blob: f24d4b0a10a6149e3ab9d635d948310bec3105df [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_ENCODER_ENCODER_ALLOC_H_
#define AOM_AV1_ENCODER_ENCODER_ALLOC_H_
#include "av1/encoder/block.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/ethread.h"
#include "av1/encoder/global_motion_facade.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/pickcdef.h"
#ifdef __cplusplus
extern "C" {
#endif
static AOM_INLINE void dealloc_context_buffers_ext(
MBMIExtFrameBufferInfo *mbmi_ext_info) {
aom_free(mbmi_ext_info->frame_base);
mbmi_ext_info->frame_base = NULL;
mbmi_ext_info->alloc_size = 0;
}
static AOM_INLINE void alloc_context_buffers_ext(
AV1_COMMON *cm, MBMIExtFrameBufferInfo *mbmi_ext_info) {
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
const int mi_alloc_rows =
(mi_params->mi_rows + mi_alloc_size_1d - 1) / mi_alloc_size_1d;
const int mi_alloc_cols =
(mi_params->mi_cols + mi_alloc_size_1d - 1) / mi_alloc_size_1d;
const int new_ext_mi_size = mi_alloc_rows * mi_alloc_cols;
if (new_ext_mi_size > mbmi_ext_info->alloc_size) {
dealloc_context_buffers_ext(mbmi_ext_info);
CHECK_MEM_ERROR(
cm, mbmi_ext_info->frame_base,
aom_malloc(new_ext_mi_size * sizeof(*mbmi_ext_info->frame_base)));
mbmi_ext_info->alloc_size = new_ext_mi_size;
}
// The stride needs to be updated regardless of whether new allocation
// happened or not.
mbmi_ext_info->stride = mi_alloc_cols;
}
static AOM_INLINE void alloc_compressor_data(AV1_COMP *cpi) {
AV1_COMMON *cm = &cpi->common;
CommonModeInfoParams *const mi_params = &cm->mi_params;
// Setup mi_params
mi_params->set_mb_mi(mi_params, cm->width, cm->height,
cpi->sf.part_sf.default_min_partition_size);
if (!is_stat_generation_stage(cpi)) av1_alloc_txb_buf(cpi);
aom_free(cpi->td.mv_costs_alloc);
cpi->td.mv_costs_alloc = NULL;
// Avoid the memory allocation of 'mv_costs_alloc' for allintra encoding
// mode.
if (cpi->oxcf.kf_cfg.key_freq_max != 0) {
CHECK_MEM_ERROR(cm, cpi->td.mv_costs_alloc,
(MvCosts *)aom_calloc(1, sizeof(*cpi->td.mv_costs_alloc)));
cpi->td.mb.mv_costs = cpi->td.mv_costs_alloc;
}
av1_setup_shared_coeff_buffer(cm->seq_params, &cpi->td.shared_coeff_buf,
cm->error);
if (av1_setup_sms_tree(cpi, &cpi->td)) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate SMS tree");
}
cpi->td.firstpass_ctx =
av1_alloc_pmc(cpi, BLOCK_16X16, &cpi->td.shared_coeff_buf);
if (!cpi->td.firstpass_ctx)
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate PICK_MODE_CONTEXT");
}
// Allocate mbmi buffers which are used to store mode information at block
// level.
static AOM_INLINE void alloc_mb_mode_info_buffers(AV1_COMP *const cpi) {
AV1_COMMON *const cm = &cpi->common;
if (av1_alloc_context_buffers(cm, cm->width, cm->height,
cpi->sf.part_sf.default_min_partition_size)) {
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
}
if (!is_stat_generation_stage(cpi))
alloc_context_buffers_ext(cm, &cpi->mbmi_ext_info);
}
static AOM_INLINE void realloc_segmentation_maps(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
CommonModeInfoParams *const mi_params = &cm->mi_params;
// Create the encoder segmentation map and set all entries to 0
aom_free(cpi->enc_seg.map);
CHECK_MEM_ERROR(cm, cpi->enc_seg.map,
aom_calloc(mi_params->mi_rows * mi_params->mi_cols, 1));
// Create a map used for cyclic background refresh.
if (cpi->cyclic_refresh) av1_cyclic_refresh_free(cpi->cyclic_refresh);
CHECK_MEM_ERROR(
cm, cpi->cyclic_refresh,
av1_cyclic_refresh_alloc(mi_params->mi_rows, mi_params->mi_cols));
// Create a map used to mark inactive areas.
