| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <limits.h> |
| #include <stdio.h> |
| |
| #include "aom/aom_encoder.h" |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/binary_codes_writer.h" |
| #include "aom_dsp/bitwriter_buffer.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/bitops.h" |
| #include "aom_ports/mem_ops.h" |
| #include "aom_ports/system_state.h" |
| #if CONFIG_BITSTREAM_DEBUG |
| #include "aom_util/debug_util.h" |
| #endif // CONFIG_BITSTREAM_DEBUG |
| |
| #include "av1/common/cdef.h" |
| #include "av1/common/cfl.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/entropymv.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/tile_common.h" |
| |
| #include "av1/encoder/bitstream.h" |
| #include "av1/encoder/cost.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/palette.h" |
| #include "av1/encoder/segmentation.h" |
| #include "av1/encoder/tokenize.h" |
| |
| #define ENC_MISMATCH_DEBUG 0 |
| |
| static INLINE void write_uniform(aom_writer *w, int n, int v) { |
| const int l = get_unsigned_bits(n); |
| const int m = (1 << l) - n; |
| if (l == 0) return; |
| if (v < m) { |
| aom_write_literal(w, v, l - 1); |
| } else { |
| aom_write_literal(w, m + ((v - m) >> 1), l - 1); |
| aom_write_literal(w, (v - m) & 1, 1); |
| } |
| } |
| |
| static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, |
| const RestorationUnitInfo *rui, |
| aom_writer *const w, int plane, |
| FRAME_COUNTS *counts); |
| |
| static void write_intra_y_mode_kf(FRAME_CONTEXT *frame_ctx, |
| const MB_MODE_INFO *mi, |
| const MB_MODE_INFO *above_mi, |
| const MB_MODE_INFO *left_mi, |
| PREDICTION_MODE mode, aom_writer *w) { |
| assert(!is_intrabc_block(mi)); |
| (void)mi; |
| aom_write_symbol(w, mode, get_y_mode_cdf(frame_ctx, above_mi, left_mi), |
| INTRA_MODES); |
| } |
| |
| static void write_inter_mode(aom_writer *w, PREDICTION_MODE mode, |
| FRAME_CONTEXT *ec_ctx, const int16_t mode_ctx) { |
| const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; |
| |
| aom_write_symbol(w, mode != NEWMV, ec_ctx->newmv_cdf[newmv_ctx], 2); |
| |
| if (mode != NEWMV) { |
| const int16_t zeromv_ctx = |
| (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| aom_write_symbol(w, mode != GLOBALMV, ec_ctx->zeromv_cdf[zeromv_ctx], 2); |
| |
| if (mode != GLOBALMV) { |
| int16_t refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| aom_write_symbol(w, mode != NEARESTMV, ec_ctx->refmv_cdf[refmv_ctx], 2); |
| } |
| } |
| } |
| |
| static void write_drl_idx(FRAME_CONTEXT *ec_ctx, const MB_MODE_INFO *mbmi, |
| const MB_MODE_INFO_EXT *mbmi_ext, aom_writer *w) { |
| uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| |
| assert(mbmi->ref_mv_idx < 3); |
| |
| const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; |
| if (new_mv) { |
| int idx; |
| for (idx = 0; idx < 2; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); |
| |
| aom_write_symbol(w, mbmi->ref_mv_idx != idx, ec_ctx->drl_cdf[drl_ctx], |
| 2); |
| if (mbmi->ref_mv_idx == idx) return; |
| } |
| } |
| return; |
| } |
| |
| if (have_nearmv_in_inter_mode(mbmi->mode)) { |
| int idx; |
| // TODO(jingning): Temporary solution to compensate the NEARESTMV offset. |
| for (idx = 1; idx < 3; ++idx) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { |
| uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx); |
| aom_write_symbol(w, mbmi->ref_mv_idx != (idx - 1), |
| ec_ctx->drl_cdf[drl_ctx], 2); |
| if (mbmi->ref_mv_idx == (idx - 1)) return; |
| } |
| } |
| return; |
| } |
| } |
| |
| static void write_inter_compound_mode(MACROBLOCKD *xd, aom_writer *w, |
| PREDICTION_MODE mode, |
| const int16_t mode_ctx) { |
| assert(is_inter_compound_mode(mode)); |
| aom_write_symbol(w, INTER_COMPOUND_OFFSET(mode), |
| xd->tile_ctx->inter_compound_mode_cdf[mode_ctx], |
| INTER_COMPOUND_MODES); |
| } |
| |
| static void write_tx_size_vartx(MACROBLOCKD *xd, const MB_MODE_INFO *mbmi, |
| TX_SIZE tx_size, int depth, int blk_row, |
| int blk_col, aom_writer *w) { |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const int max_blocks_high = max_block_high(xd, mbmi->sb_type, 0); |
| const int max_blocks_wide = max_block_wide(xd, mbmi->sb_type, 0); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| if (depth == MAX_VARTX_DEPTH) { |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| return; |
| } |
| |
| const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, |
| mbmi->sb_type, tx_size); |
| const int txb_size_index = |
| av1_get_txb_size_index(mbmi->sb_type, blk_row, blk_col); |
| const int write_txfm_partition = |
| tx_size == mbmi->inter_tx_size[txb_size_index]; |
| if (write_txfm_partition) { |
| aom_write_symbol(w, 0, ec_ctx->txfm_partition_cdf[ctx], 2); |
| |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, tx_size, tx_size); |
| // TODO(yuec): set correct txfm partition update for qttx |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| |
| aom_write_symbol(w, 1, ec_ctx->txfm_partition_cdf[ctx], 2); |
| |
| if (sub_txs == TX_4X4) { |
| txfm_partition_update(xd->above_txfm_context + blk_col, |
| xd->left_txfm_context + blk_row, sub_txs, tx_size); |
| return; |
| } |
| |
| assert(bsw > 0 && bsh > 0); |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| int offsetr = blk_row + row; |
| int offsetc = blk_col + col; |
| write_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, w); |
| } |
| } |
| } |
| |
| static void write_selected_tx_size(const MACROBLOCKD *xd, aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| if (block_signals_txsize(bsize)) { |
| const TX_SIZE tx_size = mbmi->tx_size; |
| const int tx_size_ctx = get_tx_size_context(xd); |
| const int depth = tx_size_to_depth(tx_size, bsize); |
| const int max_depths = bsize_to_max_depth(bsize); |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); |
| |
| assert(depth >= 0 && depth <= max_depths); |
| assert(!is_inter_block(mbmi)); |
| assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed(xd, mbmi))); |
| |
| aom_write_symbol(w, depth, ec_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], |
| max_depths + 1); |
| } |
| } |
| |
| static int write_skip(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| int segment_id, const MB_MODE_INFO *mi, aom_writer *w) { |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { |
| return 1; |
| } else { |
| const int skip = mi->skip; |
| const int ctx = av1_get_skip_context(xd); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| aom_write_symbol(w, skip, ec_ctx->skip_cdfs[ctx], 2); |
| return skip; |
| } |
| } |
| |
| static int write_skip_mode(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| int segment_id, const MB_MODE_INFO *mi, |
| aom_writer *w) { |
| if (!cm->skip_mode_flag) return 0; |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)) { |
| return 0; |
| } |
| const int skip_mode = mi->skip_mode; |
| if (!is_comp_ref_allowed(mi->sb_type)) { |
| assert(!skip_mode); |
| return 0; |
| } |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME) || |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| // These features imply single-reference mode, while skip mode implies |
| // compound reference. Hence, the two are mutually exclusive. |
| // In other words, skip_mode is implicitly 0 here. |
| assert(!skip_mode); |
| return 0; |
| } |
| const int ctx = av1_get_skip_mode_context(xd); |
| aom_write_symbol(w, skip_mode, xd->tile_ctx->skip_mode_cdfs[ctx], 2); |
| return skip_mode; |
| } |
| |
| static void write_is_inter(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| int segment_id, aom_writer *w, const int is_inter) { |
| if (!segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| assert(is_inter); |
| return; |
| } |
| const int ctx = av1_get_intra_inter_context(xd); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| aom_write_symbol(w, is_inter, ec_ctx->intra_inter_cdf[ctx], 2); |
| } |
| } |
| |
| static void write_motion_mode(const AV1_COMMON *cm, MACROBLOCKD *xd, |
| const MB_MODE_INFO *mbmi, aom_writer *w) { |
| MOTION_MODE last_motion_mode_allowed = |
| cm->switchable_motion_mode |
| ? motion_mode_allowed(cm->global_motion, xd, mbmi, |
| cm->allow_warped_motion) |
| : SIMPLE_TRANSLATION; |
| assert(mbmi->motion_mode <= last_motion_mode_allowed); |
| switch (last_motion_mode_allowed) { |
| case SIMPLE_TRANSLATION: break; |
| case OBMC_CAUSAL: |
| aom_write_symbol(w, mbmi->motion_mode == OBMC_CAUSAL, |
| xd->tile_ctx->obmc_cdf[mbmi->sb_type], 2); |
| break; |
| default: |
| aom_write_symbol(w, mbmi->motion_mode, |
| xd->tile_ctx->motion_mode_cdf[mbmi->sb_type], |
| MOTION_MODES); |
| } |
| } |
| |
| static void write_delta_qindex(const MACROBLOCKD *xd, int delta_qindex, |
| aom_writer *w) { |
| int sign = delta_qindex < 0; |
| int abs = sign ? -delta_qindex : delta_qindex; |
| int rem_bits, thr; |
| int smallval = abs < DELTA_Q_SMALL ? 1 : 0; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| aom_write_symbol(w, AOMMIN(abs, DELTA_Q_SMALL), ec_ctx->delta_q_cdf, |
| DELTA_Q_PROBS + 1); |
| |
| if (!smallval) { |
| rem_bits = get_msb(abs - 1); |
| thr = (1 << rem_bits) + 1; |
| aom_write_literal(w, rem_bits - 1, 3); |
| aom_write_literal(w, abs - thr, rem_bits); |
| } |
| if (abs > 0) { |
| aom_write_bit(w, sign); |
| } |
| } |
| |
| static void write_delta_lflevel(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| int lf_id, int delta_lflevel, aom_writer *w) { |
| int sign = delta_lflevel < 0; |
| int abs = sign ? -delta_lflevel : delta_lflevel; |
| int rem_bits, thr; |
| int smallval = abs < DELTA_LF_SMALL ? 1 : 0; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| if (cm->delta_lf_multi) { |
| assert(lf_id >= 0 && lf_id < (av1_num_planes(cm) > 1 ? FRAME_LF_COUNT |
| : FRAME_LF_COUNT - 2)); |
| aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), |
| ec_ctx->delta_lf_multi_cdf[lf_id], DELTA_LF_PROBS + 1); |
| } else { |
| aom_write_symbol(w, AOMMIN(abs, DELTA_LF_SMALL), ec_ctx->delta_lf_cdf, |
| DELTA_LF_PROBS + 1); |
| } |
| |
| if (!smallval) { |
| rem_bits = get_msb(abs - 1); |
| thr = (1 << rem_bits) + 1; |
| aom_write_literal(w, rem_bits - 1, 3); |
| aom_write_literal(w, abs - thr, rem_bits); |
| } |
| if (abs > 0) { |
| aom_write_bit(w, sign); |
| } |
| } |
| |
| static void pack_map_tokens(aom_writer *w, const TOKENEXTRA **tp, int n, |
| int num) { |
| const TOKENEXTRA *p = *tp; |
| write_uniform(w, n, p->token); // The first color index. |
| ++p; |
| --num; |
| for (int i = 0; i < num; ++i) { |
| aom_write_symbol(w, p->token, p->color_map_cdf, n); |
| ++p; |
| } |
| *tp = p; |
| } |
| |
| static void pack_txb_tokens(aom_writer *w, AV1_COMMON *cm, MACROBLOCK *const x, |
| const TOKENEXTRA **tp, |
| const TOKENEXTRA *const tok_end, MACROBLOCKD *xd, |
| MB_MODE_INFO *mbmi, int plane, |
| BLOCK_SIZE plane_bsize, aom_bit_depth_t bit_depth, |
| int block, int blk_row, int blk_col, |
| TX_SIZE tx_size, TOKEN_STATS *token_stats) { |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_max_uv_txsize(mbmi->sb_type, pd->subsampling_x, |
| pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| |
| if (tx_size == plane_tx_size || plane) { |
| tran_low_t *tcoeff = BLOCK_OFFSET(x->mbmi_ext->tcoeff[plane], block); |
| const uint16_t eob = x->mbmi_ext->eobs[plane][block]; |
| TXB_CTX txb_ctx = { x->mbmi_ext->txb_skip_ctx[plane][block], |
| x->mbmi_ext->dc_sign_ctx[plane][block] }; |
| av1_write_coeffs_txb(cm, xd, w, blk_row, blk_col, plane, tx_size, tcoeff, |
| eob, &txb_ctx); |
| #if CONFIG_RD_DEBUG |
| TOKEN_STATS tmp_token_stats; |
| init_token_stats(&tmp_token_stats); |
| token_stats->txb_coeff_cost_map[blk_row][blk_col] = tmp_token_stats.cost; |
| token_stats->cost += tmp_token_stats.cost; |
| #endif |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int step = bsh * bsw; |
| |
| assert(bsw > 0 && bsh > 0); |
| |
| for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { |
| for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw) { |
| const int offsetr = blk_row + r; |
| const int offsetc = blk_col + c; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| pack_txb_tokens(w, cm, x, tp, tok_end, xd, mbmi, plane, plane_bsize, |
| bit_depth, block, offsetr, offsetc, sub_txs, |
| token_stats); |
| block += step; |
| } |
| } |
| } |
| } |
| |
| static INLINE void set_spatial_segment_id(const AV1_COMMON *const cm, |
| uint8_t *segment_ids, |
| BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int segment_id) { |
| const int mi_offset = mi_row * cm->mi_cols + mi_col; |
| const int bw = mi_size_wide[bsize]; |
| const int bh = mi_size_high[bsize]; |
| const int xmis = AOMMIN(cm->mi_cols - mi_col, bw); |
| const int ymis = AOMMIN(cm->mi_rows - mi_row, bh); |
| int x, y; |
| |
| for (y = 0; y < ymis; ++y) |
| for (x = 0; x < xmis; ++x) |
| segment_ids[mi_offset + y * cm->mi_cols + x] = segment_id; |
| } |
| |
| int av1_neg_interleave(int x, int ref, int max) { |
| assert(x < max); |
| const int diff = x - ref; |
| if (!ref) return x; |
| if (ref >= (max - 1)) return -x + max - 1; |
| if (2 * ref < max) { |
| if (abs(diff) <= ref) { |
| if (diff > 0) |
| return (diff << 1) - 1; |
| else |
| return ((-diff) << 1); |
| } |
| return x; |
| } else { |
| if (abs(diff) < (max - ref)) { |
| if (diff > 0) |
| return (diff << 1) - 1; |
| else |
| return ((-diff) << 1); |
| } |
| return (max - x) - 1; |
| } |
| } |
| |
| static void write_segment_id(AV1_COMP *cpi, const MB_MODE_INFO *const mbmi, |
| aom_writer *w, const struct segmentation *seg, |
| struct segmentation_probs *segp, int mi_row, |
| int mi_col, int skip) { |
| if (!seg->enabled || !seg->update_map) return; |
| |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| int cdf_num; |
| const int pred = av1_get_spatial_seg_pred(cm, xd, mi_row, mi_col, &cdf_num); |
| |
| if (skip) { |
| // Still need to transmit tx size for intra blocks even if skip is |
| // true. Changing segment_id may make the tx size become invalid, e.g |
| // changing from lossless to lossy. |
| assert(is_inter_block(mbmi) || !cpi->has_lossless_segment); |
| |
| set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, |
| mi_col, pred); |
| set_spatial_segment_id(cm, cpi->segmentation_map, mbmi->sb_type, mi_row, |
| mi_col, pred); |
| /* mbmi is read only but we need to update segment_id */ |
| ((MB_MODE_INFO *)mbmi)->segment_id = pred; |
| return; |
| } |
| |
| const int coded_id = |
| av1_neg_interleave(mbmi->segment_id, pred, seg->last_active_segid + 1); |
| aom_cdf_prob *pred_cdf = segp->spatial_pred_seg_cdf[cdf_num]; |
| aom_write_symbol(w, coded_id, pred_cdf, MAX_SEGMENTS); |
| set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, mi_row, |
| mi_col, mbmi->segment_id); |
| } |
| |
| #define WRITE_REF_BIT(bname, pname) \ |
| aom_write_symbol(w, bname, av1_get_pred_cdf_##pname(xd), 2) |
| |
| // This function encodes the reference frame |
| static void write_ref_frames(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const int is_compound = has_second_ref(mbmi); |
| const int segment_id = mbmi->segment_id; |
| |
| // If segment level coding of this signal is disabled... |
| // or the segment allows multiple reference frame options |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) { |
| assert(!is_compound); |
| assert(mbmi->ref_frame[0] == |
| get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME)); |
| } else if (segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP) || |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_GLOBALMV)) { |
| assert(!is_compound); |
| assert(mbmi->ref_frame[0] == LAST_FRAME); |
| } else { |
| // does the feature use compound prediction or not |
| // (if not specified at the frame/segment level) |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| if (is_comp_ref_allowed(mbmi->sb_type)) |
| aom_write_symbol(w, is_compound, av1_get_reference_mode_cdf(xd), 2); |
| } else { |
| assert((!is_compound) == (cm->reference_mode == SINGLE_REFERENCE)); |
| } |
| |
| if (is_compound) { |
| const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) |
| ? UNIDIR_COMP_REFERENCE |
| : BIDIR_COMP_REFERENCE; |
| aom_write_symbol(w, comp_ref_type, av1_get_comp_reference_type_cdf(xd), |
| 2); |
| |
| if (comp_ref_type == UNIDIR_COMP_REFERENCE) { |
| const int bit = mbmi->ref_frame[0] == BWDREF_FRAME; |
| WRITE_REF_BIT(bit, uni_comp_ref_p); |
| |
| if (!bit) { |
| assert(mbmi->ref_frame[0] == LAST_FRAME); |
| const int bit1 = mbmi->ref_frame[1] == LAST3_FRAME || |
| mbmi->ref_frame[1] == GOLDEN_FRAME; |
| WRITE_REF_BIT(bit1, uni_comp_ref_p1); |
| if (bit1) { |
| const int bit2 = mbmi->ref_frame[1] == GOLDEN_FRAME; |
| WRITE_REF_BIT(bit2, uni_comp_ref_p2); |
| } |
| } else { |
| assert(mbmi->ref_frame[1] == ALTREF_FRAME); |
| } |
| |
| return; |
| } |
| |
| assert(comp_ref_type == BIDIR_COMP_REFERENCE); |
| |
| const int bit = (mbmi->ref_frame[0] == GOLDEN_FRAME || |
| mbmi->ref_frame[0] == LAST3_FRAME); |
| WRITE_REF_BIT(bit, comp_ref_p); |
| |
| if (!bit) { |
| const int bit1 = mbmi->ref_frame[0] == LAST2_FRAME; |
| WRITE_REF_BIT(bit1, comp_ref_p1); |
| } else { |
| const int bit2 = mbmi->ref_frame[0] == GOLDEN_FRAME; |
| WRITE_REF_BIT(bit2, comp_ref_p2); |
| } |
| |
| const int bit_bwd = mbmi->ref_frame[1] == ALTREF_FRAME; |
| WRITE_REF_BIT(bit_bwd, comp_bwdref_p); |
| |
| if (!bit_bwd) { |
| WRITE_REF_BIT(mbmi->ref_frame[1] == ALTREF2_FRAME, comp_bwdref_p1); |
| } |
| |
| } else { |
| const int bit0 = (mbmi->ref_frame[0] <= ALTREF_FRAME && |
