM_EFLAG_NO_UPD_ARF | AOM_EFLAG_NO_UPD_LAST;
layer_flags[6] = layer_flags[2];
// Layer 2: predict from L, G, ARF; update none.
layer_flags[1] = AOM_EFLAG_NO_UPD_GF | AOM_EFLAG_NO_UPD_ARF |
AOM_EFLAG_NO_UPD_LAST | AOM_EFLAG_NO_UPD_ENTROPY;
layer_flags[3] = layer_flags[1];
layer_flags[5] = layer_flags[1];
layer_flags[7] = layer_flags[1];
break;
}
}
}
int main(int argc, char **argv) {
VpxVideoWriter *outfile[AOM_TS_MAX_LAYERS] = { NULL };
aom_codec_ctx_t codec;
aom_codec_enc_cfg_t cfg;
int frame_cnt = 0;
aom_image_t raw;
aom_codec_err_t res;
unsigned int width;
unsigned int height;
int speed;
int frame_avail;
int got_data;
int flags = 0;
unsigned int i;
int pts = 0; // PTS starts at 0.
int frame_duration = 1; // 1 timebase tick per frame.
int layering_mode = 0;
int layer_flags[AOM_TS_MAX_PERIODICITY] = { 0 };
int flag_periodicity = 1;
#if AOM_ENCODER_ABI_VERSION > (4 + AOM_CODEC_ABI_VERSION)
aom_svc_layer_id_t layer_id = { 0, 0 };
#else
aom_svc_layer_id_t layer_id = { 0 };
#endif
const VpxInterface *encoder = NULL;
FILE *infile = NULL;
struct RateControlMetrics rc;
int64_t cx_time = 0;
const int min_args_base = 11;
#if CONFIG_AOM_HIGHBITDEPTH
aom_bit_depth_t bit_depth = AOM_BITS_8;
int input_bit_depth = 8;
const int min_args = min_args_base + 1;
#else
const int min_args = min_args_base;
#endif // CONFIG_AOM_HIGHBITDEPTH
double sum_bitrate = 0.0;
double sum_bitrate2 = 0.0;
double framerate = 30.0;
exec_name = argv[0];
// Check usage and arguments.
if (argc < min_args) {
#if CONFIG_AOM_HIGHBITDEPTH
die(
"Usage: %s <infile> <outfile> <codec_type(aom/av1)> <width> <height> "
"<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> "
"<Rate_0> ... <Rate_nlayers-1> <bit-depth> \n",
argv[0]);
#else
die(
"Usage: %s <infile> <outfile> <codec_type(aom/av1)> <width> <height> "
"<rate_num> <rate_den> <speed> <frame_drop_threshold> <mode> "
"<Rate_0> ... <Rate_nlayers-1> \n",
argv[0]);
#endif // CONFIG_AOM_HIGHBITDEPTH
}
encoder = get_aom_encoder_by_name(argv[3]);
if (!encoder) die("Unsupported codec.");
printf("Using %s\n", aom_codec_iface_name(encoder->codec_interface()));
width = strtol(argv[4], NULL, 0);
height = strtol(argv[5], NULL, 0);
if (width < 16 || width % 2 || height < 16 || height % 2) {
die("Invalid resolution: %d x %d", width, height);
}
layering_mode = strtol(argv[10], NULL, 0);
if (layering_mode < 0 || layering_mode > 12) {
die("Invalid layering mode (0..12) %s", argv[10]);
}
if (argc != min_args + mode_to_num_layers[layering_mode]) {
die("Invalid number of arguments");
}
#if CONFIG_AOM_HIGHBITDEPTH
switch (strtol(argv[argc - 1], NULL, 0)) {
case 8:
bit_depth = AOM_BITS_8;
input_bit_depth = 8;
break;
case 10:
bit_depth = AOM_BITS_10;
input_bit_depth = 10;
break;
case 12:
bit_depth = AOM_BITS_12;
input_bit_depth = 12;
break;
default: die("Invalid bit depth (8, 10, 12) %s", argv[argc - 1]);
}
if (!aom_img_alloc(
&raw, bit_depth == AOM_BITS_8 ? AOM_IMG_FMT_I420 : AOM_IMG_FMT_I42016,
width, height, 32)) {
die("Failed to allocate image", width, height);
}
#else
if (!aom_img_alloc(&raw, AOM_IMG_FMT_I420, width, height, 32)) {
die("Failed to allocate image", width, height);
}
#endif // CONFIG_AOM_HIGHBITDEPTH
// Populate encoder configuration.
res = aom_codec_enc_config_default(encoder->codec_interface(), &cfg, 0);
if (res) {
printf("Failed to get config: %s\n", aom_codec_err_to_string(res));
return EXIT_FAILURE;
}
// Update the default configuration with our settings.
cfg.g_w = width;
cfg.g_h = height;
#if CONFIG_AOM_HIGHBITDEPTH
if (bit_depth != AOM_BITS_8) {
cfg.g_bit_depth = bit_depth;
cfg.g_input_bit_depth = input_bit_depth;
cfg.g_profile = 2;
}
#endif // CONFIG_AOM_HIGHBITDEPTH
// Timebase format e.g. 30fps: numerator=1, demoninator = 30.
