| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/arm/convolve_neon.h" |
| #include "av1/common/convolve.h" |
| #include "av1/common/filter.h" |
| |
| DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = { |
| 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, |
| 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, |
| 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 |
| }; |
| |
| static INLINE int16x4_t convolve12_4_x(uint8x16_t samples, |
| const int8x16_t filter, |
| const int32x4_t correction, |
| const uint8x16_t range_limit, |
| const uint8x16x3_t permute_tbl) { |
| int8x16_t clamped_samples, permuted_samples[3]; |
| int32x4_t sum; |
| |
| // Clamp sample range to [-128, 127] for 8-bit signed dot product. |
| clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]); |
| |
| // Accumulate dot product into 'correction' to account for range clamp. |
| // First 4 output values. |
| sum = vdotq_laneq_s32(correction, permuted_samples[0], filter, 0); |
| sum = vdotq_laneq_s32(sum, permuted_samples[1], filter, 1); |
| sum = vdotq_laneq_s32(sum, permuted_samples[2], filter, 2); |
| |
| return vqrshrn_n_s32(sum, FILTER_BITS); |
| } |
| |
| static INLINE uint8x8_t convolve12_8_x(uint8x16_t samples[2], |
| const int8x16_t filter, |
| const int32x4_t correction, |
| const uint8x16_t range_limit, |
| const uint8x16x3_t permute_tbl) { |
| int8x16_t clamped_samples[2], permuted_samples[4]; |
| int32x4_t sum[2]; |
| |
| // Clamp sample range to [-128, 127] for 8-bit signed dot product. |
| clamped_samples[0] = vreinterpretq_s8_u8(vsubq_u8(samples[0], range_limit)); |
| clamped_samples[1] = vreinterpretq_s8_u8(vsubq_u8(samples[1], range_limit)); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| permuted_samples[0] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[0]); |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| permuted_samples[1] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[1]); |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| permuted_samples[2] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[2]); |
| // {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 } |
| permuted_samples[3] = vqtbl1q_s8(clamped_samples[1], permute_tbl.val[2]); |
| |
| // Accumulate dot product into 'correction' to account for range clamp. |
| // First 4 output values. |
| sum[0] = vdotq_laneq_s32(correction, permuted_samples[0], filter, 0); |
| sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[1], filter, 1); |
| sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[2], filter, 2); |
| // Second 4 output values. |
| sum[1] = vdotq_laneq_s32(correction, permuted_samples[1], filter, 0); |
| sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[2], filter, 1); |
| sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[3], filter, 2); |
| |
| // Narrow and re-pack. |
| int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum[0], FILTER_BITS), |
| vqrshrn_n_s32(sum[1], FILTER_BITS)); |
| return vqmovun_s16(sum_s16); |
| } |
| |
| static INLINE void convolve_x_sr_12tap_neon_dotprod( |
| const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, |
| int h, const int16_t *x_filter_ptr) { |
| const int16x8_t filter_0_7 = vld1q_s16(x_filter_ptr); |
| const int16x4_t filter_8_11 = vld1_s16(x_filter_ptr + 8); |
| const int16x8_t filter_8_15 = vcombine_s16(filter_8_11, vdup_n_s16(0)); |
| const int8x16_t filter = |
| vcombine_s8(vmovn_s16(filter_0_7), vmovn_s16(filter_8_15)); |
| |
| const int32_t correction_s32 = |
| vaddvq_s32(vaddq_s32(vpaddlq_s16(vshlq_n_s16(filter_0_7, FILTER_BITS)), |
| vpaddlq_s16(vshlq_n_s16(filter_8_15, FILTER_BITS)))); |
| // A shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding right |
| // shift by FILTER_BITS - instead of a first rounding right shift by |
| // ROUND0_BITS, followed by second rounding right shift by FILTER_BITS - |
| // ROUND0_BITS. |
| int32x4_t correction = vdupq_n_s32(correction_s32 + (1 << (ROUND0_BITS - 1))); |
| const uint8x16_t range_limit = vdupq_n_u8(128); |
| const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); |
| |
| // Special case the following no-op filter as 128 won't fit into the |
| // 8-bit signed dot-product instruction: |
| // { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 } |
| if (vgetq_lane_s16(filter_0_7, 5) == 128) { |
| // Undo the horizontal offset in the calling function. |
| src += 5; |
| |
| do { |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| int width = w; |
| |
| do { |
| uint8x8_t d0 = vld1_u8(s); |
| if (w == 4) { |
| store_u8_4x1(d, d0); |
| } else { |
| vst1_u8(d, d0); |
| } |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width > 0); |
| src += src_stride; |
| dst += dst_stride; |
| } while (--h != 0); |
| } else { |
