blob: c29229eb092e7fa85de465a0d0ab6bda8ddae8a0 [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_ports/mem.h"
#include "av1/common/arm/convolve_neon.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = {
0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6,
4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10,
8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14
};
static INLINE int16x4_t convolve12_4_x(uint8x16_t samples,
const int8x16_t filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum;
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
// Accumulate dot product into 'correction' to account for range clamp.
// First 4 output values.
sum = vdotq_laneq_s32(correction, permuted_samples[0], filter, 0);
sum = vdotq_laneq_s32(sum, permuted_samples[1], filter, 1);
sum = vdotq_laneq_s32(sum, permuted_samples[2], filter, 2);
return vqrshrn_n_s32(sum, FILTER_BITS);
}
static INLINE uint8x8_t convolve12_8_x(uint8x16_t samples[2],
const int8x16_t filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples[2], permuted_samples[4];
int32x4_t sum[2];
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
clamped_samples[0] = vreinterpretq_s8_u8(vsubq_u8(samples[0], range_limit));
clamped_samples[1] = vreinterpretq_s8_u8(vsubq_u8(samples[1], range_limit));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
permuted_samples[0] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
permuted_samples[1] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
permuted_samples[2] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[2]);
// {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 }
permuted_samples[3] = vqtbl1q_s8(clamped_samples[1], permute_tbl.val[2]);
// Accumulate dot product into 'correction' to account for range clamp.
// First 4 output values.
sum[0] = vdotq_laneq_s32(correction, permuted_samples[0], filter, 0);
sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[1], filter, 1);
sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[2], filter, 2);
// Second 4 output values.
sum[1] = vdotq_laneq_s32(correction, permuted_samples[1], filter, 0);
sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[2], filter, 1);
sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[3], filter, 2);
// Narrow and re-pack.
int16x8_t sum_s16 = vcombine_s16(vqrshrn_n_s32(sum[0], FILTER_BITS),
vqrshrn_n_s32(sum[1], FILTER_BITS));
return vqmovun_s16(sum_s16);
}
static INLINE void convolve_x_sr_12tap_neon_dotprod(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w,
int h, const int16_t *x_filter_ptr) {
const int16x8_t filter_0_7 = vld1q_s16(x_filter_ptr);
const int16x4_t filter_8_11 = vld1_s16(x_filter_ptr + 8);
const int16x8_t filter_8_15 = vcombine_s16(filter_8_11, vdup_n_s16(0));
const int8x16_t filter =
vcombine_s8(vmovn_s16(filter_0_7), vmovn_s16(filter_8_15));
const int32_t correction_s32 =
vaddvq_s32(vaddq_s32(vpaddlq_s16(vshlq_n_s16(filter_0_7, FILTER_BITS)),
vpaddlq_s16(vshlq_n_s16(filter_8_15, FILTER_BITS))));
// A shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding right
// shift by FILTER_BITS - instead of a first rounding right shift by
// ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
// ROUND0_BITS.
int32x4_t correction = vdupq_n_s32(correction_s32 + (1 << (ROUND0_BITS - 1)));
const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
// Special case the following no-op filter as 128 won't fit into the
// 8-bit signed dot-product instruction:
// { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 }
if (vgetq_lane_s16(filter_0_7, 5) == 128) {
// Undo the horizontal offset in the calling function.
src += 5;
do {
const uint8_t *s = src;
uint8_t *d = dst;
int width = w;
do {
uint8x8_t d0 = vld1_u8(s);
if (w == 4) {
store_u8_4x1(d, d0);
} else {
vst1_u8(d, d0);
}
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src += src_stride;
dst += dst_stride;
} while (--h != 0);
} else {
if (w <= 4) {
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
int16x4_t d0 =
convolve12_4_x(s0, filter, correction, range_limit, permute_tbl);
int16x4_t d1 =
convolve12_4_x(s1, filter, correction, range_limit, permute_tbl);
int16x4_t d2 =
convolve12_4_x(s2, filter, correction, range_limit, permute_tbl);
int16x4_t d3 =
convolve12_4_x(s3, filter, correction, range_limit, permute_tbl);
uint8x8_t d01 = vqmovun_s16(vcombine_s16(d0, d1));
uint8x8_t d23 = vqmovun_s16(vcombine_s16(d2, d3));
store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
dst += 4 * dst_stride;
src += 4 * src_stride;
h -= 4;
} while (h != 0);
} else {
do {
const uint8_t *s = src;
uint8_t *d = dst;
int width = w;
do {
uint8x16_t s0[2], s1[2], s2[2], s3[2];
load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
uint8x8_t d0 =
convolve12_8_x(s0, filter, correction, range_limit, permute_tbl);
uint8x8_t d1 =
convolve12_8_x(s1, filter, correction, range_limit, permute_tbl);
uint8x8_t d2 =
convolve12_8_x(s2, filter, correction, range_limit, permute_tbl);
uint8x8_t d3 =
convolve12_8_x(s3, filter, correction, range_limit, permute_tbl);
store_u8_8x4(d + 0 * dst_stride, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
}
}
}
static INLINE int16x4_t convolve4_4_x(uint8x16_t samples, const int8x8_t filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16_t permute_tbl) {
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
int8x16_t clamped_samples =
vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl);
// Accumulate dot product into 'correction' to account for range clamp.