| mbmi->ref_frame[0] >= BWDREF_FRAME); |
| WRITE_REF_BIT(bit0, single_ref_p1); |
| |
| if (bit0) { |
| const int bit1 = mbmi->ref_frame[0] == ALTREF_FRAME; |
| WRITE_REF_BIT(bit1, single_ref_p2); |
| |
| if (!bit1) { |
| WRITE_REF_BIT(mbmi->ref_frame[0] == ALTREF2_FRAME, single_ref_p6); |
| } |
| } else { |
| const int bit2 = (mbmi->ref_frame[0] == LAST3_FRAME || |
| mbmi->ref_frame[0] == GOLDEN_FRAME); |
| WRITE_REF_BIT(bit2, single_ref_p3); |
| |
| if (!bit2) { |
| const int bit3 = mbmi->ref_frame[0] != LAST_FRAME; |
| WRITE_REF_BIT(bit3, single_ref_p4); |
| } else { |
| const int bit4 = mbmi->ref_frame[0] != LAST3_FRAME; |
| WRITE_REF_BIT(bit4, single_ref_p5); |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_filter_intra_mode_info(const AV1_COMMON *cm, |
| const MACROBLOCKD *xd, |
| const MB_MODE_INFO *const mbmi, |
| aom_writer *w) { |
| if (av1_filter_intra_allowed(cm, mbmi)) { |
| aom_write_symbol(w, mbmi->filter_intra_mode_info.use_filter_intra, |
| xd->tile_ctx->filter_intra_cdfs[mbmi->sb_type], 2); |
| if (mbmi->filter_intra_mode_info.use_filter_intra) { |
| const FILTER_INTRA_MODE mode = |
| mbmi->filter_intra_mode_info.filter_intra_mode; |
| aom_write_symbol(w, mode, xd->tile_ctx->filter_intra_mode_cdf, |
| FILTER_INTRA_MODES); |
| } |
| } |
| } |
| |
| static void write_angle_delta(aom_writer *w, int angle_delta, |
| aom_cdf_prob *cdf) { |
| aom_write_symbol(w, angle_delta + MAX_ANGLE_DELTA, cdf, |
| 2 * MAX_ANGLE_DELTA + 1); |
| } |
| |
| static void write_mb_interp_filter(AV1_COMP *cpi, const MACROBLOCKD *xd, |
| aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| if (!av1_is_interp_needed(xd)) { |
| assert(mbmi->interp_filters == |
| av1_broadcast_interp_filter( |
| av1_unswitchable_filter(cm->interp_filter))); |
| return; |
| } |
| if (cm->interp_filter == SWITCHABLE) { |
| int dir; |
| for (dir = 0; dir < 2; ++dir) { |
| const int ctx = av1_get_pred_context_switchable_interp(xd, dir); |
| InterpFilter filter = |
| av1_extract_interp_filter(mbmi->interp_filters, dir); |
| aom_write_symbol(w, filter, ec_ctx->switchable_interp_cdf[ctx], |
| SWITCHABLE_FILTERS); |
| ++cpi->interp_filter_selected[0][filter]; |
| if (cm->seq_params.enable_dual_filter == 0) return; |
| } |
| } |
| } |
| |
| // Transmit color values with delta encoding. Write the first value as |
| // literal, and the deltas between each value and the previous one. "min_val" is |
| // the smallest possible value of the deltas. |
| static void delta_encode_palette_colors(const int *colors, int num, |
| int bit_depth, int min_val, |
| aom_writer *w) { |
| if (num <= 0) return; |
| assert(colors[0] < (1 << bit_depth)); |
| aom_write_literal(w, colors[0], bit_depth); |
| if (num == 1) return; |
| int max_delta = 0; |
| int deltas[PALETTE_MAX_SIZE]; |
| memset(deltas, 0, sizeof(deltas)); |
| for (int i = 1; i < num; ++i) { |
| assert(colors[i] < (1 << bit_depth)); |
| const int delta = colors[i] - colors[i - 1]; |
| deltas[i - 1] = delta; |
| assert(delta >= min_val); |
| if (delta > max_delta) max_delta = delta; |
| } |
| const int min_bits = bit_depth - 3; |
| int bits = AOMMAX(av1_ceil_log2(max_delta + 1 - min_val), min_bits); |
| assert(bits <= bit_depth); |
| int range = (1 << bit_depth) - colors[0] - min_val; |
| aom_write_literal(w, bits - min_bits, 2); |
| for (int i = 0; i < num - 1; ++i) { |
| aom_write_literal(w, deltas[i] - min_val, bits); |
| range -= deltas[i]; |
| bits = AOMMIN(bits, av1_ceil_log2(range)); |
| } |
| } |
| |
| // Transmit luma palette color values. First signal if each color in the color |
| // cache is used. Those colors that are not in the cache are transmitted with |
| // delta encoding. |
| static void write_palette_colors_y(const MACROBLOCKD *const xd, |
| const PALETTE_MODE_INFO *const pmi, |
| int bit_depth, aom_writer *w) { |
| const int n = pmi->palette_size[0]; |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 0, color_cache); |
| int out_cache_colors[PALETTE_MAX_SIZE]; |
| uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; |
| const int n_out_cache = |
| av1_index_color_cache(color_cache, n_cache, pmi->palette_colors, n, |
| cache_color_found, out_cache_colors); |
| int n_in_cache = 0; |
| for (int i = 0; i < n_cache && n_in_cache < n; ++i) { |
| const int found = cache_color_found[i]; |
| aom_write_bit(w, found); |
| n_in_cache += found; |
| } |
| assert(n_in_cache + n_out_cache == n); |
| delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 1, w); |
| } |
| |
| // Write chroma palette color values. U channel is handled similarly to the luma |
| // channel. For v channel, either use delta encoding or transmit raw values |
| // directly, whichever costs less. |
| static void write_palette_colors_uv(const MACROBLOCKD *const xd, |
| const PALETTE_MODE_INFO *const pmi, |
| int bit_depth, aom_writer *w) { |
| const int n = pmi->palette_size[1]; |
| const uint16_t *colors_u = pmi->palette_colors + PALETTE_MAX_SIZE; |
| const uint16_t *colors_v = pmi->palette_colors + 2 * PALETTE_MAX_SIZE; |
| // U channel colors. |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 1, color_cache); |
| int out_cache_colors[PALETTE_MAX_SIZE]; |
| uint8_t cache_color_found[2 * PALETTE_MAX_SIZE]; |
| const int n_out_cache = av1_index_color_cache( |
| color_cache, n_cache, colors_u, n, cache_color_found, out_cache_colors); |
| int n_in_cache = 0; |
| for (int i = 0; i < n_cache && n_in_cache < n; ++i) { |
| const int found = cache_color_found[i]; |
| aom_write_bit(w, found); |
| n_in_cache += found; |
| } |
| delta_encode_palette_colors(out_cache_colors, n_out_cache, bit_depth, 0, w); |
| |
| // V channel colors. Don't use color cache as the colors are not sorted. |
| const int max_val = 1 << bit_depth; |
| int zero_count = 0, min_bits_v = 0; |
| int bits_v = |
| av1_get_palette_delta_bits_v(pmi, bit_depth, &zero_count, &min_bits_v); |
| const int rate_using_delta = |
| 2 + bit_depth + (bits_v + 1) * (n - 1) - zero_count; |
| const int rate_using_raw = bit_depth * n; |
| if (rate_using_delta < rate_using_raw) { // delta encoding |
| assert(colors_v[0] < (1 << bit_depth)); |
| aom_write_bit(w, 1); |
| aom_write_literal(w, bits_v - min_bits_v, 2); |
| aom_write_literal(w, colors_v[0], bit_depth); |
| for (int i = 1; i < n; ++i) { |
| assert(colors_v[i] < (1 << bit_depth)); |
| if (colors_v[i] == colors_v[i - 1]) { // No need to signal sign bit. |
| aom_write_literal(w, 0, bits_v); |
| continue; |
| } |
| const int delta = abs((int)colors_v[i] - colors_v[i - 1]); |
| const int sign_bit = colors_v[i] < colors_v[i - 1]; |
| if (delta <= max_val - delta) { |
| aom_write_literal(w, delta, bits_v); |
| aom_write_bit(w, sign_bit); |
| } else { |
| aom_write_literal(w, max_val - delta, bits_v); |
| aom_write_bit(w, !sign_bit); |
| } |
| } |
| } else { // Transmit raw values. |
| aom_write_bit(w, 0); |
| for (int i = 0; i < n; ++i) { |
| assert(colors_v[i] < (1 << bit_depth)); |
| aom_write_literal(w, colors_v[i], bit_depth); |
| } |
| } |
| } |
| |
| static void write_palette_mode_info(const AV1_COMMON *cm, const MACROBLOCKD *xd, |
| const MB_MODE_INFO *const mbmi, int mi_row, |
| int mi_col, aom_writer *w) { |
| const int num_planes = av1_num_planes(cm); |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| assert(av1_allow_palette(cm->allow_screen_content_tools, bsize)); |
| const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| |
| if (mbmi->mode == DC_PRED) { |
| const int n = pmi->palette_size[0]; |
| const int palette_y_mode_ctx = av1_get_palette_mode_ctx(xd); |
| aom_write_symbol( |
| w, n > 0, |
| xd->tile_ctx->palette_y_mode_cdf[bsize_ctx][palette_y_mode_ctx], 2); |
| if (n > 0) { |
| aom_write_symbol(w, n - PALETTE_MIN_SIZE, |
| xd->tile_ctx->palette_y_size_cdf[bsize_ctx], |
| PALETTE_SIZES); |
| write_palette_colors_y(xd, pmi, cm->seq_params.bit_depth, w); |
| } |
| } |
| |
| const int uv_dc_pred = |
| num_planes > 1 && mbmi->uv_mode == UV_DC_PRED && |
| is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, |
| xd->plane[1].subsampling_y); |
| if (uv_dc_pred) { |
| const int n = pmi->palette_size[1]; |
| const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0); |
| aom_write_symbol(w, n > 0, |
| xd->tile_ctx->palette_uv_mode_cdf[palette_uv_mode_ctx], 2); |
| if (n > 0) { |
| aom_write_symbol(w, n - PALETTE_MIN_SIZE, |
| xd->tile_ctx->palette_uv_size_cdf[bsize_ctx], |
| PALETTE_SIZES); |
| write_palette_colors_uv(xd, pmi, cm->seq_params.bit_depth, w); |
| } |
| } |
| } |
| |
| void av1_write_tx_type(const AV1_COMMON *const cm, const MACROBLOCKD *xd, |
| int blk_row, int blk_col, int plane, TX_SIZE tx_size, |
| aom_writer *w) { |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| const int is_inter = is_inter_block(mbmi); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| // Only y plane's tx_type is transmitted |
| if (plane > 0) return; |
| PLANE_TYPE plane_type = get_plane_type(plane); |
| TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, |
| cm->reduced_tx_set_used); |
| |
| const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; |
| if (get_ext_tx_types(tx_size, is_inter, cm->reduced_tx_set_used) > 1 && |
| ((!cm->seg.enabled && cm->base_qindex > 0) || |
| (cm->seg.enabled && xd->qindex[mbmi->segment_id] > 0)) && |
| !mbmi->skip && |
| !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { |
| const TxSetType tx_set_type = |
| av1_get_ext_tx_set_type(tx_size, is_inter, cm->reduced_tx_set_used); |
| const int eset = get_ext_tx_set(tx_size, is_inter, cm->reduced_tx_set_used); |
| // eset == 0 should correspond to a set with only DCT_DCT and there |
| // is no need to send the tx_type |
| assert(eset > 0); |
| assert(av1_ext_tx_used[tx_set_type][tx_type]); |
| if (is_inter) { |
| aom_write_symbol(w, av1_ext_tx_ind[tx_set_type][tx_type], |
| ec_ctx->inter_ext_tx_cdf[eset][square_tx_size], |
| av1_num_ext_tx_set[tx_set_type]); |
| } else { |
| PREDICTION_MODE intra_dir; |
| if (mbmi->filter_intra_mode_info.use_filter_intra) |
| intra_dir = |
| fimode_to_intradir[mbmi->filter_intra_mode_info.filter_intra_mode]; |
| else |
| intra_dir = mbmi->mode; |
| aom_write_symbol( |
| w, av1_ext_tx_ind[tx_set_type][tx_type], |
| ec_ctx->intra_ext_tx_cdf[eset][square_tx_size][intra_dir], |
| av1_num_ext_tx_set[tx_set_type]); |
| } |
| } |
| } |
| |
| static void write_intra_y_mode_nonkf(FRAME_CONTEXT *frame_ctx, BLOCK_SIZE bsize, |
| PREDICTION_MODE mode, aom_writer *w) { |
| aom_write_symbol(w, mode, frame_ctx->y_mode_cdf[size_group_lookup[bsize]], |
| INTRA_MODES); |
| } |
| |
| static void write_intra_uv_mode(FRAME_CONTEXT *frame_ctx, |
| UV_PREDICTION_MODE uv_mode, |
| PREDICTION_MODE y_mode, |
| CFL_ALLOWED_TYPE cfl_allowed, aom_writer *w) { |
| aom_write_symbol(w, uv_mode, frame_ctx->uv_mode_cdf[cfl_allowed][y_mode], |
| UV_INTRA_MODES - !cfl_allowed); |
| } |
| |
| static void write_cfl_alphas(FRAME_CONTEXT *const ec_ctx, int idx, |
| int joint_sign, aom_writer *w) { |
| aom_write_symbol(w, joint_sign, ec_ctx->cfl_sign_cdf, CFL_JOINT_SIGNS); |
| // Magnitudes are only signaled for nonzero codes. |
| if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_u = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)]; |
| aom_write_symbol(w, CFL_IDX_U(idx), cdf_u, CFL_ALPHABET_SIZE); |
| } |
| if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) { |
| aom_cdf_prob *cdf_v = ec_ctx->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)]; |
| aom_write_symbol(w, CFL_IDX_V(idx), cdf_v, CFL_ALPHABET_SIZE); |
| } |
| } |
| |
| static void write_cdef(AV1_COMMON *cm, MACROBLOCKD *const xd, aom_writer *w, |
| int skip, int mi_col, int mi_row) { |
| if (cm->coded_lossless || cm->allow_intrabc) { |
| // Initialize to indicate no CDEF for safety. |
| cm->cdef_bits = 0; |
| cm->cdef_strengths[0] = 0; |
| cm->nb_cdef_strengths = 1; |
| cm->cdef_uv_strengths[0] = 0; |
| return; |
| } |
| |
| const int m = ~((1 << (6 - MI_SIZE_LOG2)) - 1); |
| const MB_MODE_INFO *mbmi = |
| cm->mi_grid_visible[(mi_row & m) * cm->mi_stride + (mi_col & m)]; |
| // Initialise when at top left part of the superblock |
| if (!(mi_row & (cm->seq_params.mib_size - 1)) && |
| !(mi_col & (cm->seq_params.mib_size - 1))) { // Top left? |
| xd->cdef_preset[0] = xd->cdef_preset[1] = xd->cdef_preset[2] = |
| xd->cdef_preset[3] = -1; |
| } |
| |
| // Emit CDEF param at first non-skip coding block |
| const int mask = 1 << (6 - MI_SIZE_LOG2); |
| const int index = cm->seq_params.sb_size == BLOCK_128X128 |
| ? !!(mi_col & mask) + 2 * !!(mi_row & mask) |
| : 0; |
| if (xd->cdef_preset[index] == -1 && !skip) { |
| aom_write_literal(w, mbmi->cdef_strength, cm->cdef_bits); |
| xd->cdef_preset[index] = mbmi->cdef_strength; |
| } |
| } |
| |
| static void write_inter_segment_id(AV1_COMP *cpi, aom_writer *w, |
| const struct segmentation *const seg, |
| struct segmentation_probs *const segp, |
| int mi_row, int mi_col, int skip, |
| int preskip) { |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| AV1_COMMON *const cm = &cpi->common; |
| |
| if (seg->update_map) { |
| if (preskip) { |
| if (!seg->segid_preskip) return; |
| } else { |
| if (seg->segid_preskip) return; |
| if (skip) { |
| write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 1); |
| if (seg->temporal_update) ((MB_MODE_INFO *)mbmi)->seg_id_predicted = 0; |
| return; |
| } |
| } |
| if (seg->temporal_update) { |
| const int pred_flag = mbmi->seg_id_predicted; |
| aom_cdf_prob *pred_cdf = av1_get_pred_cdf_seg_id(segp, xd); |
| aom_write_symbol(w, pred_flag, pred_cdf, 2); |
| if (!pred_flag) { |
| write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); |
| } |
| if (pred_flag) { |
| set_spatial_segment_id(cm, cm->current_frame_seg_map, mbmi->sb_type, |
| mi_row, mi_col, mbmi->segment_id); |
| } |
| } else { |
| write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); |
| } |
| } |
| } |
| |
| // If delta q is present, writes delta_q index. |
| // Also writes delta_q loop filter levels, if present. |
| static void write_delta_q_params(AV1_COMP *cpi, const int mi_row, |
| const int mi_col, int skip, aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| if (cm->delta_q_present_flag) { |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int super_block_upper_left = |
| ((mi_row & (cm->seq_params.mib_size - 1)) == 0) && |
| ((mi_col & (cm->seq_params.mib_size - 1)) == 0); |
| |
| if ((bsize != cm->seq_params.sb_size || skip == 0) && |
| super_block_upper_left) { |
| assert(mbmi->current_qindex > 0); |
| const int reduced_delta_qindex = |
| (mbmi->current_qindex - xd->current_qindex) / cm->delta_q_res; |
| write_delta_qindex(xd, reduced_delta_qindex, w); |
| xd->current_qindex = mbmi->current_qindex; |
| if (cm->delta_lf_present_flag) { |
| if (cm->delta_lf_multi) { |
| const int frame_lf_count = |
| av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; |
| for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { |
| int reduced_delta_lflevel = |
| (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / |
| cm->delta_lf_res; |
| write_delta_lflevel(cm, xd, lf_id, reduced_delta_lflevel, w); |
| xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; |
| } |
| } else { |
| int reduced_delta_lflevel = |
| (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / |
| cm->delta_lf_res; |
| write_delta_lflevel(cm, xd, -1, reduced_delta_lflevel, w); |
| xd->delta_lf_from_base = mbmi->delta_lf_from_base; |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_intra_prediction_modes(AV1_COMP *cpi, const int mi_row, |
| const int mi_col, int is_keyframe, |
| aom_writer *w) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const PREDICTION_MODE mode = mbmi->mode; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| |
| // Y mode. |
| if (is_keyframe) { |
| const MB_MODE_INFO *const above_mi = xd->above_mbmi; |
| const MB_MODE_INFO *const left_mi = xd->left_mbmi; |
| write_intra_y_mode_kf(ec_ctx, mbmi, above_mi, left_mi, mode, w); |
| } else { |
| write_intra_y_mode_nonkf(ec_ctx, bsize, mode, w); |
| } |
| |
| // Y angle delta. |
| const int use_angle_delta = av1_use_angle_delta(bsize); |
| if (use_angle_delta && av1_is_directional_mode(mode)) { |
| write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_Y], |
| ec_ctx->angle_delta_cdf[mode - V_PRED]); |
| } |
| |
| // UV mode and UV angle delta. |
| if (!cm->seq_params.monochrome && |
| is_chroma_reference(mi_row, mi_col, bsize, xd->plane[1].subsampling_x, |
| xd->plane[1].subsampling_y)) { |
| const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode; |
| write_intra_uv_mode(ec_ctx, uv_mode, mode, is_cfl_allowed(xd), w); |
| if (uv_mode == UV_CFL_PRED) |
| write_cfl_alphas(ec_ctx, mbmi->cfl_alpha_idx, mbmi->cfl_alpha_signs, w); |
| if (use_angle_delta && av1_is_directional_mode(get_uv_mode(uv_mode))) { |
| write_angle_delta(w, mbmi->angle_delta[PLANE_TYPE_UV], |
| ec_ctx->angle_delta_cdf[uv_mode - V_PRED]); |
| } |
| } |
| |
| // Palette. |
| if (av1_allow_palette(cm->allow_screen_content_tools, bsize)) { |
| write_palette_mode_info(cm, xd, mbmi, mi_row, mi_col, w); |
| } |
| |
| // Filter intra. |
| write_filter_intra_mode_info(cm, xd, mbmi, w); |
| } |
| |
| static void pack_inter_mode_mvs(AV1_COMP *cpi, const int mi_row, |
| const int mi_col, aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCK *const x = &cpi->td.mb; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const struct segmentation *const seg = &cm->seg; |