| if (w <= 4) { |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t d0 = |
| convolve12_4_x(s0, filter, correction, range_limit, permute_tbl); |
| int16x4_t d1 = |
| convolve12_4_x(s1, filter, correction, range_limit, permute_tbl); |
| int16x4_t d2 = |
| convolve12_4_x(s2, filter, correction, range_limit, permute_tbl); |
| int16x4_t d3 = |
| convolve12_4_x(s3, filter, correction, range_limit, permute_tbl); |
| |
| uint8x8_t d01 = vqmovun_s16(vcombine_s16(d0, d1)); |
| uint8x8_t d23 = vqmovun_s16(vcombine_s16(d2, d3)); |
| |
| store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); |
| |
| dst += 4 * dst_stride; |
| src += 4 * src_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| int width = w; |
| |
| do { |
| uint8x16_t s0[2], s1[2], s2[2], s3[2]; |
| load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); |
| load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); |
| |
| uint8x8_t d0 = |
| convolve12_8_x(s0, filter, correction, range_limit, permute_tbl); |
| uint8x8_t d1 = |
| convolve12_8_x(s1, filter, correction, range_limit, permute_tbl); |
| uint8x8_t d2 = |
| convolve12_8_x(s2, filter, correction, range_limit, permute_tbl); |
| uint8x8_t d3 = |
| convolve12_8_x(s3, filter, correction, range_limit, permute_tbl); |
| |
| store_u8_8x4(d + 0 * dst_stride, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } |
| } |
| } |
| |
| static INLINE int16x4_t convolve4_4_x(uint8x16_t samples, const int8x8_t filter, |
| const int32x4_t correction, |
| const uint8x16_t range_limit, |
| const uint8x16_t permute_tbl) { |
| // Clamp sample range to [-128, 127] for 8-bit signed dot product. |
| int8x16_t clamped_samples = |
| vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl); |
| |
| // Accumulate dot product into 'correction' to account for range clamp. |
| int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, filter, 0); |
| |
| // Packing is performed by the caller. |
| return vmovn_s32(sum); |
| } |
| |
| static INLINE uint8x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t filter, |
| const int32x4_t correction, |
| const uint8x16_t range_limit, |
| const uint8x16x3_t permute_tbl) { |
| int8x16_t clamped_samples, permuted_samples[3]; |
| int32x4_t sum[2]; |
| |
| // Clamp sample range to [-128, 127] for 8-bit signed dot product. |
| clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); |
| |
| // Permute samples ready for dot product. */ |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]); |
| |
| // Accumulate dot product into 'correction' to account for range clamp. |
| // First 4 output values. |
| sum[0] = vdotq_lane_s32(correction, permuted_samples[0], filter, 0); |
| sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], filter, 1); |
| // Second 4 output values. |
| sum[1] = vdotq_lane_s32(correction, permuted_samples[1], filter, 0); |
| sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], filter, 1); |
| |
| // Narrow and re-pack. |
| int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum[0]), vmovn_s32(sum[1])); |
| // We halved the convolution filter values so - 1 from the right shift. |
| return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1); |
| } |
| |
| void av1_convolve_x_sr_neon_dotprod(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_x, |
| const int subpel_x_qn, |
| ConvolveParams *conv_params) { |
| if (w == 2 || h == 2) { |
| av1_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x, |
| subpel_x_qn, conv_params); |
| return; |
| } |
| |
| const uint8_t horiz_offset = filter_params_x->taps / 2 - 1; |
| src -= horiz_offset; |
| |
| const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| |
| if (filter_params_x->taps > 8) { |
| convolve_x_sr_12tap_neon_dotprod(src, src_stride, dst, dst_stride, w, h, |
| x_filter_ptr); |
| return; |
| } |
| |
| const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); |
| // Dot product constants. |
| const int32_t correction_s32 = |
| vaddlvq_s16(vshlq_n_s16(x_filter_s16, FILTER_BITS - 1)); |
| // This shim of (1 << ((ROUND0_BITS - 1) - 1) enables us to use a single |
| // rounding right shift by FILTER_BITS - instead of a first rounding right |
| // shift by ROUND0_BITS, followed by second rounding right shift by |
| // FILTER_BITS - ROUND0_BITS. |
| // The outermost -1 is needed because we will halve the filter values. |
| const int32x4_t correction = |
| vdupq_n_s32(correction_s32 + (1 << ((ROUND0_BITS - 1) - 1))); |
| const uint8x16_t range_limit = vdupq_n_u8(128); |
| |
| if (w <= 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); |
| // 4-tap filters are used for blocks having width <= 4. |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter = |
| vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); |
| |
| src += 2; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t d0 = |
| convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl); |
| int16x4_t d1 = |
| convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl); |
| int16x4_t d2 = |
| convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl); |
| int16x4_t d3 = |
| convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl); |
| |
| // We halved the convolution filter values so - 1 from the right shift. |
| uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1); |
| uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1); |
| |
| store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01); |
| store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23); |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); |
| |
| do { |
| int width = w; |
| const uint8_t *s = src; |
| uint8_t *d = dst; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint8x8_t d0 = |
| convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl); |
| uint8x8_t d1 = |
| convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl); |
| uint8x8_t d2 = |
| convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl); |
| uint8x8_t d3 = |
| convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl); |
| |
| store_u8_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } |
| } |
| |
| static INLINE int16x4_t convolve12_4_2d_h(uint8x16_t samples, |
| const int8x16_t filters, |
| const int32x4_t correction, |
| const uint8x16_t range_limit, |
| const uint8x16x3_t permute_tbl) { |
| int8x16_t clamped_samples, permuted_samples[3]; |
| int32x4_t sum; |
| |
| // Clamp sample range to [-128, 127] for 8-bit signed dot product. |
| clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]); |
| |
| // Accumulate dot product into 'correction' to account for range clamp. |
| // First 4 output values. |
| sum = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0); |
| sum = vdotq_laneq_s32(sum, permuted_samples[1], filters, 1); |
| sum = vdotq_laneq_s32(sum, permuted_samples[2], filters, 2); |
| |
| // Narrow and re-pack. |
| return vshrn_n_s32(sum, ROUND0_BITS); |
| } |
| |
| static INLINE int16x8_t convolve12_8_2d_h(uint8x16_t samples[2], |
| const int8x16_t filters, |
| const int32x4_t correction, |
| const uint8x16_t range_limit, |
| const uint8x16x3_t permute_tbl) { |
| int8x16_t clamped_samples[2], permuted_samples[4]; |
| int32x4_t sum[2]; |
| |
| // Clamp sample range to [-128, 127] for 8-bit signed dot product. |
| clamped_samples[0] = vreinterpretq_s8_u8(vsubq_u8(samples[0], range_limit)); |
| clamped_samples[1] = vreinterpretq_s8_u8(vsubq_u8(samples[1], range_limit)); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| permuted_samples[0] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[0]); |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| permuted_samples[1] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[1]); |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| permuted_samples[2] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[2]); |
| // {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 } |
| permuted_samples[3] = vqtbl1q_s8(clamped_samples[1], permute_tbl.val[2]); |
| |
| // Accumulate dot product into 'correction' to account for range clamp. |
| // First 4 output values. |
| sum[0] = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0); |
| sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[1], filters, 1); |
| sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[2], filters, 2); |
| // Second 4 output values. |
| sum[1] = vdotq_laneq_s32(correction, permuted_samples[1], filters, 0); |
| sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[2], filters, 1); |
| sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[3], filters, 2); |
| |
| // Narrow and re-pack. |
| return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS), |
| vshrn_n_s32(sum[1], ROUND0_BITS)); |
| } |
| |
| static INLINE void convolve_2d_sr_horiz_12tap_neon_dotprod( |
| const uint8_t *src_ptr, int src_stride, int16_t *dst_ptr, |
| const int dst_stride, int w, int h, const int16x8_t x_filter_0_7, |
| const int16x4_t x_filter_8_11) { |
| const int bd = 8; |
| |
| // Special case the following no-op filter as 128 won't fit into the 8-bit |
| // signed dot-product instruction: |
| // { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 } |
| if (vgetq_lane_s16(x_filter_0_7, 5) == 128) { |
| const uint16x8_t horiz_const = vdupq_n_u16((1 << (bd - 1))); |
| // Undo the horizontal offset in the calling function. |
| src_ptr += 5; |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x8_t s0 = vld1_u8(s); |
| uint16x8_t d0 = vaddw_u8(horiz_const, s0); |
| d0 = vshlq_n_u16(d0, FILTER_BITS - ROUND0_BITS); |
| // Store 8 elements to avoid additional branches. This is safe if the |
