| /* |
| * Copyright (c) 2019, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| /*!\defgroup gf_group_algo Golden Frame Group |
| * \ingroup high_level_algo |
| * Algorithms regarding determining the length of GF groups and defining GF |
| * group structures. |
| * @{ |
| */ |
| /*! @} - end defgroup gf_group_algo */ |
| |
| #include <assert.h> |
| #include <stdint.h> |
| |
| #include "aom_mem/aom_mem.h" |
| #include "config/aom_config.h" |
| #include "config/aom_scale_rtcd.h" |
| |
| #include "aom/aom_codec.h" |
| #include "aom/aom_encoder.h" |
| |
| #include "av1/common/av1_common_int.h" |
| |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/firstpass.h" |
| #include "av1/encoder/gop_structure.h" |
| #include "av1/encoder/pass2_strategy.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/rc_utils.h" |
| #include "av1/encoder/temporal_filter.h" |
| #include "av1/encoder/thirdpass.h" |
| #include "av1/encoder/tpl_model.h" |
| #include "av1/encoder/encode_strategy.h" |
| |
| #define DEFAULT_KF_BOOST 2300 |
| #define DEFAULT_GF_BOOST 2000 |
| #define GROUP_ADAPTIVE_MAXQ 1 |
| |
| static void init_gf_stats(GF_GROUP_STATS *gf_stats); |
| static int define_gf_group_pass3(AV1_COMP *cpi, EncodeFrameParams *frame_params, |
| int is_final_pass); |
| |
| // Calculate an active area of the image that discounts formatting |
| // bars and partially discounts other 0 energy areas. |
| #define MIN_ACTIVE_AREA 0.5 |
| #define MAX_ACTIVE_AREA 1.0 |
| static double calculate_active_area(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *this_frame) { |
| const double active_pct = |
| 1.0 - |
| ((this_frame->intra_skip_pct / 2) + |
| ((this_frame->inactive_zone_rows * 2) / (double)frame_info->mb_rows)); |
| return fclamp(active_pct, MIN_ACTIVE_AREA, MAX_ACTIVE_AREA); |
| } |
| |
| // Calculate a modified Error used in distributing bits between easier and |
| // harder frames. |
| #define ACT_AREA_CORRECTION 0.5 |
| static double calculate_modified_err_new(const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *total_stats, |
| const FIRSTPASS_STATS *this_stats, |
| int vbrbias, double modified_error_min, |
| double modified_error_max) { |
| if (total_stats == NULL) { |
| return 0; |
| } |
| const double av_weight = total_stats->weight / total_stats->count; |
| const double av_err = |
| (total_stats->coded_error * av_weight) / total_stats->count; |
| double modified_error = |
| av_err * pow(this_stats->coded_error * this_stats->weight / |
| DOUBLE_DIVIDE_CHECK(av_err), |
| vbrbias / 100.0); |
| |
| // Correction for active area. Frames with a reduced active area |
| // (eg due to formatting bars) have a higher error per mb for the |
| // remaining active MBs. The correction here assumes that coding |
| // 0.5N blocks of complexity 2X is a little easier than coding N |
| // blocks of complexity X. |
| modified_error *= |
| pow(calculate_active_area(frame_info, this_stats), ACT_AREA_CORRECTION); |
| |
| return fclamp(modified_error, modified_error_min, modified_error_max); |
| } |
| |
| static double calculate_modified_err(const FRAME_INFO *frame_info, |
| const TWO_PASS *twopass, |
| const AV1EncoderConfig *oxcf, |
| const FIRSTPASS_STATS *this_frame) { |
| const FIRSTPASS_STATS *total_stats = twopass->stats_buf_ctx->total_stats; |
| return calculate_modified_err_new( |
| frame_info, total_stats, this_frame, oxcf->rc_cfg.vbrbias, |
| twopass->modified_error_min, twopass->modified_error_max); |
| } |
| |
| // Resets the first pass file to the given position using a relative seek from |
| // the current position. |
| static void reset_fpf_position(TWO_PASS_FRAME *p_frame, |
| const FIRSTPASS_STATS *position) { |
| p_frame->stats_in = position; |
| } |
| |
| static int input_stats(TWO_PASS *p, TWO_PASS_FRAME *p_frame, |
| FIRSTPASS_STATS *fps) { |
| if (p_frame->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF; |
| |
| *fps = *p_frame->stats_in; |
| ++p_frame->stats_in; |
| return 1; |
| } |
| |
| static int input_stats_lap(TWO_PASS *p, TWO_PASS_FRAME *p_frame, |
| FIRSTPASS_STATS *fps) { |
| if (p_frame->stats_in >= p->stats_buf_ctx->stats_in_end) return EOF; |
| |
| *fps = *p_frame->stats_in; |
| /* Move old stats[0] out to accommodate for next frame stats */ |
| memmove(p->frame_stats_arr[0], p->frame_stats_arr[1], |
| (p->stats_buf_ctx->stats_in_end - p_frame->stats_in - 1) * |
| sizeof(FIRSTPASS_STATS)); |
| p->stats_buf_ctx->stats_in_end--; |
| return 1; |
| } |
| |
| // Read frame stats at an offset from the current position. |
| static const FIRSTPASS_STATS *read_frame_stats(const TWO_PASS *p, |
| const TWO_PASS_FRAME *p_frame, |
| int offset) { |
| if ((offset >= 0 && |
| p_frame->stats_in + offset >= p->stats_buf_ctx->stats_in_end) || |
| (offset < 0 && |
| p_frame->stats_in + offset < p->stats_buf_ctx->stats_in_start)) { |
| return NULL; |
| } |
| |
| return &p_frame->stats_in[offset]; |
| } |
| |
| // This function returns the maximum target rate per frame. |
| static int frame_max_bits(const RATE_CONTROL *rc, |
| const AV1EncoderConfig *oxcf) { |
| int64_t max_bits = ((int64_t)rc->avg_frame_bandwidth * |
| (int64_t)oxcf->rc_cfg.vbrmax_section) / |
| 100; |
| if (max_bits < 0) |
| max_bits = 0; |
| else if (max_bits > rc->max_frame_bandwidth) |
| max_bits = rc->max_frame_bandwidth; |
| |
| return (int)max_bits; |
| } |
| |
| // Based on history adjust expectations of bits per macroblock. |
| static void twopass_update_bpm_factor(AV1_COMP *cpi, int rate_err_tol) { |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| |
| // Based on recent history adjust expectations of bits per macroblock. |
| double rate_err_factor = 1.0; |
| const double adj_limit = AOMMAX(0.2, (double)(100 - rate_err_tol) / 200.0); |
| const double min_fac = 1.0 - adj_limit; |
| const double max_fac = 1.0 + adj_limit; |
| |
| if (cpi->third_pass_ctx && cpi->third_pass_ctx->frame_info_count > 0) { |
| int64_t actual_bits = 0; |
| int64_t target_bits = 0; |
| double factor = 0.0; |
| int count = 0; |
| for (int i = 0; i < cpi->third_pass_ctx->frame_info_count; i++) { |
| actual_bits += cpi->third_pass_ctx->frame_info[i].actual_bits; |
| target_bits += cpi->third_pass_ctx->frame_info[i].bits_allocated; |
| factor += cpi->third_pass_ctx->frame_info[i].bpm_factor; |
| count++; |
| } |
| |
| if (count == 0) { |
| factor = 1.0; |
| } else { |
| factor /= (double)count; |
| } |
| |
| factor *= (double)actual_bits / DOUBLE_DIVIDE_CHECK((double)target_bits); |
| |
| if ((twopass->bpm_factor <= 1 && factor < twopass->bpm_factor) || |
| (twopass->bpm_factor >= 1 && factor > twopass->bpm_factor)) { |
| twopass->bpm_factor = factor; |
| twopass->bpm_factor = |
| AOMMAX(min_fac, AOMMIN(max_fac, twopass->bpm_factor)); |
| } |
| } |
| |
| int err_estimate = p_rc->rate_error_estimate; |
| int64_t total_actual_bits = p_rc->total_actual_bits; |
| double rolling_arf_group_actual_bits = |
| (double)twopass->rolling_arf_group_actual_bits; |
| double rolling_arf_group_target_bits = |
| (double)twopass->rolling_arf_group_target_bits; |
| |
| #if CONFIG_FPMT_TEST |
| const int is_parallel_frame = |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 ? 1 : 0; |
| const int simulate_parallel_frame = |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE |
| ? is_parallel_frame |
| : 0; |
| total_actual_bits = simulate_parallel_frame ? p_rc->temp_total_actual_bits |
| : p_rc->total_actual_bits; |
| rolling_arf_group_target_bits = |
| (double)(simulate_parallel_frame |
| ? p_rc->temp_rolling_arf_group_target_bits |
| : twopass->rolling_arf_group_target_bits); |
| rolling_arf_group_actual_bits = |
| (double)(simulate_parallel_frame |
| ? p_rc->temp_rolling_arf_group_actual_bits |
| : twopass->rolling_arf_group_actual_bits); |
| err_estimate = simulate_parallel_frame ? p_rc->temp_rate_error_estimate |
| : p_rc->rate_error_estimate; |
| #endif |
| |
| if ((p_rc->bits_off_target && total_actual_bits > 0) && |
| (rolling_arf_group_target_bits >= 1.0)) { |
| if (rolling_arf_group_actual_bits > rolling_arf_group_target_bits) { |
| double error_fraction = |
| (rolling_arf_group_actual_bits - rolling_arf_group_target_bits) / |
| rolling_arf_group_target_bits; |
| error_fraction = (error_fraction > 1.0) ? 1.0 : error_fraction; |
| rate_err_factor = 1.0 + error_fraction; |
| } else { |
| double error_fraction = |
| (rolling_arf_group_target_bits - rolling_arf_group_actual_bits) / |
| rolling_arf_group_target_bits; |
| rate_err_factor = 1.0 - error_fraction; |
| } |
| |
| rate_err_factor = AOMMAX(min_fac, AOMMIN(max_fac, rate_err_factor)); |
| } |
| |
| // Is the rate control trending in the right direction. Only make |
| // an adjustment if things are getting worse. |
| if ((rate_err_factor < 1.0 && err_estimate >= 0) || |
| (rate_err_factor > 1.0 && err_estimate <= 0)) { |
| twopass->bpm_factor *= rate_err_factor; |
| twopass->bpm_factor = AOMMAX(min_fac, AOMMIN(max_fac, twopass->bpm_factor)); |
| } |
| } |
| |
| static const double q_div_term[(QINDEX_RANGE >> 5) + 1] = { 32.0, 40.0, 46.0, |
| 52.0, 56.0, 60.0, |
| 64.0, 68.0, 72.0 }; |
| #define EPMB_SCALER 1250000 |
| static double calc_correction_factor(double err_per_mb, int q) { |
| double power_term = 0.90; |
| const int index = q >> 5; |
| const double divisor = |
| q_div_term[index] + |
| (((q_div_term[index + 1] - q_div_term[index]) * (q % 32)) / 32.0); |
| double error_term = EPMB_SCALER * pow(err_per_mb, power_term); |
| return error_term / divisor; |
| } |
| |
| // Similar to find_qindex_by_rate() function in ratectrl.c, but includes |
| // calculation of a correction_factor. |
| static int find_qindex_by_rate_with_correction( |
| int desired_bits_per_mb, aom_bit_depth_t bit_depth, double error_per_mb, |
| double group_weight_factor, int best_qindex, int worst_qindex) { |
| assert(best_qindex <= worst_qindex); |
| int low = best_qindex; |
| int high = worst_qindex; |
| |
| while (low < high) { |
| const int mid = (low + high) >> 1; |
| const double q_factor = calc_correction_factor(error_per_mb, mid); |
| const double q = av1_convert_qindex_to_q(mid, bit_depth); |
| const int mid_bits_per_mb = (int)((q_factor * group_weight_factor) / q); |
| |
| if (mid_bits_per_mb > desired_bits_per_mb) { |
| low = mid + 1; |
| } else { |
| high = mid; |
| } |
| } |
| return low; |
| } |
| |
| /*!\brief Choose a target maximum Q for a group of frames |
| * |
| * \ingroup rate_control |
| * |
| * This function is used to estimate a suitable maximum Q for a |
| * group of frames. Inititally it is called to get a crude estimate |
| * for the whole clip. It is then called for each ARF/GF group to get |
| * a revised estimate for that group. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] av_frame_err The average per frame coded error score |
| * for frames making up this section/group. |
| * \param[in] inactive_zone Used to mask off /ignore part of the |
| * frame. The most common use case is where |
| * a wide format video (e.g. 16:9) is |
| * letter-boxed into a more square format. |
| * Here we want to ignore the bands at the |
| * top and bottom. |
| * \param[in] av_target_bandwidth The target bits per frame |
| * |
| * \return The maximum Q for frames in the group. |
| */ |
| static int get_twopass_worst_quality(AV1_COMP *cpi, const double av_frame_err, |
| double inactive_zone, |
| int av_target_bandwidth) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| inactive_zone = fclamp(inactive_zone, 0.0, 0.9999); |
| |
| if (av_target_bandwidth <= 0) { |
| return rc->worst_quality; // Highest value allowed |
| } else { |
| const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cpi->common.mi_params.MBs; |
| const int active_mbs = AOMMAX(1, num_mbs - (int)(num_mbs * inactive_zone)); |
| const double av_err_per_mb = av_frame_err / (1.0 - inactive_zone); |
| const int target_norm_bits_per_mb = |
| (int)((uint64_t)av_target_bandwidth << BPER_MB_NORMBITS) / active_mbs; |
| int rate_err_tol = AOMMIN(rc_cfg->under_shoot_pct, rc_cfg->over_shoot_pct); |
| |
| // Update bpm correction factor based on previous GOP rate error. |
| twopass_update_bpm_factor(cpi, rate_err_tol); |
| |
| // Try and pick a max Q that will be high enough to encode the |
| // content at the given rate. |
| int q = find_qindex_by_rate_with_correction( |
| target_norm_bits_per_mb, cpi->common.seq_params->bit_depth, |
| av_err_per_mb, cpi->ppi->twopass.bpm_factor, rc->best_quality, |
| rc->worst_quality); |
| |
| // Restriction on active max q for constrained quality mode. |
| if (rc_cfg->mode == AOM_CQ) q = AOMMAX(q, rc_cfg->cq_level); |
| return q; |
| } |
| } |
| |
| #define INTRA_PART 0.005 |
| #define DEFAULT_DECAY_LIMIT 0.75 |
| #define LOW_SR_DIFF_TRHESH 0.01 |
| #define NCOUNT_FRAME_II_THRESH 5.0 |
| #define LOW_CODED_ERR_PER_MB 0.01 |
| |
| /* This function considers how the quality of prediction may be deteriorating |
| * with distance. It comapres the coded error for the last frame and the |
| * second reference frame (usually two frames old) and also applies a factor |
| * based on the extent of INTRA coding. |
| * |
| * The decay factor is then used to reduce the contribution of frames further |
| * from the alt-ref or golden frame, to the bitframe boost calculation for that |
| * alt-ref or golden frame. |
| */ |
| static double get_sr_decay_rate(const FIRSTPASS_STATS *frame) { |
| double sr_diff = (frame->sr_coded_error - frame->coded_error); |
| double sr_decay = 1.0; |
| double modified_pct_inter; |
| double modified_pcnt_intra; |
| |
| modified_pct_inter = frame->pcnt_inter; |
| if ((frame->coded_error > LOW_CODED_ERR_PER_MB) && |
| ((frame->intra_error / DOUBLE_DIVIDE_CHECK(frame->coded_error)) < |
| (double)NCOUNT_FRAME_II_THRESH)) { |
| modified_pct_inter = frame->pcnt_inter - frame->pcnt_neutral; |
| } |
| modified_pcnt_intra = 100 * (1.0 - modified_pct_inter); |
| |
| if ((sr_diff > LOW_SR_DIFF_TRHESH)) { |
| double sr_diff_part = ((sr_diff * 0.25) / frame->intra_error); |
| sr_decay = 1.0 - sr_diff_part - (INTRA_PART * modified_pcnt_intra); |
| } |
| return AOMMAX(sr_decay, DEFAULT_DECAY_LIMIT); |
| } |
| |
| // This function gives an estimate of how badly we believe the prediction |
| // quality is decaying from frame to frame. |
| static double get_zero_motion_factor(const FIRSTPASS_STATS *frame) { |
| const double zero_motion_pct = frame->pcnt_inter - frame->pcnt_motion; |
| double sr_decay = get_sr_decay_rate(frame); |
| return AOMMIN(sr_decay, zero_motion_pct); |
| } |
| |
| #define DEFAULT_ZM_FACTOR 0.5 |
| static double get_prediction_decay_rate(const FIRSTPASS_STATS *frame_stats) { |
| const double sr_decay_rate = get_sr_decay_rate(frame_stats); |
| double zero_motion_factor = |
| DEFAULT_ZM_FACTOR * (frame_stats->pcnt_inter - frame_stats->pcnt_motion); |
| |
| // Clamp value to range 0.0 to 1.0 |
| // This should happen anyway if input values are sensibly clamped but checked |
| // here just in case. |
| if (zero_motion_factor > 1.0) |
| zero_motion_factor = 1.0; |
| else if (zero_motion_factor < 0.0) |
| zero_motion_factor = 0.0; |
| |
| return AOMMAX(zero_motion_factor, |
| (sr_decay_rate + ((1.0 - sr_decay_rate) * zero_motion_factor))); |
| } |
| |
| // Function to test for a condition where a complex transition is followed |
| // by a static section. For example in slide shows where there is a fade |
| // between slides. This is to help with more optimal kf and gf positioning. |
| static int detect_transition_to_still(const FIRSTPASS_INFO *firstpass_info, |
| int next_stats_index, |
| const int min_gf_interval, |
| const int frame_interval, |
| const int still_interval, |
| const double loop_decay_rate, |
| const double last_decay_rate) { |
| // Break clause to detect very still sections after motion |
| // For example a static image after a fade or other transition |
| // instead of a clean scene cut. |
| if (frame_interval > min_gf_interval && loop_decay_rate >= 0.999 && |
| last_decay_rate < 0.9) { |
| int stats_left = |
| av1_firstpass_info_future_count(firstpass_info, next_stats_index); |
| if (stats_left >= still_interval) { |
| int j; |
| // Look ahead a few frames to see if static condition persists... |
| for (j = 0; j < still_interval; ++j) { |
| const FIRSTPASS_STATS *stats = |
| av1_firstpass_info_peek(firstpass_info, next_stats_index + j); |
| if (stats->pcnt_inter - stats->pcnt_motion < 0.999) break; |
| } |
| // Only if it does do we signal a transition to still. |
| return j == still_interval; |
| } |
| } |
| return 0; |
| } |
| |
| // This function detects a flash through the high relative pcnt_second_ref |
| // score in the frame following a flash frame. The offset passed in should |
| // reflect this. |
| static int detect_flash(const TWO_PASS *twopass, |
| const TWO_PASS_FRAME *twopass_frame, const int offset) { |
| const FIRSTPASS_STATS *const next_frame = |
| read_frame_stats(twopass, twopass_frame, offset); |
| |
| // What we are looking for here is a situation where there is a |
| // brief break in prediction (such as a flash) but subsequent frames |
| // are reasonably well predicted by an earlier (pre flash) frame. |
| // The recovery after a flash is indicated by a high pcnt_second_ref |
| // compared to pcnt_inter. |
| return next_frame != NULL && |
| next_frame->pcnt_second_ref > next_frame->pcnt_inter && |
| next_frame->pcnt_second_ref >= 0.5; |
| } |
| |
| // Update the motion related elements to the GF arf boost calculation. |
| static void accumulate_frame_motion_stats(const FIRSTPASS_STATS *stats, |
| GF_GROUP_STATS *gf_stats, double f_w, |
| double f_h) { |
| const double pct = stats->pcnt_motion; |
| |
| // Accumulate Motion In/Out of frame stats. |
| gf_stats->this_frame_mv_in_out = stats->mv_in_out_count * pct; |
| gf_stats->mv_in_out_accumulator += gf_stats->this_frame_mv_in_out; |
| gf_stats->abs_mv_in_out_accumulator += fabs(gf_stats->this_frame_mv_in_out); |
| |
| // Accumulate a measure of how uniform (or conversely how random) the motion |
| // field is (a ratio of abs(mv) / mv). |
| if (pct > 0.05) { |
| const double mvr_ratio = |
| fabs(stats->mvr_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVr)); |
| const double mvc_ratio = |
| fabs(stats->mvc_abs) / DOUBLE_DIVIDE_CHECK(fabs(stats->MVc)); |
| |
| gf_stats->mv_ratio_accumulator += |
| pct * |
| (mvr_ratio < stats->mvr_abs * f_h ? mvr_ratio : stats->mvr_abs * f_h); |
| gf_stats->mv_ratio_accumulator += |
| pct * |
| (mvc_ratio < stats->mvc_abs * f_w ? mvc_ratio : stats->mvc_abs * f_w); |
| } |
| } |
| |
| static void accumulate_this_frame_stats(const FIRSTPASS_STATS *stats, |
| const double mod_frame_err, |
| GF_GROUP_STATS *gf_stats) { |
| gf_stats->gf_group_err += mod_frame_err; |
| #if GROUP_ADAPTIVE_MAXQ |
| gf_stats->gf_group_raw_error += stats->coded_error; |
| #endif |
| gf_stats->gf_group_skip_pct += stats->intra_skip_pct; |
| gf_stats->gf_group_inactive_zone_rows += stats->inactive_zone_rows; |
| } |
| |
| static void accumulate_next_frame_stats(const FIRSTPASS_STATS *stats, |
| const int flash_detected, |
| const int frames_since_key, |
| const int cur_idx, |
| GF_GROUP_STATS *gf_stats, int f_w, |
| int f_h) { |
| accumulate_frame_motion_stats(stats, gf_stats, f_w, f_h); |
| // sum up the metric values of current gf group |
| gf_stats->avg_sr_coded_error += stats->sr_coded_error; |
| gf_stats->avg_pcnt_second_ref += stats->pcnt_second_ref; |
| gf_stats->avg_new_mv_count += stats->new_mv_count; |
| gf_stats->avg_wavelet_energy += stats->frame_avg_wavelet_energy; |
| if (fabs(stats->raw_error_stdev) > 0.000001) { |
| gf_stats->non_zero_stdev_count++; |
| gf_stats->avg_raw_err_stdev += stats->raw_error_stdev; |
| } |
| |
| // Accumulate the effect of prediction quality decay |
| if (!flash_detected) { |
| gf_stats->last_loop_decay_rate = gf_stats->loop_decay_rate; |
| gf_stats->loop_decay_rate = get_prediction_decay_rate(stats); |
| |
| gf_stats->decay_accumulator = |
| gf_stats->decay_accumulator * gf_stats->loop_decay_rate; |
| |
| // Monitor for static sections. |
| if ((frames_since_key + cur_idx - 1) > 1) { |
| gf_stats->zero_motion_accumulator = AOMMIN( |
| gf_stats->zero_motion_accumulator, get_zero_motion_factor(stats)); |
| } |
| } |
| } |
| |
| static void average_gf_stats(const int total_frame, GF_GROUP_STATS *gf_stats) { |
| if (total_frame) { |
| gf_stats->avg_sr_coded_error /= total_frame; |
| gf_stats->avg_pcnt_second_ref /= total_frame; |
| gf_stats->avg_new_mv_count /= total_frame; |
| gf_stats->avg_wavelet_energy /= total_frame; |
| } |
| |
| if (gf_stats->non_zero_stdev_count) |
| gf_stats->avg_raw_err_stdev /= gf_stats->non_zero_stdev_count; |
| } |
| |
| #define BOOST_FACTOR 12.5 |
| static double baseline_err_per_mb(const FRAME_INFO *frame_info) { |
| unsigned int screen_area = frame_info->frame_height * frame_info->frame_width; |
| |
| // Use a different error per mb factor for calculating boost for |