| struct segmentation_probs *const segp = &ec_ctx->seg; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const PREDICTION_MODE mode = mbmi->mode; |
| const int segment_id = mbmi->segment_id; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const int allow_hp = cm->allow_high_precision_mv; |
| const int is_inter = is_inter_block(mbmi); |
| const int is_compound = has_second_ref(mbmi); |
| int ref; |
| |
| write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, 0, 1); |
| |
| write_skip_mode(cm, xd, segment_id, mbmi, w); |
| |
| assert(IMPLIES(mbmi->skip_mode, mbmi->skip)); |
| const int skip = |
| mbmi->skip_mode ? 1 : write_skip(cm, xd, segment_id, mbmi, w); |
| |
| write_inter_segment_id(cpi, w, seg, segp, mi_row, mi_col, skip, 0); |
| |
| write_cdef(cm, xd, w, skip, mi_col, mi_row); |
| |
| write_delta_q_params(cpi, mi_row, mi_col, skip, w); |
| |
| if (!mbmi->skip_mode) write_is_inter(cm, xd, mbmi->segment_id, w, is_inter); |
| |
| if (mbmi->skip_mode) return; |
| |
| if (!is_inter) { |
| write_intra_prediction_modes(cpi, mi_row, mi_col, 0, w); |
| } else { |
| int16_t mode_ctx; |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| write_ref_frames(cm, xd, w); |
| |
| mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| |
| // If segment skip is not enabled code the mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_SKIP)) { |
| if (is_inter_compound_mode(mode)) |
| write_inter_compound_mode(xd, w, mode, mode_ctx); |
| else if (is_inter_singleref_mode(mode)) |
| write_inter_mode(w, mode, ec_ctx, mode_ctx); |
| |
| if (mode == NEWMV || mode == NEW_NEWMV || have_nearmv_in_inter_mode(mode)) |
| write_drl_idx(ec_ctx, mbmi, mbmi_ext, w); |
| else |
| assert(mbmi->ref_mv_idx == 0); |
| } |
| |
| if (mode == NEWMV || mode == NEW_NEWMV) { |
| for (ref = 0; ref < 1 + is_compound; ++ref) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| const int_mv ref_mv = av1_get_ref_mv(x, ref); |
| av1_encode_mv(cpi, w, &mbmi->mv[ref].as_mv, &ref_mv.as_mv, nmvc, |
| allow_hp); |
| } |
| } else if (mode == NEAREST_NEWMV || mode == NEAR_NEWMV) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| const int_mv ref_mv = av1_get_ref_mv(x, 1); |
| av1_encode_mv(cpi, w, &mbmi->mv[1].as_mv, &ref_mv.as_mv, nmvc, allow_hp); |
| } else if (mode == NEW_NEARESTMV || mode == NEW_NEARMV) { |
| nmv_context *nmvc = &ec_ctx->nmvc; |
| const int_mv ref_mv = av1_get_ref_mv(x, 0); |
| av1_encode_mv(cpi, w, &mbmi->mv[0].as_mv, &ref_mv.as_mv, nmvc, allow_hp); |
| } |
| |
| if (cpi->common.reference_mode != COMPOUND_REFERENCE && |
| cpi->common.seq_params.enable_interintra_compound && |
| is_interintra_allowed(mbmi)) { |
| const int interintra = mbmi->ref_frame[1] == INTRA_FRAME; |
| const int bsize_group = size_group_lookup[bsize]; |
| aom_write_symbol(w, interintra, ec_ctx->interintra_cdf[bsize_group], 2); |
| if (interintra) { |
| aom_write_symbol(w, mbmi->interintra_mode, |
| ec_ctx->interintra_mode_cdf[bsize_group], |
| INTERINTRA_MODES); |
| if (is_interintra_wedge_used(bsize)) { |
| aom_write_symbol(w, mbmi->use_wedge_interintra, |
| ec_ctx->wedge_interintra_cdf[bsize], 2); |
| if (mbmi->use_wedge_interintra) { |
| aom_write_symbol(w, mbmi->interintra_wedge_index, |
| ec_ctx->wedge_idx_cdf[bsize], 16); |
| assert(mbmi->interintra_wedge_sign == 0); |
| } |
| } |
| } |
| } |
| |
| if (mbmi->ref_frame[1] != INTRA_FRAME) write_motion_mode(cm, xd, mbmi, w); |
| |
| // First write idx to indicate current compound inter prediction mode group |
| // Group A (0): jnt_comp, compound_average |
| // Group B (1): interintra, compound_diffwtd, wedge |
| if (has_second_ref(mbmi)) { |
| const int masked_compound_used = is_any_masked_compound_used(bsize) && |
| cm->seq_params.enable_masked_compound; |
| |
| if (masked_compound_used) { |
| const int ctx_comp_group_idx = get_comp_group_idx_context(xd); |
| aom_write_symbol(w, mbmi->comp_group_idx, |
| ec_ctx->comp_group_idx_cdf[ctx_comp_group_idx], 2); |
| } else { |
| assert(mbmi->comp_group_idx == 0); |
| } |
| |
| if (mbmi->comp_group_idx == 0) { |
| if (mbmi->compound_idx) |
| assert(mbmi->interinter_comp.type == COMPOUND_AVERAGE); |
| |
| if (cm->seq_params.enable_jnt_comp) { |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| aom_write_symbol(w, mbmi->compound_idx, |
| ec_ctx->compound_index_cdf[comp_index_ctx], 2); |
| } else { |
| assert(mbmi->compound_idx == 1); |
| } |
| } else { |
| assert(cpi->common.reference_mode != SINGLE_REFERENCE && |
| is_inter_compound_mode(mbmi->mode) && |
| mbmi->motion_mode == SIMPLE_TRANSLATION); |
| assert(masked_compound_used); |
| // compound_diffwtd, wedge |
| assert(mbmi->interinter_comp.type == COMPOUND_WEDGE || |
| mbmi->interinter_comp.type == COMPOUND_DIFFWTD); |
| |
| if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) |
| aom_write_symbol(w, mbmi->interinter_comp.type - 1, |
| ec_ctx->compound_type_cdf[bsize], |
| COMPOUND_TYPES - 1); |
| |
| if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { |
| assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); |
| aom_write_symbol(w, mbmi->interinter_comp.wedge_index, |
| ec_ctx->wedge_idx_cdf[bsize], 16); |
| aom_write_bit(w, mbmi->interinter_comp.wedge_sign); |
| } else { |
| assert(mbmi->interinter_comp.type == COMPOUND_DIFFWTD); |
| aom_write_literal(w, mbmi->interinter_comp.mask_type, |
| MAX_DIFFWTD_MASK_BITS); |
| } |
| } |
| } |
| |
| write_mb_interp_filter(cpi, xd, w); |
| } |
| } |
| |
| static void write_intrabc_info(MACROBLOCKD *xd, |
| const MB_MODE_INFO_EXT *mbmi_ext, |
| aom_writer *w) { |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| int use_intrabc = is_intrabc_block(mbmi); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| aom_write_symbol(w, use_intrabc, ec_ctx->intrabc_cdf, 2); |
| if (use_intrabc) { |
| assert(mbmi->mode == DC_PRED); |
| assert(mbmi->uv_mode == UV_DC_PRED); |
| assert(mbmi->motion_mode == SIMPLE_TRANSLATION); |
| int_mv dv_ref = mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv; |
| av1_encode_dv(w, &mbmi->mv[0].as_mv, &dv_ref.as_mv, &ec_ctx->ndvc); |
| } |
| } |
| |
| static void write_mb_modes_kf(AV1_COMP *cpi, MACROBLOCKD *xd, |
| const MB_MODE_INFO_EXT *mbmi_ext, |
| const int mi_row, const int mi_col, |
| aom_writer *w) { |
| AV1_COMMON *const cm = &cpi->common; |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| const struct segmentation *const seg = &cm->seg; |
| struct segmentation_probs *const segp = &ec_ctx->seg; |
| const MB_MODE_INFO *const mbmi = xd->mi[0]; |
| |
| if (seg->segid_preskip && seg->update_map) |
| write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, 0); |
| |
| const int skip = write_skip(cm, xd, mbmi->segment_id, mbmi, w); |
| |
| if (!seg->segid_preskip && seg->update_map) |
| write_segment_id(cpi, mbmi, w, seg, segp, mi_row, mi_col, skip); |
| |
| write_cdef(cm, xd, w, skip, mi_col, mi_row); |
| |
| write_delta_q_params(cpi, mi_row, mi_col, skip, w); |
| |
| if (av1_allow_intrabc(cm)) { |
| write_intrabc_info(xd, mbmi_ext, w); |
| if (is_intrabc_block(mbmi)) return; |
| } |
| |
| write_intra_prediction_modes(cpi, mi_row, mi_col, 1, w); |
| } |
| |
| #if CONFIG_RD_DEBUG |
| static void dump_mode_info(MODE_INFO *mi) { |
| printf("\nmi->mi_row == %d\n", mi->mi_row); |
| printf("&& mi->mi_col == %d\n", mi->mi_col); |
| printf("&& mi->sb_type == %d\n", mi->sb_type); |
| printf("&& mi->tx_size == %d\n", mi->tx_size); |
| printf("&& mi->mode == %d\n", mi->mode); |
| } |
| static int rd_token_stats_mismatch(RD_STATS *rd_stats, TOKEN_STATS *token_stats, |
| int plane) { |
| if (rd_stats->txb_coeff_cost[plane] != token_stats->cost) { |
| int r, c; |
| printf("\nplane %d rd_stats->txb_coeff_cost %d token_stats->cost %d\n", |
| plane, rd_stats->txb_coeff_cost[plane], token_stats->cost); |
| printf("rd txb_coeff_cost_map\n"); |
| for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { |
| for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { |
| printf("%d ", rd_stats->txb_coeff_cost_map[plane][r][c]); |
| } |
| printf("\n"); |
| } |
| |
| printf("pack txb_coeff_cost_map\n"); |
| for (r = 0; r < TXB_COEFF_COST_MAP_SIZE; ++r) { |
| for (c = 0; c < TXB_COEFF_COST_MAP_SIZE; ++c) { |
| printf("%d ", token_stats->txb_coeff_cost_map[r][c]); |
| } |
| printf("\n"); |
| } |
| return 1; |
| } |
| return 0; |
| } |
| #endif |
| |
| #if ENC_MISMATCH_DEBUG |
| static void enc_dump_logs(AV1_COMP *cpi, int mi_row, int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); |
| const MB_MODE_INFO *const *mbmi = xd->mi[0]; |
| if (is_inter_block(mbmi)) { |
| #define FRAME_TO_CHECK 11 |
| if (cm->current_video_frame == FRAME_TO_CHECK && cm->show_frame == 1) { |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| |
| int_mv mv[2]; |
| int is_comp_ref = has_second_ref(mbmi); |
| int ref; |
| |
| for (ref = 0; ref < 1 + is_comp_ref; ++ref) |
| mv[ref].as_mv = mbmi->mv[ref].as_mv; |
| |
| if (!is_comp_ref) { |
| mv[1].as_int = 0; |
| } |
| |
| MACROBLOCK *const x = &cpi->td.mb; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int16_t mode_ctx = |
| is_comp_ref ? mbmi_ext->compound_mode_context[mbmi->ref_frame[0]] |
| : av1_mode_context_analyzer(mbmi_ext->mode_context, |
| mbmi->ref_frame); |
| |
| const int16_t newmv_ctx = mode_ctx & NEWMV_CTX_MASK; |
| int16_t zeromv_ctx = -1; |
| int16_t refmv_ctx = -1; |
| |
| if (mbmi->mode != NEWMV) { |
| zeromv_ctx = (mode_ctx >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| if (mbmi->mode != GLOBALMV) |
| refmv_ctx = (mode_ctx >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| } |
| |
| printf( |
| "=== ENCODER ===: " |
| "Frame=%d, (mi_row,mi_col)=(%d,%d), skip_mode=%d, mode=%d, bsize=%d, " |
| "show_frame=%d, mv[0]=(%d,%d), mv[1]=(%d,%d), ref[0]=%d, " |
| "ref[1]=%d, motion_mode=%d, mode_ctx=%d, " |
| "newmv_ctx=%d, zeromv_ctx=%d, refmv_ctx=%d, tx_size=%d\n", |
| cm->current_video_frame, mi_row, mi_col, mbmi->skip_mode, mbmi->mode, |
| bsize, cm->show_frame, mv[0].as_mv.row, mv[0].as_mv.col, |
| mv[1].as_mv.row, mv[1].as_mv.col, mbmi->ref_frame[0], |
| mbmi->ref_frame[1], mbmi->motion_mode, mode_ctx, newmv_ctx, |
| zeromv_ctx, refmv_ctx, mbmi->tx_size); |
| } |
| } |
| } |
| #endif // ENC_MISMATCH_DEBUG |
| |
| static void write_mbmi_b(AV1_COMP *cpi, const TileInfo *const tile, |
| aom_writer *w, int mi_row, int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| int bh, bw; |
| xd->mi = cm->mi_grid_visible + (mi_row * cm->mi_stride + mi_col); |
| MB_MODE_INFO *m = xd->mi[0]; |
| |
| assert(m->sb_type <= cm->seq_params.sb_size || |
| (m->sb_type >= BLOCK_SIZES && m->sb_type < BLOCK_SIZES_ALL)); |
| |
| bh = mi_size_high[m->sb_type]; |
| bw = mi_size_wide[m->sb_type]; |
| |
| cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); |
| |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); |
| |
| xd->above_txfm_context = cm->above_txfm_context[tile->tile_row] + mi_col; |
| xd->left_txfm_context = |
| xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); |
| |
| if (frame_is_intra_only(cm)) { |
| write_mb_modes_kf(cpi, xd, cpi->td.mb.mbmi_ext, mi_row, mi_col, w); |
| } else { |
| // has_subpel_mv_component needs the ref frame buffers set up to look |
| // up if they are scaled. has_subpel_mv_component is in turn needed by |
| // write_switchable_interp_filter, which is called by pack_inter_mode_mvs. |
| set_ref_ptrs(cm, xd, m->ref_frame[0], m->ref_frame[1]); |
| |
| #if ENC_MISMATCH_DEBUG |
| enc_dump_logs(cpi, mi_row, mi_col); |
| #endif // ENC_MISMATCH_DEBUG |
| |
| pack_inter_mode_mvs(cpi, mi_row, mi_col, w); |
| } |
| } |
| |
| static void write_inter_txb_coeff(AV1_COMMON *const cm, MACROBLOCK *const x, |
| MB_MODE_INFO *const mbmi, aom_writer *w, |
| const TOKENEXTRA **tok, |
| const TOKENEXTRA *const tok_end, |
| TOKEN_STATS *token_stats, const int row, |
| const int col, int *block, const int plane) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| const BLOCK_SIZE bsizec = |
| scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(bsizec, pd->subsampling_x, pd->subsampling_y); |
| |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); |
| const int step = |
| tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| const int bkw = tx_size_wide_unit[max_tx_size]; |
| const int bkh = tx_size_high_unit[max_tx_size]; |
| |
| const BLOCK_SIZE max_unit_bsize = |
| get_plane_block_size(BLOCK_64X64, pd->subsampling_x, pd->subsampling_y); |
| int mu_blocks_wide = block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; |
| int mu_blocks_high = block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; |
| |
| int blk_row, blk_col; |
| |
| const int num_4x4_w = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int num_4x4_h = block_size_high[plane_bsize] >> tx_size_high_log2[0]; |
| |
| const int unit_height = |
| AOMMIN(mu_blocks_high + (row >> pd->subsampling_y), num_4x4_h); |
| const int unit_width = |
| AOMMIN(mu_blocks_wide + (col >> pd->subsampling_x), num_4x4_w); |
| for (blk_row = row >> pd->subsampling_y; blk_row < unit_height; |
| blk_row += bkh) { |
| for (blk_col = col >> pd->subsampling_x; blk_col < unit_width; |
| blk_col += bkw) { |
| pack_txb_tokens(w, cm, x, tok, tok_end, xd, mbmi, plane, plane_bsize, |
| cm->seq_params.bit_depth, *block, blk_row, blk_col, |
| max_tx_size, token_stats); |
| *block += step; |
| } |
| } |
| } |
| |
| static void write_tokens_b(AV1_COMP *cpi, const TileInfo *const tile, |
| aom_writer *w, const TOKENEXTRA **tok, |
| const TOKENEXTRA *const tok_end, int mi_row, |
| int mi_col) { |
| AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| const int mi_offset = mi_row * cm->mi_stride + mi_col; |
| MB_MODE_INFO *const mbmi = *(cm->mi_grid_visible + mi_offset); |
| int plane; |
| int bh, bw; |
| MACROBLOCK *const x = &cpi->td.mb; |
| (void)tok; |
| (void)tok_end; |
| xd->mi = cm->mi_grid_visible + mi_offset; |
| |
| assert(mbmi->sb_type <= cm->seq_params.sb_size || |
| (mbmi->sb_type >= BLOCK_SIZES && mbmi->sb_type < BLOCK_SIZES_ALL)); |
| |
| bh = mi_size_high[mbmi->sb_type]; |
| bw = mi_size_wide[mbmi->sb_type]; |
| cpi->td.mb.mbmi_ext = cpi->mbmi_ext_base + (mi_row * cm->mi_cols + mi_col); |
| |
| set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols); |
| |
| if (!mbmi->skip) { |
| if (!is_inter_block(mbmi)) |
| av1_write_coeffs_mb(cm, x, mi_row, mi_col, w, mbmi->sb_type); |
| |
| if (is_inter_block(mbmi)) { |
| int block[MAX_MB_PLANE] = { 0 }; |
| const BLOCK_SIZE plane_bsize = mbmi->sb_type; |
| assert(plane_bsize == get_plane_block_size(mbmi->sb_type, |
| xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| const int num_4x4_w = |
| block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int num_4x4_h = |
| block_size_high[plane_bsize] >> tx_size_high_log2[0]; |
| int row, col; |
| TOKEN_STATS token_stats; |
| init_token_stats(&token_stats); |
| |
| const BLOCK_SIZE max_unit_bsize = BLOCK_64X64; |
| assert(max_unit_bsize == |
| get_plane_block_size(BLOCK_64X64, xd->plane[0].subsampling_x, |
| xd->plane[0].subsampling_y)); |
| int mu_blocks_wide = |
| block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0]; |
| int mu_blocks_high = |
| block_size_high[max_unit_bsize] >> tx_size_high_log2[0]; |
| |
| mu_blocks_wide = AOMMIN(num_4x4_w, mu_blocks_wide); |
| mu_blocks_high = AOMMIN(num_4x4_h, mu_blocks_high); |
| |
| for (row = 0; row < num_4x4_h; row += mu_blocks_high) { |
| for (col = 0; col < num_4x4_w; col += mu_blocks_wide) { |
| for (plane = 0; plane < num_planes && is_inter_block(mbmi); ++plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| if (!is_chroma_reference(mi_row, mi_col, mbmi->sb_type, |
| pd->subsampling_x, pd->subsampling_y)) { |
| continue; |
| } |
| write_inter_txb_coeff(cm, x, mbmi, w, tok, tok_end, &token_stats, |
| row, col, &block[plane], plane); |
| } |
| } |
| #if CONFIG_RD_DEBUG |
| if (mbmi->sb_type >= BLOCK_8X8 && |
| rd_token_stats_mismatch(&mbmi->rd_stats, &token_stats, plane)) { |
| dump_mode_info(m); |
| assert(0); |
| } |
| #endif // CONFIG_RD_DEBUG |
| } |
| } |
| } |
| } |
| |
| static void write_modes_b(AV1_COMP *cpi, const TileInfo *const tile, |
| aom_writer *w, const TOKENEXTRA **tok, |
| const TOKENEXTRA *const tok_end, int mi_row, |
| int mi_col) { |
| write_mbmi_b(cpi, tile, w, mi_row, mi_col); |
| |
| AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &cpi->td.mb.e_mbd; |
| MB_MODE_INFO *mbmi = xd->mi[0]; |
| for (int plane = 0; plane < AOMMIN(2, av1_num_planes(cm)); ++plane) { |
| const uint8_t palette_size_plane = |
| mbmi->palette_mode_info.palette_size[plane]; |
| assert(!mbmi->skip_mode || !palette_size_plane); |
| if (palette_size_plane > 0) { |
| assert(mbmi->use_intrabc == 0); |
| assert(av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type)); |
| int rows, cols; |
| av1_get_block_dimensions(mbmi->sb_type, plane, xd, NULL, NULL, &rows, |
| &cols); |
| assert(*tok < tok_end); |
| pack_map_tokens(w, tok, palette_size_plane, rows * cols); |
| } |
| } |
| |
| BLOCK_SIZE bsize = mbmi->sb_type; |
| int is_inter_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi); |
| int skip = mbmi->skip; |
| int segment_id = mbmi->segment_id; |
| if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) && |
| !(is_inter_tx && skip) && !xd->lossless[segment_id]) { |
| if (is_inter_tx) { // This implies skip flag is 0. |
| const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, bsize, 0); |
