|  | /* | 
|  | * Copyright (c) 2021, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  |  | 
|  | #if CONFIG_TFLITE | 
|  | #include "tensorflow/lite/c/c_api.h" | 
|  | #include "av1/encoder/deltaq4_model.c" | 
|  | #endif | 
|  |  | 
|  | #include "av1/common/common_data.h" | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/idct.h" | 
|  | #include "av1/common/reconinter.h" | 
|  | #include "av1/encoder/allintra_vis.h" | 
|  | #include "av1/encoder/encoder.h" | 
|  | #include "av1/encoder/ethread.h" | 
|  | #include "av1/encoder/hybrid_fwd_txfm.h" | 
|  | #include "av1/encoder/model_rd.h" | 
|  | #include "av1/encoder/rdopt_utils.h" | 
|  |  | 
|  | #define MB_WIENER_PRED_BLOCK_SIZE BLOCK_128X128 | 
|  | #define MB_WIENER_PRED_BUF_STRIDE 128 | 
|  |  | 
|  | void av1_alloc_mb_wiener_var_pred_buf(AV1_COMMON *cm, ThreadData *td) { | 
|  | const int is_high_bitdepth = is_cur_buf_hbd(&td->mb.e_mbd); | 
|  | assert(MB_WIENER_PRED_BLOCK_SIZE < BLOCK_SIZES_ALL); | 
|  | const int buf_width = block_size_wide[MB_WIENER_PRED_BLOCK_SIZE]; | 
|  | const int buf_height = block_size_high[MB_WIENER_PRED_BLOCK_SIZE]; | 
|  | assert(buf_width == MB_WIENER_PRED_BUF_STRIDE); | 
|  | const size_t buf_size = | 
|  | (buf_width * buf_height * sizeof(*td->wiener_tmp_pred_buf)) | 
|  | << is_high_bitdepth; | 
|  | CHECK_MEM_ERROR(cm, td->wiener_tmp_pred_buf, aom_memalign(32, buf_size)); | 
|  | } | 
|  |  | 
|  | void av1_dealloc_mb_wiener_var_pred_buf(ThreadData *td) { | 
|  | aom_free(td->wiener_tmp_pred_buf); | 
|  | td->wiener_tmp_pred_buf = NULL; | 
|  | } | 
|  |  | 
|  | void av1_init_mb_wiener_var_buffer(AV1_COMP *cpi) { | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  |  | 
|  | // This block size is also used to determine number of workers in | 
|  | // multi-threading. If it is changed, one needs to change it accordingly in | 
|  | // "compute_num_ai_workers()". | 
|  | cpi->weber_bsize = BLOCK_8X8; | 
|  |  | 
|  | if (cpi->oxcf.enable_rate_guide_deltaq) { | 
|  | if (cpi->mb_weber_stats && cpi->prep_rate_estimates && | 
|  | cpi->ext_rate_distribution) | 
|  | return; | 
|  | } else { | 
|  | if (cpi->mb_weber_stats) return; | 
|  | } | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, cpi->mb_weber_stats, | 
|  | aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols, | 
|  | sizeof(*cpi->mb_weber_stats))); | 
|  |  | 
|  | if (cpi->oxcf.enable_rate_guide_deltaq) { | 
|  | CHECK_MEM_ERROR( | 
|  | cm, cpi->prep_rate_estimates, | 
|  | aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols, | 
|  | sizeof(*cpi->prep_rate_estimates))); | 
|  |  | 
|  | CHECK_MEM_ERROR( | 
|  | cm, cpi->ext_rate_distribution, | 
|  | aom_calloc(cpi->frame_info.mi_rows * cpi->frame_info.mi_cols, | 
|  | sizeof(*cpi->ext_rate_distribution))); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int64_t get_satd(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row, | 
|  | int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int mi_wide = mi_size_wide[bsize]; | 
|  | const int mi_high = mi_size_high[bsize]; | 
|  |  | 
|  | const int mi_step = mi_size_wide[cpi->weber_bsize]; | 
|  | int mb_stride = cpi->frame_info.mi_cols; | 
|  | int mb_count = 0; | 
|  | int64_t satd = 0; | 
|  |  | 
|  | for (int row = mi_row; row < mi_row + mi_high; row += mi_step) { | 
|  | for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) { | 
|  | if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols) | 
|  | continue; | 
|  |  | 
|  | satd += cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)] | 
|  | .satd; | 
|  | ++mb_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mb_count) satd = (int)(satd / mb_count); | 
|  | satd = AOMMAX(1, satd); | 
|  |  | 
|  | return (int)satd; | 
|  | } | 
|  |  | 
|  | static int64_t get_sse(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row, | 
|  | int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int mi_wide = mi_size_wide[bsize]; | 
|  | const int mi_high = mi_size_high[bsize]; | 
|  |  | 
|  | const int mi_step = mi_size_wide[cpi->weber_bsize]; | 
|  | int mb_stride = cpi->frame_info.mi_cols; | 
|  | int mb_count = 0; | 
|  | int64_t distortion = 0; | 
|  |  | 
|  | for (int row = mi_row; row < mi_row + mi_high; row += mi_step) { | 
|  | for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) { | 
|  | if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols) | 
|  | continue; | 
|  |  | 
|  | distortion += | 
|  | cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)] | 
|  | .distortion; | 
|  | ++mb_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (mb_count) distortion = (int)(distortion / mb_count); | 
|  | distortion = AOMMAX(1, distortion); | 
|  |  | 
|  | return (int)distortion; | 
|  | } | 
|  |  | 
|  | static double get_max_scale(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row, | 
|  | int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int mi_wide = mi_size_wide[bsize]; | 
|  | const int mi_high = mi_size_high[bsize]; | 
|  | const int mi_step = mi_size_wide[cpi->weber_bsize]; | 
|  | int mb_stride = cpi->frame_info.mi_cols; | 
|  | double min_max_scale = 10.0; | 
|  |  | 
|  | for (int row = mi_row; row < mi_row + mi_high; row += mi_step) { | 
|  | for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) { | 