| // different formats. |
| if (screen_area <= 640 * 360) { |
| return 500.0; |
| } else { |
| return 1000.0; |
| } |
| } |
| |
| static double calc_frame_boost(const PRIMARY_RATE_CONTROL *p_rc, |
| const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *this_frame, |
| double this_frame_mv_in_out, double max_boost) { |
| double frame_boost; |
| const double lq = av1_convert_qindex_to_q(p_rc->avg_frame_qindex[INTER_FRAME], |
| frame_info->bit_depth); |
| const double boost_q_correction = AOMMIN((0.5 + (lq * 0.015)), 1.5); |
| const double active_area = calculate_active_area(frame_info, this_frame); |
| |
| // Underlying boost factor is based on inter error ratio. |
| frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * active_area, |
| this_frame->intra_error * active_area) / |
| DOUBLE_DIVIDE_CHECK(this_frame->coded_error); |
| frame_boost = frame_boost * BOOST_FACTOR * boost_q_correction; |
| |
| // Increase boost for frames where new data coming into frame (e.g. zoom out). |
| // Slightly reduce boost if there is a net balance of motion out of the frame |
| // (zoom in). The range for this_frame_mv_in_out is -1.0 to +1.0. |
| if (this_frame_mv_in_out > 0.0) |
| frame_boost += frame_boost * (this_frame_mv_in_out * 2.0); |
| // In the extreme case the boost is halved. |
| else |
| frame_boost += frame_boost * (this_frame_mv_in_out / 2.0); |
| |
| return AOMMIN(frame_boost, max_boost * boost_q_correction); |
| } |
| |
| static double calc_kf_frame_boost(const PRIMARY_RATE_CONTROL *p_rc, |
| const FRAME_INFO *frame_info, |
| const FIRSTPASS_STATS *this_frame, |
| double *sr_accumulator, double max_boost) { |
| double frame_boost; |
| const double lq = av1_convert_qindex_to_q(p_rc->avg_frame_qindex[INTER_FRAME], |
| frame_info->bit_depth); |
| const double boost_q_correction = AOMMIN((0.50 + (lq * 0.015)), 2.00); |
| const double active_area = calculate_active_area(frame_info, this_frame); |
| |
| // Underlying boost factor is based on inter error ratio. |
| frame_boost = AOMMAX(baseline_err_per_mb(frame_info) * active_area, |
| this_frame->intra_error * active_area) / |
| DOUBLE_DIVIDE_CHECK( |
| (this_frame->coded_error + *sr_accumulator) * active_area); |
| |
| // Update the accumulator for second ref error difference. |
| // This is intended to give an indication of how much the coded error is |
| // increasing over time. |
| *sr_accumulator += (this_frame->sr_coded_error - this_frame->coded_error); |
| *sr_accumulator = AOMMAX(0.0, *sr_accumulator); |
| |
| // Q correction and scaling |
| // The 40.0 value here is an experimentally derived baseline minimum. |
| // This value is in line with the minimum per frame boost in the alt_ref |
| // boost calculation. |
| frame_boost = ((frame_boost + 40.0) * boost_q_correction); |
| |
| return AOMMIN(frame_boost, max_boost * boost_q_correction); |
| } |
| |
| static int get_projected_gfu_boost(const PRIMARY_RATE_CONTROL *p_rc, |
| int gfu_boost, int frames_to_project, |
| int num_stats_used_for_gfu_boost) { |
| /* |
| * If frames_to_project is equal to num_stats_used_for_gfu_boost, |
| * it means that gfu_boost was calculated over frames_to_project to |
| * begin with(ie; all stats required were available), hence return |
| * the original boost. |
| */ |
| if (num_stats_used_for_gfu_boost >= frames_to_project) return gfu_boost; |
| |
| double min_boost_factor = sqrt(p_rc->baseline_gf_interval); |
| // Get the current tpl factor (number of frames = frames_to_project). |
| double tpl_factor = av1_get_gfu_boost_projection_factor( |
| min_boost_factor, MAX_GFUBOOST_FACTOR, frames_to_project); |
| // Get the tpl factor when number of frames = num_stats_used_for_prior_boost. |
| double tpl_factor_num_stats = av1_get_gfu_boost_projection_factor( |
| min_boost_factor, MAX_GFUBOOST_FACTOR, num_stats_used_for_gfu_boost); |
| int projected_gfu_boost = |
| (int)rint((tpl_factor * gfu_boost) / tpl_factor_num_stats); |
| return projected_gfu_boost; |
| } |
| |
| #define GF_MAX_BOOST 90.0 |
| #define GF_MIN_BOOST 50 |
| #define MIN_DECAY_FACTOR 0.01 |
| int av1_calc_arf_boost(const TWO_PASS *twopass, |
| const TWO_PASS_FRAME *twopass_frame, |
| const PRIMARY_RATE_CONTROL *p_rc, FRAME_INFO *frame_info, |
| int offset, int f_frames, int b_frames, |
| int *num_fpstats_used, int *num_fpstats_required, |
| int project_gfu_boost) { |
| int i; |
| GF_GROUP_STATS gf_stats; |
| init_gf_stats(&gf_stats); |
| double boost_score = (double)NORMAL_BOOST; |
| int arf_boost; |
| int flash_detected = 0; |
| if (num_fpstats_used) *num_fpstats_used = 0; |
| |
| // Search forward from the proposed arf/next gf position. |
| for (i = 0; i < f_frames; ++i) { |
| const FIRSTPASS_STATS *this_frame = |
| read_frame_stats(twopass, twopass_frame, i + offset); |
| if (this_frame == NULL) break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats(this_frame, &gf_stats, |
| frame_info->frame_width, |
| frame_info->frame_height); |
| |
| // We want to discount the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(twopass, twopass_frame, i + offset) || |
| detect_flash(twopass, twopass_frame, i + offset + 1); |
| |
| // Accumulate the effect of prediction quality decay. |
| if (!flash_detected) { |
| gf_stats.decay_accumulator *= get_prediction_decay_rate(this_frame); |
| gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR |
| : gf_stats.decay_accumulator; |
| } |
| |
| boost_score += |
| gf_stats.decay_accumulator * |
| calc_frame_boost(p_rc, frame_info, this_frame, |
| gf_stats.this_frame_mv_in_out, GF_MAX_BOOST); |
| if (num_fpstats_used) (*num_fpstats_used)++; |
| } |
| |
| arf_boost = (int)boost_score; |
| |
| // Reset for backward looking loop. |
| boost_score = 0.0; |
| init_gf_stats(&gf_stats); |
| // Search backward towards last gf position. |
| for (i = -1; i >= -b_frames; --i) { |
| const FIRSTPASS_STATS *this_frame = |
| read_frame_stats(twopass, twopass_frame, i + offset); |
| if (this_frame == NULL) break; |
| |
| // Update the motion related elements to the boost calculation. |
| accumulate_frame_motion_stats(this_frame, &gf_stats, |
| frame_info->frame_width, |
| frame_info->frame_height); |
| |
| // We want to discount the the flash frame itself and the recovery |
| // frame that follows as both will have poor scores. |
| flash_detected = detect_flash(twopass, twopass_frame, i + offset) || |
| detect_flash(twopass, twopass_frame, i + offset + 1); |
| |
| // Cumulative effect of prediction quality decay. |
| if (!flash_detected) { |
| gf_stats.decay_accumulator *= get_prediction_decay_rate(this_frame); |
| gf_stats.decay_accumulator = gf_stats.decay_accumulator < MIN_DECAY_FACTOR |
| ? MIN_DECAY_FACTOR |
| : gf_stats.decay_accumulator; |
| } |
| |
| boost_score += |
| gf_stats.decay_accumulator * |
| calc_frame_boost(p_rc, frame_info, this_frame, |
| gf_stats.this_frame_mv_in_out, GF_MAX_BOOST); |
| if (num_fpstats_used) (*num_fpstats_used)++; |
| } |
| arf_boost += (int)boost_score; |
| |
| if (project_gfu_boost) { |
| assert(num_fpstats_required != NULL); |
| assert(num_fpstats_used != NULL); |
| *num_fpstats_required = f_frames + b_frames; |
| arf_boost = get_projected_gfu_boost(p_rc, arf_boost, *num_fpstats_required, |
| *num_fpstats_used); |
| } |
| |
| if (arf_boost < ((b_frames + f_frames) * GF_MIN_BOOST)) |
| arf_boost = ((b_frames + f_frames) * GF_MIN_BOOST); |
| |
| return arf_boost; |
| } |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| static int calculate_section_intra_ratio(const FIRSTPASS_STATS *begin, |
| const FIRSTPASS_STATS *end, |
| int section_length) { |
| const FIRSTPASS_STATS *s = begin; |
| double intra_error = 0.0; |
| double coded_error = 0.0; |
| int i = 0; |
| |
| while (s < end && i < section_length) { |
| intra_error += s->intra_error; |
| coded_error += s->coded_error; |
| ++s; |
| ++i; |
| } |
| |
| return (int)(intra_error / DOUBLE_DIVIDE_CHECK(coded_error)); |
| } |
| |
| /*!\brief Calculates the bit target for this GF/ARF group |
| * |
| * \ingroup rate_control |
| * |
| * Calculates the total bits to allocate in this GF/ARF group. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] gf_group_err Cumulative coded error score for the |
| * frames making up this group. |
| * |
| * \return The target total number of bits for this GF/ARF group. |
| */ |
| static int64_t calculate_total_gf_group_bits(AV1_COMP *cpi, |
| double gf_group_err) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const TWO_PASS *const twopass = &cpi->ppi->twopass; |
| const int max_bits = frame_max_bits(rc, &cpi->oxcf); |
| int64_t total_group_bits; |
| |
| // Calculate the bits to be allocated to the group as a whole. |
| if ((twopass->kf_group_bits > 0) && (twopass->kf_group_error_left > 0)) { |
| total_group_bits = (int64_t)(twopass->kf_group_bits * |
| (gf_group_err / twopass->kf_group_error_left)); |
| } else { |
| total_group_bits = 0; |
| } |
| |
| // Clamp odd edge cases. |
| total_group_bits = (total_group_bits < 0) ? 0 |
| : (total_group_bits > twopass->kf_group_bits) |
| ? twopass->kf_group_bits |
| : total_group_bits; |
| |
| // Clip based on user supplied data rate variability limit. |
| if (total_group_bits > (int64_t)max_bits * p_rc->baseline_gf_interval) |
| total_group_bits = (int64_t)max_bits * p_rc->baseline_gf_interval; |
| |
| return total_group_bits; |
| } |
| |
| // Calculate the number of bits to assign to boosted frames in a group. |
| static int calculate_boost_bits(int frame_count, int boost, |
| int64_t total_group_bits) { |
| int allocation_chunks; |
| |
| // return 0 for invalid inputs (could arise e.g. through rounding errors) |
| if (!boost || (total_group_bits <= 0)) return 0; |
| |
| if (frame_count <= 0) return (int)(AOMMIN(total_group_bits, INT_MAX)); |
| |
| allocation_chunks = (frame_count * 100) + boost; |
| |
| // Prevent overflow. |
| if (boost > 1023) { |
| int divisor = boost >> 10; |
| boost /= divisor; |
| allocation_chunks /= divisor; |
| } |
| |
| // Calculate the number of extra bits for use in the boosted frame or frames. |
| return AOMMAX((int)(((int64_t)boost * total_group_bits) / allocation_chunks), |
| 0); |
| } |
| |
| // Calculate the boost factor based on the number of bits assigned, i.e. the |
| // inverse of calculate_boost_bits(). |
| static int calculate_boost_factor(int frame_count, int bits, |
| int64_t total_group_bits) { |
| return (int)(100.0 * frame_count * bits / (total_group_bits - bits)); |
| } |
| |
| // Reduce the number of bits assigned to keyframe or arf if necessary, to |
| // prevent bitrate spikes that may break level constraints. |
| // frame_type: 0: keyframe; 1: arf. |
| static int adjust_boost_bits_for_target_level(const AV1_COMP *const cpi, |
| RATE_CONTROL *const rc, |
| int bits_assigned, |
| int64_t group_bits, |
| int frame_type) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const SequenceHeader *const seq_params = cm->seq_params; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const int temporal_layer_id = cm->temporal_layer_id; |
| const int spatial_layer_id = cm->spatial_layer_id; |
| for (int index = 0; index < seq_params->operating_points_cnt_minus_1 + 1; |
| ++index) { |
| if (!is_in_operating_point(seq_params->operating_point_idc[index], |
| temporal_layer_id, spatial_layer_id)) { |
| continue; |
| } |
| |
| const AV1_LEVEL target_level = |
| cpi->ppi->level_params.target_seq_level_idx[index]; |
| if (target_level >= SEQ_LEVELS) continue; |
| |
| assert(is_valid_seq_level_idx(target_level)); |
| |
| const double level_bitrate_limit = av1_get_max_bitrate_for_level( |
| target_level, seq_params->tier[0], seq_params->profile); |
| const int target_bits_per_frame = |
| (int)(level_bitrate_limit / cpi->framerate); |
| if (frame_type == 0) { |
| // Maximum bits for keyframe is 8 times the target_bits_per_frame. |
| const int level_enforced_max_kf_bits = target_bits_per_frame * 8; |
| if (bits_assigned > level_enforced_max_kf_bits) { |
| const int frames = rc->frames_to_key - 1; |
| p_rc->kf_boost = calculate_boost_factor( |
| frames, level_enforced_max_kf_bits, group_bits); |
| bits_assigned = |
| calculate_boost_bits(frames, p_rc->kf_boost, group_bits); |
| } |
| } else if (frame_type == 1) { |
| // Maximum bits for arf is 4 times the target_bits_per_frame. |
| const int level_enforced_max_arf_bits = target_bits_per_frame * 4; |
| if (bits_assigned > level_enforced_max_arf_bits) { |
| p_rc->gfu_boost = |
| calculate_boost_factor(p_rc->baseline_gf_interval, |
| level_enforced_max_arf_bits, group_bits); |
| bits_assigned = calculate_boost_bits(p_rc->baseline_gf_interval, |
| p_rc->gfu_boost, group_bits); |
| } |
| } else { |
| assert(0); |
| } |
| } |
| |
| return bits_assigned; |
| } |
| |
| // Allocate bits to each frame in a GF / ARF group |
| double layer_fraction[MAX_ARF_LAYERS + 1] = { 1.0, 0.70, 0.55, 0.60, |
| 0.60, 1.0, 1.0 }; |
| static void allocate_gf_group_bits(GF_GROUP *gf_group, |
| PRIMARY_RATE_CONTROL *const p_rc, |
| RATE_CONTROL *const rc, |
| int64_t gf_group_bits, int gf_arf_bits, |
| int key_frame, int use_arf) { |
| int64_t total_group_bits = gf_group_bits; |
| int base_frame_bits; |
| const int gf_group_size = gf_group->size; |
| int layer_frames[MAX_ARF_LAYERS + 1] = { 0 }; |
| |
| // For key frames the frame target rate is already set and it |
| // is also the golden frame. |
| // === [frame_index == 0] === |
| int frame_index = !!key_frame; |
| |
| // Subtract the extra bits set aside for ARF frames from the Group Total |
| if (use_arf) total_group_bits -= gf_arf_bits; |
| |
| int num_frames = |
| AOMMAX(1, p_rc->baseline_gf_interval - (rc->frames_since_key == 0)); |
| base_frame_bits = (int)(total_group_bits / num_frames); |
| |
| // Check the number of frames in each layer in case we have a |
| // non standard group length. |
| int max_arf_layer = gf_group->max_layer_depth - 1; |
| for (int idx = frame_index; idx < gf_group_size; ++idx) { |
| if ((gf_group->update_type[idx] == ARF_UPDATE) || |
| (gf_group->update_type[idx] == INTNL_ARF_UPDATE)) { |
| layer_frames[gf_group->layer_depth[idx]]++; |
| } |
| } |
| |
| // Allocate extra bits to each ARF layer |
| int i; |
| int layer_extra_bits[MAX_ARF_LAYERS + 1] = { 0 }; |
| assert(max_arf_layer <= MAX_ARF_LAYERS); |
| for (i = 1; i <= max_arf_layer; ++i) { |
| double fraction = (i == max_arf_layer) ? 1.0 : layer_fraction[i]; |
| layer_extra_bits[i] = |
| (int)((gf_arf_bits * fraction) / AOMMAX(1, layer_frames[i])); |
| gf_arf_bits -= (int)(gf_arf_bits * fraction); |
| } |
| |
| // Now combine ARF layer and baseline bits to give total bits for each frame. |
| int arf_extra_bits; |
| for (int idx = frame_index; idx < gf_group_size; ++idx) { |
| switch (gf_group->update_type[idx]) { |
| case ARF_UPDATE: |
| case INTNL_ARF_UPDATE: |
| arf_extra_bits = layer_extra_bits[gf_group->layer_depth[idx]]; |
| gf_group->bit_allocation[idx] = base_frame_bits + arf_extra_bits; |
| break; |
| case INTNL_OVERLAY_UPDATE: |
| case OVERLAY_UPDATE: gf_group->bit_allocation[idx] = 0; break; |
| default: gf_group->bit_allocation[idx] = base_frame_bits; break; |
| } |
| } |
| |
| // Set the frame following the current GOP to 0 bit allocation. For ARF |
| // groups, this next frame will be overlay frame, which is the first frame |
| // in the next GOP. For GF group, next GOP will overwrite the rate allocation. |
| // Setting this frame to use 0 bit (of out the current GOP budget) will |
| // simplify logics in reference frame management. |
| if (gf_group_size < MAX_STATIC_GF_GROUP_LENGTH) |
| gf_group->bit_allocation[gf_group_size] = 0; |
| } |
| |
| // Returns true if KF group and GF group both are almost completely static. |
| static INLINE int is_almost_static(double gf_zero_motion, int kf_zero_motion, |
| int is_lap_enabled) { |
| if (is_lap_enabled) { |
| /* |
| * when LAP enabled kf_zero_motion is not reliable, so use strict |
| * constraint on gf_zero_motion. |
| */ |
| return (gf_zero_motion >= 0.999); |
| } else { |
| return (gf_zero_motion >= 0.995) && |
| (kf_zero_motion >= STATIC_KF_GROUP_THRESH); |
| } |
| } |
| |
| #define ARF_ABS_ZOOM_THRESH 4.4 |
| static INLINE int detect_gf_cut(AV1_COMP *cpi, int frame_index, int cur_start, |
| int flash_detected, int active_max_gf_interval, |
| int active_min_gf_interval, |
| GF_GROUP_STATS *gf_stats) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| AV1_COMMON *const cm = &cpi->common; |
| // Motion breakout threshold for loop below depends on image size. |
| const double mv_ratio_accumulator_thresh = (cm->height + cm->width) / 4.0; |
| |
| if (!flash_detected) { |
| // Break clause to detect very still sections after motion. For example, |
| // a static image after a fade or other transition. |
| |
| // TODO(angiebird): This is a temporary change, we will avoid using |
| // twopass_frame.stats_in in the follow-up CL |
| int index = (int)(cpi->twopass_frame.stats_in - |
| twopass->stats_buf_ctx->stats_in_start); |
| if (detect_transition_to_still(&twopass->firstpass_info, index, |
| rc->min_gf_interval, frame_index - cur_start, |
| 5, gf_stats->loop_decay_rate, |
| gf_stats->last_loop_decay_rate)) { |
| return 1; |
| } |
| } |
| |
| // Some conditions to breakout after min interval. |
| if (frame_index - cur_start >= active_min_gf_interval && |
| // If possible don't break very close to a kf |
| (rc->frames_to_key - frame_index >= rc->min_gf_interval) && |
| ((frame_index - cur_start) & 0x01) && !flash_detected && |
| (gf_stats->mv_ratio_accumulator > mv_ratio_accumulator_thresh || |
| gf_stats->abs_mv_in_out_accumulator > ARF_ABS_ZOOM_THRESH)) { |
| return 1; |
| } |
| |
| // If almost totally static, we will not use the the max GF length later, |
| // so we can continue for more frames. |
| if (((frame_index - cur_start) >= active_max_gf_interval + 1) && |
| !is_almost_static(gf_stats->zero_motion_accumulator, |
| twopass->kf_zeromotion_pct, cpi->ppi->lap_enabled)) { |
| return 1; |
| } |
| return 0; |
| } |
| |
| static int is_shorter_gf_interval_better( |
| AV1_COMP *cpi, const EncodeFrameParams *frame_params) { |
| const RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| int gop_length_decision_method = cpi->sf.tpl_sf.gop_length_decision_method; |
| int shorten_gf_interval; |
| |
| av1_tpl_preload_rc_estimate(cpi, frame_params); |
| |
| if (gop_length_decision_method == 2) { |
| // GF group length is decided based on GF boost and tpl stats of ARFs from |
| // base layer, (base+1) layer. |
| shorten_gf_interval = |
| (p_rc->gfu_boost < |
| p_rc->num_stats_used_for_gfu_boost * GF_MIN_BOOST * 1.4) && |
| !av1_tpl_setup_stats(cpi, 3, frame_params); |
| } else { |
| int do_complete_tpl = 1; |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| int is_temporal_filter_enabled = |
| (rc->frames_since_key > 0 && gf_group->arf_index > -1); |
| |
| if (gop_length_decision_method == 1) { |
| // Check if tpl stats of ARFs from base layer, (base+1) layer, |
| // (base+2) layer can decide the GF group length. |
| int gop_length_eval = av1_tpl_setup_stats(cpi, 2, frame_params); |
| |
| if (gop_length_eval != 2) { |
| do_complete_tpl = 0; |
| shorten_gf_interval = !gop_length_eval; |
| } |
| } |
| |
| if (do_complete_tpl) { |
| // Decide GF group length based on complete tpl stats. |
| shorten_gf_interval = !av1_tpl_setup_stats(cpi, 1, frame_params); |
| // Tpl stats is reused when the ARF is temporally filtered and GF |
| // interval is not shortened. |
| if (is_temporal_filter_enabled && !shorten_gf_interval) { |
| cpi->skip_tpl_setup_stats = 1; |
| #if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS |
| assert(cpi->gf_frame_index == 0); |
| av1_vbr_rc_update_q_index_list(&cpi->vbr_rc_info, &cpi->ppi->tpl_data, |
| gf_group, |
| cpi->common.seq_params->bit_depth); |
| #endif // CONFIG_BITRATE_ACCURACY |
| } |
| } |
| } |
| return shorten_gf_interval; |
| } |
| |
| #define MIN_SHRINK_LEN 6 // the minimum length of gf if we are shrinking |
| #define SMOOTH_FILT_LEN 7 |
| #define HALF_FILT_LEN (SMOOTH_FILT_LEN / 2) |
| #define WINDOW_SIZE 7 |
| #define HALF_WIN (WINDOW_SIZE / 2) |
| // A 7-tap gaussian smooth filter |
| const double smooth_filt[SMOOTH_FILT_LEN] = { 0.006, 0.061, 0.242, 0.383, |
| 0.242, 0.061, 0.006 }; |
| |
| // Smooth filter intra_error and coded_error in firstpass stats. |
| // If stats[i].is_flash==1, the ith element should not be used in the filtering. |
| static void smooth_filter_stats(const FIRSTPASS_STATS *stats, int start_idx, |
| int last_idx, double *filt_intra_err, |
| double *filt_coded_err) { |
| int i, j; |
| for (i = start_idx; i <= last_idx; i++) { |
| double total_wt = 0; |
| for (j = -HALF_FILT_LEN; j <= HALF_FILT_LEN; j++) { |
| int idx = AOMMIN(AOMMAX(i + j, start_idx), last_idx); |
| if (stats[idx].is_flash) continue; |
| |
| filt_intra_err[i] += |
| smooth_filt[j + HALF_FILT_LEN] * stats[idx].intra_error; |