aom_free(cpi->active_map.map);
CHECK_MEM_ERROR(cm, cpi->active_map.map,
aom_calloc(mi_params->mi_rows * mi_params->mi_cols, 1));
}
static AOM_INLINE void alloc_obmc_buffers(
OBMCBuffer *obmc_buffer, struct aom_internal_error_info *error) {
AOM_CHECK_MEM_ERROR(
error, obmc_buffer->wsrc,
(int32_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*obmc_buffer->wsrc)));
AOM_CHECK_MEM_ERROR(
error, obmc_buffer->mask,
(int32_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*obmc_buffer->mask)));
AOM_CHECK_MEM_ERROR(
error, obmc_buffer->above_pred,
(uint8_t *)aom_memalign(
16, MAX_MB_PLANE * MAX_SB_SQUARE * sizeof(*obmc_buffer->above_pred)));
AOM_CHECK_MEM_ERROR(
error, obmc_buffer->left_pred,
(uint8_t *)aom_memalign(
16, MAX_MB_PLANE * MAX_SB_SQUARE * sizeof(*obmc_buffer->left_pred)));
}
static AOM_INLINE void release_obmc_buffers(OBMCBuffer *obmc_buffer) {
aom_free(obmc_buffer->mask);
aom_free(obmc_buffer->above_pred);
aom_free(obmc_buffer->left_pred);
aom_free(obmc_buffer->wsrc);
obmc_buffer->mask = NULL;
obmc_buffer->above_pred = NULL;
obmc_buffer->left_pred = NULL;
obmc_buffer->wsrc = NULL;
}
static AOM_INLINE void alloc_compound_type_rd_buffers(
struct aom_internal_error_info *error, CompoundTypeRdBuffers *const bufs) {
AOM_CHECK_MEM_ERROR(
error, bufs->pred0,
(uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred0)));
AOM_CHECK_MEM_ERROR(
error, bufs->pred1,
(uint8_t *)aom_memalign(16, 2 * MAX_SB_SQUARE * sizeof(*bufs->pred1)));
AOM_CHECK_MEM_ERROR(
error, bufs->residual1,
(int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->residual1)));
AOM_CHECK_MEM_ERROR(
error, bufs->diff10,
(int16_t *)aom_memalign(32, MAX_SB_SQUARE * sizeof(*bufs->diff10)));
AOM_CHECK_MEM_ERROR(error, bufs->tmp_best_mask_buf,
(uint8_t *)aom_malloc(2 * MAX_SB_SQUARE *
sizeof(*bufs->tmp_best_mask_buf)));
}
static AOM_INLINE void release_compound_type_rd_buffers(
CompoundTypeRdBuffers *const bufs) {
aom_free(bufs->pred0);
aom_free(bufs->pred1);
aom_free(bufs->residual1);
aom_free(bufs->diff10);
aom_free(bufs->tmp_best_mask_buf);
av1_zero(*bufs); // Set all pointers to NULL for safety.
}
static AOM_INLINE void dealloc_compressor_data(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
TokenInfo *token_info = &cpi->token_info;
AV1EncRowMultiThreadInfo *const enc_row_mt = &cpi->mt_info.enc_row_mt;
const int num_planes = av1_num_planes(cm);
dealloc_context_buffers_ext(&cpi->mbmi_ext_info);
aom_free(cpi->tile_data);
cpi->tile_data = NULL;
cpi->allocated_tiles = 0;
enc_row_mt->allocated_tile_cols = 0;
enc_row_mt->allocated_tile_rows = 0;
// Delete sementation map
aom_free(cpi->enc_seg.map);
cpi->enc_seg.map = NULL;
av1_cyclic_refresh_free(cpi->cyclic_refresh);
cpi->cyclic_refresh = NULL;
aom_free(cpi->active_map.map);
cpi->active_map.map = NULL;
aom_free(cpi->ssim_rdmult_scaling_factors);
cpi->ssim_rdmult_scaling_factors = NULL;
aom_free(cpi->tpl_rdmult_scaling_factors);
cpi->tpl_rdmult_scaling_factors = NULL;
#if CONFIG_TUNE_VMAF
aom_free(cpi->vmaf_info.rdmult_scaling_factors);
cpi->vmaf_info.rdmult_scaling_factors = NULL;
aom_close_vmaf_model(cpi->vmaf_info.vmaf_model);
#endif
#if CONFIG_TUNE_BUTTERAUGLI
aom_free(cpi->butteraugli_info.rdmult_scaling_factors);
cpi->butteraugli_info.rdmult_scaling_factors = NULL;
aom_free_frame_buffer(&cpi->butteraugli_info.source);
aom_free_frame_buffer(&cpi->butteraugli_info.resized_source);
#endif
#if CONFIG_SALIENCY_MAP
aom_free(cpi->saliency_map);
aom_free(cpi->sm_scaling_factor);
#endif