|  | if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols) | 
|  | continue; | 
|  | WeberStats *weber_stats = | 
|  | &cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]; | 
|  | if (weber_stats->max_scale < 1.0) continue; | 
|  | if (weber_stats->max_scale < min_max_scale) | 
|  | min_max_scale = weber_stats->max_scale; | 
|  | } | 
|  | } | 
|  | return min_max_scale; | 
|  | } | 
|  |  | 
|  | static int get_window_wiener_var(AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
|  | int mi_row, int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int mi_wide = mi_size_wide[bsize]; | 
|  | const int mi_high = mi_size_high[bsize]; | 
|  |  | 
|  | const int mi_step = mi_size_wide[cpi->weber_bsize]; | 
|  | int sb_wiener_var = 0; | 
|  | int mb_stride = cpi->frame_info.mi_cols; | 
|  | int mb_count = 0; | 
|  | double base_num = 1; | 
|  | double base_den = 1; | 
|  | double base_reg = 1; | 
|  |  | 
|  | for (int row = mi_row; row < mi_row + mi_high; row += mi_step) { | 
|  | for (int col = mi_col; col < mi_col + mi_wide; col += mi_step) { | 
|  | if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols) | 
|  | continue; | 
|  |  | 
|  | WeberStats *weber_stats = | 
|  | &cpi->mb_weber_stats[(row / mi_step) * mb_stride + (col / mi_step)]; | 
|  |  | 
|  | base_num += ((double)weber_stats->distortion) * | 
|  | sqrt((double)weber_stats->src_variance) * | 
|  | weber_stats->rec_pix_max; | 
|  |  | 
|  | base_den += fabs( | 
|  | weber_stats->rec_pix_max * sqrt((double)weber_stats->src_variance) - | 
|  | weber_stats->src_pix_max * sqrt((double)weber_stats->rec_variance)); | 
|  |  | 
|  | base_reg += sqrt((double)weber_stats->distortion) * | 
|  | sqrt((double)weber_stats->src_pix_max) * 0.1; | 
|  | ++mb_count; | 
|  | } | 
|  | } | 
|  |  | 
|  | sb_wiener_var = | 
|  | (int)(((base_num + base_reg) / (base_den + base_reg)) / mb_count); | 
|  | sb_wiener_var = AOMMAX(1, sb_wiener_var); | 
|  |  | 
|  | return (int)sb_wiener_var; | 
|  | } | 
|  |  | 
|  | static int get_var_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
|  | int mi_row, int mi_col) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int mi_wide = mi_size_wide[bsize]; | 
|  | const int mi_high = mi_size_high[bsize]; | 
|  |  | 
|  | int sb_wiener_var = get_window_wiener_var(cpi, bsize, mi_row, mi_col); | 
|  |  | 
|  | if (mi_row >= (mi_high / 2)) { | 
|  | sb_wiener_var = | 
|  | AOMMIN(sb_wiener_var, | 
|  | get_window_wiener_var(cpi, bsize, mi_row - mi_high / 2, mi_col)); | 
|  | } | 
|  | if (mi_row <= (cm->mi_params.mi_rows - mi_high - (mi_high / 2))) { | 
|  | sb_wiener_var = | 
|  | AOMMIN(sb_wiener_var, | 
|  | get_window_wiener_var(cpi, bsize, mi_row + mi_high / 2, mi_col)); | 
|  | } | 
|  | if (mi_col >= (mi_wide / 2)) { | 
|  | sb_wiener_var = | 
|  | AOMMIN(sb_wiener_var, | 
|  | get_window_wiener_var(cpi, bsize, mi_row, mi_col - mi_wide / 2)); | 
|  | } | 
|  | if (mi_col <= (cm->mi_params.mi_cols - mi_wide - (mi_wide / 2))) { | 
|  | sb_wiener_var = | 
|  | AOMMIN(sb_wiener_var, | 
|  | get_window_wiener_var(cpi, bsize, mi_row, mi_col + mi_wide / 2)); | 
|  | } | 
|  |  | 
|  | return sb_wiener_var; | 
|  | } | 
|  |  | 
|  | static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) { | 
|  | const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; | 
|  |  | 
|  | assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob); | 
|  | int rate_cost = 1; | 
|  |  | 
|  | for (int idx = 0; idx < eob; ++idx) { | 
|  | int abs_level = abs(qcoeff[scan_order->scan[idx]]); | 
|  | rate_cost += (int)(log1p(abs_level) / log(2.0)) + 1 + (abs_level > 0); | 
|  | } | 
|  |  | 
|  | return (rate_cost << AV1_PROB_COST_SHIFT); | 
|  | } | 
|  |  | 
|  | void av1_calc_mb_wiener_var_row(AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | MACROBLOCKD *xd, const int mi_row, | 
|  | int16_t *src_diff, tran_low_t *coeff, | 
|  | tran_low_t *qcoeff, tran_low_t *dqcoeff, | 
|  | double *sum_rec_distortion, | 
|  | double *sum_est_rate, uint8_t *pred_buffer) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | uint8_t *buffer = cpi->source->y_buffer; | 
|  | int buf_stride = cpi->source->y_stride; | 
|  | MB_MODE_INFO mbmi; | 
|  | memset(&mbmi, 0, sizeof(mbmi)); | 
|  | MB_MODE_INFO *mbmi_ptr = &mbmi; | 
|  | xd->mi = &mbmi_ptr; | 
|  | const BLOCK_SIZE bsize = cpi->weber_bsize; | 
|  | const TX_SIZE tx_size = max_txsize_lookup[bsize]; | 
|  | const int block_size = tx_size_wide[tx_size]; | 
|  | const int coeff_count = block_size * block_size; | 
|  | const int mb_step = mi_size_wide[bsize]; | 
|  | const BitDepthInfo bd_info = get_bit_depth_info(xd); | 
|  | const AV1EncAllIntraMultiThreadInfo *const intra_mt = &cpi->mt_info.intra_mt; | 
|  | AV1EncRowMultiThreadSync *const intra_row_mt_sync = | 
|  | &cpi->ppi->intra_row_mt_sync; | 
|  | const int mi_cols = cm->mi_params.mi_cols; | 
|  | const int mt_thread_id = mi_row / mb_step; | 
|  | // TODO(chengchen): test different unit step size | 
|  | const int mt_unit_step = mi_size_wide[BLOCK_64X64]; | 
|  | const int mt_unit_cols = (mi_cols + (mt_unit_step >> 1)) / mt_unit_step; | 
|  | int mt_unit_col = 0; | 
|  | const int is_high_bitdepth = is_cur_buf_hbd(xd); | 
|  |  | 
|  | uint8_t *dst_buffer = pred_buffer; | 
