blob: 10ee0354f7763a1c0f3cd42fef3cf22c99437fa4 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <stdio.h>
#include <limits.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/aom_scale_rtcd.h"
#include "aom/aom_integer.h"
#include "aom_dsp/blend.h"
#include "av1/common/blockd.h"
#include "av1/common/mvref_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/onyxc_int.h"
#include "av1/common/obmc.h"
#include "av1/encoder/reconinter_enc.h"
static INLINE void calc_subpel_params(
MACROBLOCKD *xd, const struct scale_factors *const sf, const MV mv,
int plane, const int pre_x, const int pre_y, int x, int y,
struct buf_2d *const pre_buf, uint8_t **pre, SubpelParams *subpel_params,
int bw, int bh) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int ssx = pd->subsampling_x;
int ssy = pd->subsampling_y;
int orig_pos_y = (pre_y + y) << SUBPEL_BITS;
orig_pos_y += mv.row * (1 << (1 - ssy));
int orig_pos_x = (pre_x + x) << SUBPEL_BITS;
orig_pos_x += mv.col * (1 << (1 - ssx));
int pos_y = sf->scale_value_y(orig_pos_y, sf);
int pos_x = sf->scale_value_x(orig_pos_x, sf);
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int top = -AOM_LEFT_TOP_MARGIN_SCALED(ssy);
const int left = -AOM_LEFT_TOP_MARGIN_SCALED(ssx);
const int bottom = (pre_buf->height + AOM_INTERP_EXTEND)
<< SCALE_SUBPEL_BITS;
const int right = (pre_buf->width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, top, bottom);
pos_x = clamp(pos_x, left, right);
*pre = pre_buf->buf0 + (pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride +
(pos_x >> SCALE_SUBPEL_BITS);
subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params->xs = sf->x_step_q4;
subpel_params->ys = sf->y_step_q4;
} else {
const MV mv_q4 = clamp_mv_to_umv_border_sb(
xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y);
subpel_params->xs = subpel_params->ys = SCALE_SUBPEL_SHIFTS;
subpel_params->subpel_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS;
subpel_params->subpel_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS;
*pre = pre_buf->buf + (y + (mv_q4.row >> SUBPEL_BITS)) * pre_buf->stride +
(x + (mv_q4.col >> SUBPEL_BITS));
}
}
static INLINE void build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd,
int plane, const MB_MODE_INFO *mi,
int build_for_obmc, int bw, int bh,
int mi_x, int mi_y) {
struct macroblockd_plane *const pd = &xd->plane[plane];
int is_compound = has_second_ref(mi);
int ref;
const int is_intrabc = is_intrabc_block(mi);
assert(IMPLIES(is_intrabc, !is_compound));
int is_global[2] = { 0, 0 };
for (ref = 0; ref < 1 + is_compound; ++ref) {
const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
is_global[ref] = is_global_mv_block(mi, wm->wmtype);
}
const BLOCK_SIZE bsize = mi->sb_type;
const int ss_x = pd->subsampling_x;
const int ss_y = pd->subsampling_y;
int sub8x8_inter = (block_size_wide[bsize] < 8 && ss_x) ||
(block_size_high[bsize] < 8 && ss_y);
if (is_intrabc) sub8x8_inter = 0;
// For sub8x8 chroma blocks, we may be covering more than one luma block's
// worth of pixels. Thus (mi_x, mi_y) may not be the correct coordinates for
// the top-left corner of the prediction source - the correct top-left corner
// is at (pre_x, pre_y).