| const int txbh = tx_size_high_unit[max_tx_size]; |
| const int txbw = tx_size_wide_unit[max_tx_size]; |
| const int width = block_size_wide[bsize] >> tx_size_wide_log2[0]; |
| const int height = block_size_high[bsize] >> tx_size_high_log2[0]; |
| int idx, idy; |
| for (idy = 0; idy < height; idy += txbh) |
| for (idx = 0; idx < width; idx += txbw) |
| write_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, w); |
| } else { |
| write_selected_tx_size(xd, w); |
| set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, 0, xd); |
| } |
| } else { |
| set_txfm_ctxs(mbmi->tx_size, xd->n4_w, xd->n4_h, |
| skip && is_inter_block(mbmi), xd); |
| } |
| |
| write_tokens_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| } |
| |
| static void write_partition(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, int hbs, int mi_row, |
| int mi_col, PARTITION_TYPE p, BLOCK_SIZE bsize, |
| aom_writer *w) { |
| const int is_partition_point = bsize >= BLOCK_8X8; |
| |
| if (!is_partition_point) return; |
| |
| const int has_rows = (mi_row + hbs) < cm->mi_rows; |
| const int has_cols = (mi_col + hbs) < cm->mi_cols; |
| const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize); |
| FRAME_CONTEXT *ec_ctx = xd->tile_ctx; |
| |
| if (!has_rows && !has_cols) { |
| assert(p == PARTITION_SPLIT); |
| return; |
| } |
| |
| if (has_rows && has_cols) { |
| aom_write_symbol(w, p, ec_ctx->partition_cdf[ctx], |
| partition_cdf_length(bsize)); |
| } else if (!has_rows && has_cols) { |
| assert(p == PARTITION_SPLIT || p == PARTITION_HORZ); |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_vert_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); |
| aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); |
| } else { |
| assert(has_rows && !has_cols); |
| assert(p == PARTITION_SPLIT || p == PARTITION_VERT); |
| assert(bsize > BLOCK_8X8); |
| aom_cdf_prob cdf[2]; |
| partition_gather_horz_alike(cdf, ec_ctx->partition_cdf[ctx], bsize); |
| aom_write_cdf(w, p == PARTITION_SPLIT, cdf, 2); |
| } |
| } |
| |
| static void write_modes_sb(AV1_COMP *const cpi, const TileInfo *const tile, |
| aom_writer *const w, const TOKENEXTRA **tok, |
| const TOKENEXTRA *const tok_end, int mi_row, |
| int mi_col, BLOCK_SIZE bsize) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| const int hbs = mi_size_wide[bsize] / 2; |
| const int quarter_step = mi_size_wide[bsize] / 4; |
| int i; |
| const PARTITION_TYPE partition = get_partition(cm, mi_row, mi_col, bsize); |
| const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); |
| |
| if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return; |
| |
| const int num_planes = av1_num_planes(cm); |
| for (int plane = 0; plane < num_planes; ++plane) { |
| int rcol0, rcol1, rrow0, rrow1; |
| if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize, |
| &rcol0, &rcol1, &rrow0, &rrow1)) { |
| const int rstride = cm->rst_info[plane].horz_units_per_tile; |
| for (int rrow = rrow0; rrow < rrow1; ++rrow) { |
| for (int rcol = rcol0; rcol < rcol1; ++rcol) { |
| const int runit_idx = rcol + rrow * rstride; |
| const RestorationUnitInfo *rui = |
| &cm->rst_info[plane].unit_info[runit_idx]; |
| loop_restoration_write_sb_coeffs(cm, xd, rui, w, plane, |
| cpi->td.counts); |
| } |
| } |
| } |
| } |
| |
| write_partition(cm, xd, hbs, mi_row, mi_col, partition, bsize, w); |
| switch (partition) { |
| case PARTITION_NONE: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| break; |
| case PARTITION_HORZ: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| if (mi_row + hbs < cm->mi_rows) |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); |
| break; |
| case PARTITION_VERT: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| if (mi_col + hbs < cm->mi_cols) |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); |
| break; |
| case PARTITION_SPLIT: |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col, subsize); |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs, |
| subsize); |
| break; |
| case PARTITION_HORZ_A: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); |
| break; |
| case PARTITION_HORZ_B: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); |
| break; |
| case PARTITION_VERT_A: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); |
| break; |
| case PARTITION_VERT_B: |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, mi_col + hbs); |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row + hbs, mi_col + hbs); |
| break; |
| case PARTITION_HORZ_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_row = mi_row + i * quarter_step; |
| if (i > 0 && this_mi_row >= cm->mi_rows) break; |
| |
| write_modes_b(cpi, tile, w, tok, tok_end, this_mi_row, mi_col); |
| } |
| break; |
| case PARTITION_VERT_4: |
| for (i = 0; i < 4; ++i) { |
| int this_mi_col = mi_col + i * quarter_step; |
| if (i > 0 && this_mi_col >= cm->mi_cols) break; |
| |
| write_modes_b(cpi, tile, w, tok, tok_end, mi_row, this_mi_col); |
| } |
| break; |
| default: assert(0); |
| } |
| |
| // update partition context |
| update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); |
| } |
| |
| static void write_modes(AV1_COMP *const cpi, const TileInfo *const tile, |
| aom_writer *const w, const TOKENEXTRA **tok, |
| const TOKENEXTRA *const tok_end) { |
| AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| const int mi_row_start = tile->mi_row_start; |
| const int mi_row_end = tile->mi_row_end; |
| const int mi_col_start = tile->mi_col_start; |
| const int mi_col_end = tile->mi_col_end; |
| int mi_row, mi_col; |
| |
| av1_zero_above_context(cm, xd, mi_col_start, mi_col_end, tile->tile_row); |
| av1_init_above_context(cm, xd, tile->tile_row); |
| |
| if (cpi->common.delta_q_present_flag) { |
| xd->current_qindex = cpi->common.base_qindex; |
| if (cpi->common.delta_lf_present_flag) { |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| } |
| } |
| |
| for (mi_row = mi_row_start; mi_row < mi_row_end; |
| mi_row += cm->seq_params.mib_size) { |
| av1_zero_left_context(xd); |
| |
| for (mi_col = mi_col_start; mi_col < mi_col_end; |
| mi_col += cm->seq_params.mib_size) { |
| write_modes_sb(cpi, tile, w, tok, tok_end, mi_row, mi_col, |
| cm->seq_params.sb_size); |
| } |
| } |
| } |
| |
| static void encode_restoration_mode(AV1_COMMON *cm, |
| struct aom_write_bit_buffer *wb) { |
| assert(!cm->all_lossless); |
| if (!cm->seq_params.enable_restoration) return; |
| if (cm->allow_intrabc) return; |
| const int num_planes = av1_num_planes(cm); |
| int all_none = 1, chroma_none = 1; |
| for (int p = 0; p < num_planes; ++p) { |
| RestorationInfo *rsi = &cm->rst_info[p]; |
| if (rsi->frame_restoration_type != RESTORE_NONE) { |
| all_none = 0; |
| chroma_none &= p == 0; |
| } |
| switch (rsi->frame_restoration_type) { |
| case RESTORE_NONE: |
| aom_wb_write_bit(wb, 0); |
| aom_wb_write_bit(wb, 0); |
| break; |
| case RESTORE_WIENER: |
| aom_wb_write_bit(wb, 1); |
| aom_wb_write_bit(wb, 0); |
| break; |
| case RESTORE_SGRPROJ: |
| aom_wb_write_bit(wb, 1); |
| aom_wb_write_bit(wb, 1); |
| break; |
| case RESTORE_SWITCHABLE: |
| aom_wb_write_bit(wb, 0); |
| aom_wb_write_bit(wb, 1); |
| break; |
| default: assert(0); |
| } |
| } |
| if (!all_none) { |
| assert(cm->seq_params.sb_size == BLOCK_64X64 || |
| cm->seq_params.sb_size == BLOCK_128X128); |
| const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64; |
| |
| RestorationInfo *rsi = &cm->rst_info[0]; |
| |
| assert(rsi->restoration_unit_size >= sb_size); |
| assert(RESTORATION_UNITSIZE_MAX == 256); |
| |
| if (sb_size == 64) { |
| aom_wb_write_bit(wb, rsi->restoration_unit_size > 64); |
| } |
| if (rsi->restoration_unit_size > 64) { |
| aom_wb_write_bit(wb, rsi->restoration_unit_size > 128); |
| } |
| } |
| |
| if (num_planes > 1) { |
| int s = AOMMIN(cm->seq_params.subsampling_x, cm->seq_params.subsampling_y); |
| if (s && !chroma_none) { |
| aom_wb_write_bit(wb, cm->rst_info[1].restoration_unit_size != |
| cm->rst_info[0].restoration_unit_size); |
| assert(cm->rst_info[1].restoration_unit_size == |
| cm->rst_info[0].restoration_unit_size || |
| cm->rst_info[1].restoration_unit_size == |
| (cm->rst_info[0].restoration_unit_size >> s)); |
| assert(cm->rst_info[2].restoration_unit_size == |
| cm->rst_info[1].restoration_unit_size); |
| } else if (!s) { |
| assert(cm->rst_info[1].restoration_unit_size == |
| cm->rst_info[0].restoration_unit_size); |
| assert(cm->rst_info[2].restoration_unit_size == |
| cm->rst_info[1].restoration_unit_size); |
| } |
| } |
| } |
| |
| static void write_wiener_filter(int wiener_win, const WienerInfo *wiener_info, |
| WienerInfo *ref_wiener_info, aom_writer *wb) { |
| if (wiener_win == WIENER_WIN) |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, |
| wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); |
| else |
| assert(wiener_info->vfilter[0] == 0 && |
| wiener_info->vfilter[WIENER_WIN - 1] == 0); |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, |
| wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, |
| wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); |
| if (wiener_win == WIENER_WIN) |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, |
| WIENER_FILT_TAP0_SUBEXP_K, |
| ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, |
| wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); |
| else |
| assert(wiener_info->hfilter[0] == 0 && |
| wiener_info->hfilter[WIENER_WIN - 1] == 0); |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, |
| WIENER_FILT_TAP1_SUBEXP_K, |
| ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, |
| wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); |
| aom_write_primitive_refsubexpfin( |
| wb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, |
| WIENER_FILT_TAP2_SUBEXP_K, |
| ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, |
| wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); |
| memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info)); |
| } |
| |
| static void write_sgrproj_filter(const SgrprojInfo *sgrproj_info, |
| SgrprojInfo *ref_sgrproj_info, |
| aom_writer *wb) { |
| aom_write_literal(wb, sgrproj_info->ep, SGRPROJ_PARAMS_BITS); |
| const sgr_params_type *params = &sgr_params[sgrproj_info->ep]; |
| |
| if (params->r[0] == 0) { |
| assert(sgrproj_info->xqd[0] == 0); |
| aom_write_primitive_refsubexpfin( |
| wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, |
| sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); |
| } else if (params->r[1] == 0) { |
| aom_write_primitive_refsubexpfin( |
| wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, |
| sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); |
| } else { |
| aom_write_primitive_refsubexpfin( |
| wb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, |
| sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); |
| aom_write_primitive_refsubexpfin( |
| wb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, |
| ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, |
| sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); |
| } |
| |
| memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info)); |
| } |
| |
| static void loop_restoration_write_sb_coeffs(const AV1_COMMON *const cm, |
| MACROBLOCKD *xd, |
| const RestorationUnitInfo *rui, |
| aom_writer *const w, int plane, |
| FRAME_COUNTS *counts) { |
| const RestorationInfo *rsi = cm->rst_info + plane; |
| RestorationType frame_rtype = rsi->frame_restoration_type; |
| if (frame_rtype == RESTORE_NONE) return; |
| |
| (void)counts; |
| assert(!cm->all_lossless); |
| |
| const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN; |
| WienerInfo *wiener_info = xd->wiener_info + plane; |
| SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane; |
| RestorationType unit_rtype = rui->restoration_type; |
| |
| if (frame_rtype == RESTORE_SWITCHABLE) { |
| aom_write_symbol(w, unit_rtype, xd->tile_ctx->switchable_restore_cdf, |
| RESTORE_SWITCHABLE_TYPES); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->switchable_restore[unit_rtype]; |
| #endif |
| switch (unit_rtype) { |
| case RESTORE_WIENER: |
| write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); |
| break; |
| case RESTORE_SGRPROJ: |
| write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); |
| break; |
| default: assert(unit_rtype == RESTORE_NONE); break; |
| } |
| } else if (frame_rtype == RESTORE_WIENER) { |
| aom_write_symbol(w, unit_rtype != RESTORE_NONE, |
| xd->tile_ctx->wiener_restore_cdf, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->wiener_restore[unit_rtype != RESTORE_NONE]; |
| #endif |
| if (unit_rtype != RESTORE_NONE) { |
| write_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, w); |
| } |
| } else if (frame_rtype == RESTORE_SGRPROJ) { |
| aom_write_symbol(w, unit_rtype != RESTORE_NONE, |
| xd->tile_ctx->sgrproj_restore_cdf, 2); |
| #if CONFIG_ENTROPY_STATS |
| ++counts->sgrproj_restore[unit_rtype != RESTORE_NONE]; |
| #endif |
| if (unit_rtype != RESTORE_NONE) { |
| write_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, w); |
| } |
| } |
| } |
| |
| static void encode_loopfilter(AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { |
| assert(!cm->coded_lossless); |
| if (cm->allow_intrabc) return; |
| const int num_planes = av1_num_planes(cm); |
| int i; |
| struct loopfilter *lf = &cm->lf; |
| |
| // Encode the loop filter level and type |
| aom_wb_write_literal(wb, lf->filter_level[0], 6); |
| aom_wb_write_literal(wb, lf->filter_level[1], 6); |
| if (num_planes > 1) { |
| if (lf->filter_level[0] || lf->filter_level[1]) { |
| aom_wb_write_literal(wb, lf->filter_level_u, 6); |
| aom_wb_write_literal(wb, lf->filter_level_v, 6); |
| } |
| } |
| aom_wb_write_literal(wb, lf->sharpness_level, 3); |
| |
| // Write out loop filter deltas applied at the MB level based on mode or |
| // ref frame (if they are enabled). |
| aom_wb_write_bit(wb, lf->mode_ref_delta_enabled); |
| |
| if (lf->mode_ref_delta_enabled) { |
| aom_wb_write_bit(wb, lf->mode_ref_delta_update); |
| |
| if (lf->mode_ref_delta_update) { |
| const int prime_idx = cm->primary_ref_frame; |
| const int buf_idx = |
| prime_idx == PRIMARY_REF_NONE ? -1 : cm->frame_refs[prime_idx].idx; |
| int8_t last_ref_deltas[REF_FRAMES]; |
| if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) { |
| av1_set_default_ref_deltas(last_ref_deltas); |
| } else { |
| memcpy(last_ref_deltas, cm->buffer_pool->frame_bufs[buf_idx].ref_deltas, |
| REF_FRAMES); |
| } |
| for (i = 0; i < REF_FRAMES; i++) { |
| const int delta = lf->ref_deltas[i]; |
| const int changed = delta != last_ref_deltas[i]; |
| aom_wb_write_bit(wb, changed); |
| if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); |
| } |
| |
| int8_t last_mode_deltas[MAX_MODE_LF_DELTAS]; |
| if (prime_idx == PRIMARY_REF_NONE || buf_idx < 0) { |
| av1_set_default_mode_deltas(last_mode_deltas); |
| } else { |
| memcpy(last_mode_deltas, |
| cm->buffer_pool->frame_bufs[buf_idx].mode_deltas, |
| MAX_MODE_LF_DELTAS); |
| } |
| for (i = 0; i < MAX_MODE_LF_DELTAS; i++) { |
| const int delta = lf->mode_deltas[i]; |
| const int changed = delta != last_mode_deltas[i]; |
| aom_wb_write_bit(wb, changed); |
| if (changed) aom_wb_write_inv_signed_literal(wb, delta, 6); |
| } |
| } |
| } |
| } |
| |
| static void encode_cdef(const AV1_COMMON *cm, struct aom_write_bit_buffer *wb) { |
| assert(!cm->coded_lossless); |
| if (!cm->seq_params.enable_cdef) return; |
| if (cm->allow_intrabc) return; |
| const int num_planes = av1_num_planes(cm); |
| int i; |
| aom_wb_write_literal(wb, cm->cdef_pri_damping - 3, 2); |
| assert(cm->cdef_pri_damping == cm->cdef_sec_damping); |
| aom_wb_write_literal(wb, cm->cdef_bits, 2); |
| for (i = 0; i < cm->nb_cdef_strengths; i++) { |
| aom_wb_write_literal(wb, cm->cdef_strengths[i], CDEF_STRENGTH_BITS); |
| if (num_planes > 1) |
| aom_wb_write_literal(wb, cm->cdef_uv_strengths[i], CDEF_STRENGTH_BITS); |
| } |
| } |
| |
| static void write_delta_q(struct aom_write_bit_buffer *wb, int delta_q) { |
| if (delta_q != 0) { |
| aom_wb_write_bit(wb, 1); |
| aom_wb_write_inv_signed_literal(wb, delta_q, 6); |
| } else { |
| aom_wb_write_bit(wb, 0); |
| } |
| } |
| |
| static void encode_quantization(const AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *wb) { |
| const int num_planes = av1_num_planes(cm); |
| |
| aom_wb_write_literal(wb, cm->base_qindex, QINDEX_BITS); |
| write_delta_q(wb, cm->y_dc_delta_q); |
| if (num_planes > 1) { |
| int diff_uv_delta = (cm->u_dc_delta_q != cm->v_dc_delta_q) || |
| (cm->u_ac_delta_q != cm->v_ac_delta_q); |
| if (cm->seq_params.separate_uv_delta_q) aom_wb_write_bit(wb, diff_uv_delta); |
| write_delta_q(wb, cm->u_dc_delta_q); |
| write_delta_q(wb, cm->u_ac_delta_q); |
| if (diff_uv_delta) { |
| write_delta_q(wb, cm->v_dc_delta_q); |
| write_delta_q(wb, cm->v_ac_delta_q); |
| } |
| } |
| aom_wb_write_bit(wb, cm->using_qmatrix); |
| if (cm->using_qmatrix) { |
| aom_wb_write_literal(wb, cm->qm_y, QM_LEVEL_BITS); |
| aom_wb_write_literal(wb, cm->qm_u, QM_LEVEL_BITS); |
| if (!cm->seq_params.separate_uv_delta_q) |
| assert(cm->qm_u == cm->qm_v); |
| else |
| aom_wb_write_literal(wb, cm->qm_v, QM_LEVEL_BITS); |
| } |
| } |
| |
| static void encode_segmentation(AV1_COMMON *cm, MACROBLOCKD *xd, |
| struct aom_write_bit_buffer *wb) { |
| int i, j; |
| struct segmentation *seg = &cm->seg; |
| |
| aom_wb_write_bit(wb, seg->enabled); |