|  | const int dst_buffer_stride = MB_WIENER_PRED_BUF_STRIDE; | 
|  |  | 
|  | if (is_high_bitdepth) { | 
|  | uint16_t *pred_buffer_16 = (uint16_t *)pred_buffer; | 
|  | dst_buffer = CONVERT_TO_BYTEPTR(pred_buffer_16); | 
|  | } | 
|  |  | 
|  | for (int mi_col = 0; mi_col < mi_cols; mi_col += mb_step) { | 
|  | if (mi_col % mt_unit_step == 0) { | 
|  | intra_mt->intra_sync_read_ptr(intra_row_mt_sync, mt_thread_id, | 
|  | mt_unit_col); | 
|  | } | 
|  |  | 
|  | PREDICTION_MODE best_mode = DC_PRED; | 
|  | int best_intra_cost = INT_MAX; | 
|  | const int mi_width = mi_size_wide[bsize]; | 
|  | const int mi_height = mi_size_high[bsize]; | 
|  | set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, | 
|  | mi_row, mi_col); | 
|  | set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width, | 
|  | AOMMIN(mi_row + mi_height, cm->mi_params.mi_rows), | 
|  | AOMMIN(mi_col + mi_width, cm->mi_params.mi_cols)); | 
|  | set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], | 
|  | av1_num_planes(cm)); | 
|  | xd->mi[0]->bsize = bsize; | 
|  | xd->mi[0]->motion_mode = SIMPLE_TRANSLATION; | 
|  | // Set above and left mbmi to NULL as they are not available in the | 
|  | // preprocessing stage. | 
|  | // They are used to detemine intra edge filter types in intra prediction. | 
|  | if (xd->up_available) { | 
|  | xd->above_mbmi = NULL; | 
|  | } | 
|  | if (xd->left_available) { | 
|  | xd->left_mbmi = NULL; | 
|  | } | 
|  | uint8_t *mb_buffer = | 
|  | buffer + mi_row * MI_SIZE * buf_stride + mi_col * MI_SIZE; | 
|  | for (PREDICTION_MODE mode = INTRA_MODE_START; mode < INTRA_MODE_END; | 
|  | ++mode) { | 
|  | // TODO(chengchen): Here we use src instead of reconstructed frame as | 
|  | // the intra predictor to make single and multithread version match. | 
|  | // Ideally we want to use the reconstructed. | 
|  | av1_predict_intra_block( | 
|  | xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter, | 
|  | block_size, block_size, tx_size, mode, 0, 0, FILTER_INTRA_MODES, | 
|  | mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0); | 
|  | av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size, | 
|  | mb_buffer, buf_stride, dst_buffer, dst_buffer_stride); | 
|  | av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff); | 
|  | int intra_cost = aom_satd(coeff, coeff_count); | 
|  | if (intra_cost < best_intra_cost) { | 
|  | best_intra_cost = intra_cost; | 
|  | best_mode = mode; | 
|  | } | 
|  | } | 
|  |  | 
|  | av1_predict_intra_block( | 
|  | xd, cm->seq_params->sb_size, cm->seq_params->enable_intra_edge_filter, | 
|  | block_size, block_size, tx_size, best_mode, 0, 0, FILTER_INTRA_MODES, | 
|  | mb_buffer, buf_stride, dst_buffer, dst_buffer_stride, 0, 0, 0); | 
|  | av1_subtract_block(bd_info, block_size, block_size, src_diff, block_size, | 
|  | mb_buffer, buf_stride, dst_buffer, dst_buffer_stride); | 
|  | av1_quick_txfm(0, tx_size, bd_info, src_diff, block_size, coeff); | 
|  |  | 
|  | const struct macroblock_plane *const p = &x->plane[0]; | 
|  | uint16_t eob; | 
|  | const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; | 
|  | QUANT_PARAM quant_param; | 
|  | int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]; | 
|  | av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param); | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob, | 
|  | scan_order, &quant_param); | 
|  | } else { | 
|  | av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob, | 
|  | scan_order, &quant_param); | 
|  | } | 
|  | #else | 
|  | av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, &eob, scan_order, | 
|  | &quant_param); | 
|  | #endif  // CONFIG_AV1_HIGHBITDEPTH | 
|  |  | 
|  | if (cpi->oxcf.enable_rate_guide_deltaq) { | 
|  | const int rate_cost = rate_estimator(qcoeff, eob, tx_size); | 
|  | cpi->prep_rate_estimates[(mi_row / mb_step) * cpi->frame_info.mi_cols + | 
|  | (mi_col / mb_step)] = rate_cost; | 
|  | } | 
|  |  | 
|  | av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst_buffer, | 
|  | dst_buffer_stride, eob, 0); | 
|  | WeberStats *weber_stats = | 
|  | &cpi->mb_weber_stats[(mi_row / mb_step) * cpi->frame_info.mi_cols + | 
|  | (mi_col / mb_step)]; | 
|  |  | 
|  | weber_stats->rec_pix_max = 1; | 
|  | weber_stats->rec_variance = 0; | 
|  | weber_stats->src_pix_max = 1; | 
|  | weber_stats->src_variance = 0; | 
|  | weber_stats->distortion = 0; | 
|  |  | 
|  | int64_t src_mean = 0; | 
|  | int64_t rec_mean = 0; | 
|  | int64_t dist_mean = 0; | 
|  |  | 
|  | for (int pix_row = 0; pix_row < block_size; ++pix_row) { | 
|  | for (int pix_col = 0; pix_col < block_size; ++pix_col) { | 
|  | int src_pix, rec_pix; | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (is_cur_buf_hbd(xd)) { | 
|  | uint16_t *src = CONVERT_TO_SHORTPTR(mb_buffer); | 
|  | uint16_t *rec = CONVERT_TO_SHORTPTR(dst_buffer); | 
|  | src_pix = src[pix_row * buf_stride + pix_col]; | 
|  | rec_pix = rec[pix_row * dst_buffer_stride + pix_col]; | 
|  | } else { | 
|  | src_pix = mb_buffer[pix_row * buf_stride + pix_col]; | 
|  | rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col]; | 
|  | } | 
|  | #else | 
|  | src_pix = mb_buffer[pix_row * buf_stride + pix_col]; | 
|  | rec_pix = dst_buffer[pix_row * dst_buffer_stride + pix_col]; | 