| // actual block width is < 8 because the intermediate buffer is large |
| // enough to accommodate 128x128 blocks. |
| vst1q_s16(d, vreinterpretq_s16_u16(d0)); |
| |
| d += 8; |
| s += 8; |
| width -= 8; |
| } while (width > 0); |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--h != 0); |
| |
| } else { |
| // Narrow filter values to 8-bit. |
| const int16x8x2_t x_filter_s16 = { |
| { x_filter_0_7, vcombine_s16(x_filter_8_11, vdup_n_s16(0)) } |
| }; |
| const int8x16_t x_filter = vcombine_s8(vmovn_s16(x_filter_s16.val[0]), |
| vmovn_s16(x_filter_s16.val[1])); |
| |
| // This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts |
| // - which are generally faster than rounding shifts on modern CPUs. |
| const int32_t horiz_const = |
| ((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); |
| // Dot product constants. |
| const int32x4_t correct_tmp = |
| vaddq_s32(vpaddlq_s16(vshlq_n_s16(x_filter_s16.val[0], 7)), |
| vpaddlq_s16(vshlq_n_s16(x_filter_s16.val[1], 7))); |
| const int32x4_t correction = |
| vdupq_n_s32(vaddvq_s32(correct_tmp) + horiz_const); |
| const uint8x16_t range_limit = vdupq_n_u8(128); |
| const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); |
| |
| if (w <= 4) { |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t d0 = convolve12_4_2d_h(s0, x_filter, correction, range_limit, |
| permute_tbl); |
| int16x4_t d1 = convolve12_4_2d_h(s1, x_filter, correction, range_limit, |
| permute_tbl); |
| int16x4_t d2 = convolve12_4_2d_h(s2, x_filter, correction, range_limit, |
| permute_tbl); |
| int16x4_t d3 = convolve12_4_2d_h(s3, x_filter, correction, range_limit, |
| permute_tbl); |
| |
| store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h > 4); |
| |
| do { |
| uint8x16_t s0 = vld1q_u8(src_ptr); |
| int16x4_t d0 = convolve12_4_2d_h(s0, x_filter, correction, range_limit, |
| permute_tbl); |
| vst1_s16(dst_ptr, d0); |
| |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--h != 0); |
| |
| } else { |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0[2], s1[2], s2[2], s3[2]; |
| load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); |
| load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); |
| |
| int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, correction, |
| range_limit, permute_tbl); |
| int16x8_t d1 = convolve12_8_2d_h(s1, x_filter, correction, |
| range_limit, permute_tbl); |
| int16x8_t d2 = convolve12_8_2d_h(s2, x_filter, correction, |
| range_limit, permute_tbl); |
| int16x8_t d3 = convolve12_8_2d_h(s3, x_filter, correction, |
| range_limit, permute_tbl); |
| |
| store_s16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h > 4); |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0[2]; |
| s0[0] = vld1q_u8(s); |
| s0[1] = vld1q_u8(s + 4); |
| int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, correction, |
| range_limit, permute_tbl); |
| vst1q_s16(d, d0); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--h != 0); |
| } |
| } |
| } |
| |
| static INLINE int16x4_t convolve4_4_2d_h(uint8x16_t samples, |
| const int8x8_t filters, |
| const int32x4_t correction, |
| const uint8x16_t range_limit, |
| const uint8x16_t permute_tbl) { |
| // Clamp sample range to [-128, 127] for 8-bit signed dot product. |
| int8x16_t clamped_samples = |
| vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl); |
| |
| // Accumulate dot product into 'correction' to account for range clamp. |
| int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, filters, 0); |
| |
| // We halved the convolution filter values so -1 from the right shift. |
| return vshrn_n_s32(sum, ROUND0_BITS - 1); |
| } |
| |
| static INLINE int16x8_t convolve8_8_2d_h(uint8x16_t samples, |
| const int8x8_t filters, |
| const int32x4_t correction, |
| const uint8x16_t range_limit, |
| const uint8x16x3_t permute_tbl) { |
| int8x16_t clamped_samples, permuted_samples[3]; |
| int32x4_t sum[2]; |
| |
| // Clamp sample range to [-128, 127] for 8-bit signed dot product. |
| clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]); |
| |
| // Accumulate dot product into 'correction' to account for range clamp. |
| // First 4 output values. |
| sum[0] = vdotq_lane_s32(correction, permuted_samples[0], filters, 0); |
| sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], filters, 1); |
| // Second 4 output values. |
| sum[1] = vdotq_lane_s32(correction, permuted_samples[1], filters, 0); |
| sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], filters, 1); |
| |
| // Narrow and re-pack. |
| // We halved the convolution filter values so -1 from the right shift. |
| return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1), |
| vshrn_n_s32(sum[1], ROUND0_BITS - 1)); |
| } |
| |
| static INLINE void convolve_2d_sr_horiz_neon_dotprod( |
