|  | /* | 
|  | * Copyright (c) 2023, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <arm_neon.h> | 
|  | #include <assert.h> | 
|  | #include <stdbool.h> | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/arm/mem_neon.h" | 
|  | #include "aom_dsp/arm/sum_neon.h" | 
|  | #include "aom_dsp/arm/transpose_neon.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "av1/common/scale.h" | 
|  | #include "av1/common/warped_motion.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | static INLINE int16x8_t load_filters_1(int ofs) { | 
|  | const int ofs0 = ROUND_POWER_OF_TWO(ofs, WARPEDDIFF_PREC_BITS); | 
|  |  | 
|  | const int16_t *base = | 
|  | (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8; | 
|  | return vld1q_s16(base + ofs0 * 8); | 
|  | } | 
|  |  | 
|  | static INLINE void load_filters_4(int16x8_t out[], int ofs, int stride) { | 
|  | const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS); | 
|  |  | 
|  | const int16_t *base = | 
|  | (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8; | 
|  | out[0] = vld1q_s16(base + ofs0 * 8); | 
|  | out[1] = vld1q_s16(base + ofs1 * 8); | 
|  | out[2] = vld1q_s16(base + ofs2 * 8); | 
|  | out[3] = vld1q_s16(base + ofs3 * 8); | 
|  | } | 
|  |  | 
|  | static INLINE void load_filters_8(int16x8_t out[], int ofs, int stride) { | 
|  | const int ofs0 = ROUND_POWER_OF_TWO(ofs + stride * 0, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs1 = ROUND_POWER_OF_TWO(ofs + stride * 1, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs2 = ROUND_POWER_OF_TWO(ofs + stride * 2, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs3 = ROUND_POWER_OF_TWO(ofs + stride * 3, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs4 = ROUND_POWER_OF_TWO(ofs + stride * 4, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs5 = ROUND_POWER_OF_TWO(ofs + stride * 5, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs6 = ROUND_POWER_OF_TWO(ofs + stride * 6, WARPEDDIFF_PREC_BITS); | 
|  | const int ofs7 = ROUND_POWER_OF_TWO(ofs + stride * 7, WARPEDDIFF_PREC_BITS); | 
|  |  | 
|  | const int16_t *base = | 
|  | (int16_t *)av1_warped_filter + WARPEDPIXEL_PREC_SHIFTS * 8; | 
|  | out[0] = vld1q_s16(base + ofs0 * 8); | 
|  | out[1] = vld1q_s16(base + ofs1 * 8); | 
|  | out[2] = vld1q_s16(base + ofs2 * 8); | 
|  | out[3] = vld1q_s16(base + ofs3 * 8); | 
|  | out[4] = vld1q_s16(base + ofs4 * 8); | 
|  | out[5] = vld1q_s16(base + ofs5 * 8); | 
|  | out[6] = vld1q_s16(base + ofs6 * 8); | 
|  | out[7] = vld1q_s16(base + ofs7 * 8); | 
|  | } | 
|  |  | 
|  | static INLINE int16x8_t warp_affine_horizontal_step_4x1_f4_neon( | 
|  | int bd, int sx, int alpha, uint16x8x2_t in) { | 
|  | int16x8_t f[4]; | 
|  | load_filters_4(f, sx, alpha); | 
|  |  | 
|  | int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 0); | 
|  | int16x8_t rv1 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 1); | 
|  | int16x8_t rv2 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 2); | 
|  | int16x8_t rv3 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 3); | 
|  |  | 
|  | int32x4_t m0 = vmull_s16(vget_low_s16(f[0]), vget_low_s16(rv0)); | 