|  | #endif | 
|  | src_mean += src_pix; | 
|  | rec_mean += rec_pix; | 
|  | dist_mean += src_pix - rec_pix; | 
|  | weber_stats->src_variance += src_pix * src_pix; | 
|  | weber_stats->rec_variance += rec_pix * rec_pix; | 
|  | weber_stats->src_pix_max = AOMMAX(weber_stats->src_pix_max, src_pix); | 
|  | weber_stats->rec_pix_max = AOMMAX(weber_stats->rec_pix_max, rec_pix); | 
|  | weber_stats->distortion += (src_pix - rec_pix) * (src_pix - rec_pix); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) { | 
|  | *sum_rec_distortion += weber_stats->distortion; | 
|  | int est_block_rate = 0; | 
|  | int64_t est_block_dist = 0; | 
|  | model_rd_sse_fn[MODELRD_LEGACY](cpi, x, bsize, 0, weber_stats->distortion, | 
|  | pix_num, &est_block_rate, | 
|  | &est_block_dist); | 
|  | *sum_est_rate += est_block_rate; | 
|  | } | 
|  |  | 
|  | weber_stats->src_variance -= (src_mean * src_mean) / pix_num; | 
|  | weber_stats->rec_variance -= (rec_mean * rec_mean) / pix_num; | 
|  | weber_stats->distortion -= (dist_mean * dist_mean) / pix_num; | 
|  | weber_stats->satd = best_intra_cost; | 
|  |  | 
|  | qcoeff[0] = 0; | 
|  | int max_scale = 0; | 
|  | for (int idx = 1; idx < coeff_count; ++idx) { | 
|  | const int abs_qcoeff = abs(qcoeff[idx]); | 
|  | max_scale = AOMMAX(max_scale, abs_qcoeff); | 
|  | } | 
|  | weber_stats->max_scale = max_scale; | 
|  |  | 
|  | if ((mi_col + mb_step) % mt_unit_step == 0 || | 
|  | (mi_col + mb_step) >= mi_cols) { | 
|  | intra_mt->intra_sync_write_ptr(intra_row_mt_sync, mt_thread_id, | 
|  | mt_unit_col, mt_unit_cols); | 
|  | ++mt_unit_col; | 
|  | } | 
|  | } | 
|  | // Set the pointer to null since mbmi is only allocated inside this function. | 
|  | xd->mi = NULL; | 
|  | } | 
|  |  | 
|  | static void calc_mb_wiener_var(AV1_COMP *const cpi, double *sum_rec_distortion, | 
|  | double *sum_est_rate) { | 
|  | MACROBLOCK *x = &cpi->td.mb; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | const BLOCK_SIZE bsize = cpi->weber_bsize; | 
|  | const int mb_step = mi_size_wide[bsize]; | 
|  | DECLARE_ALIGNED(32, int16_t, src_diff[32 * 32]); | 
|  | DECLARE_ALIGNED(32, tran_low_t, coeff[32 * 32]); | 
|  | DECLARE_ALIGNED(32, tran_low_t, qcoeff[32 * 32]); | 
|  | DECLARE_ALIGNED(32, tran_low_t, dqcoeff[32 * 32]); | 
|  | for (int mi_row = 0; mi_row < cpi->frame_info.mi_rows; mi_row += mb_step) { | 
|  | av1_calc_mb_wiener_var_row(cpi, x, xd, mi_row, src_diff, coeff, qcoeff, | 
|  | dqcoeff, sum_rec_distortion, sum_est_rate, | 
|  | cpi->td.wiener_tmp_pred_buf); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int64_t estimate_wiener_var_norm(AV1_COMP *const cpi, | 
|  | const BLOCK_SIZE norm_block_size) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | int64_t norm_factor = 1; | 
|  | assert(norm_block_size >= BLOCK_16X16 && norm_block_size <= BLOCK_128X128); | 
|  | const int norm_step = mi_size_wide[norm_block_size]; | 
|  | double sb_wiener_log = 0; | 
|  | double sb_count = 0; | 
|  | for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) { | 
|  | for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; mi_col += norm_step) { | 
|  | const int sb_wiener_var = | 
|  | get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col); | 
|  | const int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col); | 
|  | const int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col); | 
|  | const double scaled_satd = (double)satd / sqrt((double)sse); | 
|  | sb_wiener_log += scaled_satd * log(sb_wiener_var); | 
|  | sb_count += scaled_satd; | 
|  | } | 
|  | } | 
|  | if (sb_count > 0) norm_factor = (int64_t)(exp(sb_wiener_log / sb_count)); | 
|  | norm_factor = AOMMAX(1, norm_factor); | 
|  |  | 
|  | return norm_factor; | 
|  | } | 
|  |  | 
|  | static void automatic_intra_tools_off(AV1_COMP *cpi, | 
|  | const double sum_rec_distortion, | 
|  | const double sum_est_rate) { | 
|  | if (!cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) return; | 
|  |  | 
|  | // Thresholds | 
|  | const int high_quality_qindex = 128; | 
|  | const double high_quality_bpp = 2.0; | 
|  | const double high_quality_dist_per_pix = 4.0; | 
|  |  | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int qindex = cm->quant_params.base_qindex; | 
|  | const double dist_per_pix = | 
|  | (double)sum_rec_distortion / (cm->width * cm->height); | 
|  | // The estimate bpp is not accurate, an empirical constant 100 is divided. | 
|  | const double estimate_bpp = sum_est_rate / (cm->width * cm->height * 100); | 
|  |  | 
|  | if (qindex < high_quality_qindex && estimate_bpp > high_quality_bpp && | 
|  | dist_per_pix < high_quality_dist_per_pix) { | 
|  | cpi->oxcf.intra_mode_cfg.enable_smooth_intra = 0; | 
|  | cpi->oxcf.intra_mode_cfg.enable_paeth_intra = 0; | 
|  | cpi->oxcf.intra_mode_cfg.enable_cfl_intra = 0; | 
|  | cpi->oxcf.intra_mode_cfg.enable_diagonal_intra = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void ext_rate_guided_quantization(AV1_COMP *cpi) { | 
|  | // Calculation uses 8x8. | 
|  | const int mb_step = mi_size_wide[cpi->weber_bsize]; | 
|  | // Accumulate to 16x16, step size is in the unit of mi. | 
|  | const int block_step = 4; | 
|  |  | 
|  | const char *filename = cpi->oxcf.rate_distribution_info; | 
|  | FILE *pfile = fopen(filename, "r"); | 