| total_wt += smooth_filt[j + HALF_FILT_LEN]; |
| } |
| if (total_wt > 0.01) { |
| filt_intra_err[i] /= total_wt; |
| } else { |
| filt_intra_err[i] = stats[i].intra_error; |
| } |
| } |
| for (i = start_idx; i <= last_idx; i++) { |
| double total_wt = 0; |
| for (j = -HALF_FILT_LEN; j <= HALF_FILT_LEN; j++) { |
| int idx = AOMMIN(AOMMAX(i + j, start_idx), last_idx); |
| // Coded error involves idx and idx - 1. |
| if (stats[idx].is_flash || (idx > 0 && stats[idx - 1].is_flash)) continue; |
| |
| filt_coded_err[i] += |
| smooth_filt[j + HALF_FILT_LEN] * stats[idx].coded_error; |
| total_wt += smooth_filt[j + HALF_FILT_LEN]; |
| } |
| if (total_wt > 0.01) { |
| filt_coded_err[i] /= total_wt; |
| } else { |
| filt_coded_err[i] = stats[i].coded_error; |
| } |
| } |
| } |
| |
| // Calculate gradient |
| static void get_gradient(const double *values, int start, int last, |
| double *grad) { |
| if (start == last) { |
| grad[start] = 0; |
| return; |
| } |
| for (int i = start; i <= last; i++) { |
| int prev = AOMMAX(i - 1, start); |
| int next = AOMMIN(i + 1, last); |
| grad[i] = (values[next] - values[prev]) / (next - prev); |
| } |
| } |
| |
| static int find_next_scenecut(const FIRSTPASS_STATS *const stats_start, |
| int first, int last) { |
| // Identify unstable areas caused by scenecuts. |
| // Find the max and 2nd max coded error, and the average of the rest frames. |
| // If there is only one frame that yields a huge coded error, it is likely a |
| // scenecut. |
| double this_ratio, max_prev_ratio, max_next_ratio, max_prev_coded, |
| max_next_coded; |
| |
| if (last - first == 0) return -1; |
| |
| for (int i = first; i <= last; i++) { |
| if (stats_start[i].is_flash || (i > 0 && stats_start[i - 1].is_flash)) |
| continue; |
| double temp_intra = AOMMAX(stats_start[i].intra_error, 0.01); |
| this_ratio = stats_start[i].coded_error / temp_intra; |
| // find the avg ratio in the preceding neighborhood |
| max_prev_ratio = 0; |
| max_prev_coded = 0; |
| for (int j = AOMMAX(first, i - HALF_WIN); j < i; j++) { |
| if (stats_start[j].is_flash || (j > 0 && stats_start[j - 1].is_flash)) |
| continue; |
| temp_intra = AOMMAX(stats_start[j].intra_error, 0.01); |
| double temp_ratio = stats_start[j].coded_error / temp_intra; |
| if (temp_ratio > max_prev_ratio) { |
| max_prev_ratio = temp_ratio; |
| } |
| if (stats_start[j].coded_error > max_prev_coded) { |
| max_prev_coded = stats_start[j].coded_error; |
| } |
| } |
| // find the avg ratio in the following neighborhood |
| max_next_ratio = 0; |
| max_next_coded = 0; |
| for (int j = i + 1; j <= AOMMIN(i + HALF_WIN, last); j++) { |
| if (stats_start[i].is_flash || (i > 0 && stats_start[i - 1].is_flash)) |
| continue; |
| temp_intra = AOMMAX(stats_start[j].intra_error, 0.01); |
| double temp_ratio = stats_start[j].coded_error / temp_intra; |
| if (temp_ratio > max_next_ratio) { |
| max_next_ratio = temp_ratio; |
| } |
| if (stats_start[j].coded_error > max_next_coded) { |
| max_next_coded = stats_start[j].coded_error; |
| } |
| } |
| |
| if (max_prev_ratio < 0.001 && max_next_ratio < 0.001) { |
| // the ratios are very small, only check a small fixed threshold |
| if (this_ratio < 0.02) continue; |
| } else { |
| // check if this frame has a larger ratio than the neighborhood |
| double max_sr = stats_start[i].sr_coded_error; |
| if (i < last) max_sr = AOMMAX(max_sr, stats_start[i + 1].sr_coded_error); |
| double max_sr_fr_ratio = |
| max_sr / AOMMAX(stats_start[i].coded_error, 0.01); |
| |
| if (max_sr_fr_ratio > 1.2) continue; |
| if (this_ratio < 2 * AOMMAX(max_prev_ratio, max_next_ratio) && |
| stats_start[i].coded_error < |
| 2 * AOMMAX(max_prev_coded, max_next_coded)) { |
| continue; |
| } |
| } |
| return i; |
| } |
| return -1; |
| } |
| |
| // Remove the region with index next_region. |
| // parameter merge: 0: merge with previous; 1: merge with next; 2: |
| // merge with both, take type from previous if possible |
| // After removing, next_region will be the index of the next region. |
| static void remove_region(int merge, REGIONS *regions, int *num_regions, |
| int *next_region) { |
| int k = *next_region; |
| assert(k < *num_regions); |
| if (*num_regions == 1) { |
| *num_regions = 0; |
| return; |
| } |
| if (k == 0) { |
| merge = 1; |
| } else if (k == *num_regions - 1) { |
| merge = 0; |
| } |
| int num_merge = (merge == 2) ? 2 : 1; |
| switch (merge) { |
| case 0: |
| regions[k - 1].last = regions[k].last; |
| *next_region = k; |
| break; |
| case 1: |
| regions[k + 1].start = regions[k].start; |
| *next_region = k + 1; |
| break; |
| case 2: |
| regions[k - 1].last = regions[k + 1].last; |
| *next_region = k; |
| break; |
| default: assert(0); |
| } |
| *num_regions -= num_merge; |
| for (k = *next_region - (merge == 1); k < *num_regions; k++) { |
| regions[k] = regions[k + num_merge]; |
| } |
| } |
| |
| // Insert a region in the cur_region_idx. The start and last should both be in |
| // the current region. After insertion, the cur_region_idx will point to the |
| // last region that was splitted from the original region. |
| static void insert_region(int start, int last, REGION_TYPES type, |
| REGIONS *regions, int *num_regions, |
| int *cur_region_idx) { |
| int k = *cur_region_idx; |
| REGION_TYPES this_region_type = regions[k].type; |
| int this_region_last = regions[k].last; |
| int num_add = (start != regions[k].start) + (last != regions[k].last); |
| // move the following regions further to the back |
| for (int r = *num_regions - 1; r > k; r--) { |
| regions[r + num_add] = regions[r]; |
| } |
| *num_regions += num_add; |
| if (start > regions[k].start) { |
| regions[k].last = start - 1; |
| k++; |
| regions[k].start = start; |
| } |
| regions[k].type = type; |
| if (last < this_region_last) { |
| regions[k].last = last; |
| k++; |
| regions[k].start = last + 1; |
| regions[k].last = this_region_last; |
| regions[k].type = this_region_type; |
| } else { |
| regions[k].last = this_region_last; |
| } |
| *cur_region_idx = k; |
| } |
| |
| // Get the average of stats inside a region. |
| static void analyze_region(const FIRSTPASS_STATS *stats, int k, |
| REGIONS *regions) { |
| int i; |
| regions[k].avg_cor_coeff = 0; |
| regions[k].avg_sr_fr_ratio = 0; |
| regions[k].avg_intra_err = 0; |
| regions[k].avg_coded_err = 0; |
| |
| int check_first_sr = (k != 0); |
| |
| for (i = regions[k].start; i <= regions[k].last; i++) { |
| if (i > regions[k].start || check_first_sr) { |
| double num_frames = |
| (double)(regions[k].last - regions[k].start + check_first_sr); |
| double max_coded_error = |
| AOMMAX(stats[i].coded_error, stats[i - 1].coded_error); |
| double this_ratio = |
| stats[i].sr_coded_error / AOMMAX(max_coded_error, 0.001); |
| regions[k].avg_sr_fr_ratio += this_ratio / num_frames; |
| } |
| |
| regions[k].avg_intra_err += |
| stats[i].intra_error / (double)(regions[k].last - regions[k].start + 1); |
| regions[k].avg_coded_err += |
| stats[i].coded_error / (double)(regions[k].last - regions[k].start + 1); |
| |
| regions[k].avg_cor_coeff += |
| AOMMAX(stats[i].cor_coeff, 0.001) / |
| (double)(regions[k].last - regions[k].start + 1); |
| regions[k].avg_noise_var += |
| AOMMAX(stats[i].noise_var, 0.001) / |
| (double)(regions[k].last - regions[k].start + 1); |
| } |
| } |
| |
| // Calculate the regions stats of every region. |
| static void get_region_stats(const FIRSTPASS_STATS *stats, REGIONS *regions, |
| int num_regions) { |
| for (int k = 0; k < num_regions; k++) { |
| analyze_region(stats, k, regions); |
| } |
| } |
| |
| // Find tentative stable regions |
| static int find_stable_regions(const FIRSTPASS_STATS *stats, |
| const double *grad_coded, int this_start, |
| int this_last, REGIONS *regions) { |
| int i, j, k = 0; |
| regions[k].start = this_start; |
| for (i = this_start; i <= this_last; i++) { |
| // Check mean and variance of stats in a window |
| double mean_intra = 0.001, var_intra = 0.001; |
| double mean_coded = 0.001, var_coded = 0.001; |
| int count = 0; |
| for (j = -HALF_WIN; j <= HALF_WIN; j++) { |
| int idx = AOMMIN(AOMMAX(i + j, this_start), this_last); |
| if (stats[idx].is_flash || (idx > 0 && stats[idx - 1].is_flash)) continue; |
| mean_intra += stats[idx].intra_error; |
| var_intra += stats[idx].intra_error * stats[idx].intra_error; |
| mean_coded += stats[idx].coded_error; |
| var_coded += stats[idx].coded_error * stats[idx].coded_error; |
| count++; |
| } |
| |
| REGION_TYPES cur_type; |
| if (count > 0) { |
| mean_intra /= (double)count; |
| var_intra /= (double)count; |
| mean_coded /= (double)count; |
| var_coded /= (double)count; |
| int is_intra_stable = (var_intra / (mean_intra * mean_intra) < 1.03); |
| int is_coded_stable = (var_coded / (mean_coded * mean_coded) < 1.04 && |
| fabs(grad_coded[i]) / mean_coded < 0.05) || |
| mean_coded / mean_intra < 0.05; |
| int is_coded_small = mean_coded < 0.5 * mean_intra; |
| cur_type = (is_intra_stable && is_coded_stable && is_coded_small) |
| ? STABLE_REGION |
| : HIGH_VAR_REGION; |
| } else { |
| cur_type = HIGH_VAR_REGION; |
| } |
| |
| // mark a new region if type changes |
| if (i == regions[k].start) { |
| // first frame in the region |
| regions[k].type = cur_type; |
| } else if (cur_type != regions[k].type) { |
| // Append a new region |
| regions[k].last = i - 1; |
| regions[k + 1].start = i; |
| regions[k + 1].type = cur_type; |
| k++; |
| } |
| } |
| regions[k].last = this_last; |
| return k + 1; |
| } |
| |
| // Clean up regions that should be removed or merged. |
| static void cleanup_regions(REGIONS *regions, int *num_regions) { |
| int k = 0; |
| while (k < *num_regions) { |
| if ((k > 0 && regions[k - 1].type == regions[k].type && |
| regions[k].type != SCENECUT_REGION) || |
| regions[k].last < regions[k].start) { |
| remove_region(0, regions, num_regions, &k); |
| } else { |
| k++; |
| } |
| } |
| } |
| |
| // Remove regions that are of type and shorter than length. |
| // Merge it with its neighboring regions. |
| static void remove_short_regions(REGIONS *regions, int *num_regions, |
| REGION_TYPES type, int length) { |
| int k = 0; |
| while (k < *num_regions && (*num_regions) > 1) { |
| if ((regions[k].last - regions[k].start + 1 < length && |
| regions[k].type == type)) { |
| // merge current region with the previous and next regions |
| remove_region(2, regions, num_regions, &k); |
| } else { |
| k++; |
| } |
| } |
| cleanup_regions(regions, num_regions); |
| } |
| |
| static void adjust_unstable_region_bounds(const FIRSTPASS_STATS *stats, |
| REGIONS *regions, int *num_regions) { |
| int i, j, k; |
| // Remove regions that are too short. Likely noise. |
| remove_short_regions(regions, num_regions, STABLE_REGION, HALF_WIN); |
| remove_short_regions(regions, num_regions, HIGH_VAR_REGION, HALF_WIN); |
| |
| get_region_stats(stats, regions, *num_regions); |
| |
| // Adjust region boundaries. The thresholds are empirically obtained, but |
| // overall the performance is not very sensitive to small changes to them. |
| for (k = 0; k < *num_regions; k++) { |
| if (regions[k].type == STABLE_REGION) continue; |
| if (k > 0) { |
| // Adjust previous boundary. |
| // First find the average intra/coded error in the previous |
| // neighborhood. |
| double avg_intra_err = 0; |
| const int starti = AOMMAX(regions[k - 1].last - WINDOW_SIZE + 1, |
| regions[k - 1].start + 1); |
| const int lasti = regions[k - 1].last; |
| int counti = 0; |
| for (i = starti; i <= lasti; i++) { |
| avg_intra_err += stats[i].intra_error; |
| counti++; |
| } |
| if (counti > 0) { |
| avg_intra_err = AOMMAX(avg_intra_err / (double)counti, 0.001); |
| int count_coded = 0, count_grad = 0; |
| for (j = lasti + 1; j <= regions[k].last; j++) { |
| const int intra_close = |
| fabs(stats[j].intra_error - avg_intra_err) / avg_intra_err < 0.1; |
| const int coded_small = stats[j].coded_error / avg_intra_err < 0.1; |
| const int coeff_close = stats[j].cor_coeff > 0.995; |
| if (!coeff_close || !coded_small) count_coded--; |
| if (intra_close && count_coded >= 0 && count_grad >= 0) { |
| // this frame probably belongs to the previous stable region |
| regions[k - 1].last = j; |
| regions[k].start = j + 1; |
| } else { |
| break; |
| } |
| } |
| } |
| } // if k > 0 |
| if (k < *num_regions - 1) { |
| // Adjust next boundary. |
| // First find the average intra/coded error in the next neighborhood. |
| double avg_intra_err = 0; |
| const int starti = regions[k + 1].start; |
| const int lasti = AOMMIN(regions[k + 1].last - 1, |
| regions[k + 1].start + WINDOW_SIZE - 1); |
| int counti = 0; |
| for (i = starti; i <= lasti; i++) { |
| avg_intra_err += stats[i].intra_error; |
| counti++; |
| } |
| if (counti > 0) { |
| avg_intra_err = AOMMAX(avg_intra_err / (double)counti, 0.001); |
| // At the boundary, coded error is large, but still the frame is stable |
| int count_coded = 1, count_grad = 1; |
| for (j = starti - 1; j >= regions[k].start; j--) { |
| const int intra_close = |
| fabs(stats[j].intra_error - avg_intra_err) / avg_intra_err < 0.1; |
| const int coded_small = |
| stats[j + 1].coded_error / avg_intra_err < 0.1; |
| const int coeff_close = stats[j].cor_coeff > 0.995; |
| if (!coeff_close || !coded_small) count_coded--; |
| if (intra_close && count_coded >= 0 && count_grad >= 0) { |
| // this frame probably belongs to the next stable region |
| regions[k + 1].start = j; |
| regions[k].last = j - 1; |
| } else { |
| break; |
| } |
| } |
| } |
| } // if k < *num_regions - 1 |
| } // end of loop over all regions |
| |
| cleanup_regions(regions, num_regions); |
| remove_short_regions(regions, num_regions, HIGH_VAR_REGION, HALF_WIN); |
| get_region_stats(stats, regions, *num_regions); |
| |
| // If a stable regions has higher error than neighboring high var regions, |
| // or if the stable region has a lower average correlation, |
| // then it should be merged with them |
| k = 0; |
| while (k < *num_regions && (*num_regions) > 1) { |
| if (regions[k].type == STABLE_REGION && |
| (regions[k].last - regions[k].start + 1) < 2 * WINDOW_SIZE && |
| ((k > 0 && // previous regions |
| (regions[k].avg_coded_err > regions[k - 1].avg_coded_err * 1.01 || |
| regions[k].avg_cor_coeff < regions[k - 1].avg_cor_coeff * 0.999)) && |
| (k < *num_regions - 1 && // next region |
| (regions[k].avg_coded_err > regions[k + 1].avg_coded_err * 1.01 || |
| regions[k].avg_cor_coeff < regions[k + 1].avg_cor_coeff * 0.999)))) { |
| // merge current region with the previous and next regions |
| remove_region(2, regions, num_regions, &k); |
| analyze_region(stats, k - 1, regions); |
| } else if (regions[k].type == HIGH_VAR_REGION && |
| (regions[k].last - regions[k].start + 1) < 2 * WINDOW_SIZE && |
| ((k > 0 && // previous regions |
| (regions[k].avg_coded_err < |
| regions[k - 1].avg_coded_err * 0.99 || |
| regions[k].avg_cor_coeff > |
| regions[k - 1].avg_cor_coeff * 1.001)) && |
| (k < *num_regions - 1 && // next region |
| (regions[k].avg_coded_err < |
| regions[k + 1].avg_coded_err * 0.99 || |
| regions[k].avg_cor_coeff > |
| regions[k + 1].avg_cor_coeff * 1.001)))) { |
| // merge current region with the previous and next regions |
| remove_region(2, regions, num_regions, &k); |
| analyze_region(stats, k - 1, regions); |
| } else { |
| k++; |
| } |
| } |
| |
| remove_short_regions(regions, num_regions, STABLE_REGION, WINDOW_SIZE); |
| remove_short_regions(regions, num_regions, HIGH_VAR_REGION, HALF_WIN); |
| } |
| |
| // Identify blending regions. |
| static void find_blending_regions(const FIRSTPASS_STATS *stats, |
| REGIONS *regions, int *num_regions) { |
| int i, k = 0; |
| // Blending regions will have large content change, therefore will have a |
| // large consistent change in intra error. |
| int count_stable = 0; |
| while (k < *num_regions) { |
| if (regions[k].type == STABLE_REGION) { |
| k++; |
| count_stable++; |
| continue; |
| } |
| int dir = 0; |
| int start = 0, last; |
| for (i = regions[k].start; i <= regions[k].last; i++) { |
| // First mark the regions that has consistent large change of intra error. |
| if (k == 0 && i == regions[k].start) continue; |
| if (stats[i].is_flash || (i > 0 && stats[i - 1].is_flash)) continue; |
| double grad = stats[i].intra_error - stats[i - 1].intra_error; |
| int large_change = fabs(grad) / AOMMAX(stats[i].intra_error, 0.01) > 0.05; |
| int this_dir = 0; |
| if (large_change) { |
| this_dir = (grad > 0) ? 1 : -1; |
| } |
| // the current trend continues |
| if (dir == this_dir) continue; |
| if (dir != 0) { |
| // Mark the end of a new large change group and add it |
| last = i - 1; |
| insert_region(start, last, BLENDING_REGION, regions, num_regions, &k); |
| } |
| dir = this_dir; |
| if (k == 0 && i == regions[k].start + 1) { |
| start = i - 1; |
| } else { |
| start = i; |
| } |
| } |
| if (dir != 0) { |
| last = regions[k].last; |
| insert_region(start, last, BLENDING_REGION, regions, num_regions, &k); |
| } |
| k++; |
| } |
| |
| // If the blending region has very low correlation, mark it as high variance |
| // since we probably cannot benefit from it anyways. |
| get_region_stats(stats, regions, *num_regions); |
| for (k = 0; k < *num_regions; k++) { |
| if (regions[k].type != BLENDING_REGION) continue; |
| if (regions[k].last == regions[k].start || regions[k].avg_cor_coeff < 0.6 || |
| count_stable == 0) |
| regions[k].type = HIGH_VAR_REGION; |
| } |
| get_region_stats(stats, regions, *num_regions); |
| |
| // It is possible for blending to result in a "dip" in intra error (first |
| // decrease then increase). Therefore we need to find the dip and combine the |
| // two regions. |
| k = 1; |
| while (k < *num_regions) { |
| if (k < *num_regions - 1 && regions[k].type == HIGH_VAR_REGION) { |
| // Check if this short high variance regions is actually in the middle of |
| // a blending region. |
| if (regions[k - 1].type == BLENDING_REGION && |
| regions[k + 1].type == BLENDING_REGION && |
| regions[k].last - regions[k].start < 3) { |
| int prev_dir = (stats[regions[k - 1].last].intra_error - |
| stats[regions[k - 1].last - 1].intra_error) > 0 |
| ? 1 |
| : -1; |
| int next_dir = (stats[regions[k + 1].last].intra_error - |
| stats[regions[k + 1].last - 1].intra_error) > 0 |
| ? 1 |
| : -1; |
| if (prev_dir < 0 && next_dir > 0) { |
| // This is possibly a mid region of blending. Check the ratios |
| double ratio_thres = AOMMIN(regions[k - 1].avg_sr_fr_ratio, |
| regions[k + 1].avg_sr_fr_ratio) * |
| 0.95; |
| if (regions[k].avg_sr_fr_ratio > ratio_thres) { |
| regions[k].type = BLENDING_REGION; |
| remove_region(2, regions, num_regions, &k); |
| analyze_region(stats, k - 1, regions); |
| continue; |
| } |
| } |
| } |
| } |
| // Check if we have a pair of consecutive blending regions. |
| if (regions[k - 1].type == BLENDING_REGION && |
| regions[k].type == BLENDING_REGION) { |
| int prev_dir = (stats[regions[k - 1].last].intra_error - |
| stats[regions[k - 1].last - 1].intra_error) > 0 |
| ? 1 |
| : -1; |
| int next_dir = (stats[regions[k].last].intra_error - |
| stats[regions[k].last - 1].intra_error) > 0 |
| ? 1 |
| : -1; |
| |
| // if both are too short, no need to check |
| int total_length = regions[k].last - regions[k - 1].start + 1; |
| if (total_length < 4) { |
| regions[k - 1].type = HIGH_VAR_REGION; |
| k++; |
| continue; |
| } |
| |
| int to_merge = 0; |
| if (prev_dir < 0 && next_dir > 0) { |
| // In this case we check the last frame in the previous region. |
| double prev_length = |
| (double)(regions[k - 1].last - regions[k - 1].start + 1); |
| double last_ratio, ratio_thres; |
| if (prev_length < 2.01) { |
| // if the previous region is very short |
| double max_coded_error = |
| AOMMAX(stats[regions[k - 1].last].coded_error, |
| stats[regions[k - 1].last - 1].coded_error); |
| last_ratio = stats[regions[k - 1].last].sr_coded_error / |
| AOMMAX(max_coded_error, 0.001); |
| ratio_thres = regions[k].avg_sr_fr_ratio * 0.95; |
| } else { |
| double max_coded_error = |
| AOMMAX(stats[regions[k - 1].last].coded_error, |
| stats[regions[k - 1].last - 1].coded_error); |
| last_ratio = stats[regions[k - 1].last].sr_coded_error / |
| AOMMAX(max_coded_error, 0.001); |
| double prev_ratio = |
| (regions[k - 1].avg_sr_fr_ratio * prev_length - last_ratio) / |
| (prev_length - 1.0); |
| ratio_thres = AOMMIN(prev_ratio, regions[k].avg_sr_fr_ratio) * 0.95; |
| } |
| if (last_ratio > ratio_thres) { |
| to_merge = 1; |
| } |
| } |
| |
| if (to_merge) { |
| remove_region(0, regions, num_regions, &k); |
| analyze_region(stats, k - 1, regions); |
| continue; |
| } else { |
| // These are possibly two separate blending regions. Mark the boundary |
| // frame as HIGH_VAR_REGION to separate the two. |
| int prev_k = k - 1; |
| insert_region(regions[prev_k].last, regions[prev_k].last, |
| HIGH_VAR_REGION, regions, num_regions, &prev_k); |