|  | m0 = vmlal_s16(m0, vget_high_s16(f[0]), vget_high_s16(rv0)); | 
|  | int32x4_t m1 = vmull_s16(vget_low_s16(f[1]), vget_low_s16(rv1)); | 
|  | m1 = vmlal_s16(m1, vget_high_s16(f[1]), vget_high_s16(rv1)); | 
|  | int32x4_t m2 = vmull_s16(vget_low_s16(f[2]), vget_low_s16(rv2)); | 
|  | m2 = vmlal_s16(m2, vget_high_s16(f[2]), vget_high_s16(rv2)); | 
|  | int32x4_t m3 = vmull_s16(vget_low_s16(f[3]), vget_low_s16(rv3)); | 
|  | m3 = vmlal_s16(m3, vget_high_s16(f[3]), vget_high_s16(rv3)); | 
|  |  | 
|  | int32x4_t m0123[] = { m0, m1, m2, m3 }; | 
|  |  | 
|  | const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; | 
|  | const int offset_bits_horiz = bd + FILTER_BITS - 1; | 
|  |  | 
|  | int32x4_t res = horizontal_add_4d_s32x4(m0123); | 
|  | res = vaddq_s32(res, vdupq_n_s32(1 << offset_bits_horiz)); | 
|  | res = vrshlq_s32(res, vdupq_n_s32(-round0)); | 
|  | return vcombine_s16(vmovn_s32(res), vdup_n_s16(0)); | 
|  | } | 
|  |  | 
|  | static INLINE int16x8_t warp_affine_horizontal_step_8x1_f8_neon( | 
|  | int bd, int sx, int alpha, uint16x8x2_t in) { | 
|  | const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; | 
|  | const int offset_bits_horiz = bd + FILTER_BITS - 1; | 
|  |  | 
|  | int16x8_t f[8]; | 
|  | load_filters_8(f, sx, alpha); | 
|  |  | 
|  | int16x8_t rv0 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 0); | 
|  | int16x8_t rv1 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 1); | 
|  | int16x8_t rv2 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 2); | 
|  | int16x8_t rv3 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 3); | 
|  | int16x8_t rv4 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 4); | 
|  | int16x8_t rv5 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 5); | 
|  | int16x8_t rv6 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 6); | 
|  | int16x8_t rv7 = vextq_s16(vreinterpretq_s16_u16(in.val[0]), | 
|  | vreinterpretq_s16_u16(in.val[1]), 7); | 
|  |  | 
|  | int32x4_t m0 = vmull_s16(vget_low_s16(f[0]), vget_low_s16(rv0)); | 
|  | m0 = vmlal_s16(m0, vget_high_s16(f[0]), vget_high_s16(rv0)); | 
|  | int32x4_t m1 = vmull_s16(vget_low_s16(f[1]), vget_low_s16(rv1)); | 
|  | m1 = vmlal_s16(m1, vget_high_s16(f[1]), vget_high_s16(rv1)); | 
|  | int32x4_t m2 = vmull_s16(vget_low_s16(f[2]), vget_low_s16(rv2)); | 
|  | m2 = vmlal_s16(m2, vget_high_s16(f[2]), vget_high_s16(rv2)); | 
|  | int32x4_t m3 = vmull_s16(vget_low_s16(f[3]), vget_low_s16(rv3)); | 
|  | m3 = vmlal_s16(m3, vget_high_s16(f[3]), vget_high_s16(rv3)); | 
|  | int32x4_t m4 = vmull_s16(vget_low_s16(f[4]), vget_low_s16(rv4)); | 
|  | m4 = vmlal_s16(m4, vget_high_s16(f[4]), vget_high_s16(rv4)); | 
|  | int32x4_t m5 = vmull_s16(vget_low_s16(f[5]), vget_low_s16(rv5)); | 
|  | m5 = vmlal_s16(m5, vget_high_s16(f[5]), vget_high_s16(rv5)); | 
|  | int32x4_t m6 = vmull_s16(vget_low_s16(f[6]), vget_low_s16(rv6)); | 
|  | m6 = vmlal_s16(m6, vget_high_s16(f[6]), vget_high_s16(rv6)); | 
|  | int32x4_t m7 = vmull_s16(vget_low_s16(f[7]), vget_low_s16(rv7)); | 
|  | m7 = vmlal_s16(m7, vget_high_s16(f[7]), vget_high_s16(rv7)); | 
|  |  | 
|  | int32x4_t m0123[] = { m0, m1, m2, m3 }; | 
