| /* | 
 |  * Copyright (c) 2017, Alliance for Open Media. All rights reserved | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #ifndef AOM_AOM_DSP_MATHUTILS_H_ | 
 | #define AOM_AOM_DSP_MATHUTILS_H_ | 
 |  | 
 | #include <assert.h> | 
 | #include <math.h> | 
 | #include <string.h> | 
 |  | 
 | #include "aom_dsp/aom_dsp_common.h" | 
 | #include "aom_mem/aom_mem.h" | 
 |  | 
 | static const double TINY_NEAR_ZERO = 1.0E-16; | 
 |  | 
 | // Solves Ax = b, where x and b are column vectors of size nx1 and A is nxn | 
 | static INLINE int linsolve(int n, double *A, int stride, double *b, double *x) { | 
 |   int i, j, k; | 
 |   double c; | 
 |   // Forward elimination | 
 |   for (k = 0; k < n - 1; k++) { | 
 |     // Bring the largest magnitude to the diagonal position | 
 |     for (i = n - 1; i > k; i--) { | 
 |       if (fabs(A[(i - 1) * stride + k]) < fabs(A[i * stride + k])) { | 
 |         for (j = 0; j < n; j++) { | 
 |           c = A[i * stride + j]; | 
 |           A[i * stride + j] = A[(i - 1) * stride + j]; | 
 |           A[(i - 1) * stride + j] = c; | 
 |         } | 
 |         c = b[i]; | 
 |         b[i] = b[i - 1]; | 
 |         b[i - 1] = c; | 
 |       } | 
 |     } | 
 |     for (i = k; i < n - 1; i++) { | 
 |       if (fabs(A[k * stride + k]) < TINY_NEAR_ZERO) return 0; | 
 |       c = A[(i + 1) * stride + k] / A[k * stride + k]; | 
 |       for (j = 0; j < n; j++) A[(i + 1) * stride + j] -= c * A[k * stride + j]; | 
 |       b[i + 1] -= c * b[k]; | 
 |     } | 
 |   } | 
 |   // Backward substitution | 
 |   for (i = n - 1; i >= 0; i--) { | 
 |     if (fabs(A[i * stride + i]) < TINY_NEAR_ZERO) return 0; | 
 |     c = 0; | 
 |     for (j = i + 1; j <= n - 1; j++) c += A[i * stride + j] * x[j]; | 
 |     x[i] = (b[i] - c) / A[i * stride + i]; | 
 |   } | 
 |  | 
 |   return 1; | 
 | } | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // Least-squares | 
 | // Solves for n-dim x in a least squares sense to minimize |Ax - b|^2 | 
 | // The solution is simply x = (A'A)^-1 A'b or simply the solution for | 
 | // the system: A'A x = A'b | 
 | static INLINE int least_squares(int n, double *A, int rows, int stride, | 
 |                                 double *b, double *scratch, double *x) { | 
 |   int i, j, k; | 
 |   double *scratch_ = NULL; | 
 |   double *AtA, *Atb; | 
 |   if (!scratch) { | 
 |     scratch_ = (double *)aom_malloc(sizeof(*scratch) * n * (n + 1)); | 
 |     if (!scratch_) return 0; | 
 |     scratch = scratch_; | 
 |   } | 
 |   AtA = scratch; | 
 |   Atb = scratch + n * n; | 
 |  | 
 |   for (i = 0; i < n; ++i) { | 
 |     for (j = i; j < n; ++j) { | 
 |       AtA[i * n + j] = 0.0; | 
 |       for (k = 0; k < rows; ++k) | 
 |         AtA[i * n + j] += A[k * stride + i] * A[k * stride + j]; | 
 |       AtA[j * n + i] = AtA[i * n + j]; | 
 |     } | 
 |     Atb[i] = 0; | 
 |     for (k = 0; k < rows; ++k) Atb[i] += A[k * stride + i] * b[k]; | 
 |   } | 
 |   int ret = linsolve(n, AtA, n, Atb, x); | 
 |   aom_free(scratch_); | 
 |   return ret; | 
 | } | 
 |  | 
 | // Matrix multiply | 
 | static INLINE void multiply_mat(const double *m1, const double *m2, double *res, | 
 |                                 const int m1_rows, const int inner_dim, | 
 |                                 const int m2_cols) { | 
 |   double sum; | 
 |  | 
 |   int row, col, inner; | 
 |   for (row = 0; row < m1_rows; ++row) { | 
 |     for (col = 0; col < m2_cols; ++col) { | 
 |       sum = 0; | 
 |       for (inner = 0; inner < inner_dim; ++inner) | 
 |         sum += m1[row * inner_dim + inner] * m2[inner * m2_cols + col]; | 
 |       *(res++) = sum; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #endif  // AOM_AOM_DSP_MATHUTILS_H_ |