| analyze_region(stats, prev_k, regions); |
| k = prev_k + 1; |
| analyze_region(stats, k, regions); |
| } |
| } |
| k++; |
| } |
| cleanup_regions(regions, num_regions); |
| } |
| |
| // Clean up decision for blendings. Remove blending regions that are too short. |
| // Also if a very short high var region is between a blending and a stable |
| // region, just merge it with one of them. |
| static void cleanup_blendings(REGIONS *regions, int *num_regions) { |
| int k = 0; |
| while (k<*num_regions && * num_regions> 1) { |
| int is_short_blending = regions[k].type == BLENDING_REGION && |
| regions[k].last - regions[k].start + 1 < 5; |
| int is_short_hv = regions[k].type == HIGH_VAR_REGION && |
| regions[k].last - regions[k].start + 1 < 5; |
| int has_stable_neighbor = |
| ((k > 0 && regions[k - 1].type == STABLE_REGION) || |
| (k < *num_regions - 1 && regions[k + 1].type == STABLE_REGION)); |
| int has_blend_neighbor = |
| ((k > 0 && regions[k - 1].type == BLENDING_REGION) || |
| (k < *num_regions - 1 && regions[k + 1].type == BLENDING_REGION)); |
| int total_neighbors = (k > 0) + (k < *num_regions - 1); |
| |
| if (is_short_blending || |
| (is_short_hv && |
| has_stable_neighbor + has_blend_neighbor >= total_neighbors)) { |
| // Remove this region.Try to determine whether to combine it with the |
| // previous or next region. |
| int merge; |
| double prev_diff = |
| (k > 0) |
| ? fabs(regions[k].avg_cor_coeff - regions[k - 1].avg_cor_coeff) |
| : 1; |
| double next_diff = |
| (k < *num_regions - 1) |
| ? fabs(regions[k].avg_cor_coeff - regions[k + 1].avg_cor_coeff) |
| : 1; |
| // merge == 0 means to merge with previous, 1 means to merge with next |
| merge = prev_diff > next_diff; |
| remove_region(merge, regions, num_regions, &k); |
| } else { |
| k++; |
| } |
| } |
| cleanup_regions(regions, num_regions); |
| } |
| |
| static void free_firstpass_stats_buffers(REGIONS *temp_regions, |
| double *filt_intra_err, |
| double *filt_coded_err, |
| double *grad_coded) { |
| aom_free(temp_regions); |
| aom_free(filt_intra_err); |
| aom_free(filt_coded_err); |
| aom_free(grad_coded); |
| } |
| |
| // Identify stable and unstable regions from first pass stats. |
| // stats_start points to the first frame to analyze. |
| // |offset| is the offset from the current frame to the frame stats_start is |
| // pointing to. |
| // Returns 0 on success, -1 on memory allocation failure. |
| static int identify_regions(const FIRSTPASS_STATS *const stats_start, |
| int total_frames, int offset, REGIONS *regions, |
| int *total_regions) { |
| int k; |
| if (total_frames <= 1) return 0; |
| |
| // store the initial decisions |
| REGIONS *temp_regions = |
| (REGIONS *)aom_malloc(total_frames * sizeof(temp_regions[0])); |
| // buffers for filtered stats |
| double *filt_intra_err = |
| (double *)aom_calloc(total_frames, sizeof(*filt_intra_err)); |
| double *filt_coded_err = |
| (double *)aom_calloc(total_frames, sizeof(*filt_coded_err)); |
| double *grad_coded = (double *)aom_calloc(total_frames, sizeof(*grad_coded)); |
| if (!(temp_regions && filt_intra_err && filt_coded_err && grad_coded)) { |
| free_firstpass_stats_buffers(temp_regions, filt_intra_err, filt_coded_err, |
| grad_coded); |
| return -1; |
| } |
| av1_zero_array(temp_regions, total_frames); |
| |
| int cur_region = 0, this_start = 0, this_last; |
| |
| int next_scenecut = -1; |
| do { |
| // first get the obvious scenecuts |
| next_scenecut = |
| find_next_scenecut(stats_start, this_start, total_frames - 1); |
| this_last = (next_scenecut >= 0) ? (next_scenecut - 1) : total_frames - 1; |
| |
| // low-pass filter the needed stats |
| smooth_filter_stats(stats_start, this_start, this_last, filt_intra_err, |
| filt_coded_err); |
| get_gradient(filt_coded_err, this_start, this_last, grad_coded); |
| |
| // find tentative stable regions and unstable regions |
| int num_regions = find_stable_regions(stats_start, grad_coded, this_start, |
| this_last, temp_regions); |
| |
| adjust_unstable_region_bounds(stats_start, temp_regions, &num_regions); |
| |
| get_region_stats(stats_start, temp_regions, num_regions); |
| |
| // Try to identify blending regions in the unstable regions |
| find_blending_regions(stats_start, temp_regions, &num_regions); |
| cleanup_blendings(temp_regions, &num_regions); |
| |
| // The flash points should all be considered high variance points |
| k = 0; |
| while (k < num_regions) { |
| if (temp_regions[k].type != STABLE_REGION) { |
| k++; |
| continue; |
| } |
| int start = temp_regions[k].start; |
| int last = temp_regions[k].last; |
| for (int i = start; i <= last; i++) { |
| if (stats_start[i].is_flash) { |
| insert_region(i, i, HIGH_VAR_REGION, temp_regions, &num_regions, &k); |
| } |
| } |
| k++; |
| } |
| cleanup_regions(temp_regions, &num_regions); |
| |
| // copy the regions in the scenecut group |
| for (k = 0; k < num_regions; k++) { |
| if (temp_regions[k].last < temp_regions[k].start && |
| k == num_regions - 1) { |
| num_regions--; |
| break; |
| } |
| regions[k + cur_region] = temp_regions[k]; |
| } |
| cur_region += num_regions; |
| |
| // add the scenecut region |
| if (next_scenecut > -1) { |
| // add the scenecut region, and find the next scenecut |
| regions[cur_region].type = SCENECUT_REGION; |
| regions[cur_region].start = next_scenecut; |
| regions[cur_region].last = next_scenecut; |
| cur_region++; |
| this_start = next_scenecut + 1; |
| } |
| } while (next_scenecut >= 0); |
| |
| *total_regions = cur_region; |
| get_region_stats(stats_start, regions, *total_regions); |
| |
| for (k = 0; k < *total_regions; k++) { |
| // If scenecuts are very minor, mark them as high variance. |
| if (regions[k].type != SCENECUT_REGION || |
| regions[k].avg_cor_coeff * |
| (1 - stats_start[regions[k].start].noise_var / |
| regions[k].avg_intra_err) < |
| 0.8) { |
| continue; |
| } |
| regions[k].type = HIGH_VAR_REGION; |
| } |
| cleanup_regions(regions, total_regions); |
| get_region_stats(stats_start, regions, *total_regions); |
| |
| for (k = 0; k < *total_regions; k++) { |
| regions[k].start += offset; |
| regions[k].last += offset; |
| } |
| |
| free_firstpass_stats_buffers(temp_regions, filt_intra_err, filt_coded_err, |
| grad_coded); |
| return 0; |
| } |
| |
| static int find_regions_index(const REGIONS *regions, int num_regions, |
| int frame_idx) { |
| for (int k = 0; k < num_regions; k++) { |
| if (regions[k].start <= frame_idx && regions[k].last >= frame_idx) { |
| return k; |
| } |
| } |
| return -1; |
| } |
| |
| /*!\brief Determine the length of future GF groups. |
| * |
| * \ingroup gf_group_algo |
| * This function decides the gf group length of future frames in batch |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] max_gop_length Maximum length of the GF group |
| * \param[in] max_intervals Maximum number of intervals to decide |
| * |
| * \remark Nothing is returned. Instead, cpi->ppi->rc.gf_intervals is |
| * changed to store the decided GF group lengths. |
| */ |
| static void calculate_gf_length(AV1_COMP *cpi, int max_gop_length, |
| int max_intervals) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| FIRSTPASS_STATS next_frame; |
| const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in; |
| const FIRSTPASS_STATS *const stats = start_pos - (rc->frames_since_key == 0); |
| |
| const int f_w = cpi->common.width; |
| const int f_h = cpi->common.height; |
| int i; |
| |
| int flash_detected; |
| |
| av1_zero(next_frame); |
| |
| if (has_no_stats_stage(cpi)) { |
| for (i = 0; i < MAX_NUM_GF_INTERVALS; i++) { |
| p_rc->gf_intervals[i] = AOMMIN(rc->max_gf_interval, max_gop_length); |
| } |
| p_rc->cur_gf_index = 0; |
| rc->intervals_till_gf_calculate_due = MAX_NUM_GF_INTERVALS; |
| return; |
| } |
| |
| // TODO(urvang): Try logic to vary min and max interval based on q. |
| const int active_min_gf_interval = rc->min_gf_interval; |
| const int active_max_gf_interval = |
| AOMMIN(rc->max_gf_interval, max_gop_length); |
| const int min_shrink_int = AOMMAX(MIN_SHRINK_LEN, active_min_gf_interval); |
| |
| i = (rc->frames_since_key == 0); |
| max_intervals = cpi->ppi->lap_enabled ? 1 : max_intervals; |
| int count_cuts = 1; |
| // If cpi->gf_state.arf_gf_boost_lst is 0, we are starting with a KF or GF. |
| int cur_start = -1 + !cpi->ppi->gf_state.arf_gf_boost_lst, cur_last; |
| int cut_pos[MAX_NUM_GF_INTERVALS + 1] = { -1 }; |
| int cut_here; |
| GF_GROUP_STATS gf_stats; |
| init_gf_stats(&gf_stats); |
| while (count_cuts < max_intervals + 1) { |
| // reaches next key frame, break here |
| if (i >= rc->frames_to_key) { |
| cut_here = 2; |
| } else if (i - cur_start >= rc->static_scene_max_gf_interval) { |
| // reached maximum len, but nothing special yet (almost static) |
| // let's look at the next interval |
| cut_here = 1; |
| } else if (EOF == input_stats(twopass, &cpi->twopass_frame, &next_frame)) { |
| // reaches last frame, break |
| cut_here = 2; |
| } else { |
| // Test for the case where there is a brief flash but the prediction |
| // quality back to an earlier frame is then restored. |
| flash_detected = detect_flash(twopass, &cpi->twopass_frame, 0); |
| // TODO(bohanli): remove redundant accumulations here, or unify |
| // this and the ones in define_gf_group |
| accumulate_next_frame_stats(&next_frame, flash_detected, |
| rc->frames_since_key, i, &gf_stats, f_w, f_h); |
| |
| cut_here = detect_gf_cut(cpi, i, cur_start, flash_detected, |
| active_max_gf_interval, active_min_gf_interval, |
| &gf_stats); |
| } |
| if (cut_here) { |
| cur_last = i - 1; // the current last frame in the gf group |
| int ori_last = cur_last; |
| // The region frame idx does not start from the same frame as cur_start |
| // and cur_last. Need to offset them. |
| int offset = rc->frames_since_key - p_rc->regions_offset; |
| REGIONS *regions = p_rc->regions; |
| int num_regions = p_rc->num_regions; |
| |
| int scenecut_idx = -1; |
| // only try shrinking if interval smaller than active_max_gf_interval |
| if (cur_last - cur_start <= active_max_gf_interval && |
| cur_last > cur_start) { |
| // find the region indices of where the first and last frame belong. |
| int k_start = |
| find_regions_index(regions, num_regions, cur_start + offset); |
| int k_last = |
| find_regions_index(regions, num_regions, cur_last + offset); |
| if (cur_start + offset == 0) k_start = 0; |
| |
| // See if we have a scenecut in between |
| for (int r = k_start + 1; r <= k_last; r++) { |
| if (regions[r].type == SCENECUT_REGION && |
| regions[r].last - offset - cur_start > active_min_gf_interval) { |
| scenecut_idx = r; |
| break; |
| } |
| } |
| |
| // if the found scenecut is very close to the end, ignore it. |
| if (regions[num_regions - 1].last - regions[scenecut_idx].last < 4) { |
| scenecut_idx = -1; |
| } |
| |
| if (scenecut_idx != -1) { |
| // If we have a scenecut, then stop at it. |
| // TODO(bohanli): add logic here to stop before the scenecut and for |
| // the next gop start from the scenecut with GF |
| int is_minor_sc = |
| (regions[scenecut_idx].avg_cor_coeff * |
| (1 - stats[regions[scenecut_idx].start - offset].noise_var / |
| regions[scenecut_idx].avg_intra_err) > |
| 0.6); |
| cur_last = regions[scenecut_idx].last - offset - !is_minor_sc; |
| } else { |
| int is_last_analysed = (k_last == num_regions - 1) && |
| (cur_last + offset == regions[k_last].last); |
| int not_enough_regions = |
| k_last - k_start <= |
| 1 + (regions[k_start].type == SCENECUT_REGION); |
| // if we are very close to the end, then do not shrink since it may |
| // introduce intervals that are too short |
| if (!(is_last_analysed && not_enough_regions)) { |
| const double arf_length_factor = 0.1; |
| double best_score = 0; |
| int best_j = -1; |
| const int first_frame = regions[0].start - offset; |
| const int last_frame = regions[num_regions - 1].last - offset; |
| // score of how much the arf helps the whole GOP |
| double base_score = 0.0; |
| // Accumulate base_score in |
| for (int j = cur_start + 1; j < cur_start + min_shrink_int; j++) { |
| if (stats + j >= twopass->stats_buf_ctx->stats_in_end) break; |
| base_score = (base_score + 1.0) * stats[j].cor_coeff; |
| } |
| int met_blending = 0; // Whether we have met blending areas before |
| int last_blending = 0; // Whether the previous frame if blending |
| for (int j = cur_start + min_shrink_int; j <= cur_last; j++) { |
| if (stats + j >= twopass->stats_buf_ctx->stats_in_end) break; |
| base_score = (base_score + 1.0) * stats[j].cor_coeff; |
| int this_reg = |
| find_regions_index(regions, num_regions, j + offset); |
| if (this_reg < 0) continue; |
| // A GOP should include at most 1 blending region. |
| if (regions[this_reg].type == BLENDING_REGION) { |
| last_blending = 1; |
| if (met_blending) { |
| break; |
| } else { |
| base_score = 0; |
| continue; |
| } |
| } else { |
| if (last_blending) met_blending = 1; |
| last_blending = 0; |
| } |
| |
| // Add the factor of how good the neighborhood is for this |
| // candidate arf. |
| double this_score = arf_length_factor * base_score; |
| double temp_accu_coeff = 1.0; |
| // following frames |
| int count_f = 0; |
| for (int n = j + 1; n <= j + 3 && n <= last_frame; n++) { |
| if (stats + n >= twopass->stats_buf_ctx->stats_in_end) break; |
| temp_accu_coeff *= stats[n].cor_coeff; |
| this_score += |
| temp_accu_coeff * |
| sqrt(AOMMAX(0.5, |
| 1 - stats[n].noise_var / |
| AOMMAX(stats[n].intra_error, 0.001))); |
| count_f++; |
| } |
| // preceding frames |
| temp_accu_coeff = 1.0; |
| for (int n = j; n > j - 3 * 2 + count_f && n > first_frame; n--) { |
| if (stats + n < twopass->stats_buf_ctx->stats_in_start) break; |
| temp_accu_coeff *= stats[n].cor_coeff; |
| this_score += |
| temp_accu_coeff * |
| sqrt(AOMMAX(0.5, |
| 1 - stats[n].noise_var / |
| AOMMAX(stats[n].intra_error, 0.001))); |
| } |
| |
| if (this_score > best_score) { |
| best_score = this_score; |
| best_j = j; |
| } |
| } |
| |
| // For blending areas, move one more frame in case we missed the |
| // first blending frame. |
| int best_reg = |
| find_regions_index(regions, num_regions, best_j + offset); |
| if (best_reg < num_regions - 1 && best_reg > 0) { |
| if (regions[best_reg - 1].type == BLENDING_REGION && |
| regions[best_reg + 1].type == BLENDING_REGION) { |
| if (best_j + offset == regions[best_reg].start && |
| best_j + offset < regions[best_reg].last) { |
| best_j += 1; |
| } else if (best_j + offset == regions[best_reg].last && |
| best_j + offset > regions[best_reg].start) { |
| best_j -= 1; |
| } |
| } |
| } |
| |
| if (cur_last - best_j < 2) best_j = cur_last; |
| if (best_j > 0 && best_score > 0.1) cur_last = best_j; |
| // if cannot find anything, just cut at the original place. |
| } |
| } |
| } |
| cut_pos[count_cuts] = cur_last; |
| count_cuts++; |
| |
| // reset pointers to the shrunken location |
| cpi->twopass_frame.stats_in = start_pos + cur_last; |
| cur_start = cur_last; |
| int cur_region_idx = |
| find_regions_index(regions, num_regions, cur_start + 1 + offset); |
| if (cur_region_idx >= 0) |
| if (regions[cur_region_idx].type == SCENECUT_REGION) cur_start++; |
| |
| i = cur_last; |
| |
| if (cut_here > 1 && cur_last == ori_last) break; |
| |
| // reset accumulators |
| init_gf_stats(&gf_stats); |
| } |
| ++i; |
| } |
| |
| // save intervals |
| rc->intervals_till_gf_calculate_due = count_cuts - 1; |
| for (int n = 1; n < count_cuts; n++) { |
| p_rc->gf_intervals[n - 1] = cut_pos[n] - cut_pos[n - 1]; |
| } |
| p_rc->cur_gf_index = 0; |
| cpi->twopass_frame.stats_in = start_pos; |
| } |
| |
| static void correct_frames_to_key(AV1_COMP *cpi) { |
| int lookahead_size = |
| (int)av1_lookahead_depth(cpi->ppi->lookahead, cpi->compressor_stage); |
| if (lookahead_size < |
| av1_lookahead_pop_sz(cpi->ppi->lookahead, cpi->compressor_stage)) { |
| assert( |
| IMPLIES(cpi->oxcf.pass != AOM_RC_ONE_PASS && cpi->ppi->frames_left > 0, |
| lookahead_size == cpi->ppi->frames_left)); |
| cpi->rc.frames_to_key = AOMMIN(cpi->rc.frames_to_key, lookahead_size); |
| } else if (cpi->ppi->frames_left > 0) { |
| // Correct frames to key based on limit |
| cpi->rc.frames_to_key = |
| AOMMIN(cpi->rc.frames_to_key, cpi->ppi->frames_left); |
| } |
| } |
| |
| /*!\brief Define a GF group in one pass mode when no look ahead stats are |
| * available. |
| * |
| * \ingroup gf_group_algo |
| * This function defines the structure of a GF group, along with various |
| * parameters regarding bit-allocation and quality setup in the special |
| * case of one pass encoding where no lookahead stats are avialable. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * |
| * \remark Nothing is returned. Instead, cpi->ppi->gf_group is changed. |
| */ |
| static void define_gf_group_pass0(AV1_COMP *cpi) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const GFConfig *const gf_cfg = &oxcf->gf_cfg; |
| int target; |
| |
| if (oxcf->q_cfg.aq_mode == CYCLIC_REFRESH_AQ) { |
| av1_cyclic_refresh_set_golden_update(cpi); |
| } else { |
| p_rc->baseline_gf_interval = p_rc->gf_intervals[p_rc->cur_gf_index]; |
| rc->intervals_till_gf_calculate_due--; |
| p_rc->cur_gf_index++; |
| } |
| |
| // correct frames_to_key when lookahead queue is flushing |
| correct_frames_to_key(cpi); |
| |
| if (p_rc->baseline_gf_interval > rc->frames_to_key) |
| p_rc->baseline_gf_interval = rc->frames_to_key; |
| |
| p_rc->gfu_boost = DEFAULT_GF_BOOST; |
| p_rc->constrained_gf_group = |
| (p_rc->baseline_gf_interval >= rc->frames_to_key) ? 1 : 0; |
| |
| gf_group->max_layer_depth_allowed = oxcf->gf_cfg.gf_max_pyr_height; |
| |
| // Rare case when the look-ahead is less than the target GOP length, can't |
| // generate ARF frame. |
| if (p_rc->baseline_gf_interval > gf_cfg->lag_in_frames || |
| !is_altref_enabled(gf_cfg->lag_in_frames, gf_cfg->enable_auto_arf) || |
| p_rc->baseline_gf_interval < rc->min_gf_interval) |
| gf_group->max_layer_depth_allowed = 0; |
| |
| // Set up the structure of this Group-Of-Pictures (same as GF_GROUP) |
| av1_gop_setup_structure(cpi); |
| |
| // Allocate bits to each of the frames in the GF group. |
| // TODO(sarahparker) Extend this to work with pyramid structure. |
| for (int cur_index = 0; cur_index < gf_group->size; ++cur_index) { |
| const FRAME_UPDATE_TYPE cur_update_type = gf_group->update_type[cur_index]; |
| if (oxcf->rc_cfg.mode == AOM_CBR) { |
| if (cur_update_type == KF_UPDATE) { |
| target = av1_calc_iframe_target_size_one_pass_cbr(cpi); |
| } else { |
| target = av1_calc_pframe_target_size_one_pass_cbr(cpi, cur_update_type); |
| } |
| } else { |
| if (cur_update_type == KF_UPDATE) { |
| target = av1_calc_iframe_target_size_one_pass_vbr(cpi); |
| } else { |
| target = av1_calc_pframe_target_size_one_pass_vbr(cpi, cur_update_type); |
| } |
| } |
| gf_group->bit_allocation[cur_index] = target; |
| } |
| } |
| |
| static INLINE void set_baseline_gf_interval(PRIMARY_RATE_CONTROL *p_rc, |
| int arf_position) { |
| p_rc->baseline_gf_interval = arf_position; |
| } |
| |
| // initialize GF_GROUP_STATS |
| static void init_gf_stats(GF_GROUP_STATS *gf_stats) { |
| gf_stats->gf_group_err = 0.0; |
| gf_stats->gf_group_raw_error = 0.0; |
| gf_stats->gf_group_skip_pct = 0.0; |
| gf_stats->gf_group_inactive_zone_rows = 0.0; |
| |
| gf_stats->mv_ratio_accumulator = 0.0; |
| gf_stats->decay_accumulator = 1.0; |
| gf_stats->zero_motion_accumulator = 1.0; |
| gf_stats->loop_decay_rate = 1.0; |
| gf_stats->last_loop_decay_rate = 1.0; |
| gf_stats->this_frame_mv_in_out = 0.0; |
| gf_stats->mv_in_out_accumulator = 0.0; |
| gf_stats->abs_mv_in_out_accumulator = 0.0; |
| |
| gf_stats->avg_sr_coded_error = 0.0; |
| gf_stats->avg_pcnt_second_ref = 0.0; |
| gf_stats->avg_new_mv_count = 0.0; |
| gf_stats->avg_wavelet_energy = 0.0; |
| gf_stats->avg_raw_err_stdev = 0.0; |
| gf_stats->non_zero_stdev_count = 0; |
| } |
| |
| static void accumulate_gop_stats(AV1_COMP *cpi, int is_intra_only, int f_w, |
| int f_h, FIRSTPASS_STATS *next_frame, |
| const FIRSTPASS_STATS *start_pos, |
| GF_GROUP_STATS *gf_stats, int *idx) { |
| int i, flash_detected; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| RATE_CONTROL *const rc = &cpi->rc; |
| FRAME_INFO *frame_info = &cpi->frame_info; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| |
| init_gf_stats(gf_stats); |
| av1_zero(*next_frame); |
| |
| // If this is a key frame or the overlay from a previous arf then |
| // the error score / cost of this frame has already been accounted for. |
| i = is_intra_only; |
| // get the determined gf group length from p_rc->gf_intervals |
| while (i < p_rc->gf_intervals[p_rc->cur_gf_index]) { |
| // read in the next frame |
| if (EOF == input_stats(twopass, &cpi->twopass_frame, next_frame)) break; |
| // Accumulate error score of frames in this gf group. |
| double mod_frame_err = |
| calculate_modified_err(frame_info, twopass, oxcf, next_frame); |