|  | int32x4_t m4567[] = { m4, m5, m6, m7 }; | 
|  |  | 
|  | int32x4_t res0 = horizontal_add_4d_s32x4(m0123); | 
|  | int32x4_t res1 = horizontal_add_4d_s32x4(m4567); | 
|  | res0 = vaddq_s32(res0, vdupq_n_s32(1 << offset_bits_horiz)); | 
|  | res1 = vaddq_s32(res1, vdupq_n_s32(1 << offset_bits_horiz)); | 
|  | res0 = vrshlq_s32(res0, vdupq_n_s32(-round0)); | 
|  | res1 = vrshlq_s32(res1, vdupq_n_s32(-round0)); | 
|  | return vcombine_s16(vmovn_s32(res0), vmovn_s32(res1)); | 
|  | } | 
|  |  | 
|  | static INLINE void warp_affine_horizontal_neon(const uint16_t *ref, int width, | 
|  | int height, int stride, | 
|  | int p_width, int16_t alpha, | 
|  | int16_t beta, int iy4, int sx4, | 
|  | int ix4, int16x8_t tmp[], | 
|  | int bd) { | 
|  | const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; | 
|  |  | 
|  | if (ix4 <= -7) { | 
|  | for (int k = 0; k < 15; ++k) { | 
|  | int iy = clamp(iy4 + k - 7, 0, height - 1); | 
|  | int32_t dup_val = (1 << (bd + FILTER_BITS - round0 - 1)) + | 
|  | ref[iy * stride] * (1 << (FILTER_BITS - round0)); | 
|  | tmp[k] = vdupq_n_s16(dup_val); | 
|  | } | 
|  | return; | 
|  | } else if (ix4 >= width + 6) { | 
|  | for (int k = 0; k < 15; ++k) { | 
|  | int iy = clamp(iy4 + k - 7, 0, height - 1); | 
|  | int32_t dup_val = | 
|  | (1 << (bd + FILTER_BITS - round0 - 1)) + | 
|  | ref[iy * stride + (width - 1)] * (1 << (FILTER_BITS - round0)); | 
|  | tmp[k] = vdupq_n_s16(dup_val); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (int k = 0; k < 15; ++k) { | 
|  | const int iy = clamp(iy4 + k - 7, 0, height - 1); | 
|  | uint16x8x2_t in = vld1q_u16_x2(ref + iy * stride + ix4 - 7); | 
|  |  | 
|  | const int out_of_boundary_left = -(ix4 - 6); | 
|  | const int out_of_boundary_right = (ix4 + 8) - width; | 
|  |  | 
|  | const uint16_t k0[16] = { 0, 1, 2,  3,  4,  5,  6,  7, | 
|  | 8, 9, 10, 11, 12, 13, 14, 15 }; | 
|  | const uint16x8_t indx0 = vld1q_u16(&k0[0]); | 
|  | const uint16x8_t indx1 = vld1q_u16(&k0[8]); | 
|  |  | 
|  | if (out_of_boundary_left >= 0) { | 
|  | uint16x8_t cmp_vec = vdupq_n_u16(out_of_boundary_left); | 
|  | uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride]); | 
|  | uint16x8_t mask0 = vcleq_u16(indx0, cmp_vec); | 
|  | uint16x8_t mask1 = vcleq_u16(indx1, cmp_vec); | 
|  | in.val[0] = vbslq_u16(mask0, vec_dup, in.val[0]); | 
|  | in.val[1] = vbslq_u16(mask1, vec_dup, in.val[1]); | 
|  | } | 
|  | if (out_of_boundary_right >= 0) { | 
|  | uint16x8_t cmp_vec = vdupq_n_u16(15 - out_of_boundary_right); | 
|  | uint16x8_t vec_dup = vdupq_n_u16(ref[iy * stride + width - 1]); | 
|  | uint16x8_t mask0 = vcgeq_u16(indx0, cmp_vec); | 
|  | uint16x8_t mask1 = vcgeq_u16(indx1, cmp_vec); | 
|  | in.val[0] = vbslq_u16(mask0, vec_dup, in.val[0]); | 
|  | in.val[1] = vbslq_u16(mask1, vec_dup, in.val[1]); | 
|  | } | 
|  |  | 
|  | const int sx = sx4 + beta * (k - 3); | 
|  | if (p_width == 4) { | 
|  | tmp[k] = warp_affine_horizontal_step_4x1_f4_neon(bd, sx, alpha, in); | 
|  | } else { | 
|  | tmp[k] = warp_affine_horizontal_step_8x1_f8_neon(bd, sx, alpha, in); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static INLINE uint16x4_t clip_pixel_highbd_vec(int32x4_t val, int bd) { | 