release_obmc_buffers(&cpi->td.mb.obmc_buffer);
aom_free(cpi->td.mv_costs_alloc);
cpi->td.mv_costs_alloc = NULL;
aom_free(cpi->td.dv_costs_alloc);
cpi->td.dv_costs_alloc = NULL;
aom_free(cpi->td.mb.sb_stats_cache);
cpi->td.mb.sb_stats_cache = NULL;
aom_free(cpi->td.mb.sb_fp_stats);
cpi->td.mb.sb_fp_stats = NULL;
#if CONFIG_PARTITION_SEARCH_ORDER
aom_free(cpi->td.mb.rdcost);
cpi->td.mb.rdcost = NULL;
#endif
av1_free_pc_tree_recursive(cpi->td.pc_root, num_planes, 0, 0,
cpi->sf.part_sf.partition_search_type);
cpi->td.pc_root = NULL;
for (int i = 0; i < 2; i++)
for (int j = 0; j < 2; j++) {
aom_free(cpi->td.mb.intrabc_hash_info.hash_value_buffer[i][j]);
cpi->td.mb.intrabc_hash_info.hash_value_buffer[i][j] = NULL;
}
av1_hash_table_destroy(&cpi->td.mb.intrabc_hash_info.intrabc_hash_table);
aom_free(cm->tpl_mvs);
cm->tpl_mvs = NULL;
aom_free(cpi->td.pixel_gradient_info);
cpi->td.pixel_gradient_info = NULL;
aom_free(cpi->td.src_var_info_of_4x4_sub_blocks);
cpi->td.src_var_info_of_4x4_sub_blocks = NULL;
aom_free(cpi->td.vt64x64);
cpi->td.vt64x64 = NULL;
av1_free_pmc(cpi->td.firstpass_ctx, num_planes);
cpi->td.firstpass_ctx = NULL;
const int is_highbitdepth = cpi->tf_ctx.is_highbitdepth;
// This call ensures that the buffers allocated by tf_alloc_and_reset_data()
// in av1_temporal_filter() for single-threaded encode are freed in case an
// error is encountered during temporal filtering (due to early termination
// tf_dealloc_data() in av1_temporal_filter() would not be invoked).
tf_dealloc_data(&cpi->td.tf_data, is_highbitdepth);
// This call ensures that tpl_tmp_buffers for single-threaded encode are freed
// in case of an error during tpl.
tpl_dealloc_temp_buffers(&cpi->td.tpl_tmp_buffers);
// This call ensures that the global motion (gm) data buffers for
// single-threaded encode are freed in case of an error during gm.
gm_dealloc_data(&cpi->td.gm_data);
// This call ensures that CDEF search context buffers are deallocated in case
// of an error during cdef search.
av1_cdef_dealloc_data(cpi->cdef_search_ctx);
aom_free(cpi->cdef_search_ctx);
cpi->cdef_search_ctx = NULL;
av1_dealloc_mb_data(&cpi->td.mb, num_planes);
av1_dealloc_mb_wiener_var_pred_buf(&cpi->td);
av1_free_txb_buf(cpi);
av1_free_context_buffers(cm);
aom_free_frame_buffer(&cpi->last_frame_uf);
#if !CONFIG_REALTIME_ONLY
av1_free_restoration_buffers(cm);
av1_free_firstpass_data(&cpi->firstpass_data);
#endif
if (!is_stat_generation_stage(cpi)) {
av1_free_cdef_buffers(cm, &cpi->ppi->p_mt_info.cdef_worker,
&cpi->mt_info.cdef_sync);
}
for (int plane = 0; plane < num_planes; plane++) {
aom_free(cpi->pick_lr_ctxt.rusi[plane]);
cpi->pick_lr_ctxt.rusi[plane] = NULL;
}
aom_free(cpi->pick_lr_ctxt.dgd_avg);
cpi->pick_lr_ctxt.dgd_avg = NULL;
aom_free_frame_buffer(&cpi->trial_frame_rst);
aom_free_frame_buffer(&cpi->scaled_source);
aom_free_frame_buffer(&cpi->scaled_last_source);
aom_free_frame_buffer(&cpi->orig_source);
aom_free_frame_buffer(&cpi->svc.source_last_TL0);
free_token_info(token_info);
av1_free_shared_coeff_buffer(&cpi->td.shared_coeff_buf);
av1_free_sms_tree(&cpi->td);
aom_free(cpi->td.mb.palette_buffer);
release_compound_type_rd_buffers(&cpi->td.mb.comp_rd_buffer);
aom_free(cpi->td.mb.tmp_conv_dst);
for (int j = 0; j < 2; ++j) {
aom_free(cpi->td.mb.tmp_pred_bufs[j]);
}
#if CONFIG_DENOISE
if (cpi->denoise_and_model) {
aom_denoise_and_model_free(cpi->denoise_and_model);
cpi->denoise_and_model = NULL;
}
#endif
if (cpi->film_grain_table) {
aom_film_grain_table_free(cpi->film_grain_table);