| // accumulate stats for this frame |
| accumulate_this_frame_stats(next_frame, mod_frame_err, gf_stats); |
| ++i; |
| } |
| |
| reset_fpf_position(&cpi->twopass_frame, start_pos); |
| |
| i = is_intra_only; |
| input_stats(twopass, &cpi->twopass_frame, next_frame); |
| while (i < p_rc->gf_intervals[p_rc->cur_gf_index]) { |
| // read in the next frame |
| if (EOF == input_stats(twopass, &cpi->twopass_frame, next_frame)) break; |
| |
| // Test for the case where there is a brief flash but the prediction |
| // quality back to an earlier frame is then restored. |
| flash_detected = detect_flash(twopass, &cpi->twopass_frame, 0); |
| |
| // accumulate stats for next frame |
| accumulate_next_frame_stats(next_frame, flash_detected, |
| rc->frames_since_key, i, gf_stats, f_w, f_h); |
| |
| ++i; |
| } |
| |
| i = p_rc->gf_intervals[p_rc->cur_gf_index]; |
| average_gf_stats(i, gf_stats); |
| |
| *idx = i; |
| } |
| |
| static void update_gop_length(RATE_CONTROL *rc, PRIMARY_RATE_CONTROL *p_rc, |
| int idx, int is_final_pass) { |
| if (is_final_pass) { |
| rc->intervals_till_gf_calculate_due--; |
| p_rc->cur_gf_index++; |
| } |
| |
| // Was the group length constrained by the requirement for a new KF? |
| p_rc->constrained_gf_group = (idx >= rc->frames_to_key) ? 1 : 0; |
| |
| set_baseline_gf_interval(p_rc, idx); |
| rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; |
| } |
| |
| #define MAX_GF_BOOST 5400 |
| #define REDUCE_GF_LENGTH_THRESH 4 |
| #define REDUCE_GF_LENGTH_TO_KEY_THRESH 9 |
| #define REDUCE_GF_LENGTH_BY 1 |
| static void set_gop_bits_boost(AV1_COMP *cpi, int i, int is_intra_only, |
| int is_final_pass, int use_alt_ref, |
| int alt_offset, const FIRSTPASS_STATS *start_pos, |
| GF_GROUP_STATS *gf_stats) { |
| // Should we use the alternate reference frame. |
| AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| FRAME_INFO *frame_info = &cpi->frame_info; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| |
| int ext_len = i - is_intra_only; |
| if (use_alt_ref) { |
| const int forward_frames = (rc->frames_to_key - i >= ext_len) |
| ? ext_len |
| : AOMMAX(0, rc->frames_to_key - i); |
| |
| // Calculate the boost for alt ref. |
| p_rc->gfu_boost = av1_calc_arf_boost( |
| twopass, &cpi->twopass_frame, p_rc, frame_info, alt_offset, |
| forward_frames, ext_len, &p_rc->num_stats_used_for_gfu_boost, |
| &p_rc->num_stats_required_for_gfu_boost, cpi->ppi->lap_enabled); |
| } else { |
| reset_fpf_position(&cpi->twopass_frame, start_pos); |
| p_rc->gfu_boost = AOMMIN( |
| MAX_GF_BOOST, |
| av1_calc_arf_boost( |
| twopass, &cpi->twopass_frame, p_rc, frame_info, alt_offset, ext_len, |
| 0, &p_rc->num_stats_used_for_gfu_boost, |
| &p_rc->num_stats_required_for_gfu_boost, cpi->ppi->lap_enabled)); |
| } |
| |
| #define LAST_ALR_BOOST_FACTOR 0.2f |
| p_rc->arf_boost_factor = 1.0; |
| if (use_alt_ref && !is_lossless_requested(rc_cfg)) { |
| // Reduce the boost of altref in the last gf group |
| if (rc->frames_to_key - ext_len == REDUCE_GF_LENGTH_BY || |
| rc->frames_to_key - ext_len == 0) { |
| p_rc->arf_boost_factor = LAST_ALR_BOOST_FACTOR; |
| } |
| } |
| |
| // Reset the file position. |
| reset_fpf_position(&cpi->twopass_frame, start_pos); |
| if (cpi->ppi->lap_enabled) { |
| // Since we don't have enough stats to know the actual error of the |
| // gf group, we assume error of each frame to be equal to 1 and set |
| // the error of the group as baseline_gf_interval. |
| gf_stats->gf_group_err = p_rc->baseline_gf_interval; |
| } |
| // Calculate the bits to be allocated to the gf/arf group as a whole |
| p_rc->gf_group_bits = |
| calculate_total_gf_group_bits(cpi, gf_stats->gf_group_err); |
| |
| #if GROUP_ADAPTIVE_MAXQ |
| // Calculate an estimate of the maxq needed for the group. |
| // We are more aggressive about correcting for sections |
| // where there could be significant overshoot than for easier |
| // sections where we do not wish to risk creating an overshoot |
| // of the allocated bit budget. |
| if ((rc_cfg->mode != AOM_Q) && (p_rc->baseline_gf_interval > 1) && |
| is_final_pass) { |
| const int vbr_group_bits_per_frame = |
| (int)(p_rc->gf_group_bits / p_rc->baseline_gf_interval); |
| const double group_av_err = |
| gf_stats->gf_group_raw_error / p_rc->baseline_gf_interval; |
| const double group_av_skip_pct = |
| gf_stats->gf_group_skip_pct / p_rc->baseline_gf_interval; |
| const double group_av_inactive_zone = |
| ((gf_stats->gf_group_inactive_zone_rows * 2) / |
| (p_rc->baseline_gf_interval * (double)cm->mi_params.mb_rows)); |
| |
| int tmp_q; |
| tmp_q = get_twopass_worst_quality( |
| cpi, group_av_err, (group_av_skip_pct + group_av_inactive_zone), |
| vbr_group_bits_per_frame); |
| rc->active_worst_quality = AOMMAX(tmp_q, rc->active_worst_quality >> 1); |
| } |
| #endif |
| |
| // Adjust KF group bits and error remaining. |
| if (is_final_pass) twopass->kf_group_error_left -= gf_stats->gf_group_err; |
| |
| // Reset the file position. |
| reset_fpf_position(&cpi->twopass_frame, start_pos); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| if (rc->frames_since_key != 0) { |
| twopass->section_intra_rating = calculate_section_intra_ratio( |
| start_pos, twopass->stats_buf_ctx->stats_in_end, |
| p_rc->baseline_gf_interval); |
| } |
| |
| av1_gop_bit_allocation(cpi, rc, gf_group, rc->frames_since_key == 0, |
| use_alt_ref, p_rc->gf_group_bits); |
| |
| // TODO(jingning): Generalize this condition. |
| if (is_final_pass) { |
| cpi->ppi->gf_state.arf_gf_boost_lst = use_alt_ref; |
| |
| // Reset rolling actual and target bits counters for ARF groups. |
| twopass->rolling_arf_group_target_bits = 1; |
| twopass->rolling_arf_group_actual_bits = 1; |
| } |
| #if CONFIG_BITRATE_ACCURACY |
| if (is_final_pass) { |
| av1_vbr_rc_set_gop_bit_budget(&cpi->vbr_rc_info, |
| p_rc->baseline_gf_interval); |
| } |
| #endif |
| } |
| |
| /*!\brief Define a GF group. |
| * |
| * \ingroup gf_group_algo |
| * This function defines the structure of a GF group, along with various |
| * parameters regarding bit-allocation and quality setup. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] frame_params Structure with frame parameters |
| * \param[in] is_final_pass Whether this is the final pass for the |
| * GF group, or a trial (non-zero) |
| * |
| * \remark Nothing is returned. Instead, cpi->ppi->gf_group is changed. |
| */ |
| static void define_gf_group(AV1_COMP *cpi, EncodeFrameParams *frame_params, |
| int is_final_pass) { |
| AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| FIRSTPASS_STATS next_frame; |
| const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in; |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| const GFConfig *const gf_cfg = &oxcf->gf_cfg; |
| const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; |
| const int f_w = cm->width; |
| const int f_h = cm->height; |
| int i; |
| const int is_intra_only = rc->frames_since_key == 0; |
| |
| cpi->ppi->internal_altref_allowed = (gf_cfg->gf_max_pyr_height > 1); |
| |
| // Reset the GF group data structures unless this is a key |
| // frame in which case it will already have been done. |
| if (!is_intra_only) { |
| av1_zero(cpi->ppi->gf_group); |
| cpi->gf_frame_index = 0; |
| } |
| |
| if (has_no_stats_stage(cpi)) { |
| define_gf_group_pass0(cpi); |
| return; |
| } |
| |
| if (cpi->third_pass_ctx && oxcf->pass == AOM_RC_THIRD_PASS) { |
| int ret = define_gf_group_pass3(cpi, frame_params, is_final_pass); |
| if (ret == 0) return; |
| |
| av1_free_thirdpass_ctx(cpi->third_pass_ctx); |
| cpi->third_pass_ctx = NULL; |
| } |
| |
| // correct frames_to_key when lookahead queue is emptying |
| if (cpi->ppi->lap_enabled) { |
| correct_frames_to_key(cpi); |
| } |
| |
| GF_GROUP_STATS gf_stats; |
| accumulate_gop_stats(cpi, is_intra_only, f_w, f_h, &next_frame, start_pos, |
| &gf_stats, &i); |
| |
| const int can_disable_arf = !gf_cfg->gf_min_pyr_height; |
| |
| // If this is a key frame or the overlay from a previous arf then |
| // the error score / cost of this frame has already been accounted for. |
| const int active_min_gf_interval = rc->min_gf_interval; |
| |
| // Disable internal ARFs for "still" gf groups. |
| // zero_motion_accumulator: minimum percentage of (0,0) motion; |
| // avg_sr_coded_error: average of the SSE per pixel of each frame; |
| // avg_raw_err_stdev: average of the standard deviation of (0,0) |
| // motion error per block of each frame. |
| const int can_disable_internal_arfs = gf_cfg->gf_min_pyr_height <= 1; |
| if (can_disable_internal_arfs && |
| gf_stats.zero_motion_accumulator > MIN_ZERO_MOTION && |
| gf_stats.avg_sr_coded_error < MAX_SR_CODED_ERROR && |
| gf_stats.avg_raw_err_stdev < MAX_RAW_ERR_VAR) { |
| cpi->ppi->internal_altref_allowed = 0; |
| } |
| |
| int use_alt_ref; |
| if (can_disable_arf) { |
| use_alt_ref = |
| !is_almost_static(gf_stats.zero_motion_accumulator, |
| twopass->kf_zeromotion_pct, cpi->ppi->lap_enabled) && |
| p_rc->use_arf_in_this_kf_group && (i < gf_cfg->lag_in_frames) && |
| (i >= MIN_GF_INTERVAL); |
| } else { |
| use_alt_ref = p_rc->use_arf_in_this_kf_group && |
| (i < gf_cfg->lag_in_frames) && (i > 2); |
| } |
| if (use_alt_ref) { |
| gf_group->max_layer_depth_allowed = gf_cfg->gf_max_pyr_height; |
| } else { |
| gf_group->max_layer_depth_allowed = 0; |
| } |
| |
| int alt_offset = 0; |
| // The length reduction strategy is tweaked for certain cases, and doesn't |
| // work well for certain other cases. |
| const int allow_gf_length_reduction = |
| ((rc_cfg->mode == AOM_Q && rc_cfg->cq_level <= 128) || |
| !cpi->ppi->internal_altref_allowed) && |
| !is_lossless_requested(rc_cfg); |
| |
| if (allow_gf_length_reduction && use_alt_ref) { |
| // adjust length of this gf group if one of the following condition met |
| // 1: only one overlay frame left and this gf is too long |
| // 2: next gf group is too short to have arf compared to the current gf |
| |
| // maximum length of next gf group |
| const int next_gf_len = rc->frames_to_key - i; |
| const int single_overlay_left = |
| next_gf_len == 0 && i > REDUCE_GF_LENGTH_THRESH; |
| // the next gf is probably going to have a ARF but it will be shorter than |
| // this gf |
| const int unbalanced_gf = |
| i > REDUCE_GF_LENGTH_TO_KEY_THRESH && |
| next_gf_len + 1 < REDUCE_GF_LENGTH_TO_KEY_THRESH && |
| next_gf_len + 1 >= rc->min_gf_interval; |
| |
| if (single_overlay_left || unbalanced_gf) { |
| const int roll_back = REDUCE_GF_LENGTH_BY; |
| // Reduce length only if active_min_gf_interval will be respected later. |
| if (i - roll_back >= active_min_gf_interval + 1) { |
| alt_offset = -roll_back; |
| i -= roll_back; |
| if (is_final_pass) rc->intervals_till_gf_calculate_due = 0; |
| p_rc->gf_intervals[p_rc->cur_gf_index] -= roll_back; |
| reset_fpf_position(&cpi->twopass_frame, start_pos); |
| accumulate_gop_stats(cpi, is_intra_only, f_w, f_h, &next_frame, |
| start_pos, &gf_stats, &i); |
| } |
| } |
| } |
| |
| update_gop_length(rc, p_rc, i, is_final_pass); |
| |
| // Set up the structure of this Group-Of-Pictures (same as GF_GROUP) |
| av1_gop_setup_structure(cpi); |
| |
| set_gop_bits_boost(cpi, i, is_intra_only, is_final_pass, use_alt_ref, |
| alt_offset, start_pos, &gf_stats); |
| |
| frame_params->frame_type = |
| rc->frames_since_key == 0 ? KEY_FRAME : INTER_FRAME; |
| frame_params->show_frame = |
| !(gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE || |
| gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE); |
| } |
| |
| /*!\brief Define a GF group for the third apss. |
| * |
| * \ingroup gf_group_algo |
| * This function defines the structure of a GF group for the third pass, along |
| * with various parameters regarding bit-allocation and quality setup based on |
| * the two-pass bitstream. |
| * Much of the function still uses the strategies used for the second pass and |
| * relies on first pass statistics. It is expected that over time these portions |
| * would be replaced with strategies specific to the third pass. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] frame_params Structure with frame parameters |
| * \param[in] is_final_pass Whether this is the final pass for the |
| * GF group, or a trial (non-zero) |
| * |
| * \return 0: Success; |
| * -1: There are conflicts between the bitstream and current config |
| * The values in cpi->ppi->gf_group are also changed. |
| */ |
| static int define_gf_group_pass3(AV1_COMP *cpi, EncodeFrameParams *frame_params, |
| int is_final_pass) { |
| if (!cpi->third_pass_ctx) return -1; |
| AV1_COMMON *const cm = &cpi->common; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| FIRSTPASS_STATS next_frame; |
| const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in; |
| GF_GROUP *gf_group = &cpi->ppi->gf_group; |
| const GFConfig *const gf_cfg = &oxcf->gf_cfg; |
| const int f_w = cm->width; |
| const int f_h = cm->height; |
| int i; |
| const int is_intra_only = rc->frames_since_key == 0; |
| |
| cpi->ppi->internal_altref_allowed = (gf_cfg->gf_max_pyr_height > 1); |
| |
| // Reset the GF group data structures unless this is a key |
| // frame in which case it will already have been done. |
| if (!is_intra_only) { |
| av1_zero(cpi->ppi->gf_group); |
| cpi->gf_frame_index = 0; |
| } |
| |
| GF_GROUP_STATS gf_stats; |
| accumulate_gop_stats(cpi, is_intra_only, f_w, f_h, &next_frame, start_pos, |
| &gf_stats, &i); |
| |
| const int can_disable_arf = !gf_cfg->gf_min_pyr_height; |
| |
| // TODO(any): set cpi->ppi->internal_altref_allowed accordingly; |
| |
| int use_alt_ref = av1_check_use_arf(cpi->third_pass_ctx); |
| if (use_alt_ref == 0 && !can_disable_arf) return -1; |
| if (use_alt_ref) { |
| gf_group->max_layer_depth_allowed = gf_cfg->gf_max_pyr_height; |
| } else { |
| gf_group->max_layer_depth_allowed = 0; |
| } |
| |
| update_gop_length(rc, p_rc, i, is_final_pass); |
| |
| // Set up the structure of this Group-Of-Pictures (same as GF_GROUP) |
| av1_gop_setup_structure(cpi); |
| |
| set_gop_bits_boost(cpi, i, is_intra_only, is_final_pass, use_alt_ref, 0, |
| start_pos, &gf_stats); |
| |
| frame_params->frame_type = cpi->third_pass_ctx->frame_info[0].frame_type; |
| frame_params->show_frame = cpi->third_pass_ctx->frame_info[0].is_show_frame; |
| return 0; |
| } |
| |
| // #define FIXED_ARF_BITS |
| #ifdef FIXED_ARF_BITS |
| #define ARF_BITS_FRACTION 0.75 |
| #endif |
| void av1_gop_bit_allocation(const AV1_COMP *cpi, RATE_CONTROL *const rc, |
| GF_GROUP *gf_group, int is_key_frame, int use_arf, |
| int64_t gf_group_bits) { |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| // Calculate the extra bits to be used for boosted frame(s) |
| #ifdef FIXED_ARF_BITS |
| int gf_arf_bits = (int)(ARF_BITS_FRACTION * gf_group_bits); |
| #else |
| int gf_arf_bits = calculate_boost_bits( |
| p_rc->baseline_gf_interval - (rc->frames_since_key == 0), p_rc->gfu_boost, |
| gf_group_bits); |
| #endif |
| |
| gf_arf_bits = adjust_boost_bits_for_target_level(cpi, rc, gf_arf_bits, |
| gf_group_bits, 1); |
| |
| // Allocate bits to each of the frames in the GF group. |
| allocate_gf_group_bits(gf_group, p_rc, rc, gf_group_bits, gf_arf_bits, |
| is_key_frame, use_arf); |
| } |
| |
| // Minimum % intra coding observed in first pass (1.0 = 100%) |
| #define MIN_INTRA_LEVEL 0.25 |
| // Minimum ratio between the % of intra coding and inter coding in the first |
| // pass after discounting neutral blocks (discounting neutral blocks in this |
| // way helps catch scene cuts in clips with very flat areas or letter box |
| // format clips with image padding. |
| #define INTRA_VS_INTER_THRESH 2.0 |
| // Hard threshold where the first pass chooses intra for almost all blocks. |
| // In such a case even if the frame is not a scene cut coding a key frame |
| // may be a good option. |
| #define VERY_LOW_INTER_THRESH 0.05 |
| // Maximum threshold for the relative ratio of intra error score vs best |
| // inter error score. |
| #define KF_II_ERR_THRESHOLD 1.9 |
| // In real scene cuts there is almost always a sharp change in the intra |
| // or inter error score. |
| #define ERR_CHANGE_THRESHOLD 0.4 |
| // For real scene cuts we expect an improvment in the intra inter error |
| // ratio in the next frame. |
| #define II_IMPROVEMENT_THRESHOLD 3.5 |
| #define KF_II_MAX 128.0 |
| // Intra / Inter threshold very low |
| #define VERY_LOW_II 1.5 |
| // Clean slide transitions we expect a sharp single frame spike in error. |
| #define ERROR_SPIKE 5.0 |
| |
| // Slide show transition detection. |
| // Tests for case where there is very low error either side of the current frame |
| // but much higher just for this frame. This can help detect key frames in |
| // slide shows even where the slides are pictures of different sizes. |
| // Also requires that intra and inter errors are very similar to help eliminate |
| // harmful false positives. |
| // It will not help if the transition is a fade or other multi-frame effect. |
| static int slide_transition(const FIRSTPASS_STATS *this_frame, |
| const FIRSTPASS_STATS *last_frame, |
| const FIRSTPASS_STATS *next_frame) { |
| return (this_frame->intra_error < (this_frame->coded_error * VERY_LOW_II)) && |
| (this_frame->coded_error > (last_frame->coded_error * ERROR_SPIKE)) && |
| (this_frame->coded_error > (next_frame->coded_error * ERROR_SPIKE)); |
| } |
| |
| // Threshold for use of the lagging second reference frame. High second ref |
| // usage may point to a transient event like a flash or occlusion rather than |
| // a real scene cut. |
| // We adapt the threshold based on number of frames in this key-frame group so |
| // far. |
| static double get_second_ref_usage_thresh(int frame_count_so_far) { |
| const int adapt_upto = 32; |
| const double min_second_ref_usage_thresh = 0.085; |
| const double second_ref_usage_thresh_max_delta = 0.035; |
| if (frame_count_so_far >= adapt_upto) { |
| return min_second_ref_usage_thresh + second_ref_usage_thresh_max_delta; |
| } |
| return min_second_ref_usage_thresh + |
| ((double)frame_count_so_far / (adapt_upto - 1)) * |
| second_ref_usage_thresh_max_delta; |
| } |
| |
| static int test_candidate_kf(const FIRSTPASS_INFO *firstpass_info, |
| int this_stats_index, int frame_count_so_far, |
| enum aom_rc_mode rc_mode, int scenecut_mode, |
| int num_mbs) { |
| const FIRSTPASS_STATS *last_stats = |
| av1_firstpass_info_peek(firstpass_info, this_stats_index - 1); |
| const FIRSTPASS_STATS *this_stats = |
| av1_firstpass_info_peek(firstpass_info, this_stats_index); |
| const FIRSTPASS_STATS *next_stats = |
| av1_firstpass_info_peek(firstpass_info, this_stats_index + 1); |
| if (last_stats == NULL || this_stats == NULL || next_stats == NULL) { |
| return 0; |
| } |
| |
| int is_viable_kf = 0; |
| double pcnt_intra = 1.0 - this_stats->pcnt_inter; |
| double modified_pcnt_inter = |
| this_stats->pcnt_inter - this_stats->pcnt_neutral; |
| const double second_ref_usage_thresh = |
| get_second_ref_usage_thresh(frame_count_so_far); |
| int frames_to_test_after_candidate_key = SCENE_CUT_KEY_TEST_INTERVAL; |
| int count_for_tolerable_prediction = 3; |
| |
| // We do "-1" because the candidate key is not counted. |
| int stats_after_this_stats = |
| av1_firstpass_info_future_count(firstpass_info, this_stats_index) - 1; |
| |
| if (scenecut_mode == ENABLE_SCENECUT_MODE_1) { |
| if (stats_after_this_stats < 3) { |
| return 0; |
| } else { |
| frames_to_test_after_candidate_key = 3; |
| count_for_tolerable_prediction = 1; |
| } |
| } |
| // Make sure we have enough stats after the candidate key. |
| frames_to_test_after_candidate_key = |
| AOMMIN(frames_to_test_after_candidate_key, stats_after_this_stats); |
| |
| // Does the frame satisfy the primary criteria of a key frame? |
| // See above for an explanation of the test criteria. |
| // If so, then examine how well it predicts subsequent frames. |
| if (IMPLIES(rc_mode == AOM_Q, frame_count_so_far >= 3) && |
| (this_stats->pcnt_second_ref < second_ref_usage_thresh) && |
| (next_stats->pcnt_second_ref < second_ref_usage_thresh) && |
| ((this_stats->pcnt_inter < VERY_LOW_INTER_THRESH) || |
| slide_transition(this_stats, last_stats, next_stats) || |
| ((pcnt_intra > MIN_INTRA_LEVEL) && |
| (pcnt_intra > (INTRA_VS_INTER_THRESH * modified_pcnt_inter)) && |
| ((this_stats->intra_error / |
| DOUBLE_DIVIDE_CHECK(this_stats->coded_error)) < |
| KF_II_ERR_THRESHOLD) && |
| ((fabs(last_stats->coded_error - this_stats->coded_error) / |
| DOUBLE_DIVIDE_CHECK(this_stats->coded_error) > |
| ERR_CHANGE_THRESHOLD) || |
| (fabs(last_stats->intra_error - this_stats->intra_error) / |
| DOUBLE_DIVIDE_CHECK(this_stats->intra_error) > |
| ERR_CHANGE_THRESHOLD) || |
| ((next_stats->intra_error / |
| DOUBLE_DIVIDE_CHECK(next_stats->coded_error)) > |
| II_IMPROVEMENT_THRESHOLD))))) { |
| int i; |
| double boost_score = 0.0; |
| double old_boost_score = 0.0; |