|  | const int limit = (1 << bd) - 1; | 
|  | return vqmovun_s32(vminq_s32(val, vdupq_n_s32(limit))); | 
|  | } | 
|  |  | 
|  | static INLINE int32x4_t | 
|  | warp_affine_vertical_filter_4x1_f1_neon(const int16x8_t *tmp, int sy) { | 
|  | const int16x8_t f = load_filters_1(sy); | 
|  | const int16x4_t f0123 = vget_low_s16(f); | 
|  | const int16x4_t f4567 = vget_high_s16(f); | 
|  |  | 
|  | int32x4_t m0123 = vmull_lane_s16(vget_low_s16(tmp[0]), f0123, 0); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[1]), f0123, 1); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[2]), f0123, 2); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[3]), f0123, 3); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[4]), f4567, 0); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[5]), f4567, 1); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[6]), f4567, 2); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[7]), f4567, 3); | 
|  | return m0123; | 
|  | } | 
|  |  | 
|  | static INLINE int32x4x2_t | 
|  | warp_affine_vertical_filter_8x1_f1_neon(const int16x8_t *tmp, int sy) { | 
|  | const int16x8_t f = load_filters_1(sy); | 
|  | const int16x4_t f0123 = vget_low_s16(f); | 
|  | const int16x4_t f4567 = vget_high_s16(f); | 
|  |  | 
|  | int32x4_t m0123 = vmull_lane_s16(vget_low_s16(tmp[0]), f0123, 0); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[1]), f0123, 1); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[2]), f0123, 2); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[3]), f0123, 3); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[4]), f4567, 0); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[5]), f4567, 1); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[6]), f4567, 2); | 
|  | m0123 = vmlal_lane_s16(m0123, vget_low_s16(tmp[7]), f4567, 3); | 
|  |  | 
|  | int32x4_t m4567 = vmull_lane_s16(vget_high_s16(tmp[0]), f0123, 0); | 
|  | m4567 = vmlal_lane_s16(m4567, vget_high_s16(tmp[1]), f0123, 1); | 
|  | m4567 = vmlal_lane_s16(m4567, vget_high_s16(tmp[2]), f0123, 2); | 
|  | m4567 = vmlal_lane_s16(m4567, vget_high_s16(tmp[3]), f0123, 3); | 
|  | m4567 = vmlal_lane_s16(m4567, vget_high_s16(tmp[4]), f4567, 0); | 
|  | m4567 = vmlal_lane_s16(m4567, vget_high_s16(tmp[5]), f4567, 1); | 
|  | m4567 = vmlal_lane_s16(m4567, vget_high_s16(tmp[6]), f4567, 2); | 
|  | m4567 = vmlal_lane_s16(m4567, vget_high_s16(tmp[7]), f4567, 3); | 
|  | return (int32x4x2_t){ { m0123, m4567 } }; | 
|  | } | 
|  |  | 
|  | static INLINE int32x4_t warp_affine_vertical_filter_4x1_f4_neon( | 
|  | const int16x8_t *tmp, int sy, int gamma) { | 
|  | int16x8_t s0, s1, s2, s3; | 
|  | transpose_elems_s16_4x8( | 
|  | vget_low_s16(tmp[0]), vget_low_s16(tmp[1]), vget_low_s16(tmp[2]), | 
|  | vget_low_s16(tmp[3]), vget_low_s16(tmp[4]), vget_low_s16(tmp[5]), | 
|  | vget_low_s16(tmp[6]), vget_low_s16(tmp[7]), &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x8_t f[4]; | 
|  | load_filters_4(f, sy, gamma); | 
|  |  | 
|  | int32x4_t m0 = vmull_s16(vget_low_s16(s0), vget_low_s16(f[0])); | 
|  | m0 = vmlal_s16(m0, vget_high_s16(s0), vget_high_s16(f[0])); | 