|  | if (pfile == NULL) { | 
|  | assert(pfile != NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | double ext_rate_sum = 0.0; | 
|  | for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) { | 
|  | for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) { | 
|  | float val; | 
|  | const int fields_converted = fscanf(pfile, "%f", &val); | 
|  | if (fields_converted != 1) { | 
|  | assert(fields_converted == 1); | 
|  | fclose(pfile); | 
|  | return; | 
|  | } | 
|  | ext_rate_sum += val; | 
|  | cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols + | 
|  | (col / mb_step)] = val; | 
|  | } | 
|  | } | 
|  | fclose(pfile); | 
|  |  | 
|  | int uniform_rate_sum = 0; | 
|  | for (int row = 0; row < cpi->frame_info.mi_rows; row += block_step) { | 
|  | for (int col = 0; col < cpi->frame_info.mi_cols; col += block_step) { | 
|  | int rate_sum = 0; | 
|  | for (int r = 0; r < block_step; r += mb_step) { | 
|  | for (int c = 0; c < block_step; c += mb_step) { | 
|  | const int mi_row = row + r; | 
|  | const int mi_col = col + c; | 
|  | rate_sum += cpi->prep_rate_estimates[(mi_row / mb_step) * | 
|  | cpi->frame_info.mi_cols + | 
|  | (mi_col / mb_step)]; | 
|  | } | 
|  | } | 
|  | uniform_rate_sum += rate_sum; | 
|  | } | 
|  | } | 
|  |  | 
|  | const double scale = uniform_rate_sum / ext_rate_sum; | 
|  | cpi->ext_rate_scale = scale; | 
|  | } | 
|  |  | 
|  | void av1_set_mb_wiener_variance(AV1_COMP *cpi) { | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const SequenceHeader *const seq_params = cm->seq_params; | 
|  | if (aom_realloc_frame_buffer( | 
|  | &cm->cur_frame->buf, cm->width, cm->height, seq_params->subsampling_x, | 
|  | seq_params->subsampling_y, seq_params->use_highbitdepth, | 
|  | cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL, | 
|  | NULL, cpi->image_pyramid_levels, 0)) | 
|  | aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, | 
|  | "Failed to allocate frame buffer"); | 
|  | av1_alloc_mb_wiener_var_pred_buf(&cpi->common, &cpi->td); | 
|  | cpi->norm_wiener_variance = 0; | 
|  |  | 
|  | MACROBLOCK *x = &cpi->td.mb; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | // xd->mi needs to be setup since it is used in av1_frame_init_quantizer. | 
|  | MB_MODE_INFO mbmi; | 
|  | memset(&mbmi, 0, sizeof(mbmi)); | 
|  | MB_MODE_INFO *mbmi_ptr = &mbmi; | 
|  | xd->mi = &mbmi_ptr; | 
|  | cm->quant_params.base_qindex = cpi->oxcf.rc_cfg.cq_level; | 
|  | av1_frame_init_quantizer(cpi); | 
|  |  | 
|  | double sum_rec_distortion = 0.0; | 
|  | double sum_est_rate = 0.0; | 
|  |  | 
|  | MultiThreadInfo *const mt_info = &cpi->mt_info; | 
|  | const int num_workers = | 
|  | AOMMIN(mt_info->num_mod_workers[MOD_AI], mt_info->num_workers); | 
|  | AV1EncAllIntraMultiThreadInfo *const intra_mt = &mt_info->intra_mt; | 
|  | intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read_dummy; | 
|  | intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write_dummy; | 
|  | // Calculate differential contrast for each block for the entire image. | 
|  | // TODO(chengchen): properly accumulate the distortion and rate in | 
|  | // av1_calc_mb_wiener_var_mt(). Until then, call calc_mb_wiener_var() if | 
|  | // auto_intra_tools_off is true. | 
|  | if (num_workers > 1 && !cpi->oxcf.intra_mode_cfg.auto_intra_tools_off) { | 
|  | intra_mt->intra_sync_read_ptr = av1_row_mt_sync_read; | 
|  | intra_mt->intra_sync_write_ptr = av1_row_mt_sync_write; | 
|  | av1_calc_mb_wiener_var_mt(cpi, num_workers, &sum_rec_distortion, | 
|  | &sum_est_rate); | 
|  | } else { | 
|  | calc_mb_wiener_var(cpi, &sum_rec_distortion, &sum_est_rate); | 
|  | } | 
|  |  | 
|  | // Determine whether to turn off several intra coding tools. | 
|  | automatic_intra_tools_off(cpi, sum_rec_distortion, sum_est_rate); | 
|  |  | 
|  | // Read external rate distribution and use it to guide delta quantization | 
|  | if (cpi->oxcf.enable_rate_guide_deltaq) ext_rate_guided_quantization(cpi); | 
|  |  | 
|  | const BLOCK_SIZE norm_block_size = cm->seq_params->sb_size; | 
|  | cpi->norm_wiener_variance = estimate_wiener_var_norm(cpi, norm_block_size); | 
|  | const int norm_step = mi_size_wide[norm_block_size]; | 
|  |  | 
|  | double sb_wiener_log = 0; | 
|  | double sb_count = 0; | 
|  | for (int its_cnt = 0; its_cnt < 2; ++its_cnt) { | 
|  | sb_wiener_log = 0; | 
|  | sb_count = 0; | 
|  | for (int mi_row = 0; mi_row < cm->mi_params.mi_rows; mi_row += norm_step) { | 
|  | for (int mi_col = 0; mi_col < cm->mi_params.mi_cols; | 
|  | mi_col += norm_step) { | 
|  | int sb_wiener_var = | 
|  | get_var_perceptual_ai(cpi, norm_block_size, mi_row, mi_col); | 
|  |  | 
|  | double beta = (double)cpi->norm_wiener_variance / sb_wiener_var; | 
|  | double min_max_scale = AOMMAX( | 
|  | 1.0, get_max_scale(cpi, cm->seq_params->sb_size, mi_row, mi_col)); | 
|  |  | 
|  | beta = AOMMIN(beta, 4); | 
|  | beta = AOMMAX(beta, 0.25); | 
|  |  | 
|  | if (beta < 1 / min_max_scale) continue; | 
|  |  | 
|  | sb_wiener_var = (int)(cpi->norm_wiener_variance / beta); | 
|  |  | 
|  | int64_t satd = get_satd(cpi, norm_block_size, mi_row, mi_col); | 
|  | int64_t sse = get_sse(cpi, norm_block_size, mi_row, mi_col); | 
|  | double scaled_satd = (double)satd / sqrt((double)sse); | 