| double decay_accumulator = 1.0; |
| |
| // Examine how well the key frame predicts subsequent frames. |
| for (i = 1; i <= frames_to_test_after_candidate_key; ++i) { |
| // Get the next frame details |
| const FIRSTPASS_STATS *local_next_frame = |
| av1_firstpass_info_peek(firstpass_info, this_stats_index + i); |
| double next_iiratio = |
| (BOOST_FACTOR * local_next_frame->intra_error / |
| DOUBLE_DIVIDE_CHECK(local_next_frame->coded_error)); |
| |
| if (next_iiratio > KF_II_MAX) next_iiratio = KF_II_MAX; |
| |
| // Cumulative effect of decay in prediction quality. |
| if (local_next_frame->pcnt_inter > 0.85) |
| decay_accumulator *= local_next_frame->pcnt_inter; |
| else |
| decay_accumulator *= (0.85 + local_next_frame->pcnt_inter) / 2.0; |
| |
| // Keep a running total. |
| boost_score += (decay_accumulator * next_iiratio); |
| |
| // Test various breakout clauses. |
| // TODO(any): Test of intra error should be normalized to an MB. |
| if ((local_next_frame->pcnt_inter < 0.05) || (next_iiratio < 1.5) || |
| (((local_next_frame->pcnt_inter - local_next_frame->pcnt_neutral) < |
| 0.20) && |
| (next_iiratio < 3.0)) || |
| ((boost_score - old_boost_score) < 3.0) || |
| (local_next_frame->intra_error < (200.0 / (double)num_mbs))) { |
| break; |
| } |
| |
| old_boost_score = boost_score; |
| } |
| |
| // If there is tolerable prediction for at least the next 3 frames then |
| // break out else discard this potential key frame and move on |
| if (boost_score > 30.0 && (i > count_for_tolerable_prediction)) { |
| is_viable_kf = 1; |
| } else { |
| is_viable_kf = 0; |
| } |
| } |
| return is_viable_kf; |
| } |
| |
| #define FRAMES_TO_CHECK_DECAY 8 |
| #define KF_MIN_FRAME_BOOST 80.0 |
| #define KF_MAX_FRAME_BOOST 128.0 |
| #define MIN_KF_BOOST 600 // Minimum boost for non-static KF interval |
| #define MAX_KF_BOOST 3200 |
| #define MIN_STATIC_KF_BOOST 5400 // Minimum boost for static KF interval |
| |
| static int detect_app_forced_key(AV1_COMP *cpi) { |
| int num_frames_to_app_forced_key = is_forced_keyframe_pending( |
| cpi->ppi->lookahead, cpi->ppi->lookahead->max_sz, cpi->compressor_stage); |
| return num_frames_to_app_forced_key; |
| } |
| |
| static int get_projected_kf_boost(AV1_COMP *cpi) { |
| /* |
| * If num_stats_used_for_kf_boost >= frames_to_key, then |
| * all stats needed for prior boost calculation are available. |
| * Hence projecting the prior boost is not needed in this cases. |
| */ |
| if (cpi->ppi->p_rc.num_stats_used_for_kf_boost >= cpi->rc.frames_to_key) |
| return cpi->ppi->p_rc.kf_boost; |
| |
| // Get the current tpl factor (number of frames = frames_to_key). |
| double tpl_factor = av1_get_kf_boost_projection_factor(cpi->rc.frames_to_key); |
| // Get the tpl factor when number of frames = num_stats_used_for_kf_boost. |
| double tpl_factor_num_stats = av1_get_kf_boost_projection_factor( |
| cpi->ppi->p_rc.num_stats_used_for_kf_boost); |
| int projected_kf_boost = |
| (int)rint((tpl_factor * cpi->ppi->p_rc.kf_boost) / tpl_factor_num_stats); |
| return projected_kf_boost; |
| } |
| |
| /*!\brief Determine the location of the next key frame |
| * |
| * \ingroup gf_group_algo |
| * This function decides the placement of the next key frame when a |
| * scenecut is detected or the maximum key frame distance is reached. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] firstpass_info struct for firstpass info |
| * \param[in] num_frames_to_detect_scenecut Maximum lookahead frames. |
| * \param[in] search_start_idx the start index for searching key frame. |
| * Set it to one if we already know the |
| * current frame is key frame. Otherwise, |
| * set it to zero. |
| * |
| * \return Number of frames to the next key including the current frame. |
| */ |
| static int define_kf_interval(AV1_COMP *cpi, |
| const FIRSTPASS_INFO *firstpass_info, |
| int num_frames_to_detect_scenecut, |
| int search_start_idx) { |
| const TWO_PASS *const twopass = &cpi->ppi->twopass; |
| const RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg; |
| double recent_loop_decay[FRAMES_TO_CHECK_DECAY]; |
| double decay_accumulator = 1.0; |
| int i = 0, j; |
| int frames_to_key = search_start_idx; |
| int frames_since_key = rc->frames_since_key + 1; |
| int scenecut_detected = 0; |
| |
| int num_frames_to_next_key = detect_app_forced_key(cpi); |
| |
| if (num_frames_to_detect_scenecut == 0) { |
| if (num_frames_to_next_key != -1) |
| return num_frames_to_next_key; |
| else |
| return rc->frames_to_key; |
| } |
| |
| if (num_frames_to_next_key != -1) |
| num_frames_to_detect_scenecut = |
| AOMMIN(num_frames_to_detect_scenecut, num_frames_to_next_key); |
| |
| // Initialize the decay rates for the recent frames to check |
| for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) recent_loop_decay[j] = 1.0; |
| |
| i = 0; |
| const int num_mbs = (oxcf->resize_cfg.resize_mode != RESIZE_NONE) |
| ? cpi->initial_mbs |
| : cpi->common.mi_params.MBs; |
| const int future_stats_count = |
| av1_firstpass_info_future_count(firstpass_info, 0); |
| while (frames_to_key < future_stats_count && |
| frames_to_key < num_frames_to_detect_scenecut) { |
| // Provided that we are not at the end of the file... |
| if ((cpi->ppi->p_rc.enable_scenecut_detection > 0) && kf_cfg->auto_key && |
| frames_to_key + 1 < future_stats_count) { |
| double loop_decay_rate; |
| |
| // Check for a scene cut. |
| if (frames_since_key >= kf_cfg->key_freq_min) { |
| scenecut_detected = test_candidate_kf( |
| &twopass->firstpass_info, frames_to_key, frames_since_key, |
| oxcf->rc_cfg.mode, cpi->ppi->p_rc.enable_scenecut_detection, |
| num_mbs); |
| if (scenecut_detected) { |
| break; |
| } |
| } |
| |
| // How fast is the prediction quality decaying? |
| const FIRSTPASS_STATS *next_stats = |
| av1_firstpass_info_peek(firstpass_info, frames_to_key + 1); |
| loop_decay_rate = get_prediction_decay_rate(next_stats); |
| |
| // We want to know something about the recent past... rather than |
| // as used elsewhere where we are concerned with decay in prediction |
| // quality since the last GF or KF. |
| recent_loop_decay[i % FRAMES_TO_CHECK_DECAY] = loop_decay_rate; |
| decay_accumulator = 1.0; |
| for (j = 0; j < FRAMES_TO_CHECK_DECAY; ++j) |
| decay_accumulator *= recent_loop_decay[j]; |
| |
| // Special check for transition or high motion followed by a |
| // static scene. |
| if (frames_since_key >= kf_cfg->key_freq_min) { |
| scenecut_detected = detect_transition_to_still( |
| firstpass_info, frames_to_key + 1, rc->min_gf_interval, i, |
| kf_cfg->key_freq_max - i, loop_decay_rate, decay_accumulator); |
| if (scenecut_detected) { |
| // In the case of transition followed by a static scene, the key frame |
| // could be a good predictor for the following frames, therefore we |
| // do not use an arf. |
| p_rc->use_arf_in_this_kf_group = 0; |
| break; |
| } |
| } |
| |
| // Step on to the next frame. |
| ++frames_to_key; |
| ++frames_since_key; |
| |
| // If we don't have a real key frame within the next two |
| // key_freq_max intervals then break out of the loop. |
| if (frames_to_key >= 2 * kf_cfg->key_freq_max) { |
| break; |
| } |
| } else { |
| ++frames_to_key; |
| ++frames_since_key; |
| } |
| ++i; |
| } |
| if (cpi->ppi->lap_enabled && !scenecut_detected) |
| frames_to_key = num_frames_to_next_key; |
| |
| return frames_to_key; |
| } |
| |
| static double get_kf_group_avg_error(TWO_PASS *twopass, |
| TWO_PASS_FRAME *twopass_frame, |
| const FIRSTPASS_STATS *first_frame, |
| const FIRSTPASS_STATS *start_position, |
| int frames_to_key) { |
| FIRSTPASS_STATS cur_frame = *first_frame; |
| int num_frames, i; |
| double kf_group_avg_error = 0.0; |
| |
| reset_fpf_position(twopass_frame, start_position); |
| |
| for (i = 0; i < frames_to_key; ++i) { |
| kf_group_avg_error += cur_frame.coded_error; |
| if (EOF == input_stats(twopass, twopass_frame, &cur_frame)) break; |
| } |
| num_frames = i + 1; |
| num_frames = AOMMIN(num_frames, frames_to_key); |
| kf_group_avg_error = kf_group_avg_error / num_frames; |
| |
| return (kf_group_avg_error); |
| } |
| |
| static int64_t get_kf_group_bits(AV1_COMP *cpi, double kf_group_err, |
| double kf_group_avg_error) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| int64_t kf_group_bits; |
| if (cpi->ppi->lap_enabled) { |
| kf_group_bits = (int64_t)rc->frames_to_key * rc->avg_frame_bandwidth; |
| if (cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap) { |
| double vbr_corpus_complexity_lap = |
| cpi->oxcf.rc_cfg.vbr_corpus_complexity_lap / 10.0; |
| /* Get the average corpus complexity of the frame */ |
| kf_group_bits = (int64_t)( |
| kf_group_bits * (kf_group_avg_error / vbr_corpus_complexity_lap)); |
| } |
| } else { |
| kf_group_bits = (int64_t)(twopass->bits_left * |
| (kf_group_err / twopass->modified_error_left)); |
| } |
| |
| return kf_group_bits; |
| } |
| |
| static int calc_avg_stats(AV1_COMP *cpi, FIRSTPASS_STATS *avg_frame_stat) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| FIRSTPASS_STATS cur_frame; |
| av1_zero(cur_frame); |
| int num_frames = 0; |
| // Accumulate total stat using available number of stats. |
| for (num_frames = 0; num_frames < (rc->frames_to_key - 1); ++num_frames) { |
| if (EOF == input_stats(twopass, &cpi->twopass_frame, &cur_frame)) break; |
| av1_accumulate_stats(avg_frame_stat, &cur_frame); |
| } |
| |
| if (num_frames < 2) { |
| return num_frames; |
| } |
| // Average the total stat |
| avg_frame_stat->weight = avg_frame_stat->weight / num_frames; |
| avg_frame_stat->intra_error = avg_frame_stat->intra_error / num_frames; |
| avg_frame_stat->frame_avg_wavelet_energy = |
| avg_frame_stat->frame_avg_wavelet_energy / num_frames; |
| avg_frame_stat->coded_error = avg_frame_stat->coded_error / num_frames; |
| avg_frame_stat->sr_coded_error = avg_frame_stat->sr_coded_error / num_frames; |
| avg_frame_stat->pcnt_inter = avg_frame_stat->pcnt_inter / num_frames; |
| avg_frame_stat->pcnt_motion = avg_frame_stat->pcnt_motion / num_frames; |
| avg_frame_stat->pcnt_second_ref = |
| avg_frame_stat->pcnt_second_ref / num_frames; |
| avg_frame_stat->pcnt_neutral = avg_frame_stat->pcnt_neutral / num_frames; |
| avg_frame_stat->intra_skip_pct = avg_frame_stat->intra_skip_pct / num_frames; |
| avg_frame_stat->inactive_zone_rows = |
| avg_frame_stat->inactive_zone_rows / num_frames; |
| avg_frame_stat->inactive_zone_cols = |
| avg_frame_stat->inactive_zone_cols / num_frames; |
| avg_frame_stat->MVr = avg_frame_stat->MVr / num_frames; |
| avg_frame_stat->mvr_abs = avg_frame_stat->mvr_abs / num_frames; |
| avg_frame_stat->MVc = avg_frame_stat->MVc / num_frames; |
| avg_frame_stat->mvc_abs = avg_frame_stat->mvc_abs / num_frames; |
| avg_frame_stat->MVrv = avg_frame_stat->MVrv / num_frames; |
| avg_frame_stat->MVcv = avg_frame_stat->MVcv / num_frames; |
| avg_frame_stat->mv_in_out_count = |
| avg_frame_stat->mv_in_out_count / num_frames; |
| avg_frame_stat->new_mv_count = avg_frame_stat->new_mv_count / num_frames; |
| avg_frame_stat->count = avg_frame_stat->count / num_frames; |
| avg_frame_stat->duration = avg_frame_stat->duration / num_frames; |
| |
| return num_frames; |
| } |
| |
| static double get_kf_boost_score(AV1_COMP *cpi, double kf_raw_err, |
| double *zero_motion_accumulator, |
| double *sr_accumulator, int use_avg_stat) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| FRAME_INFO *const frame_info = &cpi->frame_info; |
| FIRSTPASS_STATS frame_stat; |
| av1_zero(frame_stat); |
| int i = 0, num_stat_used = 0; |
| double boost_score = 0.0; |
| const double kf_max_boost = |
| cpi->oxcf.rc_cfg.mode == AOM_Q |
| ? AOMMIN(AOMMAX(rc->frames_to_key * 2.0, KF_MIN_FRAME_BOOST), |
| KF_MAX_FRAME_BOOST) |
| : KF_MAX_FRAME_BOOST; |
| |
| // Calculate the average using available number of stats. |
| if (use_avg_stat) num_stat_used = calc_avg_stats(cpi, &frame_stat); |
| |
| for (i = num_stat_used; i < (rc->frames_to_key - 1); ++i) { |
| if (!use_avg_stat && |
| EOF == input_stats(twopass, &cpi->twopass_frame, &frame_stat)) |
| break; |
| |
| // Monitor for static sections. |
| // For the first frame in kf group, the second ref indicator is invalid. |
| if (i > 0) { |
| *zero_motion_accumulator = |
| AOMMIN(*zero_motion_accumulator, get_zero_motion_factor(&frame_stat)); |
| } else { |
| *zero_motion_accumulator = frame_stat.pcnt_inter - frame_stat.pcnt_motion; |
| } |
| |
| // Not all frames in the group are necessarily used in calculating boost. |
| if ((*sr_accumulator < (kf_raw_err * 1.50)) && |
| (i <= rc->max_gf_interval * 2)) { |
| double frame_boost; |
| double zm_factor; |
| |
| // Factor 0.75-1.25 based on how much of frame is static. |
| zm_factor = (0.75 + (*zero_motion_accumulator / 2.0)); |
| |
| if (i < 2) *sr_accumulator = 0.0; |
| frame_boost = |
| calc_kf_frame_boost(&cpi->ppi->p_rc, frame_info, &frame_stat, |
| sr_accumulator, kf_max_boost); |
| boost_score += frame_boost * zm_factor; |
| } |
| } |
| return boost_score; |
| } |
| |
| /*!\brief Interval(in seconds) to clip key-frame distance to in LAP. |
| */ |
| #define MAX_KF_BITS_INTERVAL_SINGLE_PASS 5 |
| |
| /*!\brief Determine the next key frame group |
| * |
| * \ingroup gf_group_algo |
| * This function decides the placement of the next key frame, and |
| * calculates the bit allocation of the KF group and the keyframe itself. |
| * |
| * \param[in] cpi Top-level encoder structure |
| * \param[in] this_frame Pointer to first pass stats |
| */ |
| static void find_next_key_frame(AV1_COMP *cpi, FIRSTPASS_STATS *this_frame) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| FRAME_INFO *const frame_info = &cpi->frame_info; |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| const KeyFrameCfg *const kf_cfg = &oxcf->kf_cfg; |
| const FIRSTPASS_STATS first_frame = *this_frame; |
| FIRSTPASS_STATS next_frame; |
| const FIRSTPASS_INFO *firstpass_info = &twopass->firstpass_info; |
| av1_zero(next_frame); |
| |
| rc->frames_since_key = 0; |
| // Use arfs if possible. |
| p_rc->use_arf_in_this_kf_group = is_altref_enabled( |
| oxcf->gf_cfg.lag_in_frames, oxcf->gf_cfg.enable_auto_arf); |
| |
| // Reset the GF group data structures. |
| av1_zero(*gf_group); |
| cpi->gf_frame_index = 0; |
| |
| // KF is always a GF so clear frames till next gf counter. |
| rc->frames_till_gf_update_due = 0; |
| |
| if (has_no_stats_stage(cpi)) { |
| int num_frames_to_app_forced_key = detect_app_forced_key(cpi); |
| p_rc->this_key_frame_forced = |
| current_frame->frame_number != 0 && rc->frames_to_key == 0; |
| if (num_frames_to_app_forced_key != -1) |
| rc->frames_to_key = num_frames_to_app_forced_key; |
| else |
| rc->frames_to_key = AOMMAX(1, kf_cfg->key_freq_max); |
| correct_frames_to_key(cpi); |
| p_rc->kf_boost = DEFAULT_KF_BOOST; |
| gf_group->update_type[0] = KF_UPDATE; |
| return; |
| } |
| int i; |
| const FIRSTPASS_STATS *const start_position = cpi->twopass_frame.stats_in; |
| int kf_bits = 0; |
| double zero_motion_accumulator = 1.0; |
| double boost_score = 0.0; |
| double kf_raw_err = 0.0; |
| double kf_mod_err = 0.0; |
| double sr_accumulator = 0.0; |
| double kf_group_avg_error = 0.0; |
| int frames_to_key, frames_to_key_clipped = INT_MAX; |
| int64_t kf_group_bits_clipped = INT64_MAX; |
| |
| // Is this a forced key frame by interval. |
| p_rc->this_key_frame_forced = p_rc->next_key_frame_forced; |
| |
| twopass->kf_group_bits = 0; // Total bits available to kf group |
| twopass->kf_group_error_left = 0; // Group modified error score. |
| |
| kf_raw_err = this_frame->intra_error; |
| kf_mod_err = calculate_modified_err(frame_info, twopass, oxcf, this_frame); |
| |
| // We assume the current frame is a key frame and we are looking for the next |
| // key frame. Therefore search_start_idx = 1 |
| frames_to_key = define_kf_interval(cpi, firstpass_info, kf_cfg->key_freq_max, |
| /*search_start_idx=*/1); |
| |
| if (frames_to_key != -1) { |
| rc->frames_to_key = AOMMIN(kf_cfg->key_freq_max, frames_to_key); |
| } else { |
| rc->frames_to_key = kf_cfg->key_freq_max; |
| } |
| |
| if (cpi->ppi->lap_enabled) correct_frames_to_key(cpi); |
| |
| // If there is a max kf interval set by the user we must obey it. |
| // We already breakout of the loop above at 2x max. |
| // This code centers the extra kf if the actual natural interval |
| // is between 1x and 2x. |
| if (kf_cfg->auto_key && rc->frames_to_key > kf_cfg->key_freq_max) { |
| FIRSTPASS_STATS tmp_frame = first_frame; |
| |
| rc->frames_to_key /= 2; |
| |
| // Reset to the start of the group. |
| reset_fpf_position(&cpi->twopass_frame, start_position); |
| // Rescan to get the correct error data for the forced kf group. |
| for (i = 0; i < rc->frames_to_key; ++i) { |
| if (EOF == input_stats(twopass, &cpi->twopass_frame, &tmp_frame)) break; |
| } |
| p_rc->next_key_frame_forced = 1; |
| } else if ((cpi->twopass_frame.stats_in == |
| twopass->stats_buf_ctx->stats_in_end && |
| is_stat_consumption_stage_twopass(cpi)) || |
| rc->frames_to_key >= kf_cfg->key_freq_max) { |
| p_rc->next_key_frame_forced = 1; |
| } else { |
| p_rc->next_key_frame_forced = 0; |
| } |
| |
| double kf_group_err = 0; |
| for (i = 0; i < rc->frames_to_key; ++i) { |
| const FIRSTPASS_STATS *this_stats = |
| av1_firstpass_info_peek(&twopass->firstpass_info, i); |
| if (this_stats != NULL) { |
| // Accumulate kf group error. |
| kf_group_err += calculate_modified_err_new( |
| frame_info, &firstpass_info->total_stats, this_stats, |
| oxcf->rc_cfg.vbrbias, twopass->modified_error_min, |
| twopass->modified_error_max); |
| ++p_rc->num_stats_used_for_kf_boost; |
| } |
| } |
| |
| // Calculate the number of bits that should be assigned to the kf group. |
| if ((twopass->bits_left > 0 && twopass->modified_error_left > 0.0) || |
| (cpi->ppi->lap_enabled && oxcf->rc_cfg.mode != AOM_Q)) { |
| // Maximum number of bits for a single normal frame (not key frame). |
| const int max_bits = frame_max_bits(rc, oxcf); |
| |
| // Maximum number of bits allocated to the key frame group. |
| int64_t max_grp_bits; |
| |
| if (oxcf->rc_cfg.vbr_corpus_complexity_lap) { |
| kf_group_avg_error = |
| get_kf_group_avg_error(twopass, &cpi->twopass_frame, &first_frame, |
| start_position, rc->frames_to_key); |
| } |
| |
| // Default allocation based on bits left and relative |
| // complexity of the section. |
| twopass->kf_group_bits = |
| get_kf_group_bits(cpi, kf_group_err, kf_group_avg_error); |
| // Clip based on maximum per frame rate defined by the user. |
| max_grp_bits = (int64_t)max_bits * (int64_t)rc->frames_to_key; |
| if (twopass->kf_group_bits > max_grp_bits) |
| twopass->kf_group_bits = max_grp_bits; |
| } else { |
| twopass->kf_group_bits = 0; |
| } |
| twopass->kf_group_bits = AOMMAX(0, twopass->kf_group_bits); |
| |
| if (cpi->ppi->lap_enabled) { |
| // In the case of single pass based on LAP, frames to key may have an |
| // inaccurate value, and hence should be clipped to an appropriate |
| // interval. |
| frames_to_key_clipped = |
| (int)(MAX_KF_BITS_INTERVAL_SINGLE_PASS * cpi->framerate); |
| |
| // This variable calculates the bits allocated to kf_group with a clipped |
| // frames_to_key. |
| if (rc->frames_to_key > frames_to_key_clipped) { |
| kf_group_bits_clipped = |
| (int64_t)((double)twopass->kf_group_bits * frames_to_key_clipped / |
| rc->frames_to_key); |
| } |
| } |
| |
| // Reset the first pass file position. |
| reset_fpf_position(&cpi->twopass_frame, start_position); |
| |
| // Scan through the kf group collating various stats used to determine |
| // how many bits to spend on it. |
| boost_score = get_kf_boost_score(cpi, kf_raw_err, &zero_motion_accumulator, |
| &sr_accumulator, 0); |
| reset_fpf_position(&cpi->twopass_frame, start_position); |
| // Store the zero motion percentage |
| twopass->kf_zeromotion_pct = (int)(zero_motion_accumulator * 100.0); |
| |
| // Calculate a section intra ratio used in setting max loop filter. |
| twopass->section_intra_rating = calculate_section_intra_ratio( |
| start_position, twopass->stats_buf_ctx->stats_in_end, rc->frames_to_key); |
| |
| p_rc->kf_boost = (int)boost_score; |
| |
| if (cpi->ppi->lap_enabled) { |
| if (oxcf->rc_cfg.mode == AOM_Q) { |
| p_rc->kf_boost = get_projected_kf_boost(cpi); |
| } else { |
| // TODO(any): Explore using average frame stats for AOM_Q as well. |
| boost_score = get_kf_boost_score( |
| cpi, kf_raw_err, &zero_motion_accumulator, &sr_accumulator, 1); |
| reset_fpf_position(&cpi->twopass_frame, start_position); |
| p_rc->kf_boost += (int)boost_score; |
| } |
| } |
| |
| // Special case for static / slide show content but don't apply |
| // if the kf group is very short. |
| if ((zero_motion_accumulator > STATIC_KF_GROUP_FLOAT_THRESH) && |
| (rc->frames_to_key > 8)) { |
| p_rc->kf_boost = AOMMAX(p_rc->kf_boost, MIN_STATIC_KF_BOOST); |
| } else { |
| // Apply various clamps for min and max boost |