|  | int32x4_t m1 = vmull_s16(vget_low_s16(s1), vget_low_s16(f[1])); | 
|  | m1 = vmlal_s16(m1, vget_high_s16(s1), vget_high_s16(f[1])); | 
|  | int32x4_t m2 = vmull_s16(vget_low_s16(s2), vget_low_s16(f[2])); | 
|  | m2 = vmlal_s16(m2, vget_high_s16(s2), vget_high_s16(f[2])); | 
|  | int32x4_t m3 = vmull_s16(vget_low_s16(s3), vget_low_s16(f[3])); | 
|  | m3 = vmlal_s16(m3, vget_high_s16(s3), vget_high_s16(f[3])); | 
|  |  | 
|  | int32x4_t m0123[] = { m0, m1, m2, m3 }; | 
|  | return horizontal_add_4d_s32x4(m0123); | 
|  | } | 
|  |  | 
|  | static INLINE int32x4x2_t warp_affine_vertical_filter_8x1_f8_neon( | 
|  | const int16x8_t *tmp, int sy, int gamma) { | 
|  | int16x8_t s0 = tmp[0]; | 
|  | int16x8_t s1 = tmp[1]; | 
|  | int16x8_t s2 = tmp[2]; | 
|  | int16x8_t s3 = tmp[3]; | 
|  | int16x8_t s4 = tmp[4]; | 
|  | int16x8_t s5 = tmp[5]; | 
|  | int16x8_t s6 = tmp[6]; | 
|  | int16x8_t s7 = tmp[7]; | 
|  | transpose_elems_inplace_s16_8x8(&s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7); | 
|  |  | 
|  | int16x8_t f[8]; | 
|  | load_filters_8(f, sy, gamma); | 
|  |  | 
|  | int32x4_t m0 = vmull_s16(vget_low_s16(s0), vget_low_s16(f[0])); | 
|  | m0 = vmlal_s16(m0, vget_high_s16(s0), vget_high_s16(f[0])); | 
|  | int32x4_t m1 = vmull_s16(vget_low_s16(s1), vget_low_s16(f[1])); | 
|  | m1 = vmlal_s16(m1, vget_high_s16(s1), vget_high_s16(f[1])); | 
|  | int32x4_t m2 = vmull_s16(vget_low_s16(s2), vget_low_s16(f[2])); | 
|  | m2 = vmlal_s16(m2, vget_high_s16(s2), vget_high_s16(f[2])); | 
|  | int32x4_t m3 = vmull_s16(vget_low_s16(s3), vget_low_s16(f[3])); | 
|  | m3 = vmlal_s16(m3, vget_high_s16(s3), vget_high_s16(f[3])); | 
|  | int32x4_t m4 = vmull_s16(vget_low_s16(s4), vget_low_s16(f[4])); | 
|  | m4 = vmlal_s16(m4, vget_high_s16(s4), vget_high_s16(f[4])); | 
|  | int32x4_t m5 = vmull_s16(vget_low_s16(s5), vget_low_s16(f[5])); | 
|  | m5 = vmlal_s16(m5, vget_high_s16(s5), vget_high_s16(f[5])); | 
|  | int32x4_t m6 = vmull_s16(vget_low_s16(s6), vget_low_s16(f[6])); | 
|  | m6 = vmlal_s16(m6, vget_high_s16(s6), vget_high_s16(f[6])); | 
|  | int32x4_t m7 = vmull_s16(vget_low_s16(s7), vget_low_s16(f[7])); | 
|  | m7 = vmlal_s16(m7, vget_high_s16(s7), vget_high_s16(f[7])); | 
|  |  | 
|  | int32x4_t m0123[] = { m0, m1, m2, m3 }; | 
|  | int32x4_t m4567[] = { m4, m5, m6, m7 }; | 
|  |  | 
|  | int32x4x2_t ret; | 
|  | ret.val[0] = horizontal_add_4d_s32x4(m0123); | 
|  | ret.val[1] = horizontal_add_4d_s32x4(m4567); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static INLINE void warp_affine_vertical_step_4x1_f4_neon( | 
|  | uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride, | 
|  | bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd, | 
|  | int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) { | 
|  | int32x4_t sum0 = | 
|  | gamma == 0 ? warp_affine_vertical_filter_4x1_f1_neon(tmp, sy) | 
|  | : warp_affine_vertical_filter_4x1_f4_neon(tmp, sy, gamma); | 
|  |  | 
|  | const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; | 
|  | const int offset_bits_vert = bd + 2 * FILTER_BITS - round0; | 
|  |  | 
|  | sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert)); | 