| if (!seg->enabled) return; |
| |
| // Write update flags |
| if (cm->primary_ref_frame == PRIMARY_REF_NONE) { |
| assert(seg->update_map == 1); |
| seg->temporal_update = 0; |
| assert(seg->update_data == 1); |
| } else { |
| aom_wb_write_bit(wb, seg->update_map); |
| if (seg->update_map) { |
| // Select the coding strategy (temporal or spatial) |
| av1_choose_segmap_coding_method(cm, xd); |
| aom_wb_write_bit(wb, seg->temporal_update); |
| } |
| aom_wb_write_bit(wb, seg->update_data); |
| } |
| |
| // Segmentation data |
| if (seg->update_data) { |
| for (i = 0; i < MAX_SEGMENTS; i++) { |
| for (j = 0; j < SEG_LVL_MAX; j++) { |
| const int active = segfeature_active(seg, i, j); |
| aom_wb_write_bit(wb, active); |
| if (active) { |
| const int data_max = av1_seg_feature_data_max(j); |
| const int data_min = -data_max; |
| const int ubits = get_unsigned_bits(data_max); |
| const int data = clamp(get_segdata(seg, i, j), data_min, data_max); |
| |
| if (av1_is_segfeature_signed(j)) { |
| aom_wb_write_inv_signed_literal(wb, data, ubits); |
| } else { |
| aom_wb_write_literal(wb, data, ubits); |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static void write_tx_mode(AV1_COMMON *cm, TX_MODE *mode, |
| struct aom_write_bit_buffer *wb) { |
| if (cm->coded_lossless) { |
| *mode = ONLY_4X4; |
| return; |
| } |
| aom_wb_write_bit(wb, *mode == TX_MODE_SELECT); |
| } |
| |
| static void write_frame_interp_filter(InterpFilter filter, |
| struct aom_write_bit_buffer *wb) { |
| aom_wb_write_bit(wb, filter == SWITCHABLE); |
| if (filter != SWITCHABLE) |
| aom_wb_write_literal(wb, filter, LOG_SWITCHABLE_FILTERS); |
| } |
| |
| static void fix_interp_filter(AV1_COMMON *cm, FRAME_COUNTS *counts) { |
| if (cm->interp_filter == SWITCHABLE) { |
| // Check to see if only one of the filters is actually used |
| int count[SWITCHABLE_FILTERS]; |
| int i, j, c = 0; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| count[i] = 0; |
| for (j = 0; j < SWITCHABLE_FILTER_CONTEXTS; ++j) |
| count[i] += counts->switchable_interp[j][i]; |
| c += (count[i] > 0); |
| } |
| if (c == 1) { |
| // Only one filter is used. So set the filter at frame level |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| if (count[i]) { |
| if (i == EIGHTTAP_REGULAR) cm->interp_filter = i; |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| // Same function as write_uniform but writing to uncompresses header wb |
| static void wb_write_uniform(struct aom_write_bit_buffer *wb, int n, int v) { |
| const int l = get_unsigned_bits(n); |
| const int m = (1 << l) - n; |
| if (l == 0) return; |
| if (v < m) { |
| aom_wb_write_literal(wb, v, l - 1); |
| } else { |
| aom_wb_write_literal(wb, m + ((v - m) >> 1), l - 1); |
| aom_wb_write_literal(wb, (v - m) & 1, 1); |
| } |
| } |
| |
| static void write_tile_info_max_tile(const AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *wb) { |
| int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2); |
| int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2); |
| int width_sb = width_mi >> cm->seq_params.mib_size_log2; |
| int height_sb = height_mi >> cm->seq_params.mib_size_log2; |
| int size_sb, i; |
| |
| aom_wb_write_bit(wb, cm->uniform_tile_spacing_flag); |
| |
| if (cm->uniform_tile_spacing_flag) { |
| // Uniform spaced tiles with power-of-two number of rows and columns |
| // tile columns |
| int ones = cm->log2_tile_cols - cm->min_log2_tile_cols; |
| while (ones--) { |
| aom_wb_write_bit(wb, 1); |
| } |
| if (cm->log2_tile_cols < cm->max_log2_tile_cols) { |
| aom_wb_write_bit(wb, 0); |
| } |
| |
| // rows |
| ones = cm->log2_tile_rows - cm->min_log2_tile_rows; |
| while (ones--) { |
| aom_wb_write_bit(wb, 1); |
| } |
| if (cm->log2_tile_rows < cm->max_log2_tile_rows) { |
| aom_wb_write_bit(wb, 0); |
| } |
| } else { |
| // Explicit tiles with configurable tile widths and heights |
| // columns |
| for (i = 0; i < cm->tile_cols; i++) { |
| size_sb = cm->tile_col_start_sb[i + 1] - cm->tile_col_start_sb[i]; |
| wb_write_uniform(wb, AOMMIN(width_sb, cm->max_tile_width_sb), |
| size_sb - 1); |
| width_sb -= size_sb; |
| } |
| assert(width_sb == 0); |
| |
| // rows |
| for (i = 0; i < cm->tile_rows; i++) { |
| size_sb = cm->tile_row_start_sb[i + 1] - cm->tile_row_start_sb[i]; |
| wb_write_uniform(wb, AOMMIN(height_sb, cm->max_tile_height_sb), |
| size_sb - 1); |
| height_sb -= size_sb; |
| } |
| assert(height_sb == 0); |
| } |
| } |
| |
| static void write_tile_info(const AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *saved_wb, |
| struct aom_write_bit_buffer *wb) { |
| write_tile_info_max_tile(cm, wb); |
| |
| *saved_wb = *wb; |
| if (cm->tile_rows * cm->tile_cols > 1) { |
| // tile id used for cdf update |
| aom_wb_write_literal(wb, 0, cm->log2_tile_cols + cm->log2_tile_rows); |
| // Number of bytes in tile size - 1 |
| aom_wb_write_literal(wb, 3, 2); |
| } |
| } |
| |
| static void write_ext_tile_info(const AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *saved_wb, |
| struct aom_write_bit_buffer *wb) { |
| // This information is stored as a separate byte. |
| int mod = wb->bit_offset % CHAR_BIT; |
| if (mod > 0) aom_wb_write_literal(wb, 0, CHAR_BIT - mod); |
| assert(aom_wb_is_byte_aligned(wb)); |
| |
| *saved_wb = *wb; |
| if (cm->tile_rows * cm->tile_cols > 1) { |
| // Note that the last item in the uncompressed header is the data |
| // describing tile configuration. |
| // Number of bytes in tile column size - 1 |
| aom_wb_write_literal(wb, 0, 2); |
| // Number of bytes in tile size - 1 |
| aom_wb_write_literal(wb, 0, 2); |
| } |
| } |
| |
| static int get_refresh_mask(AV1_COMP *cpi) { |
| if ((cpi->common.frame_type == KEY_FRAME && cpi->common.show_frame) || |
| frame_is_sframe(&cpi->common)) |
| return 0xFF; |
| |
| int refresh_mask = 0; |
| |
| // NOTE(zoeliu): When LAST_FRAME is to get refreshed, the decoder will be |
| // notified to get LAST3_FRAME refreshed and then the virtual indexes for all |
| // the 3 LAST reference frames will be updated accordingly, i.e.: |
| // (1) The original virtual index for LAST3_FRAME will become the new virtual |
| // index for LAST_FRAME; and |
| // (2) The original virtual indexes for LAST_FRAME and LAST2_FRAME will be |
| // shifted and become the new virtual indexes for LAST2_FRAME and |
| // LAST3_FRAME. |
| refresh_mask |= |
| (cpi->refresh_last_frame << cpi->ref_fb_idx[LAST_REF_FRAMES - 1]); |
| #if USE_SYMM_MULTI_LAYER |
| refresh_mask |= |
| (cpi->new_bwdref_update_rule == 1) |
| ? (cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[EXTREF_FRAME - 1]) |
| : (cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[BWDREF_FRAME - 1]); |
| #else |
| refresh_mask |= |
| (cpi->refresh_bwd_ref_frame << cpi->ref_fb_idx[BWDREF_FRAME - 1]); |
| #endif |
| refresh_mask |= |
| (cpi->refresh_alt2_ref_frame << cpi->ref_fb_idx[ALTREF2_FRAME - 1]); |
| |
| if (av1_preserve_existing_gf(cpi)) { |
| // We have decided to preserve the previously existing golden frame as our |
| // new ARF frame. However, in the short term we leave it in the GF slot and, |
| // if we're updating the GF with the current decoded frame, we save it |
| // instead to the ARF slot. |
| // Later, in the function av1_encoder.c:av1_update_reference_frames() we |
| // will swap gld_fb_idx and alt_fb_idx to achieve our objective. We do it |
| // there so that it can be done outside of the recode loop. |
| // Note: This is highly specific to the use of ARF as a forward reference, |
| // and this needs to be generalized as other uses are implemented |
| // (like RTC/temporal scalability). |
| |
| if (cpi->preserve_arf_as_gld) { |
| return refresh_mask; |
| } else { |
| return refresh_mask | |
| (cpi->refresh_golden_frame << cpi->ref_fb_idx[ALTREF_FRAME - 1]); |
| } |
| } else { |
| const int arf_idx = cpi->ref_fb_idx[ALTREF_FRAME - 1]; |
| return refresh_mask | |
| (cpi->refresh_golden_frame << cpi->ref_fb_idx[GOLDEN_FRAME - 1]) | |
| (cpi->refresh_alt_ref_frame << arf_idx); |
| } |
| } |
| |
| static INLINE int find_identical_tile( |
| const int tile_row, const int tile_col, |
| TileBufferEnc (*const tile_buffers)[MAX_TILE_COLS]) { |
| const MV32 candidate_offset[1] = { { 1, 0 } }; |
| const uint8_t *const cur_tile_data = |
| tile_buffers[tile_row][tile_col].data + 4; |
| const size_t cur_tile_size = tile_buffers[tile_row][tile_col].size; |
| |
| int i; |
| |
| if (tile_row == 0) return 0; |
| |
| // (TODO: yunqingwang) For now, only above tile is checked and used. |
| // More candidates such as left tile can be added later. |
| for (i = 0; i < 1; i++) { |
| int row_offset = candidate_offset[0].row; |
| int col_offset = candidate_offset[0].col; |
| int row = tile_row - row_offset; |
| int col = tile_col - col_offset; |
| uint8_t tile_hdr; |
| const uint8_t *tile_data; |
| TileBufferEnc *candidate; |
| |
| if (row < 0 || col < 0) continue; |
| |
| tile_hdr = *(tile_buffers[row][col].data); |
| |
| // Read out tcm bit |
| if ((tile_hdr >> 7) == 1) { |
| // The candidate is a copy tile itself |
| row_offset += tile_hdr & 0x7f; |
| row = tile_row - row_offset; |
| } |
| |
| candidate = &tile_buffers[row][col]; |
| |
| if (row_offset >= 128 || candidate->size != cur_tile_size) continue; |
| |
| tile_data = candidate->data + 4; |
| |
| if (memcmp(tile_data, cur_tile_data, cur_tile_size) != 0) continue; |
| |
| // Identical tile found |
| assert(row_offset > 0); |
| return row_offset; |
| } |
| |
| // No identical tile found |
| return 0; |
| } |
| |
| static void write_render_size(const AV1_COMMON *cm, |
| struct aom_write_bit_buffer *wb) { |
| const int scaling_active = av1_resize_scaled(cm); |
| aom_wb_write_bit(wb, scaling_active); |
| if (scaling_active) { |
| aom_wb_write_literal(wb, cm->render_width - 1, 16); |
| aom_wb_write_literal(wb, cm->render_height - 1, 16); |
| } |
| } |
| |
| static void write_superres_scale(const AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *wb) { |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| if (!seq_params->enable_superres) { |
| assert(cm->superres_scale_denominator == SCALE_NUMERATOR); |
| return; |
| } |
| |
| // First bit is whether to to scale or not |
| if (cm->superres_scale_denominator == SCALE_NUMERATOR) { |
| aom_wb_write_bit(wb, 0); // no scaling |
| } else { |
| aom_wb_write_bit(wb, 1); // scaling, write scale factor |
| assert(cm->superres_scale_denominator >= SUPERRES_SCALE_DENOMINATOR_MIN); |
| assert(cm->superres_scale_denominator < |
| SUPERRES_SCALE_DENOMINATOR_MIN + (1 << SUPERRES_SCALE_BITS)); |
| aom_wb_write_literal( |
| wb, cm->superres_scale_denominator - SUPERRES_SCALE_DENOMINATOR_MIN, |
| SUPERRES_SCALE_BITS); |
| } |
| } |
| |
| static void write_frame_size(const AV1_COMMON *cm, int frame_size_override, |
| struct aom_write_bit_buffer *wb) { |
| const int coded_width = cm->superres_upscaled_width - 1; |
| const int coded_height = cm->superres_upscaled_height - 1; |
| |
| if (frame_size_override) { |
| const SequenceHeader *seq_params = &cm->seq_params; |
| int num_bits_width = seq_params->num_bits_width; |
| int num_bits_height = seq_params->num_bits_height; |
| aom_wb_write_literal(wb, coded_width, num_bits_width); |
| aom_wb_write_literal(wb, coded_height, num_bits_height); |
| } |
| |
| write_superres_scale(cm, wb); |
| write_render_size(cm, wb); |
| } |
| |
| static void write_frame_size_with_refs(AV1_COMP *cpi, |
| struct aom_write_bit_buffer *wb) { |
| AV1_COMMON *const cm = &cpi->common; |
| int found = 0; |
| |
| MV_REFERENCE_FRAME ref_frame; |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| YV12_BUFFER_CONFIG *cfg = get_ref_frame_buffer(cpi, ref_frame); |
| |
| if (cfg != NULL) { |
| found = cm->superres_upscaled_width == cfg->y_crop_width && |
| cm->superres_upscaled_height == cfg->y_crop_height; |
| found &= cm->render_width == cfg->render_width && |
| cm->render_height == cfg->render_height; |
| } |
| aom_wb_write_bit(wb, found); |
| if (found) { |
| write_superres_scale(cm, wb); |
| break; |
| } |
| } |
| |
| if (!found) { |
| int frame_size_override = 1; // Always equal to 1 in this function |
| write_frame_size(cm, frame_size_override, wb); |
| } |
| } |
| |
| static void write_profile(BITSTREAM_PROFILE profile, |
| struct aom_write_bit_buffer *wb) { |
| assert(profile >= PROFILE_0 && profile < MAX_PROFILES); |
| aom_wb_write_literal(wb, profile, PROFILE_BITS); |
| } |
| |
| static void write_bitdepth(const SequenceHeader *const seq_params, |
| struct aom_write_bit_buffer *wb) { |
| // Profile 0/1: [0] for 8 bit, [1] 10-bit |
| // Profile 2: [0] for 8 bit, [10] 10-bit, [11] - 12-bit |
| aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_8 ? 0 : 1); |
| if (seq_params->profile == PROFILE_2 && seq_params->bit_depth != AOM_BITS_8) { |
| aom_wb_write_bit(wb, seq_params->bit_depth == AOM_BITS_10 ? 0 : 1); |
| } |
| } |
| |
| static void write_color_config(const SequenceHeader *const seq_params, |
| struct aom_write_bit_buffer *wb) { |
| write_bitdepth(seq_params, wb); |
| const int is_monochrome = seq_params->monochrome; |
| // monochrome bit |
| if (seq_params->profile != PROFILE_1) |
| aom_wb_write_bit(wb, is_monochrome); |
| else |
| assert(!is_monochrome); |
| if (seq_params->color_primaries == AOM_CICP_CP_UNSPECIFIED && |
| seq_params->transfer_characteristics == AOM_CICP_TC_UNSPECIFIED && |
| seq_params->matrix_coefficients == AOM_CICP_MC_UNSPECIFIED) { |
| aom_wb_write_bit(wb, 0); // No color description present |
| } else { |
| aom_wb_write_bit(wb, 1); // Color description present |
| aom_wb_write_literal(wb, seq_params->color_primaries, 8); |
| aom_wb_write_literal(wb, seq_params->transfer_characteristics, 8); |
| aom_wb_write_literal(wb, seq_params->matrix_coefficients, 8); |
| } |
| if (is_monochrome) { |
| // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] |
| aom_wb_write_bit(wb, seq_params->color_range); |
| return; |
| } |
| if (seq_params->color_primaries == AOM_CICP_CP_BT_709 && |
| seq_params->transfer_characteristics == AOM_CICP_TC_SRGB && |
| seq_params->matrix_coefficients == |
| AOM_CICP_MC_IDENTITY) { // it would be better to remove this |
| // dependency too |
| assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); |
| assert(seq_params->profile == PROFILE_1 || |
| (seq_params->profile == PROFILE_2 && |
| seq_params->bit_depth == AOM_BITS_12)); |
| } else { |
| // 0: [16, 235] (i.e. xvYCC), 1: [0, 255] |
| aom_wb_write_bit(wb, seq_params->color_range); |
| if (seq_params->profile == PROFILE_0) { |
| // 420 only |
| assert(seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1); |
| } else if (seq_params->profile == PROFILE_1) { |
| // 444 only |
| assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); |
| } else if (seq_params->profile == PROFILE_2) { |
| if (seq_params->bit_depth == AOM_BITS_12) { |
| // 420, 444 or 422 |
| aom_wb_write_bit(wb, seq_params->subsampling_x); |
| if (seq_params->subsampling_x == 0) { |
| assert(seq_params->subsampling_y == 0 && |
| "4:4:0 subsampling not allowed in AV1"); |
| } else { |
| aom_wb_write_bit(wb, seq_params->subsampling_y); |
| } |
| } else { |
| // 422 only |
| assert(seq_params->subsampling_x == 1 && |
| seq_params->subsampling_y == 0); |
| } |
| } |
| if (seq_params->matrix_coefficients == AOM_CICP_MC_IDENTITY) { |
| assert(seq_params->subsampling_x == 0 && seq_params->subsampling_y == 0); |
| } |
| if (seq_params->subsampling_x == 1 && seq_params->subsampling_y == 1) { |
| aom_wb_write_literal(wb, seq_params->chroma_sample_position, 2); |
| } |
| } |
| aom_wb_write_bit(wb, seq_params->separate_uv_delta_q); |
| } |
| |
| static void write_timing_info_header(AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *wb) { |
| aom_wb_write_unsigned_literal(wb, cm->timing_info.num_units_in_display_tick, |
| 32); // Number of units in tick |
| aom_wb_write_unsigned_literal(wb, cm->timing_info.time_scale, |
| 32); // Time scale |
| aom_wb_write_bit( |
| wb, |
| cm->timing_info.equal_picture_interval); // Equal picture interval bit |
| if (cm->timing_info.equal_picture_interval) { |
| aom_wb_write_uvlc( |
| wb, |
| cm->timing_info.num_ticks_per_picture - 1); // ticks per picture |
| } |
| } |
| |
| static void write_decoder_model_info(AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *wb) { |
| aom_wb_write_literal( |
| wb, cm->buffer_model.encoder_decoder_buffer_delay_length - 1, 5); |
| aom_wb_write_unsigned_literal(wb, cm->buffer_model.num_units_in_decoding_tick, |
| 32); // Number of units in decoding tick |
| aom_wb_write_literal(wb, cm->buffer_model.buffer_removal_time_length - 1, 5); |
| aom_wb_write_literal(wb, cm->buffer_model.frame_presentation_time_length - 1, |
| 5); |
| } |
| |
| static void write_dec_model_op_parameters(AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *wb, |
| int op_num) { |
| if (op_num > MAX_NUM_OPERATING_POINTS) |
| aom_internal_error( |
| &cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Encoder does not support %d decoder model operating points", op_num); |
| |
| // aom_wb_write_bit(wb, cm->op_params[op_num].has_parameters); |
| // if (!cm->op_params[op_num].has_parameters) return; |
| |
| aom_wb_write_unsigned_literal( |
| wb, cm->op_params[op_num].decoder_buffer_delay, |
| cm->buffer_model.encoder_decoder_buffer_delay_length); |
| |
| aom_wb_write_unsigned_literal( |
| wb, cm->op_params[op_num].encoder_buffer_delay, |