aom_free(cpi->film_grain_table);
cpi->film_grain_table = NULL;
}
if (cpi->ppi->use_svc) av1_free_svc_cyclic_refresh(cpi);
aom_free(cpi->svc.layer_context);
cpi->svc.layer_context = NULL;
aom_free(cpi->consec_zero_mv);
cpi->consec_zero_mv = NULL;
cpi->consec_zero_mv_alloc_size = 0;
aom_free(cpi->src_sad_blk_64x64);
cpi->src_sad_blk_64x64 = NULL;
aom_free(cpi->mb_weber_stats);
cpi->mb_weber_stats = NULL;
if (cpi->oxcf.enable_rate_guide_deltaq) {
aom_free(cpi->prep_rate_estimates);
cpi->prep_rate_estimates = NULL;
aom_free(cpi->ext_rate_distribution);
cpi->ext_rate_distribution = NULL;
}
aom_free(cpi->mb_delta_q);
cpi->mb_delta_q = NULL;
}
static AOM_INLINE void allocate_gradient_info_for_hog(AV1_COMP *cpi) {
if (!is_gradient_caching_for_hog_enabled(cpi)) return;
PixelLevelGradientInfo *pixel_gradient_info = cpi->td.pixel_gradient_info;
if (!pixel_gradient_info) {
const AV1_COMMON *const cm = &cpi->common;
const int plane_types = PLANE_TYPES >> cm->seq_params->monochrome;
CHECK_MEM_ERROR(
cm, pixel_gradient_info,
aom_malloc(sizeof(*pixel_gradient_info) * plane_types * MAX_SB_SQUARE));
cpi->td.pixel_gradient_info = pixel_gradient_info;
}
cpi->td.mb.pixel_gradient_info = pixel_gradient_info;
}
static AOM_INLINE void allocate_src_var_of_4x4_sub_block_buf(AV1_COMP *cpi) {
if (!is_src_var_for_4x4_sub_blocks_caching_enabled(cpi)) return;
Block4x4VarInfo *source_variance_info =
cpi->td.src_var_info_of_4x4_sub_blocks;
if (!source_variance_info) {
const AV1_COMMON *const cm = &cpi->common;
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
const int mi_count_in_sb = mi_size_wide[sb_size] * mi_size_high[sb_size];
CHECK_MEM_ERROR(cm, source_variance_info,
aom_malloc(sizeof(*source_variance_info) * mi_count_in_sb));
cpi->td.src_var_info_of_4x4_sub_blocks = source_variance_info;
}
cpi->td.mb.src_var_info_of_4x4_sub_blocks = source_variance_info;
}
static AOM_INLINE void variance_partition_alloc(AV1_COMP *cpi) {
AV1_COMMON *const cm = &cpi->common;
const int num_64x64_blocks = (cm->seq_params->sb_size == BLOCK_64X64) ? 1 : 4;
if (cpi->td.vt64x64) {
if (num_64x64_blocks != cpi->td.num_64x64_blocks) {
aom_free(cpi->td.vt64x64);
cpi->td.vt64x64 = NULL;
}
}
if (!cpi->td.vt64x64) {
CHECK_MEM_ERROR(cm, cpi->td.vt64x64,
aom_malloc(sizeof(*cpi->td.vt64x64) * num_64x64_blocks));
cpi->td.num_64x64_blocks = num_64x64_blocks;
}
}
static AOM_INLINE YV12_BUFFER_CONFIG *realloc_and_scale_source(
AV1_COMP *cpi, int scaled_width, int scaled_height) {
AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
if (scaled_width == cpi->unscaled_source->y_crop_width &&
scaled_height == cpi->unscaled_source->y_crop_height) {
return cpi->unscaled_source;
}
if (aom_realloc_frame_buffer(
&cpi->scaled_source, scaled_width, scaled_height,
cm->seq_params->subsampling_x, cm->seq_params->subsampling_y,
cm->seq_params->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->features.byte_alignment, NULL, NULL, NULL, cpi->alloc_pyramid, 0))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to reallocate scaled source buffer");
assert(cpi->scaled_source.y_crop_width == scaled_width);
assert(cpi->scaled_source.y_crop_height == scaled_height);
if (!av1_resize_and_extend_frame_nonnormative(
cpi->unscaled_source, &cpi->scaled_source,
(int)cm->seq_params->bit_depth, num_planes))
aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR,
"Failed to reallocate buffers during resize");
return &cpi->scaled_source;
}
// Deallocate allocated thread_data.