|  |  | 
|  | uint16_t *dst16 = &pred[i * p_stride + j]; | 
|  |  | 
|  | if (!is_compound) { | 
|  | const int reduce_bits_vert = 2 * FILTER_BITS - round0; | 
|  | sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert)); | 
|  |  | 
|  | const int res_sub_const = (1 << (bd - 1)) + (1 << bd); | 
|  | sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const)); | 
|  | uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd); | 
|  | vst1_u16(dst16, res0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS); | 
|  |  | 
|  | uint16_t *p = &dst[i * dst_stride + j]; | 
|  |  | 
|  | if (!do_average) { | 
|  | vst1_u16(p, vqmovun_s32(sum0)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint16x4_t p0 = vld1_u16(p); | 
|  | int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(p0)); | 
|  | if (use_dist_wtd_comp_avg) { | 
|  | p_vec0 = vmulq_n_s32(p_vec0, fwd); | 
|  | p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd); | 
|  | p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS); | 
|  | } else { | 
|  | p_vec0 = vhaddq_s32(p_vec0, sum0); | 
|  | } | 
|  |  | 
|  | const int offset_bits = bd + 2 * FILTER_BITS - round0; | 
|  | const int round1 = COMPOUND_ROUND1_BITS; | 
|  | const int res_sub_const = | 
|  | (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1)); | 
|  | const int round_bits = 2 * FILTER_BITS - round0 - round1; | 
|  |  | 
|  | p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const)); | 
|  | p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits)); | 
|  | uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd); | 
|  | vst1_u16(dst16, res0); | 
|  | } | 
|  |  | 
|  | static INLINE void warp_affine_vertical_step_8x1_f8_neon( | 
|  | uint16_t *pred, int p_stride, int bd, uint16_t *dst, int dst_stride, | 
|  | bool is_compound, bool do_average, bool use_dist_wtd_comp_avg, int fwd, | 
|  | int bwd, int16_t gamma, const int16x8_t *tmp, int i, int sy, int j) { | 
|  | int32x4x2_t sums = | 
|  | gamma == 0 ? warp_affine_vertical_filter_8x1_f1_neon(tmp, sy) | 
|  | : warp_affine_vertical_filter_8x1_f8_neon(tmp, sy, gamma); | 
|  | int32x4_t sum0 = sums.val[0]; | 
|  | int32x4_t sum1 = sums.val[1]; | 
|  |  | 
|  | const int round0 = (bd == 12) ? ROUND0_BITS + 2 : ROUND0_BITS; | 
|  | const int offset_bits_vert = bd + 2 * FILTER_BITS - round0; | 
|  |  | 
|  | sum0 = vaddq_s32(sum0, vdupq_n_s32(1 << offset_bits_vert)); | 
|  | sum1 = vaddq_s32(sum1, vdupq_n_s32(1 << offset_bits_vert)); | 
|  |  | 
|  | uint16_t *dst16 = &pred[i * p_stride + j]; | 
|  |  | 
|  | if (!is_compound) { | 
|  | const int reduce_bits_vert = 2 * FILTER_BITS - round0; | 
|  | sum0 = vrshlq_s32(sum0, vdupq_n_s32(-reduce_bits_vert)); | 
|  | sum1 = vrshlq_s32(sum1, vdupq_n_s32(-reduce_bits_vert)); | 
|  |  | 
|  | const int res_sub_const = (1 << (bd - 1)) + (1 << bd); | 
|  | sum0 = vsubq_s32(sum0, vdupq_n_s32(res_sub_const)); | 
|  | sum1 = vsubq_s32(sum1, vdupq_n_s32(res_sub_const)); | 
|  | uint16x4_t res0 = clip_pixel_highbd_vec(sum0, bd); | 
|  | uint16x4_t res1 = clip_pixel_highbd_vec(sum1, bd); | 
|  | vst1_u16(dst16, res0); | 