| cm->buffer_model.encoder_decoder_buffer_delay_length); |
| |
| aom_wb_write_bit(wb, cm->op_params[op_num].low_delay_mode_flag); |
| |
| cm->op_frame_timing[op_num].buffer_removal_time = |
| 0; // reset the decoded frame counter |
| } |
| |
| static void write_tu_pts_info(AV1_COMMON *const cm, |
| struct aom_write_bit_buffer *wb) { |
| aom_wb_write_unsigned_literal( |
| wb, cm->frame_presentation_time, |
| cm->buffer_model.frame_presentation_time_length); |
| } |
| |
| static void write_film_grain_params(AV1_COMP *cpi, |
| struct aom_write_bit_buffer *wb) { |
| AV1_COMMON *const cm = &cpi->common; |
| aom_film_grain_t *pars = &cm->film_grain_params; |
| |
| cm->cur_frame->film_grain_params = *pars; |
| |
| aom_wb_write_bit(wb, pars->apply_grain); |
| if (!pars->apply_grain) return; |
| |
| aom_wb_write_literal(wb, pars->random_seed, 16); |
| |
| pars->random_seed += 3245; // For film grain test vectors purposes |
| if (!pars->random_seed) // Random seed should not be zero |
| pars->random_seed += 1735; |
| if (cm->frame_type == INTER_FRAME) |
| aom_wb_write_bit(wb, pars->update_parameters); |
| else |
| pars->update_parameters = 1; |
| if (!pars->update_parameters) { |
| RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
| int ref_frame, ref_idx, buf_idx; |
| for (ref_frame = LAST_FRAME; ref_frame < REF_FRAMES; ref_frame++) { |
| ref_idx = get_ref_frame_map_idx(cpi, ref_frame); |
| assert(ref_idx != INVALID_IDX); |
| buf_idx = cm->ref_frame_map[ref_idx]; |
| if (frame_bufs[buf_idx].film_grain_params_present && |
| memcmp(pars, &frame_bufs[buf_idx].film_grain_params, sizeof(*pars))) { |
| break; |
| } |
| } |
| assert(ref_frame < REF_FRAMES); |
| aom_wb_write_literal(wb, ref_idx, 3); |
| return; |
| } |
| |
| // Scaling functions parameters |
| aom_wb_write_literal(wb, pars->num_y_points, 4); // max 14 |
| for (int i = 0; i < pars->num_y_points; i++) { |
| aom_wb_write_literal(wb, pars->scaling_points_y[i][0], 8); |
| aom_wb_write_literal(wb, pars->scaling_points_y[i][1], 8); |
| } |
| |
| if (!cm->seq_params.monochrome) |
| aom_wb_write_bit(wb, pars->chroma_scaling_from_luma); |
| else |
| pars->chroma_scaling_from_luma = 0; // for monochrome override to 0 |
| |
| if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma || |
| ((cm->seq_params.subsampling_x == 1) && |
| (cm->seq_params.subsampling_y == 1) && (pars->num_y_points == 0))) { |
| pars->num_cb_points = 0; |
| pars->num_cr_points = 0; |
| } else { |
| aom_wb_write_literal(wb, pars->num_cb_points, 4); // max 10 |
| for (int i = 0; i < pars->num_cb_points; i++) { |
| aom_wb_write_literal(wb, pars->scaling_points_cb[i][0], 8); |
| aom_wb_write_literal(wb, pars->scaling_points_cb[i][1], 8); |
| } |
| |
| aom_wb_write_literal(wb, pars->num_cr_points, 4); // max 10 |
| for (int i = 0; i < pars->num_cr_points; i++) { |
| aom_wb_write_literal(wb, pars->scaling_points_cr[i][0], 8); |
| aom_wb_write_literal(wb, pars->scaling_points_cr[i][1], 8); |
| } |
| } |
| |
| aom_wb_write_literal(wb, pars->scaling_shift - 8, 2); // 8 + value |
| |
| // AR coefficients |
| // Only sent if the corresponsing scaling function has |
| // more than 0 points |
| |
| aom_wb_write_literal(wb, pars->ar_coeff_lag, 2); |
| |
| int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1); |
| int num_pos_chroma = num_pos_luma; |
| if (pars->num_y_points > 0) ++num_pos_chroma; |
| |
| if (pars->num_y_points) |
| for (int i = 0; i < num_pos_luma; i++) |
| aom_wb_write_literal(wb, pars->ar_coeffs_y[i] + 128, 8); |
| |
| if (pars->num_cb_points || pars->chroma_scaling_from_luma) |
| for (int i = 0; i < num_pos_chroma; i++) |
| aom_wb_write_literal(wb, pars->ar_coeffs_cb[i] + 128, 8); |
| |
| if (pars->num_cr_points || pars->chroma_scaling_from_luma) |
| for (int i = 0; i < num_pos_chroma; i++) |
| aom_wb_write_literal(wb, pars->ar_coeffs_cr[i] + 128, 8); |
| |
| aom_wb_write_literal(wb, pars->ar_coeff_shift - 6, 2); // 8 + value |
| |
| aom_wb_write_literal(wb, pars->grain_scale_shift, 2); |
| |
| if (pars->num_cb_points) { |
| aom_wb_write_literal(wb, pars->cb_mult, 8); |
| aom_wb_write_literal(wb, pars->cb_luma_mult, 8); |
| aom_wb_write_literal(wb, pars->cb_offset, 9); |
| } |
| |
| if (pars->num_cr_points) { |
| aom_wb_write_literal(wb, pars->cr_mult, 8); |
| aom_wb_write_literal(wb, pars->cr_luma_mult, 8); |
| aom_wb_write_literal(wb, pars->cr_offset, 9); |
| } |
| |
| aom_wb_write_bit(wb, pars->overlap_flag); |
| |
| aom_wb_write_bit(wb, pars->clip_to_restricted_range); |
| } |
| |
| static void write_sb_size(SequenceHeader *seq_params, |
| struct aom_write_bit_buffer *wb) { |
| (void)seq_params; |
| (void)wb; |
| assert(seq_params->mib_size == mi_size_wide[seq_params->sb_size]); |
| assert(seq_params->mib_size == 1 << seq_params->mib_size_log2); |
| assert(seq_params->sb_size == BLOCK_128X128 || |
| seq_params->sb_size == BLOCK_64X64); |
| aom_wb_write_bit(wb, seq_params->sb_size == BLOCK_128X128 ? 1 : 0); |
| } |
| |
| void write_sequence_header(AV1_COMP *cpi, struct aom_write_bit_buffer *wb) { |
| AV1_COMMON *const cm = &cpi->common; |
| SequenceHeader *seq_params = &cm->seq_params; |
| |
| int max_frame_width = cpi->oxcf.forced_max_frame_width |
| ? cpi->oxcf.forced_max_frame_width |
| : cpi->oxcf.width; |
| int max_frame_height = cpi->oxcf.forced_max_frame_height |
| ? cpi->oxcf.forced_max_frame_height |
| : cpi->oxcf.height; |
| // max((int)ceil(log2(max_frame_width)), 1) |
| const int num_bits_width = |
| (max_frame_width > 1) ? get_msb(max_frame_width - 1) + 1 : 1; |
| // max((int)ceil(log2(max_frame_height)), 1) |
| const int num_bits_height = |
| (max_frame_height > 1) ? get_msb(max_frame_height - 1) + 1 : 1; |
| assert(num_bits_width <= 16); |
| assert(num_bits_height <= 16); |
| |
| seq_params->num_bits_width = num_bits_width; |
| seq_params->num_bits_height = num_bits_height; |
| seq_params->max_frame_width = max_frame_width; |
| seq_params->max_frame_height = max_frame_height; |
| |
| aom_wb_write_literal(wb, num_bits_width - 1, 4); |
| aom_wb_write_literal(wb, num_bits_height - 1, 4); |
| aom_wb_write_literal(wb, max_frame_width - 1, num_bits_width); |
| aom_wb_write_literal(wb, max_frame_height - 1, num_bits_height); |
| |
| /* Placeholder for actually writing to the bitstream */ |
| if (!seq_params->reduced_still_picture_hdr) { |
| seq_params->frame_id_numbers_present_flag = |
| cm->large_scale_tile ? 0 : cm->error_resilient_mode; |
| seq_params->frame_id_length = FRAME_ID_LENGTH; |
| seq_params->delta_frame_id_length = DELTA_FRAME_ID_LENGTH; |
| |
| aom_wb_write_bit(wb, seq_params->frame_id_numbers_present_flag); |
| if (seq_params->frame_id_numbers_present_flag) { |
| // We must always have delta_frame_id_length < frame_id_length, |
| // in order for a frame to be referenced with a unique delta. |
| // Avoid wasting bits by using a coding that enforces this restriction. |
| aom_wb_write_literal(wb, seq_params->delta_frame_id_length - 2, 4); |
| aom_wb_write_literal( |
| wb, |
| seq_params->frame_id_length - seq_params->delta_frame_id_length - 1, |
| 3); |
| } |
| } |
| |
| write_sb_size(seq_params, wb); |
| |
| aom_wb_write_bit(wb, seq_params->enable_filter_intra); |
| aom_wb_write_bit(wb, seq_params->enable_intra_edge_filter); |
| |
| if (!seq_params->reduced_still_picture_hdr) { |
| aom_wb_write_bit(wb, seq_params->enable_interintra_compound); |
| aom_wb_write_bit(wb, seq_params->enable_masked_compound); |
| aom_wb_write_bit(wb, seq_params->enable_warped_motion); |
| aom_wb_write_bit(wb, seq_params->enable_dual_filter); |
| |
| aom_wb_write_bit(wb, seq_params->enable_order_hint); |
| |
| if (seq_params->enable_order_hint) { |
| aom_wb_write_bit(wb, seq_params->enable_jnt_comp); |
| aom_wb_write_bit(wb, seq_params->enable_ref_frame_mvs); |
| } |
| if (seq_params->force_screen_content_tools == 2) { |
| aom_wb_write_bit(wb, 1); |
| } else { |
| aom_wb_write_bit(wb, 0); |
| aom_wb_write_bit(wb, seq_params->force_screen_content_tools); |
| } |
| if (seq_params->force_screen_content_tools > 0) { |
| if (seq_params->force_integer_mv == 2) { |
| aom_wb_write_bit(wb, 1); |
| } else { |
| aom_wb_write_bit(wb, 0); |
| aom_wb_write_bit(wb, seq_params->force_integer_mv); |
| } |
| } else { |
| assert(seq_params->force_integer_mv == 2); |
| } |
| if (seq_params->enable_order_hint) |
| aom_wb_write_literal(wb, seq_params->order_hint_bits_minus_1, 3); |
| } |
| |
| aom_wb_write_bit(wb, seq_params->enable_superres); |
| aom_wb_write_bit(wb, seq_params->enable_cdef); |
| aom_wb_write_bit(wb, seq_params->enable_restoration); |
| } |
| |
| static void write_global_motion_params(const WarpedMotionParams *params, |
| const WarpedMotionParams *ref_params, |
| struct aom_write_bit_buffer *wb, |
| int allow_hp) { |
| const TransformationType type = params->wmtype; |
| |
| aom_wb_write_bit(wb, type != IDENTITY); |
| if (type != IDENTITY) { |
| aom_wb_write_bit(wb, type == ROTZOOM); |
| if (type != ROTZOOM) aom_wb_write_bit(wb, type == TRANSLATION); |
| } |
| |
| if (type >= ROTZOOM) { |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS), |
| (params->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF), |
| (params->wmmat[3] >> GM_ALPHA_PREC_DIFF)); |
| } |
| |
| if (type >= AFFINE) { |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF), |
| (params->wmmat[4] >> GM_ALPHA_PREC_DIFF)); |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, GM_ALPHA_MAX + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - |
| (1 << GM_ALPHA_PREC_BITS), |
| (params->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); |
| } |
| |
| if (type >= TRANSLATION) { |
| const int trans_bits = (type == TRANSLATION) |
| ? GM_ABS_TRANS_ONLY_BITS - !allow_hp |
| : GM_ABS_TRANS_BITS; |
| const int trans_prec_diff = (type == TRANSLATION) |
| ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp |
| : GM_TRANS_PREC_DIFF; |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[0] >> trans_prec_diff), |
| (params->wmmat[0] >> trans_prec_diff)); |
| aom_wb_write_signed_primitive_refsubexpfin( |
| wb, (1 << trans_bits) + 1, SUBEXPFIN_K, |
| (ref_params->wmmat[1] >> trans_prec_diff), |
| (params->wmmat[1] >> trans_prec_diff)); |
| } |
| } |
| |
| static void write_global_motion(AV1_COMP *cpi, |
| struct aom_write_bit_buffer *wb) { |
| AV1_COMMON *const cm = &cpi->common; |
| int frame; |
| for (frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) { |
| const WarpedMotionParams *ref_params = |
| cm->prev_frame ? &cm->prev_frame->global_motion[frame] |
| : &default_warp_params; |
| write_global_motion_params(&cm->global_motion[frame], ref_params, wb, |
| cm->allow_high_precision_mv); |
| // TODO(sarahparker, debargha): The logic in the commented out code below |
| // does not work currently and causes mismatches when resize is on. |
| // Fix it before turning the optimization back on. |
| /* |
| YV12_BUFFER_CONFIG *ref_buf = get_ref_frame_buffer(cpi, frame); |
| if (cpi->source->y_crop_width == ref_buf->y_crop_width && |
| cpi->source->y_crop_height == ref_buf->y_crop_height) { |
| write_global_motion_params(&cm->global_motion[frame], |
| &cm->prev_frame->global_motion[frame], wb, |
| cm->allow_high_precision_mv); |
| } else { |
| assert(cm->global_motion[frame].wmtype == IDENTITY && |
| "Invalid warp type for frames of different resolutions"); |
| } |
| */ |
| /* |
| printf("Frame %d/%d: Enc Ref %d: %d %d %d %d\n", |
| cm->current_video_frame, cm->show_frame, frame, |
| cm->global_motion[frame].wmmat[0], |
| cm->global_motion[frame].wmmat[1], cm->global_motion[frame].wmmat[2], |
| cm->global_motion[frame].wmmat[3]); |
| */ |
| } |
| } |
| |
| static void check_frame_refs_short_signaling(AV1_COMP *const cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| if (!cm->frame_refs_short_signaling) return; |
| |
| // Check whether all references are distinct frames. |
| int buf_markers[FRAME_BUFFERS] = { 0 }; |
| for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| const int buf_idx = get_ref_frame_buf_idx(cpi, ref_frame); |
| if (buf_idx != INVALID_IDX) { |
| assert(buf_idx >= 0 && buf_idx < FRAME_BUFFERS); |
| buf_markers[buf_idx] = 1; |
| } |
| } |
| |
| int num_refs = 0; |
| for (int buf_idx = 0; buf_idx < FRAME_BUFFERS; ++buf_idx) { |
| num_refs += buf_markers[buf_idx]; |
| } |
| |
| // We only turn on frame_refs_short_signaling when all references are |
| // distinct. |
| if (num_refs < INTER_REFS_PER_FRAME) { |
| // It indicates that there exist more than one reference frame pointing to |
| // the same reference buffer, i.e. two or more references are duplicate. |
| cm->frame_refs_short_signaling = 0; |
| return; |
| } |
| |
| // Check whether the encoder side ref frame choices are aligned with that to |
| // be derived at the decoder side. |
| RefBuffer frame_refs_copy[INTER_REFS_PER_FRAME]; |
| |
| // Backup the frame refs info |
| memcpy(frame_refs_copy, cm->frame_refs, |
| INTER_REFS_PER_FRAME * sizeof(RefBuffer)); |
| |
| const int lst_map_idx = get_ref_frame_map_idx(cpi, LAST_FRAME); |
| const int gld_map_idx = get_ref_frame_map_idx(cpi, GOLDEN_FRAME); |
| |
| // Set up the frame refs mapping indexes according to the |
| // frame_refs_short_signaling policy. |
| av1_set_frame_refs(cm, lst_map_idx, gld_map_idx); |
| |
| // We only turn on frame_refs_short_signaling when the encoder side decision |
| // on ref frames is identical to that at the decoder side. |
| for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ++ref_idx) { |
| // Compare the buffer index between two reference frames indexed |
| // respectively by the encoder and the decoder side decisions. |
| if (cm->frame_refs[ref_idx].idx != frame_refs_copy[ref_idx].idx) { |
| cm->frame_refs_short_signaling = 0; |
| break; |
| } |
| } |
| |
| #if 0 // For debug |
| printf("\nFrame=%d: \n", cm->current_video_frame); |
| printf("***frame_refs_short_signaling=%d\n", cm->frame_refs_short_signaling); |
| for (int ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| printf("enc_ref(map_idx=%d, buf_idx=%d)=%d, vs. " |
| "dec_ref(map_idx=%d, buf_idx=%d)=%d\n", |
| get_ref_frame_map_idx(cpi, ref_frame), |
| get_ref_frame_buf_idx(cpi, ref_frame), ref_frame, |
| cm->frame_refs[ref_frame - LAST_FRAME].map_idx, |
| cm->frame_refs[ref_frame - LAST_FRAME].idx, ref_frame); |
| } |
| #endif // 0 |
| |
| // Restore the frame refs info if frame_refs_short_signaling is off. |
| if (!cm->frame_refs_short_signaling) |
| memcpy(cm->frame_refs, frame_refs_copy, |
| INTER_REFS_PER_FRAME * sizeof(RefBuffer)); |
| } |
| |
| // New function based on HLS R18 |
| static void write_uncompressed_header_obu(AV1_COMP *cpi, |
| struct aom_write_bit_buffer *saved_wb, |
| struct aom_write_bit_buffer *wb) { |
| AV1_COMMON *const cm = &cpi->common; |
| const SequenceHeader *const seq_params = &cm->seq_params; |
| MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; |
| |
| // NOTE: By default all coded frames to be used as a reference |
| cm->is_reference_frame = 1; |
| cm->frame_type = cm->intra_only ? INTRA_ONLY_FRAME : cm->frame_type; |
| |
| if (seq_params->still_picture) { |
| assert(cm->show_existing_frame == 0); |
| assert(cm->show_frame == 1); |
| assert(cm->frame_type == KEY_FRAME); |
| } |
| if (!seq_params->reduced_still_picture_hdr) { |
| if (encode_show_existing_frame(cm)) { |
| RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
| const int frame_to_show = cm->ref_frame_map[cpi->existing_fb_idx_to_show]; |
| |
| if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Buffer %d does not contain a reconstructed frame", |
| frame_to_show); |
| } |
| ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show); |
| |
| aom_wb_write_bit(wb, 1); // show_existing_frame |
| aom_wb_write_literal(wb, cpi->existing_fb_idx_to_show, 3); |
| |
| if (seq_params->decoder_model_info_present_flag && |
| cm->timing_info.equal_picture_interval == 0) { |
| write_tu_pts_info(cm, wb); |
| } |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_len = seq_params->frame_id_length; |
| int display_frame_id = cm->ref_frame_id[cpi->existing_fb_idx_to_show]; |
| aom_wb_write_literal(wb, display_frame_id, frame_id_len); |
| } |
| |
| if (cm->reset_decoder_state && |
| frame_bufs[frame_to_show].frame_type != KEY_FRAME) { |
| aom_internal_error( |
| &cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "show_existing_frame to reset state on KEY_FRAME only"); |
| } |
| |
| return; |
| } else { |
| aom_wb_write_bit(wb, 0); // show_existing_frame |
| } |
| |
| aom_wb_write_literal(wb, cm->frame_type, 2); |
| |
| aom_wb_write_bit(wb, cm->show_frame); |
| if (cm->show_frame) { |
| if (seq_params->decoder_model_info_present_flag && |
| cm->timing_info.equal_picture_interval == 0) |
| write_tu_pts_info(cm, wb); |
| } else { |
| aom_wb_write_bit(wb, cm->showable_frame); |
| } |
| if (frame_is_sframe(cm)) { |
| assert(cm->error_resilient_mode); |
| } else if (!(cm->frame_type == KEY_FRAME && cm->show_frame)) { |
| aom_wb_write_bit(wb, cm->error_resilient_mode); |
| } |
| } |
| aom_wb_write_bit(wb, cm->disable_cdf_update); |
| |
| if (seq_params->force_screen_content_tools == 2) { |
| aom_wb_write_bit(wb, cm->allow_screen_content_tools); |
| } else { |
| assert(cm->allow_screen_content_tools == |
| seq_params->force_screen_content_tools); |
| } |
| |
| if (cm->allow_screen_content_tools) { |
| if (seq_params->force_integer_mv == 2) { |
| aom_wb_write_bit(wb, cm->cur_frame_force_integer_mv); |