| p_rc->kf_boost = AOMMAX(p_rc->kf_boost, (rc->frames_to_key * 3)); |
| p_rc->kf_boost = AOMMAX(p_rc->kf_boost, MIN_KF_BOOST); |
| #ifdef STRICT_RC |
| p_rc->kf_boost = AOMMIN(p_rc->kf_boost, MAX_KF_BOOST); |
| #endif |
| } |
| |
| // Work out how many bits to allocate for the key frame itself. |
| // In case of LAP enabled for VBR, if the frames_to_key value is |
| // very high, we calculate the bits based on a clipped value of |
| // frames_to_key. |
| kf_bits = calculate_boost_bits( |
| AOMMIN(rc->frames_to_key, frames_to_key_clipped) - 1, p_rc->kf_boost, |
| AOMMIN(twopass->kf_group_bits, kf_group_bits_clipped)); |
| // printf("kf boost = %d kf_bits = %d kf_zeromotion_pct = %d\n", |
| // p_rc->kf_boost, |
| // kf_bits, twopass->kf_zeromotion_pct); |
| kf_bits = adjust_boost_bits_for_target_level(cpi, rc, kf_bits, |
| twopass->kf_group_bits, 0); |
| |
| twopass->kf_group_bits -= kf_bits; |
| |
| // Save the bits to spend on the key frame. |
| gf_group->bit_allocation[0] = kf_bits; |
| gf_group->update_type[0] = KF_UPDATE; |
| |
| // Note the total error score of the kf group minus the key frame itself. |
| if (cpi->ppi->lap_enabled) |
| // As we don't have enough stats to know the actual error of the group, |
| // we assume the complexity of each frame to be equal to 1, and set the |
| // error as the number of frames in the group(minus the keyframe). |
| twopass->kf_group_error_left = (double)(rc->frames_to_key - 1); |
| else |
| twopass->kf_group_error_left = kf_group_err - kf_mod_err; |
| |
| // Adjust the count of total modified error left. |
| // The count of bits left is adjusted elsewhere based on real coded frame |
| // sizes. |
| twopass->modified_error_left -= kf_group_err; |
| } |
| |
| #define ARF_STATS_OUTPUT 0 |
| #if ARF_STATS_OUTPUT |
| unsigned int arf_count = 0; |
| #endif |
| |
| static int get_section_target_bandwidth(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| RATE_CONTROL *const rc = &cpi->rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| int section_target_bandwidth; |
| const int frames_left = (int)(twopass->stats_buf_ctx->total_stats->count - |
| current_frame->frame_number); |
| if (cpi->ppi->lap_enabled) |
| section_target_bandwidth = (int)rc->avg_frame_bandwidth; |
| else |
| section_target_bandwidth = (int)(twopass->bits_left / frames_left); |
| return section_target_bandwidth; |
| } |
| |
| static INLINE void set_twopass_params_based_on_fp_stats( |
| AV1_COMP *cpi, const FIRSTPASS_STATS *this_frame_ptr) { |
| if (this_frame_ptr == NULL) return; |
| |
| TWO_PASS_FRAME *twopass_frame = &cpi->twopass_frame; |
| // The multiplication by 256 reverses a scaling factor of (>> 8) |
| // applied when combining MB error values for the frame. |
| twopass_frame->mb_av_energy = log1p(this_frame_ptr->intra_error); |
| |
| const FIRSTPASS_STATS *const total_stats = |
| cpi->ppi->twopass.stats_buf_ctx->total_stats; |
| if (is_fp_wavelet_energy_invalid(total_stats) == 0) { |
| twopass_frame->frame_avg_haar_energy = |
| log1p(this_frame_ptr->frame_avg_wavelet_energy); |
| } |
| |
| // Set the frame content type flag. |
| if (this_frame_ptr->intra_skip_pct >= FC_ANIMATION_THRESH) |
| twopass_frame->fr_content_type = FC_GRAPHICS_ANIMATION; |
| else |
| twopass_frame->fr_content_type = FC_NORMAL; |
| } |
| |
| static void process_first_pass_stats(AV1_COMP *cpi, |
| FIRSTPASS_STATS *this_frame) { |
| AV1_COMMON *const cm = &cpi->common; |
| CurrentFrame *const current_frame = &cm->current_frame; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| FIRSTPASS_STATS *total_stats = twopass->stats_buf_ctx->total_stats; |
| |
| if (cpi->oxcf.rc_cfg.mode != AOM_Q && current_frame->frame_number == 0 && |
| cpi->gf_frame_index == 0 && total_stats && |
| twopass->stats_buf_ctx->total_left_stats) { |
| if (cpi->ppi->lap_enabled) { |
| /* |
| * Accumulate total_stats using available limited number of stats, |
| * and assign it to total_left_stats. |
| */ |
| *twopass->stats_buf_ctx->total_left_stats = *total_stats; |
| } |
| // Special case code for first frame. |
| const int section_target_bandwidth = get_section_target_bandwidth(cpi); |
| const double section_length = |
| twopass->stats_buf_ctx->total_left_stats->count; |
| const double section_error = |
| twopass->stats_buf_ctx->total_left_stats->coded_error / section_length; |
| const double section_intra_skip = |
| twopass->stats_buf_ctx->total_left_stats->intra_skip_pct / |
| section_length; |
| const double section_inactive_zone = |
| (twopass->stats_buf_ctx->total_left_stats->inactive_zone_rows * 2) / |
| ((double)cm->mi_params.mb_rows * section_length); |
| const int tmp_q = get_twopass_worst_quality( |
| cpi, section_error, section_intra_skip + section_inactive_zone, |
| section_target_bandwidth); |
| |
| rc->active_worst_quality = tmp_q; |
| rc->ni_av_qi = tmp_q; |
| p_rc->last_q[INTER_FRAME] = tmp_q; |
| p_rc->avg_q = av1_convert_qindex_to_q(tmp_q, cm->seq_params->bit_depth); |
| p_rc->avg_frame_qindex[INTER_FRAME] = tmp_q; |
| p_rc->last_q[KEY_FRAME] = (tmp_q + cpi->oxcf.rc_cfg.best_allowed_q) / 2; |
| p_rc->avg_frame_qindex[KEY_FRAME] = p_rc->last_q[KEY_FRAME]; |
| } |
| |
| if (cpi->twopass_frame.stats_in < twopass->stats_buf_ctx->stats_in_end) { |
| *this_frame = *cpi->twopass_frame.stats_in; |
| ++cpi->twopass_frame.stats_in; |
| } |
| set_twopass_params_based_on_fp_stats(cpi, this_frame); |
| } |
| |
| static void setup_target_rate(AV1_COMP *cpi) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| |
| int target_rate = gf_group->bit_allocation[cpi->gf_frame_index]; |
| |
| if (has_no_stats_stage(cpi)) { |
| av1_rc_set_frame_target(cpi, target_rate, cpi->common.width, |
| cpi->common.height); |
| } |
| |
| rc->base_frame_target = target_rate; |
| } |
| |
| void av1_mark_flashes(FIRSTPASS_STATS *first_stats, |
| FIRSTPASS_STATS *last_stats) { |
| FIRSTPASS_STATS *this_stats = first_stats, *next_stats; |
| while (this_stats < last_stats - 1) { |
| next_stats = this_stats + 1; |
| if (next_stats->pcnt_second_ref > next_stats->pcnt_inter && |
| next_stats->pcnt_second_ref >= 0.5) { |
| this_stats->is_flash = 1; |
| } else { |
| this_stats->is_flash = 0; |
| } |
| this_stats = next_stats; |
| } |
| // We always treat the last one as none flash. |
| if (last_stats - 1 >= first_stats) { |
| (last_stats - 1)->is_flash = 0; |
| } |
| } |
| |
| // Smooth-out the noise variance so it is more stable |
| // Returns 0 on success, -1 on memory allocation failure. |
| // TODO(bohanli): Use a better low-pass filter than averaging |
| static int smooth_filter_noise(FIRSTPASS_STATS *first_stats, |
| FIRSTPASS_STATS *last_stats) { |
| int len = (int)(last_stats - first_stats); |
| double *smooth_noise = aom_malloc(len * sizeof(*smooth_noise)); |
| if (!smooth_noise) return -1; |
| |
| for (int i = 0; i < len; i++) { |
| double total_noise = 0; |
| double total_wt = 0; |
| for (int j = -HALF_FILT_LEN; j <= HALF_FILT_LEN; j++) { |
| int idx = AOMMIN(AOMMAX(i + j, 0), len - 1); |
| if (first_stats[idx].is_flash) continue; |
| |
| total_noise += first_stats[idx].noise_var; |
| total_wt += 1.0; |
| } |
| if (total_wt > 0.01) { |
| total_noise /= total_wt; |
| } else { |
| total_noise = first_stats[i].noise_var; |
| } |
| smooth_noise[i] = total_noise; |
| } |
| |
| for (int i = 0; i < len; i++) { |
| first_stats[i].noise_var = smooth_noise[i]; |
| } |
| |
| aom_free(smooth_noise); |
| return 0; |
| } |
| |
| // Estimate the noise variance of each frame from the first pass stats |
| void av1_estimate_noise(FIRSTPASS_STATS *first_stats, |
| FIRSTPASS_STATS *last_stats, |
| struct aom_internal_error_info *error_info) { |
| FIRSTPASS_STATS *this_stats, *next_stats; |
| double C1, C2, C3, noise; |
| for (this_stats = first_stats + 2; this_stats < last_stats; this_stats++) { |
| this_stats->noise_var = 0.0; |
| // flashes tend to have high correlation of innovations, so ignore them. |
| if (this_stats->is_flash || (this_stats - 1)->is_flash || |
| (this_stats - 2)->is_flash) |
| continue; |
| |
| C1 = (this_stats - 1)->intra_error * |
| (this_stats->intra_error - this_stats->coded_error); |
| C2 = (this_stats - 2)->intra_error * |
| ((this_stats - 1)->intra_error - (this_stats - 1)->coded_error); |
| C3 = (this_stats - 2)->intra_error * |
| (this_stats->intra_error - this_stats->sr_coded_error); |
| if (C1 <= 0 || C2 <= 0 || C3 <= 0) continue; |
| C1 = sqrt(C1); |
| C2 = sqrt(C2); |
| C3 = sqrt(C3); |
| |
| noise = (this_stats - 1)->intra_error - C1 * C2 / C3; |
| noise = AOMMAX(noise, 0.01); |
| this_stats->noise_var = noise; |
| } |
| |
| // Copy noise from the neighbor if the noise value is not trustworthy |
| for (this_stats = first_stats + 2; this_stats < last_stats; this_stats++) { |
| if (this_stats->is_flash || (this_stats - 1)->is_flash || |
| (this_stats - 2)->is_flash) |
| continue; |
| if (this_stats->noise_var < 1.0) { |
| int found = 0; |
| // TODO(bohanli): consider expanding to two directions at the same time |
| for (next_stats = this_stats + 1; next_stats < last_stats; next_stats++) { |
| if (next_stats->is_flash || (next_stats - 1)->is_flash || |
| (next_stats - 2)->is_flash || next_stats->noise_var < 1.0) |
| continue; |
| found = 1; |
| this_stats->noise_var = next_stats->noise_var; |
| break; |
| } |
| if (found) continue; |
| for (next_stats = this_stats - 1; next_stats >= first_stats + 2; |
| next_stats--) { |
| if (next_stats->is_flash || (next_stats - 1)->is_flash || |
| (next_stats - 2)->is_flash || next_stats->noise_var < 1.0) |
| continue; |
| this_stats->noise_var = next_stats->noise_var; |
| break; |
| } |
| } |
| } |
| |
| // copy the noise if this is a flash |
| for (this_stats = first_stats + 2; this_stats < last_stats; this_stats++) { |
| if (this_stats->is_flash || (this_stats - 1)->is_flash || |
| (this_stats - 2)->is_flash) { |
| int found = 0; |
| for (next_stats = this_stats + 1; next_stats < last_stats; next_stats++) { |
| if (next_stats->is_flash || (next_stats - 1)->is_flash || |
| (next_stats - 2)->is_flash) |
| continue; |
| found = 1; |
| this_stats->noise_var = next_stats->noise_var; |
| break; |
| } |
| if (found) continue; |
| for (next_stats = this_stats - 1; next_stats >= first_stats + 2; |
| next_stats--) { |
| if (next_stats->is_flash || (next_stats - 1)->is_flash || |
| (next_stats - 2)->is_flash) |
| continue; |
| this_stats->noise_var = next_stats->noise_var; |
| break; |
| } |
| } |
| } |
| |
| // if we are at the first 2 frames, copy the noise |
| for (this_stats = first_stats; |
| this_stats < first_stats + 2 && (first_stats + 2) < last_stats; |
| this_stats++) { |
| this_stats->noise_var = (first_stats + 2)->noise_var; |
| } |
| |
| if (smooth_filter_noise(first_stats, last_stats) == -1) { |
| aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, |
| "Error allocating buffers in smooth_filter_noise()"); |
| } |
| } |
| |
| // Estimate correlation coefficient of each frame with its previous frame. |
| void av1_estimate_coeff(FIRSTPASS_STATS *first_stats, |
| FIRSTPASS_STATS *last_stats) { |
| FIRSTPASS_STATS *this_stats; |
| for (this_stats = first_stats + 1; this_stats < last_stats; this_stats++) { |
| const double C = |
| sqrt(AOMMAX((this_stats - 1)->intra_error * |
| (this_stats->intra_error - this_stats->coded_error), |
| 0.001)); |
| const double cor_coeff = |
| C / |
| AOMMAX((this_stats - 1)->intra_error - this_stats->noise_var, 0.001); |
| |
| this_stats->cor_coeff = |
| cor_coeff * |
| sqrt(AOMMAX((this_stats - 1)->intra_error - this_stats->noise_var, |
| 0.001) / |
| AOMMAX(this_stats->intra_error - this_stats->noise_var, 0.001)); |
| // clip correlation coefficient. |
| this_stats->cor_coeff = AOMMIN(AOMMAX(this_stats->cor_coeff, 0), 1); |
| } |
| first_stats->cor_coeff = 1.0; |
| } |
| |
| void av1_get_second_pass_params(AV1_COMP *cpi, |
| EncodeFrameParams *const frame_params, |
| unsigned int frame_flags) { |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| GF_GROUP *const gf_group = &cpi->ppi->gf_group; |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| |
| if (cpi->use_ducky_encode && |
| cpi->ducky_encode_info.frame_info.gop_mode == DUCKY_ENCODE_GOP_MODE_RCL) { |
| frame_params->frame_type = gf_group->frame_type[cpi->gf_frame_index]; |
| frame_params->show_frame = |
| !(gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE || |
| gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE); |
| if (cpi->gf_frame_index == 0) { |
| av1_tf_info_reset(&cpi->ppi->tf_info); |
| av1_tf_info_filtering(&cpi->ppi->tf_info, cpi, gf_group); |
| } |
| return; |
| } |
| |
| const FIRSTPASS_STATS *const start_pos = cpi->twopass_frame.stats_in; |
| int update_total_stats = 0; |
| |
| if (is_stat_consumption_stage(cpi) && !cpi->twopass_frame.stats_in) return; |
| |
| // Check forced key frames. |
| const int frames_to_next_forced_key = detect_app_forced_key(cpi); |
| if (frames_to_next_forced_key == 0) { |
| rc->frames_to_key = 0; |
| frame_flags &= FRAMEFLAGS_KEY; |
| } else if (frames_to_next_forced_key > 0 && |
| frames_to_next_forced_key < rc->frames_to_key) { |
| rc->frames_to_key = frames_to_next_forced_key; |
| } |
| |
| assert(cpi->twopass_frame.stats_in != NULL); |
| const int update_type = gf_group->update_type[cpi->gf_frame_index]; |
| frame_params->frame_type = gf_group->frame_type[cpi->gf_frame_index]; |
| |
| if (cpi->gf_frame_index < gf_group->size && !(frame_flags & FRAMEFLAGS_KEY)) { |
| assert(cpi->gf_frame_index < gf_group->size); |
| |
| setup_target_rate(cpi); |
| |
| // If this is an arf frame then we dont want to read the stats file or |
| // advance the input pointer as we already have what we need. |
| if (update_type == ARF_UPDATE || update_type == INTNL_ARF_UPDATE) { |
| const FIRSTPASS_STATS *const this_frame_ptr = |
| read_frame_stats(twopass, &cpi->twopass_frame, |
| gf_group->arf_src_offset[cpi->gf_frame_index]); |
| set_twopass_params_based_on_fp_stats(cpi, this_frame_ptr); |
| return; |
| } |
| } |
| |
| if (oxcf->rc_cfg.mode == AOM_Q) |
| rc->active_worst_quality = oxcf->rc_cfg.cq_level; |
| |
| if (cpi->gf_frame_index == gf_group->size) { |
| if (cpi->ppi->lap_enabled && cpi->ppi->p_rc.enable_scenecut_detection) { |
| const int num_frames_to_detect_scenecut = MAX_GF_LENGTH_LAP + 1; |
| const int frames_to_key = define_kf_interval( |
| cpi, &twopass->firstpass_info, num_frames_to_detect_scenecut, |
| /*search_start_idx=*/0); |
| if (frames_to_key != -1) |
| rc->frames_to_key = AOMMIN(rc->frames_to_key, frames_to_key); |
| } |
| } |
| |
| FIRSTPASS_STATS this_frame; |
| av1_zero(this_frame); |
| // call above fn |
| if (is_stat_consumption_stage(cpi)) { |
| if (cpi->gf_frame_index < gf_group->size || rc->frames_to_key == 0) { |
| process_first_pass_stats(cpi, &this_frame); |
| update_total_stats = 1; |
| } |
| } else { |
| rc->active_worst_quality = oxcf->rc_cfg.cq_level; |
| } |
| |
| // Keyframe and section processing. |
| FIRSTPASS_STATS this_frame_copy; |
| this_frame_copy = this_frame; |
| if (rc->frames_to_key <= 0) { |
| assert(rc->frames_to_key == 0); |
| // Define next KF group and assign bits to it. |
| frame_params->frame_type = KEY_FRAME; |
| find_next_key_frame(cpi, &this_frame); |
| this_frame = this_frame_copy; |
| } |
| |
| if (rc->frames_to_fwd_kf <= 0) |
| rc->frames_to_fwd_kf = oxcf->kf_cfg.fwd_kf_dist; |
| |
| // Define a new GF/ARF group. (Should always enter here for key frames). |
| if (cpi->gf_frame_index == gf_group->size) { |
| av1_tf_info_reset(&cpi->ppi->tf_info); |
| #if CONFIG_BITRATE_ACCURACY && !CONFIG_THREE_PASS |
| vbr_rc_reset_gop_data(&cpi->vbr_rc_info); |
| #endif // CONFIG_BITRATE_ACCURACY |
| int max_gop_length = |
| (oxcf->gf_cfg.lag_in_frames >= 32) |
| ? AOMMIN(MAX_GF_INTERVAL, oxcf->gf_cfg.lag_in_frames - |
| oxcf->algo_cfg.arnr_max_frames / 2) |
| : MAX_GF_LENGTH_LAP; |
| |
| // Handle forward key frame when enabled. |
| if (oxcf->kf_cfg.fwd_kf_dist > 0) |
| max_gop_length = AOMMIN(rc->frames_to_fwd_kf + 1, max_gop_length); |
| |
| // Use the provided gop size in low delay setting |
| if (oxcf->gf_cfg.lag_in_frames == 0) max_gop_length = rc->max_gf_interval; |
| |
| // Limit the max gop length for the last gop in 1 pass setting. |
| max_gop_length = AOMMIN(max_gop_length, rc->frames_to_key); |
| |
| // Identify regions if needed. |
| // TODO(bohanli): identify regions for all stats available. |
| if (rc->frames_since_key == 0 || rc->frames_since_key == 1 || |
| (p_rc->frames_till_regions_update - rc->frames_since_key < |
| rc->frames_to_key && |
| p_rc->frames_till_regions_update - rc->frames_since_key < |
| max_gop_length + 1)) { |
| // how many frames we can analyze from this frame |
| int rest_frames = |
| AOMMIN(rc->frames_to_key, MAX_FIRSTPASS_ANALYSIS_FRAMES); |
| rest_frames = |
| AOMMIN(rest_frames, (int)(twopass->stats_buf_ctx->stats_in_end - |
| cpi->twopass_frame.stats_in + |
| (rc->frames_since_key == 0))); |
| p_rc->frames_till_regions_update = rest_frames; |
| |
| int ret; |
| if (cpi->ppi->lap_enabled) { |
| av1_mark_flashes(twopass->stats_buf_ctx->stats_in_start, |
| twopass->stats_buf_ctx->stats_in_end); |
| av1_estimate_noise(twopass->stats_buf_ctx->stats_in_start, |
| twopass->stats_buf_ctx->stats_in_end, |
| cpi->common.error); |
| av1_estimate_coeff(twopass->stats_buf_ctx->stats_in_start, |
| twopass->stats_buf_ctx->stats_in_end); |
| ret = identify_regions(cpi->twopass_frame.stats_in, rest_frames, |
| (rc->frames_since_key == 0), p_rc->regions, |
| &p_rc->num_regions); |
| } else { |
| ret = identify_regions( |
| cpi->twopass_frame.stats_in - (rc->frames_since_key == 0), |
| rest_frames, 0, p_rc->regions, &p_rc->num_regions); |
| } |
| if (ret == -1) { |
| aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR, |
| "Error allocating buffers in identify_regions"); |
| } |
| } |
| |
| int cur_region_idx = |
| find_regions_index(p_rc->regions, p_rc->num_regions, |
| rc->frames_since_key - p_rc->regions_offset); |
| if ((cur_region_idx >= 0 && |
| p_rc->regions[cur_region_idx].type == SCENECUT_REGION) || |
| rc->frames_since_key == 0) { |
| // If we start from a scenecut, then the last GOP's arf boost is not |
| // needed for this GOP. |
| cpi->ppi->gf_state.arf_gf_boost_lst = 0; |
| } |
| |
| int need_gf_len = 1; |
| if (cpi->third_pass_ctx && oxcf->pass == AOM_RC_THIRD_PASS) { |
| // set up bitstream to read |
| if (!cpi->third_pass_ctx->input_file_name && oxcf->two_pass_output) { |
| cpi->third_pass_ctx->input_file_name = oxcf->two_pass_output; |
| } |
| av1_open_second_pass_log(cpi, 1); |
| THIRD_PASS_GOP_INFO *gop_info = &cpi->third_pass_ctx->gop_info; |
| // Read in GOP information from the second pass file. |
| av1_read_second_pass_gop_info(cpi->second_pass_log_stream, gop_info, |
| cpi->common.error); |
| #if CONFIG_BITRATE_ACCURACY |
| TPL_INFO *tpl_info; |
| AOM_CHECK_MEM_ERROR(cpi->common.error, tpl_info, |
| aom_malloc(sizeof(*tpl_info))); |
| av1_read_tpl_info(tpl_info, cpi->second_pass_log_stream, |
| cpi->common.error); |
| aom_free(tpl_info); |
| #if CONFIG_THREE_PASS |
| // TODO(angiebird): Put this part into a func |
| cpi->vbr_rc_info.cur_gop_idx++; |
| #endif // CONFIG_THREE_PASS |
| #endif // CONFIG_BITRATE_ACCURACY |
| // Read in third_pass_info from the bitstream. |
| av1_set_gop_third_pass(cpi->third_pass_ctx); |
| // Read in per-frame info from second-pass encoding |
| av1_read_second_pass_per_frame_info( |
| cpi->second_pass_log_stream, cpi->third_pass_ctx->frame_info, |
| gop_info->num_frames, cpi->common.error); |
| |
| p_rc->cur_gf_index = 0; |
| p_rc->gf_intervals[0] = cpi->third_pass_ctx->gop_info.gf_length; |
| need_gf_len = 0; |
| } |
| |
| if (need_gf_len) { |
| // If we cannot obtain GF group length from second_pass_file |
| // TODO(jingning): Resolve the redundant calls here. |
| if (rc->intervals_till_gf_calculate_due == 0 || 1) { |
| calculate_gf_length(cpi, max_gop_length, MAX_NUM_GF_INTERVALS); |
| } |
| |
| if (max_gop_length > 16 && oxcf->algo_cfg.enable_tpl_model && |
| oxcf->gf_cfg.lag_in_frames >= 32 && |
| cpi->sf.tpl_sf.gop_length_decision_method != 3) { |
| int this_idx = rc->frames_since_key + |
| p_rc->gf_intervals[p_rc->cur_gf_index] - |
| p_rc->regions_offset - 1; |
| int this_region = |
| find_regions_index(p_rc->regions, p_rc->num_regions, this_idx); |
| int next_region = |
| find_regions_index(p_rc->regions, p_rc->num_regions, this_idx + 1); |
| // TODO(angiebird): Figure out why this_region and next_region are -1 in |
| // unit test like AltRefFramePresenceTestLarge (aomedia:3134) |
| int is_last_scenecut = |
| p_rc->gf_intervals[p_rc->cur_gf_index] >= rc->frames_to_key || |
| (this_region != -1 && |
| p_rc->regions[this_region].type == SCENECUT_REGION) || |
| (next_region != -1 && |
| p_rc->regions[next_region].type == SCENECUT_REGION); |
| |
| int ori_gf_int = p_rc->gf_intervals[p_rc->cur_gf_index]; |
| |
| if (p_rc->gf_intervals[p_rc->cur_gf_index] > 16 && |