static AOM_INLINE void free_thread_data(AV1_PRIMARY *ppi) {
PrimaryMultiThreadInfo *const p_mt_info = &ppi->p_mt_info;
const int num_tf_workers =
AOMMIN(p_mt_info->num_mod_workers[MOD_TF], p_mt_info->num_workers);
const int num_tpl_workers =
AOMMIN(p_mt_info->num_mod_workers[MOD_TPL], p_mt_info->num_workers);
const int is_highbitdepth = ppi->seq_params.use_highbitdepth;
const int num_planes = ppi->seq_params.monochrome ? 1 : MAX_MB_PLANE;
for (int t = 1; t < p_mt_info->num_workers; ++t) {
EncWorkerData *const thread_data = &p_mt_info->tile_thr_data[t];
thread_data->td = thread_data->original_td;
ThreadData *const td = thread_data->td;
if (!td) continue;
aom_free(td->tctx);
aom_free(td->palette_buffer);
aom_free(td->tmp_conv_dst);
release_compound_type_rd_buffers(&td->comp_rd_buffer);
for (int j = 0; j < 2; ++j) {
aom_free(td->tmp_pred_bufs[j]);
}
aom_free(td->pixel_gradient_info);
aom_free(td->src_var_info_of_4x4_sub_blocks);
release_obmc_buffers(&td->obmc_buffer);
aom_free(td->vt64x64);
for (int x = 0; x < 2; x++) {
for (int y = 0; y < 2; y++) {
aom_free(td->hash_value_buffer[x][y]);
td->hash_value_buffer[x][y] = NULL;
}
}
aom_free(td->mv_costs_alloc);
td->mv_costs_alloc = NULL;
aom_free(td->dv_costs_alloc);
td->dv_costs_alloc = NULL;
aom_free(td->counts);
av1_free_pmc(td->firstpass_ctx, num_planes);
td->firstpass_ctx = NULL;
av1_free_shared_coeff_buffer(&td->shared_coeff_buf);
av1_free_sms_tree(td);
// This call ensures that the buffers allocated by tf_alloc_and_reset_data()
// in prepare_tf_workers() for MT encode are freed in case an error is
// encountered during temporal filtering (due to early termination
// tf_dealloc_thread_data() in av1_tf_do_filtering_mt() would not be
// invoked).
if (t < num_tf_workers) tf_dealloc_data(&td->tf_data, is_highbitdepth);
// This call ensures that tpl_tmp_buffers for MT encode are freed in case of
// an error during tpl.
if (t < num_tpl_workers) tpl_dealloc_temp_buffers(&td->tpl_tmp_buffers);
// This call ensures that the buffers in gm_data for MT encode are freed in
// case of an error during gm.
gm_dealloc_data(&td->gm_data);
av1_dealloc_mb_data(&td->mb, num_planes);
aom_free(td->mb.sb_stats_cache);
td->mb.sb_stats_cache = NULL;
aom_free(td->mb.sb_fp_stats);
td->mb.sb_fp_stats = NULL;
#if CONFIG_PARTITION_SEARCH_ORDER
aom_free(td->mb.rdcost);
td->mb.rdcost = NULL;
#endif
av1_free_pc_tree_recursive(td->pc_root, num_planes, 0, 0, SEARCH_PARTITION);
td->pc_root = NULL;
av1_dealloc_mb_wiener_var_pred_buf(td);
aom_free(td);
thread_data->td = NULL;
thread_data->original_td = NULL;
}
}
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_ENCODER_ENCODER_ALLOC_H_