| } else { |
| assert(cm->cur_frame_force_integer_mv == seq_params->force_integer_mv); |
| } |
| } else { |
| assert(cm->cur_frame_force_integer_mv == 0); |
| } |
| |
| cm->invalid_delta_frame_id_minus_1 = 0; |
| int frame_size_override_flag = 0; |
| cm->frame_refs_short_signaling = 0; |
| |
| if (seq_params->reduced_still_picture_hdr) { |
| assert(cm->width == seq_params->max_frame_width && |
| cm->height == seq_params->max_frame_height); |
| } else { |
| if (seq_params->frame_id_numbers_present_flag) { |
| int frame_id_len = seq_params->frame_id_length; |
| aom_wb_write_literal(wb, cm->current_frame_id, frame_id_len); |
| } |
| |
| if (cm->width > seq_params->max_frame_width || |
| cm->height > seq_params->max_frame_height) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "Frame dimensions are larger than the maximum values"); |
| } |
| |
| frame_size_override_flag = |
| frame_is_sframe(cm) ? 1 |
| : (cm->width != seq_params->max_frame_width || |
| cm->height != seq_params->max_frame_height); |
| if (!frame_is_sframe(cm)) aom_wb_write_bit(wb, frame_size_override_flag); |
| |
| if (seq_params->enable_order_hint) |
| aom_wb_write_literal(wb, cm->frame_offset, |
| seq_params->order_hint_bits_minus_1 + 1); |
| |
| if (!cm->error_resilient_mode && !frame_is_intra_only(cm)) { |
| aom_wb_write_literal(wb, cm->primary_ref_frame, PRIMARY_REF_BITS); |
| } |
| } |
| |
| if (seq_params->decoder_model_info_present_flag) { |
| aom_wb_write_bit(wb, cm->buffer_removal_time_present); |
| if (cm->buffer_removal_time_present) { |
| for (int op_num = 0; |
| op_num < seq_params->operating_points_cnt_minus_1 + 1; op_num++) { |
| if (cm->op_params[op_num].decoder_model_param_present_flag) { |
| if (((seq_params->operating_point_idc[op_num] >> |
| cm->temporal_layer_id) & |
| 0x1 && |
| (seq_params->operating_point_idc[op_num] >> |
| (cm->spatial_layer_id + 8)) & |
| 0x1) || |
| seq_params->operating_point_idc[op_num] == 0) { |
| aom_wb_write_unsigned_literal( |
| wb, cm->op_frame_timing[op_num].buffer_removal_time, |
| cm->buffer_model.buffer_removal_time_length); |
| cm->op_frame_timing[op_num].buffer_removal_time++; |
| if (cm->op_frame_timing[op_num].buffer_removal_time == 0) { |
| aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM, |
| "buffer_removal_time overflowed"); |
| } |
| } |
| } |
| } |
| } |
| } |
| cpi->refresh_frame_mask = get_refresh_mask(cpi); |
| if (cm->frame_type == KEY_FRAME) { |
| if (!cm->show_frame) { // unshown keyframe (forward keyframe) |
| aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); |
| } else { |
| assert(cpi->refresh_frame_mask == 0xFF); |
| } |
| } else { |
| if (cm->frame_type == INTRA_ONLY_FRAME) { |
| assert(cpi->refresh_frame_mask != 0xFF); |
| int updated_fb = -1; |
| for (int i = 0; i < REF_FRAMES; i++) { |
| // If more than one frame is refreshed, it doesn't matter which one |
| // we pick, so pick the first. |
| if (cpi->refresh_frame_mask & (1 << i)) { |
| updated_fb = i; |
| break; |
| } |
| } |
| assert(updated_fb >= 0); |
| cm->fb_of_context_type[cm->frame_context_idx] = updated_fb; |
| aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); |
| } else if (cm->frame_type == INTER_FRAME || frame_is_sframe(cm)) { |
| if (cm->frame_type == INTER_FRAME) { |
| aom_wb_write_literal(wb, cpi->refresh_frame_mask, REF_FRAMES); |
| } else { |
| assert(frame_is_sframe(cm) && cpi->refresh_frame_mask == 0xFF); |
| } |
| int updated_fb = -1; |
| for (int i = 0; i < REF_FRAMES; i++) { |
| // If more than one frame is refreshed, it doesn't matter which one |
| // we pick, so pick the first. |
| if (cpi->refresh_frame_mask & (1 << i)) { |
| updated_fb = i; |
| break; |
| } |
| } |
| // large scale tile sometimes won't refresh any fbs |
| if (updated_fb >= 0) { |
| cm->fb_of_context_type[cm->frame_context_idx] = updated_fb; |
| } |
| |
| if (!cpi->refresh_frame_mask) { |
| // NOTE: "cpi->refresh_frame_mask == 0" indicates that the coded frame |
| // will not be used as a reference |
| cm->is_reference_frame = 0; |
| } |
| } |
| } |
| |
| if (!frame_is_intra_only(cm) || cpi->refresh_frame_mask != 0xFF) { |
| // Write all ref frame order hints if error_resilient_mode == 1 |
| if (cm->error_resilient_mode && seq_params->enable_order_hint) { |
| RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs; |
| for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) { |
| // Get buffer index |
| const int buf_idx = cm->ref_frame_map[ref_idx]; |
| assert(buf_idx >= 0 && buf_idx < FRAME_BUFFERS); |
| |
| // Write order hint to bit stream |
| aom_wb_write_literal(wb, frame_bufs[buf_idx].cur_frame_offset, |
| seq_params->order_hint_bits_minus_1 + 1); |
| } |
| } |
| } |
| |
| if (cm->frame_type == KEY_FRAME) { |
| write_frame_size(cm, frame_size_override_flag, wb); |
| assert(!av1_superres_scaled(cm) || !cm->allow_intrabc); |
| if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) |
| aom_wb_write_bit(wb, cm->allow_intrabc); |
| // all eight fbs are refreshed, pick one that will live long enough |
| cm->fb_of_context_type[REGULAR_FRAME] = 0; |
| } else { |
| if (cm->frame_type == INTRA_ONLY_FRAME) { |
| write_frame_size(cm, frame_size_override_flag, wb); |
| assert(!av1_superres_scaled(cm) || !cm->allow_intrabc); |
| if (cm->allow_screen_content_tools && !av1_superres_scaled(cm)) |
| aom_wb_write_bit(wb, cm->allow_intrabc); |
| } else if (cm->frame_type == INTER_FRAME || frame_is_sframe(cm)) { |
| MV_REFERENCE_FRAME ref_frame; |
| |
| // NOTE: Error resilient mode turns off frame_refs_short_signaling |
| // automatically. |
| #define FRAME_REFS_SHORT_SIGNALING 0 |
| #if FRAME_REFS_SHORT_SIGNALING |
| cm->frame_refs_short_signaling = seq_params->enable_order_hint; |
| #endif // FRAME_REFS_SHORT_SIGNALING |
| |
| if (cm->frame_refs_short_signaling) { |
| // NOTE(zoeliu@google.com): |
| // An example solution for encoder-side implementation on frame refs |
| // short signaling, which is only turned on when the encoder side |
| // decision on ref frames is identical to that at the decoder side. |
| check_frame_refs_short_signaling(cpi); |
| } |
| |
| if (seq_params->enable_order_hint) |
| aom_wb_write_bit(wb, cm->frame_refs_short_signaling); |
| |
| if (cm->frame_refs_short_signaling) { |
| const int lst_ref = get_ref_frame_map_idx(cpi, LAST_FRAME); |
| aom_wb_write_literal(wb, lst_ref, REF_FRAMES_LOG2); |
| |
| const int gld_ref = get_ref_frame_map_idx(cpi, GOLDEN_FRAME); |
| aom_wb_write_literal(wb, gld_ref, REF_FRAMES_LOG2); |
| } |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| assert(get_ref_frame_map_idx(cpi, ref_frame) != INVALID_IDX); |
| if (!cm->frame_refs_short_signaling) |
| aom_wb_write_literal(wb, get_ref_frame_map_idx(cpi, ref_frame), |
| REF_FRAMES_LOG2); |
| if (seq_params->frame_id_numbers_present_flag) { |
| int i = get_ref_frame_map_idx(cpi, ref_frame); |
| int frame_id_len = seq_params->frame_id_length; |
| int diff_len = seq_params->delta_frame_id_length; |
| int delta_frame_id_minus_1 = |
| ((cm->current_frame_id - cm->ref_frame_id[i] + |
| (1 << frame_id_len)) % |
| (1 << frame_id_len)) - |
| 1; |
| if (delta_frame_id_minus_1 < 0 || |
| delta_frame_id_minus_1 >= (1 << diff_len)) |
| cm->invalid_delta_frame_id_minus_1 = 1; |
| aom_wb_write_literal(wb, delta_frame_id_minus_1, diff_len); |
| } |
| } |
| |
| if (!cm->error_resilient_mode && frame_size_override_flag) { |
| write_frame_size_with_refs(cpi, wb); |
| } else { |
| write_frame_size(cm, frame_size_override_flag, wb); |
| } |
| |
| if (cm->cur_frame_force_integer_mv) { |
| cm->allow_high_precision_mv = 0; |
| } else { |
| aom_wb_write_bit(wb, cm->allow_high_precision_mv); |
| } |
| fix_interp_filter(cm, cpi->td.counts); |
| write_frame_interp_filter(cm->interp_filter, wb); |
| aom_wb_write_bit(wb, cm->switchable_motion_mode); |
| if (frame_might_allow_ref_frame_mvs(cm)) { |
| aom_wb_write_bit(wb, cm->allow_ref_frame_mvs); |
| } else { |
| assert(cm->allow_ref_frame_mvs == 0); |
| } |
| } |
| } |
| |
| const int might_bwd_adapt = |
| !(seq_params->reduced_still_picture_hdr) && !(cm->disable_cdf_update); |
| if (cm->large_scale_tile) |
| cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED; |
| |
| if (might_bwd_adapt) { |
| aom_wb_write_bit( |
| wb, cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_DISABLED); |
| } |
| |
| write_tile_info(cm, saved_wb, wb); |
| encode_quantization(cm, wb); |
| encode_segmentation(cm, xd, wb); |
| |
| if (cm->delta_q_present_flag) assert(cm->base_qindex > 0); |
| if (cm->base_qindex > 0) { |
| aom_wb_write_bit(wb, cm->delta_q_present_flag); |
| if (cm->delta_q_present_flag) { |
| aom_wb_write_literal(wb, get_msb(cm->delta_q_res), 2); |
| xd->current_qindex = cm->base_qindex; |
| if (cm->allow_intrabc) |
| assert(cm->delta_lf_present_flag == 0); |
| else |
| aom_wb_write_bit(wb, cm->delta_lf_present_flag); |
| if (cm->delta_lf_present_flag) { |
| aom_wb_write_literal(wb, get_msb(cm->delta_lf_res), 2); |
| aom_wb_write_bit(wb, cm->delta_lf_multi); |
| av1_reset_loop_filter_delta(xd, av1_num_planes(cm)); |
| } |
| } |
| } |
| |
| if (cm->all_lossless) { |
| assert(!av1_superres_scaled(cm)); |
| } else { |
| if (!cm->coded_lossless) { |
| encode_loopfilter(cm, wb); |
| encode_cdef(cm, wb); |
| } |
| encode_restoration_mode(cm, wb); |
| } |
| |
| write_tx_mode(cm, &cm->tx_mode, wb); |
| |
| if (cpi->allow_comp_inter_inter) { |
| const int use_hybrid_pred = cm->reference_mode == REFERENCE_MODE_SELECT; |
| |
| aom_wb_write_bit(wb, use_hybrid_pred); |
| } |
| |
| if (cm->is_skip_mode_allowed) aom_wb_write_bit(wb, cm->skip_mode_flag); |
| |
| if (frame_might_allow_warped_motion(cm)) |
| aom_wb_write_bit(wb, cm->allow_warped_motion); |
| else |
| assert(!cm->allow_warped_motion); |
| |
| aom_wb_write_bit(wb, cm->reduced_tx_set_used); |
| |
| if (!frame_is_intra_only(cm)) write_global_motion(cpi, wb); |
| |
| if (seq_params->film_grain_params_present && |
| (cm->show_frame || cm->showable_frame)) { |
| int flip_back_update_parameters_flag = 0; |
| if (cm->frame_type != INTER_FRAME && |
| cm->film_grain_params.update_parameters == 0) { |
| cm->film_grain_params.update_parameters = 1; |
| flip_back_update_parameters_flag = 1; |
| } |
| write_film_grain_params(cpi, wb); |
| |
| if (flip_back_update_parameters_flag) |
| cm->film_grain_params.update_parameters = 0; |
| } |
| |
| if (cm->large_scale_tile) write_ext_tile_info(cm, saved_wb, wb); |
| } |
| |
| static int choose_size_bytes(uint32_t size, int spare_msbs) { |
| // Choose the number of bytes required to represent size, without |
| // using the 'spare_msbs' number of most significant bits. |
| |
| // Make sure we will fit in 4 bytes to start with.. |
| if (spare_msbs > 0 && size >> (32 - spare_msbs) != 0) return -1; |
| |
| // Normalise to 32 bits |
| size <<= spare_msbs; |
| |
| if (size >> 24 != 0) |
| return 4; |
| else if (size >> 16 != 0) |
| return 3; |
| else if (size >> 8 != 0) |
| return 2; |
| else |
| return 1; |
| } |
| |
| static void mem_put_varsize(uint8_t *const dst, const int sz, const int val) { |
| switch (sz) { |
| case 1: dst[0] = (uint8_t)(val & 0xff); break; |
| case 2: mem_put_le16(dst, val); break; |
| case 3: mem_put_le24(dst, val); break; |
| case 4: mem_put_le32(dst, val); break; |
| default: assert(0 && "Invalid size"); break; |
| } |
| } |
| |
| static int remux_tiles(const AV1_COMMON *const cm, uint8_t *dst, |
| const uint32_t data_size, const uint32_t max_tile_size, |
| const uint32_t max_tile_col_size, |
| int *const tile_size_bytes, |
| int *const tile_col_size_bytes) { |
| // Choose the tile size bytes (tsb) and tile column size bytes (tcsb) |
| int tsb; |
| int tcsb; |
| |
| if (cm->large_scale_tile) { |
| // The top bit in the tile size field indicates tile copy mode, so we |
| // have 1 less bit to code the tile size |
| tsb = choose_size_bytes(max_tile_size, 1); |
| tcsb = choose_size_bytes(max_tile_col_size, 0); |
| } else { |
| tsb = choose_size_bytes(max_tile_size, 0); |
| tcsb = 4; // This is ignored |
| (void)max_tile_col_size; |
| } |
| |
| assert(tsb > 0); |
| assert(tcsb > 0); |
| |
| *tile_size_bytes = tsb; |
| *tile_col_size_bytes = tcsb; |
| if (tsb == 4 && tcsb == 4) return data_size; |
| |
| uint32_t wpos = 0; |
| uint32_t rpos = 0; |
| |
| if (cm->large_scale_tile) { |
| int tile_row; |
| int tile_col; |
| |
| for (tile_col = 0; tile_col < cm->tile_cols; tile_col++) { |
| // All but the last column has a column header |
| if (tile_col < cm->tile_cols - 1) { |
| uint32_t tile_col_size = mem_get_le32(dst + rpos); |
| rpos += 4; |
| |
| // Adjust the tile column size by the number of bytes removed |
| // from the tile size fields. |
| tile_col_size -= (4 - tsb) * cm->tile_rows; |
| |
| mem_put_varsize(dst + wpos, tcsb, tile_col_size); |
| wpos += tcsb; |
| } |
| |
| for (tile_row = 0; tile_row < cm->tile_rows; tile_row++) { |
| // All, including the last row has a header |
| uint32_t tile_header = mem_get_le32(dst + rpos); |
| rpos += 4; |
| |
| // If this is a copy tile, we need to shift the MSB to the |
| // top bit of the new width, and there is no data to copy. |
| if (tile_header >> 31 != 0) { |
| if (tsb < 4) tile_header >>= 32 - 8 * tsb; |
| mem_put_varsize(dst + wpos, tsb, tile_header); |
| wpos += tsb; |
| } else { |
| mem_put_varsize(dst + wpos, tsb, tile_header); |
| wpos += tsb; |
| |
| tile_header += AV1_MIN_TILE_SIZE_BYTES; |
| memmove(dst + wpos, dst + rpos, tile_header); |
| rpos += tile_header; |
| wpos += tile_header; |
| } |
| } |
| } |
| |
| assert(rpos > wpos); |
| assert(rpos == data_size); |
| |
| return wpos; |
| } |
| const int n_tiles = cm->tile_cols * cm->tile_rows; |
| int n; |
| |
| for (n = 0; n < n_tiles; n++) { |
| int tile_size; |
| |
| if (n == n_tiles - 1) { |
| tile_size = data_size - rpos; |
| } else { |
| tile_size = mem_get_le32(dst + rpos); |
| rpos += 4; |
| mem_put_varsize(dst + wpos, tsb, tile_size); |
| tile_size += AV1_MIN_TILE_SIZE_BYTES; |
| wpos += tsb; |
| } |
| |
| memmove(dst + wpos, dst + rpos, tile_size); |
| |
| rpos += tile_size; |
| wpos += tile_size; |
| } |
| |
| assert(rpos > wpos); |
| assert(rpos == data_size); |
| |
| return wpos; |
| } |
| |
| uint32_t write_obu_header(OBU_TYPE obu_type, int obu_extension, |
| uint8_t *const dst) { |
| struct aom_write_bit_buffer wb = { dst, 0 }; |
| uint32_t size = 0; |
| |
| aom_wb_write_literal(&wb, 0, 1); // forbidden bit. |
| aom_wb_write_literal(&wb, (int)obu_type, 4); |
| aom_wb_write_literal(&wb, obu_extension ? 1 : 0, 1); |
| aom_wb_write_literal(&wb, 1, 1); // obu_has_payload_length_field |
| aom_wb_write_literal(&wb, 0, 1); // reserved |
| |
| if (obu_extension) { |
| aom_wb_write_literal(&wb, obu_extension & 0xFF, 8); |
| } |
| |
| size = aom_wb_bytes_written(&wb); |
| return size; |
| } |
| |
| int write_uleb_obu_size(uint32_t obu_header_size, uint32_t obu_payload_size, |
| uint8_t *dest) { |
| const uint32_t obu_size = obu_payload_size; |
| const uint32_t offset = obu_header_size; |
| size_t coded_obu_size = 0; |
| |
| if (aom_uleb_encode(obu_size, sizeof(obu_size), dest + offset, |
| &coded_obu_size) != 0) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| return AOM_CODEC_OK; |
| } |
| |
| static size_t obu_memmove(uint32_t obu_header_size, uint32_t obu_payload_size, |
| uint8_t *data) { |
| const size_t length_field_size = aom_uleb_size_in_bytes(obu_payload_size); |
| const uint32_t move_dst_offset = |
| (uint32_t)length_field_size + obu_header_size; |
| const uint32_t move_src_offset = obu_header_size; |
| const uint32_t move_size = obu_payload_size; |
| memmove(data + move_dst_offset, data + move_src_offset, move_size); |
| return length_field_size; |
| } |
| |
| static void add_trailing_bits(struct aom_write_bit_buffer *wb) { |
| if (aom_wb_is_byte_aligned(wb)) { |
| aom_wb_write_literal(wb, 0x80, 8); |
| } else { |
| // assumes that the other bits are already 0s |
| aom_wb_write_bit(wb, 1); |
| } |
| } |
| |
| static void write_bitstream_level(BitstreamLevel bl, |
| struct aom_write_bit_buffer *wb) { |
| uint8_t seq_level_idx = major_minor_to_seq_level_idx(bl); |
| assert(is_valid_seq_level_idx(seq_level_idx)); |
| aom_wb_write_literal(wb, seq_level_idx, LEVEL_BITS); |
| } |
| |
| static uint32_t write_sequence_header_obu(AV1_COMP *cpi, uint8_t *const dst) { |
| AV1_COMMON *const cm = &cpi->common; |
| struct aom_write_bit_buffer wb = { dst, 0 }; |
| uint32_t size = 0; |
| |
| write_profile(cm->seq_params.profile, &wb); |
| |
| // Still picture or not |
| aom_wb_write_bit(&wb, cm->seq_params.still_picture); |
| assert(IMPLIES(!cm->seq_params.still_picture, |
| !cm->seq_params.reduced_still_picture_hdr)); |
| // whether to use reduced still picture header |
| aom_wb_write_bit(&wb, cm->seq_params.reduced_still_picture_hdr); |
| |
| if (cm->seq_params.reduced_still_picture_hdr) { |
| assert(cm->timing_info_present == 0); |
| assert(cm->seq_params.decoder_model_info_present_flag == 0); |
| assert(cm->seq_params.display_model_info_present_flag == 0); |
| write_bitstream_level(cm->seq_params.level[0], &wb); |
| } else { |
| aom_wb_write_bit(&wb, cm->timing_info_present); // timing info present flag |
| |
| if (cm->timing_info_present) { |
| // timing_info |
| write_timing_info_header(cm, &wb); |
| aom_wb_write_bit(&wb, cm->seq_params.decoder_model_info_present_flag); |
| if (cm->seq_params.decoder_model_info_present_flag) { |
| write_decoder_model_info(cm, &wb); |