const int row_start =
(block_size_high[bsize] == 4) && ss_y && !build_for_obmc ? -1 : 0;
const int col_start =
(block_size_wide[bsize] == 4) && ss_x && !build_for_obmc ? -1 : 0;
const int pre_x = (mi_x + MI_SIZE * col_start) >> ss_x;
const int pre_y = (mi_y + MI_SIZE * row_start) >> ss_y;
sub8x8_inter = sub8x8_inter && !build_for_obmc;
if (sub8x8_inter) {
for (int row = row_start; row <= 0 && sub8x8_inter; ++row) {
for (int col = col_start; col <= 0; ++col) {
const MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
if (!is_inter_block(this_mbmi)) sub8x8_inter = 0;
if (is_intrabc_block(this_mbmi)) sub8x8_inter = 0;
}
}
}
if (sub8x8_inter) {
// block size
const int b4_w = block_size_wide[bsize] >> ss_x;
const int b4_h = block_size_high[bsize] >> ss_y;
const BLOCK_SIZE plane_bsize = scale_chroma_bsize(bsize, ss_x, ss_y);
const int b8_w = block_size_wide[plane_bsize] >> ss_x;
const int b8_h = block_size_high[plane_bsize] >> ss_y;
assert(!is_compound);
const struct buf_2d orig_pred_buf[2] = { pd->pre[0], pd->pre[1] };
int row = row_start;
for (int y = 0; y < b8_h; y += b4_h) {
int col = col_start;
for (int x = 0; x < b8_w; x += b4_w) {
MB_MODE_INFO *this_mbmi = xd->mi[row * xd->mi_stride + col];
is_compound = has_second_ref(this_mbmi);
int tmp_dst_stride = 8;
assert(bw < 8 || bh < 8);
ConvolveParams conv_params = get_conv_params_no_round(
0, plane, xd->tmp_conv_dst, tmp_dst_stride, is_compound, xd->bd);
conv_params.use_jnt_comp_avg = 0;
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *dst = dst_buf->buf + dst_buf->stride * y + x;
ref = 0;
const RefBuffer *ref_buf =
&cm->frame_refs[this_mbmi->ref_frame[ref] - LAST_FRAME];
pd->pre[ref].buf0 =
(plane == 1) ? ref_buf->buf->u_buffer : ref_buf->buf->v_buffer;
pd->pre[ref].buf =
pd->pre[ref].buf0 + scaled_buffer_offset(pre_x, pre_y,
ref_buf->buf->uv_stride,
&ref_buf->sf);
pd->pre[ref].width = ref_buf->buf->uv_crop_width;
pd->pre[ref].height = ref_buf->buf->uv_crop_height;
pd->pre[ref].stride = ref_buf->buf->uv_stride;
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : &ref_buf->sf;
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
const MV mv = this_mbmi->mv[ref].as_mv;
uint8_t *pre;
SubpelParams subpel_params;
WarpTypesAllowed warp_types;
warp_types.global_warp_allowed = is_global[ref];
warp_types.local_warp_allowed = this_mbmi->motion_mode == WARPED_CAUSAL;
calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre,
&subpel_params, bw, bh);
conv_params.do_average = ref;
if (is_masked_compound_type(mi->interinter_comp.type)) {
// masked compound type has its own average mechanism
conv_params.do_average = 0;
}
av1_make_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf,
b4_w, b4_h, &conv_params, this_mbmi->interp_filters, &warp_types,
(mi_x >> pd->subsampling_x) + x, (mi_y >> pd->subsampling_y) + y,
plane, ref, mi, build_for_obmc, xd, cm->allow_warped_motion);
++col;
}
++row;
}
for (ref = 0; ref < 2; ++ref) pd->pre[ref] = orig_pred_buf[ref];
return;
}
{
ConvolveParams conv_params = get_conv_params_no_round(
0, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd);
av1_jnt_comp_weight_assign(cm, mi, 0, &conv_params.fwd_offset,
&conv_params.bck_offset,
&conv_params.use_jnt_comp_avg, is_compound);
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf;
for (ref = 0; ref < 1 + is_compound; ++ref) {
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref];
const MV mv = mi->mv[ref].as_mv;
uint8_t *pre;
SubpelParams subpel_params;
calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, 0, 0, pre_buf, &pre,
&subpel_params, bw, bh);
WarpTypesAllowed warp_types;
warp_types.global_warp_allowed = is_global[ref];
warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL;
if (ref && is_masked_compound_type(mi->interinter_comp.type)) {
// masked compound type has its own average mechanism
conv_params.do_average = 0;
av1_make_masked_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw,
bh, &conv_params, mi->interp_filters, plane, &warp_types,
mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, ref, xd,
cm->allow_warped_motion);
} else {
conv_params.do_average = ref;
av1_make_inter_predictor(
pre, pre_buf->stride, dst, dst_buf->stride, &subpel_params, sf, bw,
bh, &conv_params, mi->interp_filters, &warp_types,