cfg.g_timebase.num = strtol(argv[6], NULL, 0);
cfg.g_timebase.den = strtol(argv[7], NULL, 0);
speed = strtol(argv[8], NULL, 0);
if (speed < 0) {
die("Invalid speed setting: must be positive");
}
for (i = min_args_base;
(int)i < min_args_base + mode_to_num_layers[layering_mode]; ++i) {
rc.layer_target_bitrate[i - 11] = strtol(argv[i], NULL, 0);
if (strncmp(encoder->name, "aom", 3) == 0)
cfg.ts_target_bitrate[i - 11] = rc.layer_target_bitrate[i - 11];
else if (strncmp(encoder->name, "av1", 3) == 0)
cfg.layer_target_bitrate[i - 11] = rc.layer_target_bitrate[i - 11];
}
// Real time parameters.
cfg.rc_dropframe_thresh = strtol(argv[9], NULL, 0);
cfg.rc_end_usage = AOM_CBR;
cfg.rc_min_quantizer = 2;
cfg.rc_max_quantizer = 56;
if (strncmp(encoder->name, "av1", 3) == 0) cfg.rc_max_quantizer = 52;
cfg.rc_undershoot_pct = 50;
cfg.rc_overshoot_pct = 50;
cfg.rc_buf_initial_sz = 500;
cfg.rc_buf_optimal_sz = 600;
cfg.rc_buf_sz = 1000;
// Disable dynamic resizing by default.
cfg.rc_resize_allowed = 0;
// Use 1 thread as default.
cfg.g_threads = 1;
// Enable error resilient mode.
cfg.g_error_resilient = 1;
cfg.g_lag_in_frames = 0;
cfg.kf_mode = AOM_KF_AUTO;
// Disable automatic keyframe placement.
cfg.kf_min_dist = cfg.kf_max_dist = 3000;
cfg.temporal_layering_mode = AV1E_TEMPORAL_LAYERING_MODE_BYPASS;
set_temporal_layer_pattern(layering_mode, &cfg, layer_flags,
&flag_periodicity);
set_rate_control_metrics(&rc, &cfg);
// Target bandwidth for the whole stream.
// Set to layer_target_bitrate for highest layer (total bitrate).
cfg.rc_target_bitrate = rc.layer_target_bitrate[cfg.ts_number_layers - 1];
// Open input file.
if (!(infile = fopen(argv[1], "rb"))) {
die("Failed to open %s for reading", argv[1]);
}
framerate = cfg.g_timebase.den / cfg.g_timebase.num;
// Open an output file for each stream.
for (i = 0; i < cfg.ts_number_layers; ++i) {
char file_name[PATH_MAX];
VpxVideoInfo info;
info.codec_fourcc = encoder->fourcc;
info.frame_width = cfg.g_w;
info.frame_height = cfg.g_h;
info.time_base.numerator = cfg.g_timebase.num;
info.time_base.denominator = cfg.g_timebase.den;
snprintf(file_name, sizeof(file_name), "%s_%d.ivf", argv[2], i);
outfile[i] = aom_video_writer_open(file_name, kContainerIVF, &info);
if (!outfile[i]) die("Failed to open %s for writing", file_name);
assert(outfile[i] != NULL);
}
// No spatial layers in this encoder.
cfg.ss_number_layers = 1;
// Initialize codec.
#if CONFIG_AOM_HIGHBITDEPTH
if (aom_codec_enc_init(
&codec, encoder->codec_interface(), &cfg,
bit_depth == AOM_BITS_8 ? 0 : AOM_CODEC_USE_HIGHBITDEPTH))
#else
if (aom_codec_enc_init(&codec, encoder->codec_interface(), &cfg, 0))
#endif // CONFIG_AOM_HIGHBITDEPTH
die_codec(&codec, "Failed to initialize encoder");
if (strncmp(encoder->name, "aom", 3) == 0) {
aom_codec_control(&codec, AOME_SET_CPUUSED, -speed);
aom_codec_control(&codec, AOME_SET_NOISE_SENSITIVITY, kDenoiserOff);
aom_codec_control(&codec, AOME_SET_STATIC_THRESHOLD, 1);
} else if (strncmp(encoder->name, "av1", 3) == 0) {
aom_svc_extra_cfg_t svc_params;
aom_codec_control(&codec, AOME_SET_CPUUSED, speed);
aom_codec_control(&codec, AV1E_SET_AQ_MODE, 3);
aom_codec_control(&codec, AV1E_SET_FRAME_PERIODIC_BOOST, 0);
aom_codec_control(&codec, AV1E_SET_NOISE_SENSITIVITY, 0);
aom_codec_control(&codec, AOME_SET_STATIC_THRESHOLD, 1);
aom_codec_control(&codec, AV1E_SET_TUNE_CONTENT, 0);
aom_codec_control(&codec, AV1E_SET_TILE_COLUMNS, (cfg.g_threads >> 1));
if (aom_codec_control(&codec, AV1E_SET_SVC, layering_mode > 0 ? 1 : 0))
die_codec(&codec, "Failed to set SVC");
for (i = 0; i < cfg.ts_number_layers; ++i) {
svc_params.max_quantizers[i] = cfg.rc_max_quantizer;
svc_params.min_quantizers[i] = cfg.rc_min_quantizer;
}
svc_params.scaling_factor_num[0] = cfg.g_h;
svc_params.scaling_factor_den[0] = cfg.g_h;
aom_codec_control(&codec, AV1E_SET_SVC_PARAMETERS, &svc_params);
}
if (strncmp(encoder->name, "aom", 3) == 0) {
aom_codec_control(&codec, AOME_SET_SCREEN_CONTENT_MODE, 0);
}
aom_codec_control(&codec, AOME_SET_TOKEN_PARTITIONS, 1);
// This controls the maximum target size of the key frame.