| } |
| } |
| aom_wb_write_bit(&wb, cm->seq_params.display_model_info_present_flag); |
| aom_wb_write_literal(&wb, cm->seq_params.operating_points_cnt_minus_1, |
| OP_POINTS_CNT_MINUS_1_BITS); |
| int i; |
| for (i = 0; i < cm->seq_params.operating_points_cnt_minus_1 + 1; i++) { |
| aom_wb_write_literal(&wb, cm->seq_params.operating_point_idc[i], |
| OP_POINTS_IDC_BITS); |
| write_bitstream_level(cm->seq_params.level[i], &wb); |
| if (cm->seq_params.level[i].major > 3) |
| aom_wb_write_bit(&wb, cm->seq_params.tier[i]); |
| if (cm->seq_params.decoder_model_info_present_flag) { |
| aom_wb_write_bit(&wb, |
| cm->op_params[i].decoder_model_param_present_flag); |
| if (cm->op_params[i].decoder_model_param_present_flag) |
| write_dec_model_op_parameters(cm, &wb, i); |
| } |
| if (cm->seq_params.display_model_info_present_flag) { |
| aom_wb_write_bit(&wb, |
| cm->op_params[i].display_model_param_present_flag); |
| if (cm->op_params[i].display_model_param_present_flag) { |
| assert(cm->op_params[i].initial_display_delay <= 10); |
| aom_wb_write_literal(&wb, cm->op_params[i].initial_display_delay - 1, |
| 4); |
| } |
| } |
| } |
| } |
| write_sequence_header(cpi, &wb); |
| |
| write_color_config(&cm->seq_params, &wb); |
| |
| aom_wb_write_bit(&wb, cm->seq_params.film_grain_params_present); |
| |
| add_trailing_bits(&wb); |
| |
| size = aom_wb_bytes_written(&wb); |
| return size; |
| } |
| |
| static uint32_t write_frame_header_obu(AV1_COMP *cpi, |
| struct aom_write_bit_buffer *saved_wb, |
| uint8_t *const dst, |
| int append_trailing_bits) { |
| struct aom_write_bit_buffer wb = { dst, 0 }; |
| write_uncompressed_header_obu(cpi, saved_wb, &wb); |
| if (append_trailing_bits) add_trailing_bits(&wb); |
| return aom_wb_bytes_written(&wb); |
| } |
| |
| static uint32_t write_tile_group_header(uint8_t *const dst, int startTile, |
| int endTile, int tiles_log2, |
| int tile_start_and_end_present_flag) { |
| struct aom_write_bit_buffer wb = { dst, 0 }; |
| uint32_t size = 0; |
| |
| if (!tiles_log2) return size; |
| |
| aom_wb_write_bit(&wb, tile_start_and_end_present_flag); |
| |
| if (tile_start_and_end_present_flag) { |
| aom_wb_write_literal(&wb, startTile, tiles_log2); |
| aom_wb_write_literal(&wb, endTile, tiles_log2); |
| } |
| |
| size = aom_wb_bytes_written(&wb); |
| return size; |
| } |
| |
| typedef struct { |
| uint8_t *frame_header; |
| size_t obu_header_byte_offset; |
| size_t total_length; |
| } FrameHeaderInfo; |
| |
| static uint32_t write_tiles_in_tg_obus(AV1_COMP *const cpi, uint8_t *const dst, |
| struct aom_write_bit_buffer *saved_wb, |
| uint8_t obu_extension_header, |
| const FrameHeaderInfo *fh_info) { |
| AV1_COMMON *const cm = &cpi->common; |
| aom_writer mode_bc; |
| int tile_row, tile_col; |
| TOKENEXTRA *(*const tok_buffers)[MAX_TILE_COLS] = cpi->tile_tok; |
| TileBufferEnc(*const tile_buffers)[MAX_TILE_COLS] = cpi->tile_buffers; |
| uint32_t total_size = 0; |
| const int tile_cols = cm->tile_cols; |
| const int tile_rows = cm->tile_rows; |
| unsigned int tile_size = 0; |
| unsigned int max_tile_size = 0; |
| unsigned int max_tile_col_size = 0; |
| const int n_log2_tiles = cm->log2_tile_rows + cm->log2_tile_cols; |
| // Fixed size tile groups for the moment |
| const int num_tg_hdrs = cm->num_tg; |
| const int tg_size = |
| (cm->large_scale_tile) |
| ? 1 |
| : (tile_rows * tile_cols + num_tg_hdrs - 1) / num_tg_hdrs; |
| int tile_count = 0; |
| int curr_tg_data_size = 0; |
| uint8_t *data = dst; |
| int new_tg = 1; |
| const int have_tiles = tile_cols * tile_rows > 1; |
| int first_tg = 1; |
| |
| cm->largest_tile_id = 0; |
| |
| if (cm->large_scale_tile) { |
| // For large_scale_tile case, we always have only one tile group, so it can |
| // be written as an OBU_FRAME. |
| const OBU_TYPE obu_type = OBU_FRAME; |
| const uint32_t tg_hdr_size = write_obu_header(obu_type, 0, data); |
| data += tg_hdr_size; |
| |
| const uint32_t frame_header_size = |
| write_frame_header_obu(cpi, saved_wb, data, 0); |
| data += frame_header_size; |
| total_size += frame_header_size; |
| |
| #define EXT_TILE_DEBUG 0 |
| #if EXT_TILE_DEBUG |
| { |
| char fn[20] = "./fh"; |
| fn[4] = cm->current_video_frame / 100 + '0'; |
| fn[5] = (cm->current_video_frame % 100) / 10 + '0'; |
| fn[6] = (cm->current_video_frame % 10) + '0'; |
| fn[7] = '\0'; |
| av1_print_uncompressed_frame_header(data - frame_header_size, |
| frame_header_size, fn); |
| } |
| #endif // EXT_TILE_DEBUG |
| #undef EXT_TILE_DEBUG |
| |
| int tile_size_bytes = 0; |
| int tile_col_size_bytes = 0; |
| |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| TileInfo tile_info; |
| const int is_last_col = (tile_col == tile_cols - 1); |
| const uint32_t col_offset = total_size; |
| |
| av1_tile_set_col(&tile_info, cm, tile_col); |
| |
| // The last column does not have a column header |
| if (!is_last_col) total_size += 4; |
| |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; |
| const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; |
| const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; |
| const int data_offset = have_tiles ? 4 : 0; |
| const int tile_idx = tile_row * tile_cols + tile_col; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; |
| av1_tile_set_row(&tile_info, cm, tile_row); |
| |
| buf->data = dst + total_size + tg_hdr_size; |
| |
| // Is CONFIG_EXT_TILE = 1, every tile in the row has a header, |
| // even for the last one, unless no tiling is used at all. |
| total_size += data_offset; |
| // Initialise tile context from the frame context |
| this_tile->tctx = *cm->fc; |
| cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; |
| mode_bc.allow_update_cdf = !cm->large_scale_tile; |
| mode_bc.allow_update_cdf = |
| mode_bc.allow_update_cdf && !cm->disable_cdf_update; |
| aom_start_encode(&mode_bc, buf->data + data_offset); |
| write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); |
| assert(tok == tok_end); |
| aom_stop_encode(&mode_bc); |
| tile_size = mode_bc.pos; |
| buf->size = tile_size; |
| |
| // Record the maximum tile size we see, so we can compact headers later. |
| if (tile_size > max_tile_size) { |
| max_tile_size = tile_size; |
| cm->largest_tile_id = tile_cols * tile_row + tile_col; |
| } |
| |
| if (have_tiles) { |
| // tile header: size of this tile, or copy offset |
| uint32_t tile_header = tile_size - AV1_MIN_TILE_SIZE_BYTES; |
| const int tile_copy_mode = |
| ((AOMMAX(cm->tile_width, cm->tile_height) << MI_SIZE_LOG2) <= 256) |
| ? 1 |
| : 0; |
| |
| // If tile_copy_mode = 1, check if this tile is a copy tile. |
| // Very low chances to have copy tiles on the key frames, so don't |
| // search on key frames to reduce unnecessary search. |
| if (cm->frame_type != KEY_FRAME && tile_copy_mode) { |
| const int identical_tile_offset = |
| find_identical_tile(tile_row, tile_col, tile_buffers); |
| |
| if (identical_tile_offset > 0) { |
| tile_size = 0; |
| tile_header = identical_tile_offset | 0x80; |
| tile_header <<= 24; |
| } |
| } |
| |
| mem_put_le32(buf->data, tile_header); |
| } |
| |
| total_size += tile_size; |
| } |
| |
| if (!is_last_col) { |
| uint32_t col_size = total_size - col_offset - 4; |
| mem_put_le32(dst + col_offset + tg_hdr_size, col_size); |
| |
| // Record the maximum tile column size we see. |
| max_tile_col_size = AOMMAX(max_tile_col_size, col_size); |
| } |
| } |
| |
| if (have_tiles) { |
| total_size = remux_tiles(cm, data, total_size - frame_header_size, |
| max_tile_size, max_tile_col_size, |
| &tile_size_bytes, &tile_col_size_bytes); |
| total_size += frame_header_size; |
| } |
| |
| // In EXT_TILE case, only use 1 tile group. Follow the obu syntax, write |
| // current tile group size before tile data(include tile column header). |
| // Tile group size doesn't include the bytes storing tg size. |
| total_size += tg_hdr_size; |
| const uint32_t obu_payload_size = total_size - tg_hdr_size; |
| const size_t length_field_size = |
| obu_memmove(tg_hdr_size, obu_payload_size, dst); |
| if (write_uleb_obu_size(tg_hdr_size, obu_payload_size, dst) != |
| AOM_CODEC_OK) { |
| assert(0); |
| } |
| total_size += (uint32_t)length_field_size; |
| saved_wb->bit_buffer += length_field_size; |
| |
| // Now fill in the gaps in the uncompressed header. |
| if (have_tiles) { |
| assert(tile_col_size_bytes >= 1 && tile_col_size_bytes <= 4); |
| aom_wb_overwrite_literal(saved_wb, tile_col_size_bytes - 1, 2); |
| |
| assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); |
| aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); |
| } |
| return total_size; |
| } |
| |
| uint32_t obu_header_size = 0; |
| uint8_t *tile_data_start = dst + total_size; |
| for (tile_row = 0; tile_row < tile_rows; tile_row++) { |
| TileInfo tile_info; |
| av1_tile_set_row(&tile_info, cm, tile_row); |
| |
| for (tile_col = 0; tile_col < tile_cols; tile_col++) { |
| const int tile_idx = tile_row * tile_cols + tile_col; |
| TileBufferEnc *const buf = &tile_buffers[tile_row][tile_col]; |
| TileDataEnc *this_tile = &cpi->tile_data[tile_idx]; |
| const TOKENEXTRA *tok = tok_buffers[tile_row][tile_col]; |
| const TOKENEXTRA *tok_end = tok + cpi->tok_count[tile_row][tile_col]; |
| int is_last_tile_in_tg = 0; |
| |
| if (new_tg) { |
| data = dst + total_size; |
| |
| // A new tile group begins at this tile. Write the obu header and |
| // tile group header |
| const OBU_TYPE obu_type = |
| (num_tg_hdrs == 1) ? OBU_FRAME : OBU_TILE_GROUP; |
| curr_tg_data_size = |
| write_obu_header(obu_type, obu_extension_header, data); |
| obu_header_size = curr_tg_data_size; |
| |
| if (num_tg_hdrs == 1) { |
| curr_tg_data_size += write_frame_header_obu( |
| cpi, saved_wb, data + curr_tg_data_size, 0); |
| } |
| curr_tg_data_size += write_tile_group_header( |
| data + curr_tg_data_size, tile_idx, |
| AOMMIN(tile_idx + tg_size - 1, tile_cols * tile_rows - 1), |
| n_log2_tiles, cm->num_tg > 1); |
| total_size += curr_tg_data_size; |
| tile_data_start += curr_tg_data_size; |
| new_tg = 0; |
| tile_count = 0; |
| } |
| tile_count++; |
| av1_tile_set_col(&tile_info, cm, tile_col); |
| |
| if (tile_count == tg_size || tile_idx == (tile_cols * tile_rows - 1)) { |
| is_last_tile_in_tg = 1; |
| new_tg = 1; |
| } else { |
| is_last_tile_in_tg = 0; |
| } |
| |
| buf->data = dst + total_size; |
| |
| // The last tile of the tile group does not have a header. |
| if (!is_last_tile_in_tg) total_size += 4; |
| |
| // Initialise tile context from the frame context |
| this_tile->tctx = *cm->fc; |
| cpi->td.mb.e_mbd.tile_ctx = &this_tile->tctx; |
| mode_bc.allow_update_cdf = 1; |
| mode_bc.allow_update_cdf = |
| mode_bc.allow_update_cdf && !cm->disable_cdf_update; |
| const int num_planes = av1_num_planes(cm); |
| av1_reset_loop_restoration(&cpi->td.mb.e_mbd, num_planes); |
| |
| aom_start_encode(&mode_bc, dst + total_size); |
| write_modes(cpi, &tile_info, &mode_bc, &tok, tok_end); |
| aom_stop_encode(&mode_bc); |
| tile_size = mode_bc.pos; |
| assert(tile_size >= AV1_MIN_TILE_SIZE_BYTES); |
| |
| curr_tg_data_size += (tile_size + (is_last_tile_in_tg ? 0 : 4)); |
| buf->size = tile_size; |
| if (tile_size > max_tile_size) { |
| cm->largest_tile_id = tile_cols * tile_row + tile_col; |
| max_tile_size = tile_size; |
| } |
| |
| if (!is_last_tile_in_tg) { |
| // size of this tile |
| mem_put_le32(buf->data, tile_size - AV1_MIN_TILE_SIZE_BYTES); |
| } else { |
| // write current tile group size |
| const uint32_t obu_payload_size = curr_tg_data_size - obu_header_size; |
| const size_t length_field_size = |
| obu_memmove(obu_header_size, obu_payload_size, data); |
| if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != |
| AOM_CODEC_OK) { |
| assert(0); |
| } |
| curr_tg_data_size += (int)length_field_size; |
| total_size += (uint32_t)length_field_size; |
| tile_data_start += length_field_size; |
| if (num_tg_hdrs == 1) { |
| // if this tg is combined with the frame header then update saved |
| // frame header base offset accroding to length field size |
| saved_wb->bit_buffer += length_field_size; |
| } |
| |
| if (!first_tg && cm->error_resilient_mode) { |
| // Make room for a duplicate Frame Header OBU. |
| memmove(data + fh_info->total_length, data, curr_tg_data_size); |
| |
| // Insert a copy of the Frame Header OBU. |
| memcpy(data, fh_info->frame_header, fh_info->total_length); |
| |
| // Force context update tile to be the first tile in error |
| // resiliant mode as the duplicate frame headers will have |
| // context_update_tile_id set to 0 |
| cm->largest_tile_id = 0; |
| |
| // Rewrite the OBU header to change the OBU type to Redundant Frame |
| // Header. |
| write_obu_header(OBU_REDUNDANT_FRAME_HEADER, obu_extension_header, |
| &data[fh_info->obu_header_byte_offset]); |
| |
| data += fh_info->total_length; |
| |
| curr_tg_data_size += (int)(fh_info->total_length); |
| total_size += (uint32_t)(fh_info->total_length); |
| } |
| first_tg = 0; |
| } |
| |
| total_size += tile_size; |
| } |
| } |
| |
| if (have_tiles) { |
| // Fill in context_update_tile_id indicating the tile to use for the |
| // cdf update. The encoder currently sets it to the largest tile |
| // (but is up to the encoder) |
| aom_wb_overwrite_literal(saved_wb, cm->largest_tile_id, |
| cm->log2_tile_cols + cm->log2_tile_rows); |
| // If more than one tile group. tile_size_bytes takes the default value 4 |
| // and does not need to be set. For a single tile group it is set in the |
| // section below. |
| if (num_tg_hdrs == 1) { |
| int tile_size_bytes = 4, unused; |
| const uint32_t tile_data_offset = (uint32_t)(tile_data_start - dst); |
| const uint32_t tile_data_size = total_size - tile_data_offset; |
| |
| total_size = |
| remux_tiles(cm, tile_data_start, tile_data_size, max_tile_size, |
| max_tile_col_size, &tile_size_bytes, &unused); |
| total_size += tile_data_offset; |
| assert(tile_size_bytes >= 1 && tile_size_bytes <= 4); |
| |
| aom_wb_overwrite_literal(saved_wb, tile_size_bytes - 1, 2); |
| |
| // Update the OBU length if remux_tiles() reduced the size. |
| uint64_t payload_size; |
| size_t length_field_size; |
| int res = |
| aom_uleb_decode(dst + obu_header_size, total_size - obu_header_size, |
| &payload_size, &length_field_size); |
| assert(res == 0); |
| (void)res; |
| |
| const uint64_t new_payload_size = |
| total_size - obu_header_size - length_field_size; |
| if (new_payload_size != payload_size) { |
| size_t new_length_field_size; |
| res = aom_uleb_encode(new_payload_size, length_field_size, |
| dst + obu_header_size, &new_length_field_size); |
| assert(res == 0); |
| if (new_length_field_size < length_field_size) { |
| const size_t src_offset = obu_header_size + length_field_size; |
| const size_t dst_offset = obu_header_size + new_length_field_size; |
| memmove(dst + dst_offset, dst + src_offset, (size_t)payload_size); |
| total_size -= (int)(length_field_size - new_length_field_size); |
| } |
| } |
| } |
| } |
| return total_size; |
| } |
| |
| int av1_pack_bitstream(AV1_COMP *const cpi, uint8_t *dst, size_t *size) { |
| uint8_t *data = dst; |
| uint32_t data_size; |
| AV1_COMMON *const cm = &cpi->common; |
| uint32_t obu_header_size = 0; |
| uint32_t obu_payload_size = 0; |
| FrameHeaderInfo fh_info = { NULL, 0, 0 }; |
| const uint8_t obu_extension_header = |
| cm->temporal_layer_id << 5 | cm->spatial_layer_id << 3 | 0; |
| |
| #if CONFIG_BITSTREAM_DEBUG |
| bitstream_queue_reset_write(); |
| #endif |
| |
| // The TD is now written outside the frame encode loop |
| |
| // write sequence header obu if KEY_FRAME, preceded by 4-byte size |
| if (cm->frame_type == KEY_FRAME && cm->show_frame) { |
| obu_header_size = write_obu_header(OBU_SEQUENCE_HEADER, 0, data); |
| |
| obu_payload_size = write_sequence_header_obu(cpi, data + obu_header_size); |
| const size_t length_field_size = |
| obu_memmove(obu_header_size, obu_payload_size, data); |
| if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != |
| AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| data += obu_header_size + obu_payload_size + length_field_size; |
| } |
| |
| const int write_frame_header = |
| (cm->num_tg > 1 || encode_show_existing_frame(cm)); |
| struct aom_write_bit_buffer saved_wb; |
| if (write_frame_header) { |
| // Write Frame Header OBU. |
| fh_info.frame_header = data; |
| obu_header_size = |
| write_obu_header(OBU_FRAME_HEADER, obu_extension_header, data); |
| obu_payload_size = |
| write_frame_header_obu(cpi, &saved_wb, data + obu_header_size, 1); |
| |
| const size_t length_field_size = |
| obu_memmove(obu_header_size, obu_payload_size, data); |
| if (write_uleb_obu_size(obu_header_size, obu_payload_size, data) != |
| AOM_CODEC_OK) { |
| return AOM_CODEC_ERROR; |
| } |
| |
| fh_info.obu_header_byte_offset = 0; |
| fh_info.total_length = |
| obu_header_size + obu_payload_size + length_field_size; |
| data += fh_info.total_length; |
| |
| // Since length_field_size is determined adaptively after frame header |
| // encoding, saved_wb must be adjusted accordingly. |
| saved_wb.bit_buffer += length_field_size; |
| } |
| |
| if (encode_show_existing_frame(cm)) { |
| data_size = 0; |
| } else { |
| // Each tile group obu will be preceded by 4-byte size of the tile group |
| // obu |
| data_size = write_tiles_in_tg_obus(cpi, data, &saved_wb, |
| obu_extension_header, &fh_info); |
| } |
| data += data_size; |
| *size = data - dst; |
| return AOM_CODEC_OK; |
| } |