int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, filter, 0);
// Packing is performed by the caller.
return vmovn_s32(sum);
}
static INLINE uint8x8_t convolve8_8_x(uint8x16_t samples, const int8x8_t filter,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum[2];
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product. */
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
// Accumulate dot product into 'correction' to account for range clamp.
// First 4 output values.
sum[0] = vdotq_lane_s32(correction, permuted_samples[0], filter, 0);
sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], filter, 1);
// Second 4 output values.
sum[1] = vdotq_lane_s32(correction, permuted_samples[1], filter, 0);
sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], filter, 1);
// Narrow and re-pack.
int16x8_t sum_s16 = vcombine_s16(vmovn_s32(sum[0]), vmovn_s32(sum[1]));
// We halved the convolution filter values so - 1 from the right shift.
return vqrshrun_n_s16(sum_s16, FILTER_BITS - 1);
}
void av1_convolve_x_sr_neon_dotprod(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params) {
if (w == 2 || h == 2) {
av1_convolve_x_sr_c(src, src_stride, dst, dst_stride, w, h, filter_params_x,
subpel_x_qn, conv_params);
return;
}
const uint8_t horiz_offset = filter_params_x->taps / 2 - 1;
src -= horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
if (filter_params_x->taps > 8) {
convolve_x_sr_12tap_neon_dotprod(src, src_stride, dst, dst_stride, w, h,
x_filter_ptr);
return;
}
const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr);
// Dot product constants.
const int32_t correction_s32 =
vaddlvq_s16(vshlq_n_s16(x_filter_s16, FILTER_BITS - 1));
// This shim of (1 << ((ROUND0_BITS - 1) - 1) enables us to use a single
// rounding right shift by FILTER_BITS - instead of a first rounding right
// shift by ROUND0_BITS, followed by second rounding right shift by
// FILTER_BITS - ROUND0_BITS.
// The outermost -1 is needed because we will halve the filter values.
const int32x4_t correction =
vdupq_n_s32(correction_s32 + (1 << ((ROUND0_BITS - 1) - 1)));
const uint8x16_t range_limit = vdupq_n_u8(128);
if (w <= 4) {
const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl);
// 4-tap filters are used for blocks having width <= 4.
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter =
vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1);
src += 2;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
int16x4_t d0 =
convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl);
int16x4_t d1 =
convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl);
int16x4_t d2 =
convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl);
int16x4_t d3 =
convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl);
// We halved the convolution filter values so - 1 from the right shift.
uint8x8_t d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1);
uint8x8_t d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1);
store_u8x4_strided_x2(dst + 0 * dst_stride, dst_stride, d01);
store_u8x4_strided_x2(dst + 2 * dst_stride, dst_stride, d23);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
do {
int width = w;
const uint8_t *s = src;
uint8_t *d = dst;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint8x8_t d0 =
convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl);
uint8x8_t d1 =
convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl);
uint8x8_t d2 =
convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl);
uint8x8_t d3 =
convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl);
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
}
}
static INLINE int16x4_t convolve12_4_2d_h(uint8x16_t samples,
const int8x16_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum;
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
// Accumulate dot product into 'correction' to account for range clamp.