|  | sb_wiener_log += scaled_satd * log(sb_wiener_var); | 
|  | sb_count += scaled_satd; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (sb_count > 0) | 
|  | cpi->norm_wiener_variance = (int64_t)(exp(sb_wiener_log / sb_count)); | 
|  | cpi->norm_wiener_variance = AOMMAX(1, cpi->norm_wiener_variance); | 
|  | } | 
|  |  | 
|  | // Set the pointer to null since mbmi is only allocated inside this function. | 
|  | xd->mi = NULL; | 
|  | aom_free_frame_buffer(&cm->cur_frame->buf); | 
|  | av1_dealloc_mb_wiener_var_pred_buf(&cpi->td); | 
|  | } | 
|  |  | 
|  | static int get_rate_guided_quantizer(AV1_COMP *const cpi, BLOCK_SIZE bsize, | 
|  | int mi_row, int mi_col) { | 
|  | // Calculation uses 8x8. | 
|  | const int mb_step = mi_size_wide[cpi->weber_bsize]; | 
|  | // Accumulate to 16x16 | 
|  | const int block_step = mi_size_wide[BLOCK_16X16]; | 
|  | double sb_rate_hific = 0.0; | 
|  | double sb_rate_uniform = 0.0; | 
|  | for (int row = mi_row; row < mi_row + mi_size_wide[bsize]; | 
|  | row += block_step) { | 
|  | for (int col = mi_col; col < mi_col + mi_size_high[bsize]; | 
|  | col += block_step) { | 
|  | sb_rate_hific += | 
|  | cpi->ext_rate_distribution[(row / mb_step) * cpi->frame_info.mi_cols + | 
|  | (col / mb_step)]; | 
|  |  | 
|  | for (int r = 0; r < block_step; r += mb_step) { | 
|  | for (int c = 0; c < block_step; c += mb_step) { | 
|  | const int this_row = row + r; | 
|  | const int this_col = col + c; | 
|  | sb_rate_uniform += | 
|  | cpi->prep_rate_estimates[(this_row / mb_step) * | 
|  | cpi->frame_info.mi_cols + | 
|  | (this_col / mb_step)]; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | sb_rate_hific *= cpi->ext_rate_scale; | 
|  |  | 
|  | const double weight = 1.0; | 
|  | const double rate_diff = | 
|  | weight * (sb_rate_hific - sb_rate_uniform) / sb_rate_uniform; | 
|  | double scale = pow(2, rate_diff); | 
|  |  | 
|  | scale = scale * scale; | 
|  | double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col)); | 
|  | scale = 1.0 / AOMMIN(1.0 / scale, min_max_scale); | 
|  |  | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int base_qindex = cm->quant_params.base_qindex; | 
|  | int offset = | 
|  | av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, scale); | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | const int max_offset = delta_q_info->delta_q_res * 10; | 
|  | offset = AOMMIN(offset, max_offset - 1); | 
|  | offset = AOMMAX(offset, -max_offset + 1); | 
|  | int qindex = cm->quant_params.base_qindex + offset; | 
|  | qindex = AOMMIN(qindex, MAXQ); | 
|  | qindex = AOMMAX(qindex, MINQ); | 
|  | if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1); | 
|  |  | 
|  | return qindex; | 
|  | } | 
|  |  | 
|  | int av1_get_sbq_perceptual_ai(AV1_COMP *const cpi, BLOCK_SIZE bsize, int mi_row, | 
|  | int mi_col) { | 
|  | if (cpi->oxcf.enable_rate_guide_deltaq) { | 
|  | return get_rate_guided_quantizer(cpi, bsize, mi_row, mi_col); | 
|  | } | 
|  |  | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int base_qindex = cm->quant_params.base_qindex; | 
|  | int sb_wiener_var = get_var_perceptual_ai(cpi, bsize, mi_row, mi_col); | 
|  | int offset = 0; | 
|  | double beta = (double)cpi->norm_wiener_variance / sb_wiener_var; | 
|  | double min_max_scale = AOMMAX(1.0, get_max_scale(cpi, bsize, mi_row, mi_col)); | 
|  | beta = 1.0 / AOMMIN(1.0 / beta, min_max_scale); | 
|  |  | 
|  | // Cap beta such that the delta q value is not much far away from the base q. | 
|  | beta = AOMMIN(beta, 4); | 
|  | beta = AOMMAX(beta, 0.25); | 
|  | offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta); | 
|  | const DeltaQInfo *const delta_q_info = &cm->delta_q_info; | 
|  | offset = AOMMIN(offset, delta_q_info->delta_q_res * 20 - 1); | 
|  | offset = AOMMAX(offset, -delta_q_info->delta_q_res * 20 + 1); | 
|  | int qindex = cm->quant_params.base_qindex + offset; | 
|  | qindex = AOMMIN(qindex, MAXQ); | 
|  | qindex = AOMMAX(qindex, MINQ); | 
|  | if (base_qindex > MINQ) qindex = AOMMAX(qindex, MINQ + 1); | 
|  |  | 
|  | return qindex; | 
|  | } | 
|  |  | 
|  | void av1_init_mb_ur_var_buffer(AV1_COMP *cpi) { | 
|  | AV1_COMMON *cm = &cpi->common; | 
|  |  | 
|  | if (cpi->mb_delta_q) return; | 
|  |  | 
|  | CHECK_MEM_ERROR(cm, cpi->mb_delta_q, | 
|  | aom_calloc(cpi->frame_info.mb_rows * cpi->frame_info.mb_cols, | 
|  | sizeof(*cpi->mb_delta_q))); | 
|  | } | 
|  |  | 
|  | #if CONFIG_TFLITE | 
|  | static int model_predict(BLOCK_SIZE block_size, int num_cols, int num_rows, | 
|  | int bit_depth, uint8_t *y_buffer, int y_stride, | 
|  | float *predicts0, float *predicts1) { | 
|  | // Create the model and interpreter options. | 
|  | TfLiteModel *model = | 
|  | TfLiteModelCreate(av1_deltaq4_model_file, av1_deltaq4_model_fsize); | 
|  | if (model == NULL) return 1; | 
|  |  | 
|  | TfLiteInterpreterOptions *options = TfLiteInterpreterOptionsCreate(); | 
|  | TfLiteInterpreterOptionsSetNumThreads(options, 2); | 
|  | if (options == NULL) { | 
|  | TfLiteModelDelete(model); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Create the interpreter. | 
|  | TfLiteInterpreter *interpreter = TfLiteInterpreterCreate(model, options); | 
|  | if (interpreter == NULL) { | 
|  | TfLiteInterpreterOptionsDelete(options); | 