mi_x >> pd->subsampling_x, mi_y >> pd->subsampling_y, plane, ref,
mi, build_for_obmc, xd, cm->allow_warped_motion);
}
}
}
}
static void build_inter_predictors_for_planes(const AV1_COMMON *cm,
MACROBLOCKD *xd, BLOCK_SIZE bsize,
int mi_row, int mi_col,
int plane_from, int plane_to) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
for (plane = plane_from; plane <= plane_to; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
const int bw = pd->width;
const int bh = pd->height;
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
build_inter_predictors(cm, xd, plane, xd->mi[0], 0, bw, bh, mi_x, mi_y);
}
}
void av1_build_inter_predictors_sby(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, ctx, bsize, 0);
}
void av1_build_inter_predictors_sbuv(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
for (int plane_idx = 1; plane_idx < MAX_MB_PLANE; plane_idx++) {
av1_build_inter_predictors_sbp(cm, xd, mi_row, mi_col, ctx, bsize,
plane_idx);
}
}
void av1_build_inter_predictors_sbp(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BUFFER_SET *ctx,
BLOCK_SIZE bsize, int plane_idx) {
build_inter_predictors_for_planes(cm, xd, bsize, mi_row, mi_col, plane_idx,
plane_idx);
if (is_interintra_pred(xd->mi[0])) {
BUFFER_SET default_ctx = { { NULL, NULL, NULL }, { 0, 0, 0 } };
if (!ctx) {
default_ctx.plane[plane_idx] = xd->plane[plane_idx].dst.buf;
default_ctx.stride[plane_idx] = xd->plane[plane_idx].dst.stride;
ctx = &default_ctx;
}
av1_build_interintra_predictors_sbp(cm, xd, xd->plane[plane_idx].dst.buf,
xd->plane[plane_idx].dst.stride, ctx,
plane_idx, bsize);
}
}
void av1_build_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col, BUFFER_SET *ctx,
BLOCK_SIZE bsize) {
const int num_planes = av1_num_planes(cm);
av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize);
if (num_planes > 1)
av1_build_inter_predictors_sbuv(cm, xd, mi_row, mi_col, ctx, bsize);
}
// TODO(sarahparker):
// av1_build_inter_predictor should be combined with
// av1_make_inter_predictor
void av1_build_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, const MV *src_mv,
const struct scale_factors *sf, int w, int h,
ConvolveParams *conv_params,
InterpFilters interp_filters,
const WarpTypesAllowed *warp_types, int p_col,
int p_row, int plane, int ref,
enum mv_precision precision, int x, int y,
const MACROBLOCKD *xd, int can_use_previous) {
const int is_q4 = precision == MV_PRECISION_Q4;
const MV mv_q4 = { is_q4 ? src_mv->row : src_mv->row * 2,
is_q4 ? src_mv->col : src_mv->col * 2 };
MV32 mv = av1_scale_mv(&mv_q4, x, y, sf);
mv.col += SCALE_EXTRA_OFF;
mv.row += SCALE_EXTRA_OFF;
const SubpelParams subpel_params = { sf->x_step_q4, sf->y_step_q4,
mv.col & SCALE_SUBPEL_MASK,
mv.row & SCALE_SUBPEL_MASK };
src += (mv.row >> SCALE_SUBPEL_BITS) * src_stride +
(mv.col >> SCALE_SUBPEL_BITS);
av1_make_inter_predictor(src, src_stride, dst, dst_stride, &subpel_params, sf,
w, h, conv_params, interp_filters, warp_types, p_col,
p_row, plane, ref, xd->mi[0], 0, xd,
can_use_previous);
}
static INLINE void build_prediction_by_above_pred(
MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) {
struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
const int above_mi_col = ctxt->mi_col + rel_mi_col;
int mi_x, mi_y;
MB_MODE_INFO backup_mbmi = *above_mbmi;
av1_setup_build_prediction_by_above_pred(xd, rel_mi_col, above_mi_width,
&backup_mbmi, ctxt, num_planes);
mi_x = above_mi_col << MI_SIZE_LOG2;
mi_y = ctxt->mi_row << MI_SIZE_LOG2;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
for (int j = 0; j < num_planes; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
int bw = (above_mi_width * MI_SIZE) >> pd->subsampling_x;
int bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4,
block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1));
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 0)) continue;
build_inter_predictors(ctxt->cm, xd, j, &backup_mbmi, 1, bw, bh, mi_x,
mi_y);
}
}
void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
if (!xd->up_available) return;
// Adjust mb_to_bottom_edge to have the correct value for the OBMC
// prediction block. This is half the height of the original block,
// except for 128-wide blocks, where we only use a height of 32.