|  | vst1_u16(dst16 + 4, res1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | sum0 = vrshrq_n_s32(sum0, COMPOUND_ROUND1_BITS); | 
|  | sum1 = vrshrq_n_s32(sum1, COMPOUND_ROUND1_BITS); | 
|  |  | 
|  | uint16_t *p = &dst[i * dst_stride + j]; | 
|  |  | 
|  | if (!do_average) { | 
|  | vst1_u16(p, vqmovun_s32(sum0)); | 
|  | vst1_u16(p + 4, vqmovun_s32(sum1)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | uint16x8_t p0 = vld1q_u16(p); | 
|  | int32x4_t p_vec0 = vreinterpretq_s32_u32(vmovl_u16(vget_low_u16(p0))); | 
|  | int32x4_t p_vec1 = vreinterpretq_s32_u32(vmovl_u16(vget_high_u16(p0))); | 
|  | if (use_dist_wtd_comp_avg) { | 
|  | p_vec0 = vmulq_n_s32(p_vec0, fwd); | 
|  | p_vec1 = vmulq_n_s32(p_vec1, fwd); | 
|  | p_vec0 = vmlaq_n_s32(p_vec0, sum0, bwd); | 
|  | p_vec1 = vmlaq_n_s32(p_vec1, sum1, bwd); | 
|  | p_vec0 = vshrq_n_s32(p_vec0, DIST_PRECISION_BITS); | 
|  | p_vec1 = vshrq_n_s32(p_vec1, DIST_PRECISION_BITS); | 
|  | } else { | 
|  | p_vec0 = vhaddq_s32(p_vec0, sum0); | 
|  | p_vec1 = vhaddq_s32(p_vec1, sum1); | 
|  | } | 
|  |  | 
|  | const int offset_bits = bd + 2 * FILTER_BITS - round0; | 
|  | const int round1 = COMPOUND_ROUND1_BITS; | 
|  | const int res_sub_const = | 
|  | (1 << (offset_bits - round1)) + (1 << (offset_bits - round1 - 1)); | 
|  | const int round_bits = 2 * FILTER_BITS - round0 - round1; | 
|  |  | 
|  | p_vec0 = vsubq_s32(p_vec0, vdupq_n_s32(res_sub_const)); | 
|  | p_vec1 = vsubq_s32(p_vec1, vdupq_n_s32(res_sub_const)); | 
|  |  | 
|  | p_vec0 = vrshlq_s32(p_vec0, vdupq_n_s32(-round_bits)); | 
|  | p_vec1 = vrshlq_s32(p_vec1, vdupq_n_s32(-round_bits)); | 
|  | uint16x4_t res0 = clip_pixel_highbd_vec(p_vec0, bd); | 
|  | uint16x4_t res1 = clip_pixel_highbd_vec(p_vec1, bd); | 
|  | vst1_u16(dst16, res0); | 
|  | vst1_u16(dst16 + 4, res1); | 
|  | } | 
|  |  | 
|  | static INLINE void warp_affine_vertical_neon( | 
|  | uint16_t *pred, int p_width, int p_height, int p_stride, int bd, | 
|  | uint16_t *dst, int dst_stride, bool is_compound, bool do_average, | 
|  | bool use_dist_wtd_comp_avg, int fwd, int bwd, int16_t gamma, int16_t delta, | 
|  | const int16x8_t *tmp, int i, int sy4, int j) { | 
|  | int limit_height = p_height > 4 ? 8 : 4; | 
|  |  | 
|  | if (p_width > 4) { | 
|  | // p_width == 8 | 
|  | for (int k = 0; k < limit_height; ++k) { | 
|  | int sy = sy4 + delta * k; | 
|  | warp_affine_vertical_step_8x1_f8_neon( | 
|  | pred, p_stride, bd, dst, dst_stride, is_compound, do_average, | 
|  | use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j); | 
|  | } | 
|  | } else { | 
|  | // p_width == 4 | 
|  | for (int k = 0; k < limit_height; ++k) { | 
|  | int sy = sy4 + delta * k; | 
|  | warp_affine_vertical_step_4x1_f4_neon( | 
|  | pred, p_stride, bd, dst, dst_stride, is_compound, do_average, | 
|  | use_dist_wtd_comp_avg, fwd, bwd, gamma, tmp + k, i + k, sy, j); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_highbd_warp_affine_neon(const int32_t *mat, const uint16_t *ref, | 
|  | int width, int height, int stride, | 
|  | uint16_t *pred, int p_col, int p_row, | 
|  | int p_width, int p_height, int p_stride, | 
|  | int subsampling_x, int subsampling_y, int bd, | 