|  | TfLiteModelDelete(model); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Allocate tensors and populate the input tensor data. | 
|  | TfLiteInterpreterAllocateTensors(interpreter); | 
|  | TfLiteTensor *input_tensor = TfLiteInterpreterGetInputTensor(interpreter, 0); | 
|  | if (input_tensor == NULL) { | 
|  | TfLiteInterpreterDelete(interpreter); | 
|  | TfLiteInterpreterOptionsDelete(options); | 
|  | TfLiteModelDelete(model); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size_t input_size = TfLiteTensorByteSize(input_tensor); | 
|  | float *input_data = aom_calloc(input_size, 1); | 
|  | if (input_data == NULL) { | 
|  | TfLiteInterpreterDelete(interpreter); | 
|  | TfLiteInterpreterOptionsDelete(options); | 
|  | TfLiteModelDelete(model); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | const int num_mi_w = mi_size_wide[block_size]; | 
|  | const int num_mi_h = mi_size_high[block_size]; | 
|  | for (int row = 0; row < num_rows; ++row) { | 
|  | for (int col = 0; col < num_cols; ++col) { | 
|  | const int row_offset = (row * num_mi_h) << 2; | 
|  | const int col_offset = (col * num_mi_w) << 2; | 
|  |  | 
|  | uint8_t *buf = y_buffer + row_offset * y_stride + col_offset; | 
|  | int r = row_offset, pos = 0; | 
|  | const float base = (float)((1 << bit_depth) - 1); | 
|  | while (r < row_offset + (num_mi_h << 2)) { | 
|  | for (int c = 0; c < (num_mi_w << 2); ++c) { | 
|  | input_data[pos++] = bit_depth > 8 | 
|  | ? (float)*CONVERT_TO_SHORTPTR(buf + c) / base | 
|  | : (float)*(buf + c) / base; | 
|  | } | 
|  | buf += y_stride; | 
|  | ++r; | 
|  | } | 
|  | TfLiteTensorCopyFromBuffer(input_tensor, input_data, input_size); | 
|  |  | 
|  | // Execute inference. | 
|  | if (TfLiteInterpreterInvoke(interpreter) != kTfLiteOk) { | 
|  | TfLiteInterpreterDelete(interpreter); | 
|  | TfLiteInterpreterOptionsDelete(options); | 
|  | TfLiteModelDelete(model); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Extract the output tensor data. | 
|  | const TfLiteTensor *output_tensor = | 
|  | TfLiteInterpreterGetOutputTensor(interpreter, 0); | 
|  | if (output_tensor == NULL) { | 
|  | TfLiteInterpreterDelete(interpreter); | 
|  | TfLiteInterpreterOptionsDelete(options); | 
|  | TfLiteModelDelete(model); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | size_t output_size = TfLiteTensorByteSize(output_tensor); | 
|  | float output_data[2]; | 
|  |  | 
|  | TfLiteTensorCopyToBuffer(output_tensor, output_data, output_size); | 
|  | predicts0[row * num_cols + col] = output_data[0]; | 
|  | predicts1[row * num_cols + col] = output_data[1]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Dispose of the model and interpreter objects. | 
|  | TfLiteInterpreterDelete(interpreter); | 
|  | TfLiteInterpreterOptionsDelete(options); | 
|  | TfLiteModelDelete(model); | 
|  | aom_free(input_data); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void av1_set_mb_ur_variance(AV1_COMP *cpi) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | uint8_t *y_buffer = cpi->source->y_buffer; | 
|  | const int y_stride = cpi->source->y_stride; | 
|  | const int block_size = cpi->common.seq_params->sb_size; | 
|  | const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; | 
|  |  | 
|  | const int num_mi_w = mi_size_wide[block_size]; | 
|  | const int num_mi_h = mi_size_high[block_size]; | 
|  | const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w; | 
|  | const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h; | 
|  |  | 
|  | // TODO(sdeng): fit a better model_1; disable it at this time. | 
|  | float *mb_delta_q0, *mb_delta_q1, delta_q_avg0 = 0.0f; | 
|  | CHECK_MEM_ERROR(cm, mb_delta_q0, | 
|  | aom_calloc(num_rows * num_cols, sizeof(float))); | 
|  | CHECK_MEM_ERROR(cm, mb_delta_q1, | 
|  | aom_calloc(num_rows * num_cols, sizeof(float))); | 
|  |  | 
|  | if (model_predict(block_size, num_cols, num_rows, bit_depth, y_buffer, | 
|  | y_stride, mb_delta_q0, mb_delta_q1)) { | 
|  | aom_internal_error(cm->error, AOM_CODEC_ERROR, | 
|  | "Failed to call TFlite functions."); | 
|  | } | 
|  |  | 
|  | // Loop through each SB block. | 
|  | for (int row = 0; row < num_rows; ++row) { | 
|  | for (int col = 0; col < num_cols; ++col) { | 
|  | const int index = row * num_cols + col; | 
|  | delta_q_avg0 += mb_delta_q0[index]; | 
|  | } | 
|  | } | 
|  |  | 
|  | delta_q_avg0 /= (float)(num_rows * num_cols); | 
|  |  | 
|  | float scaling_factor; | 
|  | const float cq_level = (float)cpi->oxcf.rc_cfg.cq_level / (float)MAXQ; | 
|  | if (cq_level < delta_q_avg0) { | 
|  | scaling_factor = cq_level / delta_q_avg0; | 
|  | } else { | 
|  | scaling_factor = 1.0f - (cq_level - delta_q_avg0) / (1.0f - delta_q_avg0); | 
|  | } | 
|  |  | 
|  | for (int row = 0; row < num_rows; ++row) { | 
|  | for (int col = 0; col < num_cols; ++col) { | 
|  | const int index = row * num_cols + col; | 
|  | cpi->mb_delta_q[index] = | 
|  | RINT((float)cpi->oxcf.q_cfg.deltaq_strength / 100.0f * (float)MAXQ * | 
|  | scaling_factor * (mb_delta_q0[index] - delta_q_avg0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_free(mb_delta_q0); | 
|  | aom_free(mb_delta_q1); | 
|  | } | 
|  | #else  // !CONFIG_TFLITE | 