int this_height = xd->n4_h * MI_SIZE;
int pred_height = AOMMIN(this_height / 2, 32);
xd->mb_to_bottom_edge += (this_height - pred_height) * 8;
struct build_prediction_ctxt ctxt = { cm, mi_row,
mi_col, tmp_buf,
tmp_width, tmp_height,
tmp_stride, xd->mb_to_right_edge };
BLOCK_SIZE bsize = xd->mi[0]->sb_type;
foreach_overlappable_nb_above(cm, xd, mi_col,
max_neighbor_obmc[mi_size_wide_log2[bsize]],
build_prediction_by_above_pred, &ctxt);
xd->mb_to_left_edge = -((mi_col * MI_SIZE) * 8);
xd->mb_to_right_edge = ctxt.mb_to_far_edge;
xd->mb_to_bottom_edge -= (this_height - pred_height) * 8;
}
static INLINE void build_prediction_by_left_pred(
MACROBLOCKD *xd, int rel_mi_row, uint8_t left_mi_height,
MB_MODE_INFO *left_mbmi, void *fun_ctxt, const int num_planes) {
struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt;
const int left_mi_row = ctxt->mi_row + rel_mi_row;
int mi_x, mi_y;
MB_MODE_INFO backup_mbmi = *left_mbmi;
av1_setup_build_prediction_by_left_pred(xd, rel_mi_row, left_mi_height,
&backup_mbmi, ctxt, num_planes);
mi_x = ctxt->mi_col << MI_SIZE_LOG2;
mi_y = left_mi_row << MI_SIZE_LOG2;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
for (int j = 0; j < num_planes; ++j) {
const struct macroblockd_plane *pd = &xd->plane[j];
int bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4,
block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1));
int bh = (left_mi_height << MI_SIZE_LOG2) >> pd->subsampling_y;
if (av1_skip_u4x4_pred_in_obmc(bsize, pd, 1)) continue;
build_inter_predictors(ctxt->cm, xd, j, &backup_mbmi, 1, bw, bh, mi_x,
mi_y);
}
}
void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col,
uint8_t *tmp_buf[MAX_MB_PLANE],
int tmp_width[MAX_MB_PLANE],
int tmp_height[MAX_MB_PLANE],
int tmp_stride[MAX_MB_PLANE]) {
if (!xd->left_available) return;
// Adjust mb_to_right_edge to have the correct value for the OBMC
// prediction block. This is half the width of the original block,
// except for 128-wide blocks, where we only use a width of 32.
int this_width = xd->n4_w * MI_SIZE;
int pred_width = AOMMIN(this_width / 2, 32);
xd->mb_to_right_edge += (this_width - pred_width) * 8;
struct build_prediction_ctxt ctxt = { cm, mi_row,
mi_col, tmp_buf,
tmp_width, tmp_height,
tmp_stride, xd->mb_to_bottom_edge };
BLOCK_SIZE bsize = xd->mi[0]->sb_type;
foreach_overlappable_nb_left(cm, xd, mi_row,
max_neighbor_obmc[mi_size_high_log2[bsize]],
build_prediction_by_left_pred, &ctxt);
xd->mb_to_top_edge = -((mi_row * MI_SIZE) * 8);
xd->mb_to_right_edge -= (this_width - pred_width) * 8;
xd->mb_to_bottom_edge = ctxt.mb_to_far_edge;
}
void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd,
int mi_row, int mi_col) {
const int num_planes = av1_num_planes(cm);
uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE];
int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) {
int len = sizeof(uint16_t);
dst_buf1[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0]);
dst_buf1[1] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * len);
dst_buf1[2] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2 * len);
dst_buf2[0] = CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1]);
dst_buf2[1] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * len);
dst_buf2[2] =
CONVERT_TO_BYTEPTR(xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2 * len);
} else {
dst_buf1[0] = xd->tmp_obmc_bufs[0];
dst_buf1[1] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE;
dst_buf1[2] = xd->tmp_obmc_bufs[0] + MAX_SB_SQUARE * 2;
dst_buf2[0] = xd->tmp_obmc_bufs[1];
dst_buf2[1] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE;
dst_buf2[2] = xd->tmp_obmc_bufs[1] + MAX_SB_SQUARE * 2;
}
av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, dst_buf1,
dst_width1, dst_height1, dst_stride1);
av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, dst_buf2,
dst_width2, dst_height2, dst_stride2);
av1_setup_dst_planes(xd->plane, xd->mi[0]->sb_type, get_frame_new_buffer(cm),
mi_row, mi_col, 0, num_planes);
av1_build_obmc_inter_prediction(cm, xd, mi_row, mi_col, dst_buf1, dst_stride1,
dst_buf2, dst_stride2);
}
// Builds the inter-predictor for the single ref case
// for use in the encoder to search the wedges efficiently.