// First 4 output values.
sum = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0);
sum = vdotq_laneq_s32(sum, permuted_samples[1], filters, 1);
sum = vdotq_laneq_s32(sum, permuted_samples[2], filters, 2);
// Narrow and re-pack.
return vshrn_n_s32(sum, ROUND0_BITS);
}
static INLINE int16x8_t convolve12_8_2d_h(uint8x16_t samples[2],
const int8x16_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples[2], permuted_samples[4];
int32x4_t sum[2];
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
clamped_samples[0] = vreinterpretq_s8_u8(vsubq_u8(samples[0], range_limit));
clamped_samples[1] = vreinterpretq_s8_u8(vsubq_u8(samples[1], range_limit));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
permuted_samples[0] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
permuted_samples[1] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
permuted_samples[2] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[2]);
// {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 }
permuted_samples[3] = vqtbl1q_s8(clamped_samples[1], permute_tbl.val[2]);
// Accumulate dot product into 'correction' to account for range clamp.
// First 4 output values.
sum[0] = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0);
sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[1], filters, 1);
sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[2], filters, 2);
// Second 4 output values.
sum[1] = vdotq_laneq_s32(correction, permuted_samples[1], filters, 0);
sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[2], filters, 1);
sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[3], filters, 2);
// Narrow and re-pack.
return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS),
vshrn_n_s32(sum[1], ROUND0_BITS));
}
static INLINE void convolve_2d_sr_horiz_12tap_neon_dotprod(
const uint8_t *src_ptr, int src_stride, int16_t *dst_ptr,
const int dst_stride, int w, int h, const int16x8_t x_filter_0_7,
const int16x4_t x_filter_8_11) {
const int bd = 8;
// Special case the following no-op filter as 128 won't fit into the 8-bit
// signed dot-product instruction:
// { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 }
if (vgetq_lane_s16(x_filter_0_7, 5) == 128) {
const uint16x8_t horiz_const = vdupq_n_u16((1 << (bd - 1)));
// Undo the horizontal offset in the calling function.
src_ptr += 5;
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x8_t s0 = vld1_u8(s);
uint16x8_t d0 = vaddw_u8(horiz_const, s0);
d0 = vshlq_n_u16(d0, FILTER_BITS - ROUND0_BITS);
// Store 8 elements to avoid additional branches. This is safe if the
// actual block width is < 8 because the intermediate buffer is large
// enough to accommodate 128x128 blocks.
vst1q_s16(d, vreinterpretq_s16_u16(d0));
d += 8;
s += 8;
width -= 8;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--h != 0);
} else {
// Narrow filter values to 8-bit.
const int16x8x2_t x_filter_s16 = {
{ x_filter_0_7, vcombine_s16(x_filter_8_11, vdup_n_s16(0)) }
};
const int8x16_t x_filter = vcombine_s8(vmovn_s16(x_filter_s16.val[0]),
vmovn_s16(x_filter_s16.val[1]));
// This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts
// - which are generally faster than rounding shifts on modern CPUs.
const int32_t horiz_const =
((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)));
// Dot product constants.
const int32x4_t correct_tmp =
vaddq_s32(vpaddlq_s16(vshlq_n_s16(x_filter_s16.val[0], 7)),
vpaddlq_s16(vshlq_n_s16(x_filter_s16.val[1], 7)));
const int32x4_t correction =
vdupq_n_s32(vaddvq_s32(correct_tmp) + horiz_const);
const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
if (w <= 4) {
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
int16x4_t d0 = convolve12_4_2d_h(s0, x_filter, correction, range_limit,
permute_tbl);
int16x4_t d1 = convolve12_4_2d_h(s1, x_filter, correction, range_limit,
permute_tbl);
int16x4_t d2 = convolve12_4_2d_h(s2, x_filter, correction, range_limit,
permute_tbl);
int16x4_t d3 = convolve12_4_2d_h(s3, x_filter, correction, range_limit,
permute_tbl);
store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h > 4);
do {
uint8x16_t s0 = vld1q_u8(src_ptr);
int16x4_t d0 = convolve12_4_2d_h(s0, x_filter, correction, range_limit,
permute_tbl);
vst1_s16(dst_ptr, d0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--h != 0);
} else {
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0[2], s1[2], s2[2], s3[2];
load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, correction,
range_limit, permute_tbl);
int16x8_t d1 = convolve12_8_2d_h(s1, x_filter, correction,
range_limit, permute_tbl);
int16x8_t d2 = convolve12_8_2d_h(s2, x_filter, correction,
range_limit, permute_tbl);
int16x8_t d3 = convolve12_8_2d_h(s3, x_filter, correction,
range_limit, permute_tbl);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h > 4);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0[2];
s0[0] = vld1q_u8(s);
s0[1] = vld1q_u8(s + 4);
int16x8_t d0 = convolve12_8_2d_h(s0, x_filter, correction,
range_limit, permute_tbl);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--h != 0);
}
}
}
static INLINE int16x4_t convolve4_4_2d_h(uint8x16_t samples,
const int8x8_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16_t permute_tbl) {
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
int8x16_t clamped_samples =
vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl);
// Accumulate dot product into 'correction' to account for range clamp.
int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, filters, 0);
// We halved the convolution filter values so -1 from the right shift.
return vshrn_n_s32(sum, ROUND0_BITS - 1);
}
static INLINE int16x8_t convolve8_8_2d_h(uint8x16_t samples,
const int8x8_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum[2];
// Clamp sample range to [-128, 127] for 8-bit signed dot product.