|  | void av1_set_mb_ur_variance(AV1_COMP *cpi) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const CommonModeInfoParams *const mi_params = &cm->mi_params; | 
|  | const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; | 
|  | uint8_t *y_buffer = cpi->source->y_buffer; | 
|  | const int y_stride = cpi->source->y_stride; | 
|  | const int block_size = cpi->common.seq_params->sb_size; | 
|  |  | 
|  | const int num_mi_w = mi_size_wide[block_size]; | 
|  | const int num_mi_h = mi_size_high[block_size]; | 
|  | const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w; | 
|  | const int num_rows = (mi_params->mi_rows + num_mi_h - 1) / num_mi_h; | 
|  |  | 
|  | int *mb_delta_q[2]; | 
|  | CHECK_MEM_ERROR(cm, mb_delta_q[0], | 
|  | aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[0]))); | 
|  | CHECK_MEM_ERROR(cm, mb_delta_q[1], | 
|  | aom_calloc(num_rows * num_cols, sizeof(*mb_delta_q[1]))); | 
|  |  | 
|  | // Approximates the model change between current version (Spet 2021) and the | 
|  | // baseline (July 2021). | 
|  | const double model_change[] = { 3.0, 3.0 }; | 
|  | // The following parameters are fitted from user labeled data. | 
|  | const double a[] = { -24.50 * 4.0, -17.20 * 4.0 }; | 
|  | const double b[] = { 0.004898, 0.003093 }; | 
|  | const double c[] = { (29.932 + model_change[0]) * 4.0, | 
|  | (42.100 + model_change[1]) * 4.0 }; | 
|  | int delta_q_avg[2] = { 0, 0 }; | 
|  | // Loop through each SB block. | 
|  | for (int row = 0; row < num_rows; ++row) { | 
|  | for (int col = 0; col < num_cols; ++col) { | 
|  | double var = 0.0, num_of_var = 0.0; | 
|  | const int index = row * num_cols + col; | 
|  |  | 
|  | // Loop through each 8x8 block. | 
|  | for (int mi_row = row * num_mi_h; | 
|  | mi_row < mi_params->mi_rows && mi_row < (row + 1) * num_mi_h; | 
|  | mi_row += 2) { | 
|  | for (int mi_col = col * num_mi_w; | 
|  | mi_col < mi_params->mi_cols && mi_col < (col + 1) * num_mi_w; | 
|  | mi_col += 2) { | 
|  | struct buf_2d buf; | 
|  | const int row_offset_y = mi_row << 2; | 
|  | const int col_offset_y = mi_col << 2; | 
|  |  | 
|  | buf.buf = y_buffer + row_offset_y * y_stride + col_offset_y; | 
|  | buf.stride = y_stride; | 
|  |  | 
|  | unsigned int block_variance; | 
|  | block_variance = av1_get_perpixel_variance_facade( | 
|  | cpi, xd, &buf, BLOCK_8X8, AOM_PLANE_Y); | 
|  |  | 
|  | block_variance = AOMMAX(block_variance, 1); | 
|  | var += log((double)block_variance); | 
|  | num_of_var += 1.0; | 
|  | } | 
|  | } | 
|  | var = exp(var / num_of_var); | 
|  | mb_delta_q[0][index] = RINT(a[0] * exp(-b[0] * var) + c[0]); | 
|  | mb_delta_q[1][index] = RINT(a[1] * exp(-b[1] * var) + c[1]); | 
|  | delta_q_avg[0] += mb_delta_q[0][index]; | 
|  | delta_q_avg[1] += mb_delta_q[1][index]; | 
|  | } | 
|  | } | 
|  |  | 
|  | delta_q_avg[0] = RINT((double)delta_q_avg[0] / (num_rows * num_cols)); | 
|  | delta_q_avg[1] = RINT((double)delta_q_avg[1] / (num_rows * num_cols)); | 
|  |  | 
|  | int model_idx; | 
|  | double scaling_factor; | 
|  | const int cq_level = cpi->oxcf.rc_cfg.cq_level; | 
|  | if (cq_level < delta_q_avg[0]) { | 
|  | model_idx = 0; | 
|  | scaling_factor = (double)cq_level / delta_q_avg[0]; | 
|  | } else if (cq_level < delta_q_avg[1]) { | 
|  | model_idx = 2; | 
|  | scaling_factor = | 
|  | (double)(cq_level - delta_q_avg[0]) / (delta_q_avg[1] - delta_q_avg[0]); | 
|  | } else { | 
|  | model_idx = 1; | 
|  | scaling_factor = (double)(MAXQ - cq_level) / (MAXQ - delta_q_avg[1]); | 
|  | } | 
|  |  | 
|  | const double new_delta_q_avg = | 
|  | delta_q_avg[0] + scaling_factor * (delta_q_avg[1] - delta_q_avg[0]); | 
|  | for (int row = 0; row < num_rows; ++row) { | 
|  | for (int col = 0; col < num_cols; ++col) { | 
|  | const int index = row * num_cols + col; | 
|  | if (model_idx == 2) { | 
|  | const double delta_q = | 
|  | mb_delta_q[0][index] + | 
|  | scaling_factor * (mb_delta_q[1][index] - mb_delta_q[0][index]); | 
|  | cpi->mb_delta_q[index] = RINT((double)cpi->oxcf.q_cfg.deltaq_strength / | 
|  | 100.0 * (delta_q - new_delta_q_avg)); | 
|  | } else { | 
|  | cpi->mb_delta_q[index] = RINT( | 
|  | (double)cpi->oxcf.q_cfg.deltaq_strength / 100.0 * scaling_factor * | 
|  | (mb_delta_q[model_idx][index] - delta_q_avg[model_idx])); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | aom_free(mb_delta_q[0]); | 
|  | aom_free(mb_delta_q[1]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | int av1_get_sbq_user_rating_based(AV1_COMP *const cpi, int mi_row, int mi_col) { | 
|  | const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size; | 
|  | const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; | 
|  | AV1_COMMON *const cm = &cpi->common; | 
|  | const int base_qindex = cm->quant_params.base_qindex; | 
|  | if (base_qindex == MINQ || base_qindex == MAXQ) return base_qindex; | 
|  |  | 
|  | const int num_mi_w = mi_size_wide[bsize]; | 
|  | const int num_mi_h = mi_size_high[bsize]; | 
|  | const int num_cols = (mi_params->mi_cols + num_mi_w - 1) / num_mi_w; | 
|  | const int index = (mi_row / num_mi_h) * num_cols + (mi_col / num_mi_w); | 
|  | const int delta_q = cpi->mb_delta_q[index]; | 
|  |  | 
|  | int qindex = base_qindex + delta_q; | 
|  | qindex = AOMMIN(qindex, MAXQ); | 
|  | qindex = AOMMAX(qindex, MINQ + 1); | 
|  |  | 
|  | return qindex; | 
|  | } |