static void build_inter_predictors_single_buf(MACROBLOCKD *xd, int plane,
int bw, int bh, int x, int y,
int w, int h, int mi_x, int mi_y,
int ref, uint8_t *const ext_dst,
int ext_dst_stride,
int can_use_previous) {
struct macroblockd_plane *const pd = &xd->plane[plane];
const MB_MODE_INFO *mi = xd->mi[0];
const struct scale_factors *const sf = &xd->block_refs[ref]->sf;
struct buf_2d *const pre_buf = &pd->pre[ref];
uint8_t *const dst = get_buf_by_bd(xd, ext_dst) + ext_dst_stride * y + x;
const MV mv = mi->mv[ref].as_mv;
ConvolveParams conv_params = get_conv_params(0, plane, xd->bd);
WarpTypesAllowed warp_types;
const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]];
warp_types.global_warp_allowed = is_global_mv_block(mi, wm->wmtype);
warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL;
const int pre_x = (mi_x) >> pd->subsampling_x;
const int pre_y = (mi_y) >> pd->subsampling_y;
uint8_t *pre;
SubpelParams subpel_params;
calc_subpel_params(xd, sf, mv, plane, pre_x, pre_y, x, y, pre_buf, &pre,
&subpel_params, bw, bh);
av1_make_inter_predictor(pre, pre_buf->stride, dst, ext_dst_stride,
&subpel_params, sf, w, h, &conv_params,
mi->interp_filters, &warp_types, pre_x + x,
pre_y + y, plane, ref, mi, 0, xd, can_use_previous);
}
void av1_build_inter_predictors_for_planes_single_buf(
MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int mi_row,
int mi_col, int ref, uint8_t *ext_dst[3], int ext_dst_stride[3],
int can_use_previous) {
int plane;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(
bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
build_inter_predictors_single_buf(xd, plane, bw, bh, 0, 0, bw, bh, mi_x,
mi_y, ref, ext_dst[plane],
ext_dst_stride[plane], can_use_previous);
}
}
static void build_masked_compound(
uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride,
const uint8_t *src1, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << mi_size_high_log2[sb_type]) == h;
const int subw = (2 << mi_size_wide_log2[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride,
mask, block_size_wide[sb_type], w, h, subw, subh);
}
static void build_masked_compound_highbd(
uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride,
const uint8_t *src1_8, int src1_stride,
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h,
int w, int bd) {
// Derive subsampling from h and w passed in. May be refactored to
// pass in subsampling factors directly.
const int subh = (2 << mi_size_high_log2[sb_type]) == h;
const int subw = (2 << mi_size_wide_log2[sb_type]) == w;
const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type);
// const uint8_t *mask =
// av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type);
aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8,
src1_stride, mask, block_size_wide[sb_type], w, h,
subw, subh, bd);
}
static void build_wedge_inter_predictor_from_buf(
MACROBLOCKD *xd, int plane, int x, int y, int w, int h, uint8_t *ext_dst0,
int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) {
MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_compound = has_second_ref(mbmi);
MACROBLOCKD_PLANE *const pd = &xd->plane[plane];
struct buf_2d *const dst_buf = &pd->dst;
uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x;
mbmi->interinter_comp.seg_mask = xd->seg_mask;
const INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_comp;
if (is_compound && is_masked_compound_type(comp_data->type)) {
if (!plane && comp_data->type == COMPOUND_DIFFWTD) {
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
av1_build_compound_diffwtd_mask_highbd(
comp_data->seg_mask, comp_data->mask_type,
CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, h, w, xd->bd);
else
av1_build_compound_diffwtd_mask(
comp_data->seg_mask, comp_data->mask_type, ext_dst0,
ext_dst_stride0, ext_dst1, ext_dst_stride1, h, w);
}
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
build_masked_compound_highbd(
dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data,
mbmi->sb_type, h, w, xd->bd);
else
build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0,
ext_dst1, ext_dst_stride1, comp_data, mbmi->sb_type,
h, w);
} else {
if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
aom_highbd_convolve_copy(CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0,
dst, dst_buf->stride, NULL, 0, NULL, 0, w, h,
xd->bd);
else
aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, NULL,
0, NULL, 0, w, h);
}
}
void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize,
int plane_from, int plane_to,
uint8_t *ext_dst0[3],
int ext_dst_stride0[3],
uint8_t *ext_dst1[3],
int ext_dst_stride1[3]) {
int plane;
for (plane = plane_from; plane <= plane_to; ++plane) {
const BLOCK_SIZE plane_bsize = get_plane_block_size(
bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
build_wedge_inter_predictor_from_buf(
xd, plane, 0, 0, bw, bh, ext_dst0[plane], ext_dst_stride0[plane],
ext_dst1[plane], ext_dst_stride1[plane]);
}
}