| rc->min_gf_interval <= 16) { |
| // The calculate_gf_length function is previously used with |
| // max_gop_length = 32 with look-ahead gf intervals. |
| define_gf_group(cpi, frame_params, 0); |
| av1_tf_info_filtering(&cpi->ppi->tf_info, cpi, gf_group); |
| this_frame = this_frame_copy; |
| |
| if (is_shorter_gf_interval_better(cpi, frame_params)) { |
| // A shorter gf interval is better. |
| // TODO(jingning): Remove redundant computations here. |
| max_gop_length = 16; |
| calculate_gf_length(cpi, max_gop_length, 1); |
| if (is_last_scenecut && |
| (ori_gf_int - p_rc->gf_intervals[p_rc->cur_gf_index] < 4)) { |
| p_rc->gf_intervals[p_rc->cur_gf_index] = ori_gf_int; |
| } |
| } |
| } |
| } |
| } |
| |
| define_gf_group(cpi, frame_params, 0); |
| |
| if (gf_group->update_type[cpi->gf_frame_index] != ARF_UPDATE && |
| rc->frames_since_key > 0) |
| process_first_pass_stats(cpi, &this_frame); |
| |
| define_gf_group(cpi, frame_params, 1); |
| |
| // write gop info if needed for third pass. Per-frame info is written after |
| // each frame is encoded. |
| av1_write_second_pass_gop_info(cpi); |
| |
| av1_tf_info_filtering(&cpi->ppi->tf_info, cpi, gf_group); |
| |
| rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; |
| assert(cpi->gf_frame_index == 0); |
| #if ARF_STATS_OUTPUT |
| { |
| FILE *fpfile; |
| fpfile = fopen("arf.stt", "a"); |
| ++arf_count; |
| fprintf(fpfile, "%10d %10d %10d %10d %10d\n", |
| cpi->common.current_frame.frame_number, |
| rc->frames_till_gf_update_due, cpi->ppi->p_rc.kf_boost, arf_count, |
| p_rc->gfu_boost); |
| |
| fclose(fpfile); |
| } |
| #endif |
| } |
| assert(cpi->gf_frame_index < gf_group->size); |
| |
| if (gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE || |
| gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE) { |
| reset_fpf_position(&cpi->twopass_frame, start_pos); |
| |
| const FIRSTPASS_STATS *const this_frame_ptr = |
| read_frame_stats(twopass, &cpi->twopass_frame, |
| gf_group->arf_src_offset[cpi->gf_frame_index]); |
| set_twopass_params_based_on_fp_stats(cpi, this_frame_ptr); |
| } else { |
| // Back up this frame's stats for updating total stats during post encode. |
| cpi->twopass_frame.this_frame = update_total_stats ? start_pos : NULL; |
| } |
| |
| frame_params->frame_type = gf_group->frame_type[cpi->gf_frame_index]; |
| setup_target_rate(cpi); |
| } |
| |
| void av1_init_second_pass(AV1_COMP *cpi) { |
| const AV1EncoderConfig *const oxcf = &cpi->oxcf; |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| FRAME_INFO *const frame_info = &cpi->frame_info; |
| double frame_rate; |
| FIRSTPASS_STATS *stats; |
| |
| if (!twopass->stats_buf_ctx->stats_in_end) return; |
| |
| av1_mark_flashes(twopass->stats_buf_ctx->stats_in_start, |
| twopass->stats_buf_ctx->stats_in_end); |
| av1_estimate_noise(twopass->stats_buf_ctx->stats_in_start, |
| twopass->stats_buf_ctx->stats_in_end, cpi->common.error); |
| av1_estimate_coeff(twopass->stats_buf_ctx->stats_in_start, |
| twopass->stats_buf_ctx->stats_in_end); |
| |
| stats = twopass->stats_buf_ctx->total_stats; |
| |
| *stats = *twopass->stats_buf_ctx->stats_in_end; |
| *twopass->stats_buf_ctx->total_left_stats = *stats; |
| |
| frame_rate = 10000000.0 * stats->count / stats->duration; |
| // Each frame can have a different duration, as the frame rate in the source |
| // isn't guaranteed to be constant. The frame rate prior to the first frame |
| // encoded in the second pass is a guess. However, the sum duration is not. |
| // It is calculated based on the actual durations of all frames from the |
| // first pass. |
| av1_new_framerate(cpi, frame_rate); |
| twopass->bits_left = |
| (int64_t)(stats->duration * oxcf->rc_cfg.target_bandwidth / 10000000.0); |
| |
| #if CONFIG_BITRATE_ACCURACY |
| av1_vbr_rc_init(&cpi->vbr_rc_info, twopass->bits_left, |
| (int)round(stats->count)); |
| #endif |
| |
| #if CONFIG_RATECTRL_LOG |
| rc_log_init(&cpi->rc_log); |
| #endif |
| |
| // This variable monitors how far behind the second ref update is lagging. |
| twopass->sr_update_lag = 1; |
| |
| // Scan the first pass file and calculate a modified total error based upon |
| // the bias/power function used to allocate bits. |
| { |
| const double avg_error = |
| stats->coded_error / DOUBLE_DIVIDE_CHECK(stats->count); |
| const FIRSTPASS_STATS *s = cpi->twopass_frame.stats_in; |
| double modified_error_total = 0.0; |
| twopass->modified_error_min = |
| (avg_error * oxcf->rc_cfg.vbrmin_section) / 100; |
| twopass->modified_error_max = |
| (avg_error * oxcf->rc_cfg.vbrmax_section) / 100; |
| while (s < twopass->stats_buf_ctx->stats_in_end) { |
| modified_error_total += |
| calculate_modified_err(frame_info, twopass, oxcf, s); |
| ++s; |
| } |
| twopass->modified_error_left = modified_error_total; |
| } |
| |
| // Reset the vbr bits off target counters |
| cpi->ppi->p_rc.vbr_bits_off_target = 0; |
| cpi->ppi->p_rc.vbr_bits_off_target_fast = 0; |
| |
| cpi->ppi->p_rc.rate_error_estimate = 0; |
| |
| // Static sequence monitor variables. |
| twopass->kf_zeromotion_pct = 100; |
| twopass->last_kfgroup_zeromotion_pct = 100; |
| |
| // Initialize bits per macro_block estimate correction factor. |
| twopass->bpm_factor = 1.0; |
| // Initialize actual and target bits counters for ARF groups so that |
| // at the start we have a neutral bpm adjustment. |
| twopass->rolling_arf_group_target_bits = 1; |
| twopass->rolling_arf_group_actual_bits = 1; |
| } |
| |
| void av1_init_single_pass_lap(AV1_COMP *cpi) { |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| |
| if (!twopass->stats_buf_ctx->stats_in_end) return; |
| |
| // This variable monitors how far behind the second ref update is lagging. |
| twopass->sr_update_lag = 1; |
| |
| twopass->bits_left = 0; |
| twopass->modified_error_min = 0.0; |
| twopass->modified_error_max = 0.0; |
| twopass->modified_error_left = 0.0; |
| |
| // Reset the vbr bits off target counters |
| cpi->ppi->p_rc.vbr_bits_off_target = 0; |
| cpi->ppi->p_rc.vbr_bits_off_target_fast = 0; |
| |
| cpi->ppi->p_rc.rate_error_estimate = 0; |
| |
| // Static sequence monitor variables. |
| twopass->kf_zeromotion_pct = 100; |
| twopass->last_kfgroup_zeromotion_pct = 100; |
| |
| // Initialize bits per macro_block estimate correction factor. |
| twopass->bpm_factor = 1.0; |
| // Initialize actual and target bits counters for ARF groups so that |
| // at the start we have a neutral bpm adjustment. |
| twopass->rolling_arf_group_target_bits = 1; |
| twopass->rolling_arf_group_actual_bits = 1; |
| } |
| |
| #define MINQ_ADJ_LIMIT 48 |
| #define MINQ_ADJ_LIMIT_CQ 20 |
| #define HIGH_UNDERSHOOT_RATIO 2 |
| void av1_twopass_postencode_update(AV1_COMP *cpi) { |
| TWO_PASS *const twopass = &cpi->ppi->twopass; |
| RATE_CONTROL *const rc = &cpi->rc; |
| PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; |
| const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; |
| |
| // Increment the stats_in pointer. |
| if (is_stat_consumption_stage(cpi) && |
| !(cpi->use_ducky_encode && cpi->ducky_encode_info.frame_info.gop_mode == |
| DUCKY_ENCODE_GOP_MODE_RCL) && |
| (cpi->gf_frame_index < cpi->ppi->gf_group.size || |
| rc->frames_to_key == 0)) { |
| const int update_type = cpi->ppi->gf_group.update_type[cpi->gf_frame_index]; |
| if (update_type != ARF_UPDATE && update_type != INTNL_ARF_UPDATE) { |
| FIRSTPASS_STATS this_frame; |
| assert(cpi->twopass_frame.stats_in > |
| twopass->stats_buf_ctx->stats_in_start); |
| --cpi->twopass_frame.stats_in; |
| if (cpi->ppi->lap_enabled) { |
| input_stats_lap(twopass, &cpi->twopass_frame, &this_frame); |
| } else { |
| input_stats(twopass, &cpi->twopass_frame, &this_frame); |
| } |
| } else if (cpi->ppi->lap_enabled) { |
| cpi->twopass_frame.stats_in = twopass->stats_buf_ctx->stats_in_start; |
| } |
| } |
| |
| // VBR correction is done through rc->vbr_bits_off_target. Based on the |
| // sign of this value, a limited % adjustment is made to the target rate |
| // of subsequent frames, to try and push it back towards 0. This method |
| // is designed to prevent extreme behaviour at the end of a clip |
| // or group of frames. |
| p_rc->vbr_bits_off_target += rc->base_frame_target - rc->projected_frame_size; |
| twopass->bits_left = AOMMAX(twopass->bits_left - rc->base_frame_target, 0); |
| |
| if (cpi->do_update_vbr_bits_off_target_fast) { |
| // Subtract current frame's fast_extra_bits. |
| p_rc->vbr_bits_off_target_fast -= rc->frame_level_fast_extra_bits; |
| rc->frame_level_fast_extra_bits = 0; |
| } |
| |
| // Target vs actual bits for this arf group. |
| twopass->rolling_arf_group_target_bits += rc->base_frame_target; |
| twopass->rolling_arf_group_actual_bits += rc->projected_frame_size; |
| |
| // Calculate the pct rc error. |
| if (p_rc->total_actual_bits) { |
| p_rc->rate_error_estimate = |
| (int)((p_rc->vbr_bits_off_target * 100) / p_rc->total_actual_bits); |
| p_rc->rate_error_estimate = clamp(p_rc->rate_error_estimate, -100, 100); |
| } else { |
| p_rc->rate_error_estimate = 0; |
| } |
| |
| #if CONFIG_FPMT_TEST |
| /* The variables temp_vbr_bits_off_target, temp_bits_left, |
| * temp_rolling_arf_group_target_bits, temp_rolling_arf_group_actual_bits |
| * temp_rate_error_estimate are introduced for quality simulation purpose, |
| * it retains the value previous to the parallel encode frames. The |
| * variables are updated based on the update flag. |
| * |
| * If there exist show_existing_frames between parallel frames, then to |
| * retain the temp state do not update it. */ |
| const int simulate_parallel_frame = |
| cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; |
| int show_existing_between_parallel_frames = |
| (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == |
| INTNL_OVERLAY_UPDATE && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); |
| |
| if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && |
| simulate_parallel_frame) { |
| cpi->ppi->p_rc.temp_vbr_bits_off_target = p_rc->vbr_bits_off_target; |
| cpi->ppi->p_rc.temp_bits_left = twopass->bits_left; |
| cpi->ppi->p_rc.temp_rolling_arf_group_target_bits = |
| twopass->rolling_arf_group_target_bits; |
| cpi->ppi->p_rc.temp_rolling_arf_group_actual_bits = |
| twopass->rolling_arf_group_actual_bits; |
| cpi->ppi->p_rc.temp_rate_error_estimate = p_rc->rate_error_estimate; |
| } |
| #endif |
| // Update the active best quality pyramid. |
| if (!rc->is_src_frame_alt_ref) { |
| const int pyramid_level = |
| cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index]; |
| int i; |
| for (i = pyramid_level; i <= MAX_ARF_LAYERS; ++i) { |
| p_rc->active_best_quality[i] = cpi->common.quant_params.base_qindex; |
| #if CONFIG_TUNE_VMAF |
| if (cpi->vmaf_info.original_qindex != -1 && |
| (cpi->oxcf.tune_cfg.tuning >= AOM_TUNE_VMAF_WITH_PREPROCESSING && |
| cpi->oxcf.tune_cfg.tuning <= AOM_TUNE_VMAF_NEG_MAX_GAIN)) { |
| p_rc->active_best_quality[i] = cpi->vmaf_info.original_qindex; |
| } |
| #endif |
| } |
| } |
| |
| #if 0 |
| { |
| AV1_COMMON *cm = &cpi->common; |
| FILE *fpfile; |
| fpfile = fopen("details.stt", "a"); |
| fprintf(fpfile, |
| "%10d %10d %10d %10" PRId64 " %10" PRId64 |
| " %10d %10d %10d %10.4lf %10.4lf %10.4lf %10.4lf\n", |
| cm->current_frame.frame_number, rc->base_frame_target, |
| rc->projected_frame_size, rc->total_actual_bits, |
| rc->vbr_bits_off_target, p_rc->rate_error_estimate, |
| twopass->rolling_arf_group_target_bits, |
| twopass->rolling_arf_group_actual_bits, |
| (double)twopass->rolling_arf_group_actual_bits / |
| (double)twopass->rolling_arf_group_target_bits, |
| twopass->bpm_factor, |
| av1_convert_qindex_to_q(cpi->common.quant_params.base_qindex, |
| cm->seq_params->bit_depth), |
| av1_convert_qindex_to_q(rc->active_worst_quality, |
| cm->seq_params->bit_depth)); |
| fclose(fpfile); |
| } |
| #endif |
| |
| if (cpi->common.current_frame.frame_type != KEY_FRAME) { |
| twopass->kf_group_bits -= rc->base_frame_target; |
| twopass->last_kfgroup_zeromotion_pct = twopass->kf_zeromotion_pct; |
| } |
| twopass->kf_group_bits = AOMMAX(twopass->kf_group_bits, 0); |
| |
| // If the rate control is drifting consider adjustment to min or maxq. |
| if ((rc_cfg->mode != AOM_Q) && !cpi->rc.is_src_frame_alt_ref && |
| (p_rc->rolling_target_bits > 0)) { |
| int minq_adj_limit; |
| int maxq_adj_limit; |
| minq_adj_limit = |
| (rc_cfg->mode == AOM_CQ ? MINQ_ADJ_LIMIT_CQ : MINQ_ADJ_LIMIT); |
| maxq_adj_limit = (rc->worst_quality - rc->active_worst_quality); |
| |
| // Undershoot |
| if ((rc_cfg->under_shoot_pct < 100) && |
| (p_rc->rolling_actual_bits < p_rc->rolling_target_bits)) { |
| int pct_error = |
| ((p_rc->rolling_target_bits - p_rc->rolling_actual_bits) * 100) / |
| p_rc->rolling_target_bits; |
| |
| if ((pct_error >= rc_cfg->under_shoot_pct) && |
| (p_rc->rate_error_estimate > 0)) { |
| twopass->extend_minq += 1; |
| twopass->extend_maxq -= 1; |
| } |
| |
| // Overshoot |
| } else if ((rc_cfg->over_shoot_pct < 100) && |
| (p_rc->rolling_actual_bits > p_rc->rolling_target_bits)) { |
| int pct_error = |
| ((p_rc->rolling_actual_bits - p_rc->rolling_target_bits) * 100) / |
| p_rc->rolling_target_bits; |
| |
| pct_error = clamp(pct_error, 0, 100); |
| if ((pct_error >= rc_cfg->over_shoot_pct) && |
| (p_rc->rate_error_estimate < 0)) { |
| twopass->extend_maxq += 1; |
| twopass->extend_minq -= 1; |
| } |
| } |
| twopass->extend_minq = |
| clamp(twopass->extend_minq, -minq_adj_limit, minq_adj_limit); |
| twopass->extend_maxq = clamp(twopass->extend_maxq, 0, maxq_adj_limit); |
| |
| // If there is a big and undexpected undershoot then feed the extra |
| // bits back in quickly. One situation where this may happen is if a |
| // frame is unexpectedly almost perfectly predicted by the ARF or GF |
| // but not very well predcited by the previous frame. |
| if (!frame_is_kf_gf_arf(cpi) && !cpi->rc.is_src_frame_alt_ref) { |
| int fast_extra_thresh = rc->base_frame_target / HIGH_UNDERSHOOT_RATIO; |
| if (rc->projected_frame_size < fast_extra_thresh) { |
| p_rc->vbr_bits_off_target_fast += |
| fast_extra_thresh - rc->projected_frame_size; |
| p_rc->vbr_bits_off_target_fast = AOMMIN(p_rc->vbr_bits_off_target_fast, |
| (4 * rc->avg_frame_bandwidth)); |
| } |
| } |
| |
| #if CONFIG_FPMT_TEST |
| if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && |
| simulate_parallel_frame) { |
| cpi->ppi->p_rc.temp_vbr_bits_off_target_fast = |
| p_rc->vbr_bits_off_target_fast; |
| cpi->ppi->p_rc.temp_extend_minq = twopass->extend_minq; |
| cpi->ppi->p_rc.temp_extend_maxq = twopass->extend_maxq; |
| } |
| #endif |
| } |
| |
| // Update the frame probabilities obtained from parallel encode frames |
| FrameProbInfo *const frame_probs = &cpi->ppi->frame_probs; |
| #if CONFIG_FPMT_TEST |
| /* The variable temp_active_best_quality is introduced only for quality |
| * simulation purpose, it retains the value previous to the parallel |
| * encode frames. The variable is updated based on the update flag. |
| * |
| * If there exist show_existing_frames between parallel frames, then to |
| * retain the temp state do not update it. */ |
| if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && |
| simulate_parallel_frame) { |
| int i; |
| const int pyramid_level = |
| cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index]; |
| if (!rc->is_src_frame_alt_ref) { |
| for (i = pyramid_level; i <= MAX_ARF_LAYERS; ++i) |
| cpi->ppi->p_rc.temp_active_best_quality[i] = |
| p_rc->active_best_quality[i]; |
| } |
| } |
| |
| // Update the frame probabilities obtained from parallel encode frames |
| FrameProbInfo *const temp_frame_probs_simulation = |
| simulate_parallel_frame ? &cpi->ppi->temp_frame_probs_simulation |
| : frame_probs; |
| FrameProbInfo *const temp_frame_probs = |
| simulate_parallel_frame ? &cpi->ppi->temp_frame_probs : NULL; |
| #endif |
| int i, j, loop; |
| // Sequentially do average on temp_frame_probs_simulation which holds |
| // probabilities of last frame before parallel encode |
| for (loop = 0; loop <= cpi->num_frame_recode; loop++) { |
| // Sequentially update tx_type_probs |
| if (cpi->do_update_frame_probs_txtype[loop] && |
| (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0)) { |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| for (i = 0; i < TX_SIZES_ALL; i++) { |
| int left = 1024; |
| |
| for (j = TX_TYPES - 1; j >= 0; j--) { |
| const int new_prob = |
| cpi->frame_new_probs[loop].tx_type_probs[update_type][i][j]; |
| #if CONFIG_FPMT_TEST |
| int prob = |
| (temp_frame_probs_simulation->tx_type_probs[update_type][i][j] + |
| new_prob) >> |
| 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| temp_frame_probs_simulation->tx_type_probs[update_type][i][j] = prob; |
| #else |
| int prob = |
| (frame_probs->tx_type_probs[update_type][i][j] + new_prob) >> 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| frame_probs->tx_type_probs[update_type][i][j] = prob; |
| #endif |
| } |
| } |
| } |
| |
| // Sequentially update obmc_probs |
| if (cpi->do_update_frame_probs_obmc[loop] && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| |
| for (i = 0; i < BLOCK_SIZES_ALL; i++) { |
| const int new_prob = |
| cpi->frame_new_probs[loop].obmc_probs[update_type][i]; |
| #if CONFIG_FPMT_TEST |
| temp_frame_probs_simulation->obmc_probs[update_type][i] = |
| (temp_frame_probs_simulation->obmc_probs[update_type][i] + |
| new_prob) >> |
| 1; |
| #else |
| frame_probs->obmc_probs[update_type][i] = |
| (frame_probs->obmc_probs[update_type][i] + new_prob) >> 1; |
| #endif |
| } |
| } |
| |
| // Sequentially update warped_probs |
| if (cpi->do_update_frame_probs_warp[loop] && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| const int new_prob = cpi->frame_new_probs[loop].warped_probs[update_type]; |
| #if CONFIG_FPMT_TEST |
| temp_frame_probs_simulation->warped_probs[update_type] = |
| (temp_frame_probs_simulation->warped_probs[update_type] + new_prob) >> |
| 1; |
| #else |
| frame_probs->warped_probs[update_type] = |
| (frame_probs->warped_probs[update_type] + new_prob) >> 1; |
| #endif |
| } |
| |
| // Sequentially update switchable_interp_probs |
| if (cpi->do_update_frame_probs_interpfilter[loop] && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { |
| const FRAME_UPDATE_TYPE update_type = |
| get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); |
| |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| int left = 1536; |
| |
| for (j = SWITCHABLE_FILTERS - 1; j >= 0; j--) { |
| const int new_prob = cpi->frame_new_probs[loop] |
| .switchable_interp_probs[update_type][i][j]; |
| #if CONFIG_FPMT_TEST |
| int prob = (temp_frame_probs_simulation |
| ->switchable_interp_probs[update_type][i][j] + |
| new_prob) >> |
| 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| |
| temp_frame_probs_simulation |
| ->switchable_interp_probs[update_type][i][j] = prob; |
| #else |
| int prob = (frame_probs->switchable_interp_probs[update_type][i][j] + |
| new_prob) >> |
| 1; |
| left -= prob; |
| if (j == 0) prob += left; |
| frame_probs->switchable_interp_probs[update_type][i][j] = prob; |
| #endif |
| } |
| } |
| } |
| } |
| |
| #if CONFIG_FPMT_TEST |
| // Copying temp_frame_probs_simulation to temp_frame_probs based on |
| // the flag |
| if (cpi->do_frame_data_update && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && |
| simulate_parallel_frame) { |
| for (int update_type_idx = 0; update_type_idx < FRAME_UPDATE_TYPES; |
| update_type_idx++) { |
| for (i = 0; i < BLOCK_SIZES_ALL; i++) { |
| temp_frame_probs->obmc_probs[update_type_idx][i] = |
| temp_frame_probs_simulation->obmc_probs[update_type_idx][i]; |
| } |
| temp_frame_probs->warped_probs[update_type_idx] = |
| temp_frame_probs_simulation->warped_probs[update_type_idx]; |
| for (i = 0; i < TX_SIZES_ALL; i++) { |
| for (j = 0; j < TX_TYPES; j++) { |
| temp_frame_probs->tx_type_probs[update_type_idx][i][j] = |
| temp_frame_probs_simulation->tx_type_probs[update_type_idx][i][j]; |
| } |
| } |
| for (i = 0; i < SWITCHABLE_FILTER_CONTEXTS; i++) { |
| for (j = 0; j < SWITCHABLE_FILTERS; j++) { |
| temp_frame_probs->switchable_interp_probs[update_type_idx][i][j] = |
| temp_frame_probs_simulation |
| ->switchable_interp_probs[update_type_idx][i][j]; |
| } |
| } |
| } |
| } |
| #endif |
| // Update framerate obtained from parallel encode frames |
| if (cpi->common.show_frame && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) |
| cpi->framerate = cpi->new_framerate; |
| #if CONFIG_FPMT_TEST |
| // SIMULATION PURPOSE |
| int show_existing_between_parallel_frames_cndn = |
| (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == |
| INTNL_OVERLAY_UPDATE && |
| cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); |
| if (cpi->common.show_frame && !show_existing_between_parallel_frames_cndn && |
| cpi->do_frame_data_update && simulate_parallel_frame) |
| cpi->temp_framerate = cpi->framerate; |
| #endif |
| } |