| const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w, |
| int im_h, const int16_t *x_filter_ptr) { |
| const int bd = 8; |
| // This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // The outermost -1 is needed because we halved the filter values. |
| const int32_t horiz_const = |
| ((1 << (bd + FILTER_BITS - 2)) + (1 << ((ROUND0_BITS - 1) - 1))); |
| // Dot product constants. |
| const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); |
| const int32_t correction_s32 = |
| vaddlvq_s16(vshlq_n_s16(x_filter_s16, FILTER_BITS - 1)); |
| const int32x4_t correction = vdupq_n_s32(correction_s32 + horiz_const); |
| const uint8x16_t range_limit = vdupq_n_u8(128); |
| |
| const uint8_t *src_ptr = src; |
| int16_t *dst_ptr = im_block; |
| int dst_stride = im_stride; |
| int height = im_h; |
| |
| if (w <= 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); |
| // 4-tap filters are used for blocks having width <= 4. |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter = |
| vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); |
| |
| src_ptr += 2; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t d0 = |
| convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl); |
| int16x4_t d1 = |
| convolve4_4_2d_h(s1, x_filter, correction, range_limit, permute_tbl); |
| int16x4_t d2 = |
| convolve4_4_2d_h(s2, x_filter, correction, range_limit, permute_tbl); |
| int16x4_t d3 = |
| convolve4_4_2d_h(s3, x_filter, correction, range_limit, permute_tbl); |
| |
| store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| height -= 4; |
| } while (height > 4); |
| |
| do { |
| uint8x16_t s0 = vld1q_u8(src_ptr); |
| int16x4_t d0 = |
| convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl); |
| vst1_s16(dst_ptr, d0); |
| |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--height != 0); |
| } else { |
| const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit, |
| permute_tbl); |
| int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, correction, range_limit, |
| permute_tbl); |
| int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, correction, range_limit, |
| permute_tbl); |
| int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, correction, range_limit, |
| permute_tbl); |
| |
| store_s16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| height -= 4; |
| } while (height > 4); |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0 = vld1q_u8(s); |
| int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit, |
| permute_tbl); |
| vst1q_s16(d, d0); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--height != 0); |
| } |
| } |
| |
| void av1_convolve_2d_sr_neon_dotprod(const uint8_t *src, int src_stride, |
| uint8_t *dst, int dst_stride, int w, int h, |
| const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, |
| const int subpel_x_qn, |
| const int subpel_y_qn, |
| ConvolveParams *conv_params) { |
| if (w == 2 || h == 2) { |
| av1_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h, |
| filter_params_x, filter_params_y, subpel_x_qn, |
| subpel_y_qn, conv_params); |
| return; |
| } |
| |
| const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); |
| const int clamped_y_taps = y_filter_taps < 6 ? 6 : y_filter_taps; |
| const int im_h = h + clamped_y_taps - 1; |
| const int im_stride = MAX_SB_SIZE; |
| const int vert_offset = clamped_y_taps / 2 - 1; |
| const int horiz_offset = filter_params_x->taps / 2 - 1; |
| const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset; |
| |
| const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_y, subpel_y_qn & SUBPEL_MASK); |
| |
| if (filter_params_x->taps > 8) { |
| DECLARE_ALIGNED(16, int16_t, |
| im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]); |
| |
| const int16x8_t x_filter_0_7 = vld1q_s16(x_filter_ptr); |
| const int16x4_t x_filter_8_11 = vld1_s16(x_filter_ptr + 8); |
| const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr); |
| const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8); |
| |
| convolve_2d_sr_horiz_12tap_neon_dotprod(src_ptr, src_stride, im_block, |
| im_stride, w, im_h, x_filter_0_7, |
| x_filter_8_11); |
| |
| convolve_2d_sr_vert_12tap_neon(im_block, im_stride, dst, dst_stride, w, h, |
| y_filter_0_7, y_filter_8_11); |
| } else { |
| DECLARE_ALIGNED(16, int16_t, |
| im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]); |
| |
| convolve_2d_sr_horiz_neon_dotprod(src_ptr, src_stride, im_block, im_stride, |
| w, im_h, x_filter_ptr); |
| |
| const int16x8_t y_filter = vld1q_s16(y_filter_ptr); |
| |
| if (clamped_y_taps <= 6) { |
| convolve_2d_sr_vert_6tap_neon(im_block, im_stride, dst, dst_stride, w, h, |
| y_filter); |
| } else { |
| convolve_2d_sr_vert_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, |
| y_filter); |
| } |
| } |
| } |