|  | ConvolveParams *conv_params, int16_t alpha, | 
|  | int16_t beta, int16_t gamma, int16_t delta) { | 
|  | uint16_t *const dst = conv_params->dst; | 
|  | const int dst_stride = conv_params->dst_stride; | 
|  | const bool is_compound = conv_params->is_compound; | 
|  | const bool do_average = conv_params->do_average; | 
|  | const bool use_dist_wtd_comp_avg = conv_params->use_dist_wtd_comp_avg; | 
|  | const int fwd = conv_params->fwd_offset; | 
|  | const int bwd = conv_params->bck_offset; | 
|  |  | 
|  | assert(IMPLIES(is_compound, dst != NULL)); | 
|  |  | 
|  | for (int i = 0; i < p_height; i += 8) { | 
|  | for (int j = 0; j < p_width; j += 8) { | 
|  | // Calculate the center of this 8x8 block, | 
|  | // project to luma coordinates (if in a subsampled chroma plane), | 
|  | // apply the affine transformation, | 
|  | // then convert back to the original coordinates (if necessary) | 
|  | const int32_t src_x = (j + 4 + p_col) << subsampling_x; | 
|  | const int32_t src_y = (i + 4 + p_row) << subsampling_y; | 
|  | const int64_t dst_x = | 
|  | (int64_t)mat[2] * src_x + (int64_t)mat[3] * src_y + (int64_t)mat[0]; | 
|  | const int64_t dst_y = | 
|  | (int64_t)mat[4] * src_x + (int64_t)mat[5] * src_y + (int64_t)mat[1]; | 
|  | const int64_t x4 = dst_x >> subsampling_x; | 
|  | const int64_t y4 = dst_y >> subsampling_y; | 
|  |  | 
|  | const int32_t ix4 = (int32_t)(x4 >> WARPEDMODEL_PREC_BITS); | 
|  | int32_t sx4 = x4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
|  | const int32_t iy4 = (int32_t)(y4 >> WARPEDMODEL_PREC_BITS); | 
|  | int32_t sy4 = y4 & ((1 << WARPEDMODEL_PREC_BITS) - 1); | 
|  |  | 
|  | sx4 += alpha * (-4) + beta * (-4); | 
|  | sy4 += gamma * (-4) + delta * (-4); | 
|  |  | 
|  | sx4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); | 
|  | sy4 &= ~((1 << WARP_PARAM_REDUCE_BITS) - 1); | 
|  |  | 
|  | // Each horizontal filter result is formed by the sum of up to eight | 
|  | // multiplications by filter values and then a shift. Although both the | 
|  | // inputs and filters are loaded as int16, the input data is at most bd | 
|  | // bits and the filters are at most 8 bits each. Additionally since we | 
|  | // know all possible filter values we know that the sum of absolute | 
|  | // filter values will fit in at most 9 bits. With this in mind we can | 
|  | // conclude that the sum of each filter application will fit in bd + 9 | 
|  | // bits. The shift following the summation is ROUND0_BITS (which is 3), | 
|  | // +2 for 12-bit, which gives us a final storage of: | 
|  | // bd ==  8: ( 8 + 9) - 3 => 14 bits | 
|  | // bd == 10: (10 + 9) - 3 => 16 bits | 
|  | // bd == 12: (12 + 9) - 5 => 16 bits | 
|  | // So it is safe to use int16x8_t as the intermediate storage type here. | 
|  | int16x8_t tmp[15]; | 
|  |  | 
|  | warp_affine_horizontal_neon(ref, width, height, stride, p_width, alpha, | 
|  | beta, iy4, sx4, ix4, tmp, bd); | 
|  | warp_affine_vertical_neon(pred, p_width, p_height, p_stride, bd, dst, | 
|  | dst_stride, is_compound, do_average, | 
|  | use_dist_wtd_comp_avg, fwd, bwd, gamma, delta, | 
|  | tmp, i, sy4, j); | 
|  | } | 
|  | } | 
|  | } |