// For generating smaller key frames, use a smaller max_intra_size_pct
// value, like 100 or 200.
{
const int max_intra_size_pct = 900;
aom_codec_control(&codec, AOME_SET_MAX_INTRA_BITRATE_PCT,
max_intra_size_pct);
}
frame_avail = 1;
while (frame_avail || got_data) {
struct aom_usec_timer timer;
aom_codec_iter_t iter = NULL;
const aom_codec_cx_pkt_t *pkt;
#if AOM_ENCODER_ABI_VERSION > (4 + AOM_CODEC_ABI_VERSION)
// Update the temporal layer_id. No spatial layers in this test.
layer_id.spatial_layer_id = 0;
#endif
layer_id.temporal_layer_id =
cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
if (strncmp(encoder->name, "av1", 3) == 0) {
aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id);
} else if (strncmp(encoder->name, "aom", 3) == 0) {
aom_codec_control(&codec, AOME_SET_TEMPORAL_LAYER_ID,
layer_id.temporal_layer_id);
}
flags = layer_flags[frame_cnt % flag_periodicity];
if (layering_mode == 0) flags = 0;
frame_avail = aom_img_read(&raw, infile);
if (frame_avail) ++rc.layer_input_frames[layer_id.temporal_layer_id];
aom_usec_timer_start(&timer);
if (aom_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags,
AOM_DL_REALTIME)) {
die_codec(&codec, "Failed to encode frame");
}
aom_usec_timer_mark(&timer);
cx_time += aom_usec_timer_elapsed(&timer);
// Reset KF flag.
if (layering_mode != 7) {
layer_flags[0] &= ~AOM_EFLAG_FORCE_KF;
}
got_data = 0;
while ((pkt = aom_codec_get_cx_data(&codec, &iter))) {
got_data = 1;
switch (pkt->kind) {
case AOM_CODEC_CX_FRAME_PKT:
for (i = cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity];
i < cfg.ts_number_layers; ++i) {
aom_video_writer_write_frame(outfile[i], pkt->data.frame.buf,
pkt->data.frame.sz, pts);
++rc.layer_tot_enc_frames[i];
rc.layer_encoding_bitrate[i] += 8.0 * pkt->data.frame.sz;
// Keep count of rate control stats per layer (for non-key frames).
if (i == cfg.ts_layer_id[frame_cnt % cfg.ts_periodicity] &&
!(pkt->data.frame.flags & AOM_FRAME_IS_KEY)) {
rc.layer_avg_frame_size[i] += 8.0 * pkt->data.frame.sz;
rc.layer_avg_rate_mismatch[i] +=
fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[i]) /
rc.layer_pfb[i];
++rc.layer_enc_frames[i];
}
}
// Update for short-time encoding bitrate states, for moving window
// of size rc->window, shifted by rc->window / 2.
// Ignore first window segment, due to key frame.
if (frame_cnt > rc.window_size) {
sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
if (frame_cnt % rc.window_size == 0) {
rc.window_count += 1;
rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size;
rc.variance_st_encoding_bitrate +=
(sum_bitrate / rc.window_size) *
(sum_bitrate / rc.window_size);
sum_bitrate = 0.0;
}
}
// Second shifted window.
if (frame_cnt > rc.window_size + rc.window_size / 2) {
sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate;
if (frame_cnt > 2 * rc.window_size &&
frame_cnt % rc.window_size == 0) {
rc.window_count += 1;
rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size;
rc.variance_st_encoding_bitrate +=
(sum_bitrate2 / rc.window_size) *
(sum_bitrate2 / rc.window_size);
sum_bitrate2 = 0.0;
}
}
break;
default: break;
}
}
++frame_cnt;
pts += frame_duration;
}
fclose(infile);
printout_rate_control_summary(&rc, &cfg, frame_cnt);
printf("\n");
printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f \n",
frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000),
1000000 * (double)frame_cnt / (double)cx_time);
if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec");
// Try to rewrite the output file headers with the actual frame count.
for (i = 0; i < cfg.ts_number_layers; ++i) aom_video_writer_close(outfile[i]);
aom_img_free(&raw);
return EXIT_SUCCESS;
}