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
// Accumulate dot product into 'correction' to account for range clamp.
// First 4 output values.
sum[0] = vdotq_lane_s32(correction, permuted_samples[0], filters, 0);
sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], filters, 1);
// Second 4 output values.
sum[1] = vdotq_lane_s32(correction, permuted_samples[1], filters, 0);
sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], filters, 1);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1),
vshrn_n_s32(sum[1], ROUND0_BITS - 1));
}
static INLINE void convolve_2d_sr_horiz_neon_dotprod(
const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w,
int im_h, const int16_t *x_filter_ptr) {
const int bd = 8;
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// The outermost -1 is needed because we halved the filter values.
const int32_t horiz_const =
((1 << (bd + FILTER_BITS - 2)) + (1 << ((ROUND0_BITS - 1) - 1)));
// Dot product constants.
const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr);
const int32_t correction_s32 =
vaddlvq_s16(vshlq_n_s16(x_filter_s16, FILTER_BITS - 1));
const int32x4_t correction = vdupq_n_s32(correction_s32 + horiz_const);
const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8_t *src_ptr = src;
int16_t *dst_ptr = im_block;
int dst_stride = im_stride;
int height = im_h;
if (w <= 4) {
const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl);
// 4-tap filters are used for blocks having width <= 4.
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter =
vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1);
src_ptr += 2;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
int16x4_t d0 =
convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl);
int16x4_t d1 =
convolve4_4_2d_h(s1, x_filter, correction, range_limit, permute_tbl);
int16x4_t d2 =
convolve4_4_2d_h(s2, x_filter, correction, range_limit, permute_tbl);
int16x4_t d3 =
convolve4_4_2d_h(s3, x_filter, correction, range_limit, permute_tbl);
store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
uint8x16_t s0 = vld1q_u8(src_ptr);
int16x4_t d0 =
convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl);
vst1_s16(dst_ptr, d0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--height != 0);
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit,
permute_tbl);
int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, correction, range_limit,
permute_tbl);
int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, correction, range_limit,
permute_tbl);
int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, correction, range_limit,
permute_tbl);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0 = vld1q_u8(s);
int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit,
permute_tbl);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--height != 0);
}
}
void av1_convolve_2d_sr_neon_dotprod(const uint8_t *src, int src_stride,
uint8_t *dst, int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn,
const int subpel_y_qn,
ConvolveParams *conv_params) {
if (w == 2 || h == 2) {
av1_convolve_2d_sr_c(src, src_stride, dst, dst_stride, w, h,
filter_params_x, filter_params_y, subpel_x_qn,
subpel_y_qn, conv_params);
return;
}
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
const int clamped_y_taps = y_filter_taps < 6 ? 6 : y_filter_taps;
const int im_h = h + clamped_y_taps - 1;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = clamped_y_taps / 2 - 1;
const int horiz_offset = filter_params_x->taps / 2 - 1;
const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
if (filter_params_x->taps > 8) {
DECLARE_ALIGNED(16, int16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]);
const int16x8_t x_filter_0_7 = vld1q_s16(x_filter_ptr);
const int16x4_t x_filter_8_11 = vld1_s16(x_filter_ptr + 8);
const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8);
convolve_2d_sr_horiz_12tap_neon_dotprod(src_ptr, src_stride, im_block,
im_stride, w, im_h, x_filter_0_7,
x_filter_8_11);
convolve_2d_sr_vert_12tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter_0_7, y_filter_8_11);
} else {
DECLARE_ALIGNED(16, int16_t,
im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]);
convolve_2d_sr_horiz_neon_dotprod(src_ptr, src_stride, im_block, im_stride,
w, im_h, x_filter_ptr);
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
if (clamped_y_taps <= 6) {
convolve_2d_sr_vert_6tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter);
} else {
convolve_2d_sr_vert_8tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter);
}
}
}