blob: 043c51bb9005a2593c7425f4ec625655479be108 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <math.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/av1_loopfilter.h"
#include "av1/common/reconinter.h"
#include "av1/common/seg_common.h"
enum {
USE_SINGLE,
USE_DUAL,
USE_QUAD,
} UENUM1BYTE(USE_FILTER_TYPE);
static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = {
{ SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H },
{ SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U },
{ SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V }
};
static const int delta_lf_id_lut[MAX_MB_PLANE][2] = { { 0, 1 },
{ 2, 2 },
{ 3, 3 } };
static const int mode_lf_lut[] = {
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES
1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0)
1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0)
};
static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) {
int lvl;
// For each possible value for the loop filter fill out limits
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) {
// Set loop filter parameters that control sharpness.
int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4));
if (sharpness_lvl > 0) {
if (block_inside_limit > (9 - sharpness_lvl))
block_inside_limit = (9 - sharpness_lvl);
}
if (block_inside_limit < 1) block_inside_limit = 1;
memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH);
memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit),
SIMD_WIDTH);
}
}
static uint8_t get_filter_level(const AV1_COMMON *cm,
const loop_filter_info_n *lfi_n,
const int dir_idx, int plane,
const MB_MODE_INFO *mbmi) {
const int segment_id = mbmi->segment_id;
if (cm->delta_q_info.delta_lf_present_flag) {
int8_t delta_lf;
if (cm->delta_q_info.delta_lf_multi) {
const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx];
delta_lf = mbmi->delta_lf[delta_lf_idx];
} else {
delta_lf = mbmi->delta_lf_from_base;
}
int base_level;
if (plane == 0)
base_level = cm->lf.filter_level[dir_idx];
else if (plane == 1)
base_level = cm->lf.filter_level_u;
else
base_level = cm->lf.filter_level_v;
int lvl_seg = clamp(delta_lf + base_level, 0, MAX_LOOP_FILTER);
assert(plane >= 0 && plane <= 2);
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx];
if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
if (cm->lf.mode_ref_delta_enabled) {
const int scale = 1 << (lvl_seg >> 5);
lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale;
if (mbmi->ref_frame[0] > INTRA_FRAME)
lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale;
lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER);
}
return lvl_seg;
} else {
return lfi_n->lvl[plane][segment_id][dir_idx][mbmi->ref_frame[0]]
[mode_lf_lut[mbmi->mode]];
}
}
void av1_loop_filter_init(AV1_COMMON *cm) {
assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut));
loop_filter_info_n *lfi = &cm->lf_info;
struct loopfilter *lf = &cm->lf;
int lvl;
// init limits for given sharpness
update_sharpness(lfi, lf->sharpness_level);
// init hev threshold const vectors
for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++)
memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH);
}
// Update the loop filter for the current frame.
// This should be called before loop_filter_rows(),
// av1_loop_filter_frame() calls this function directly.
void av1_loop_filter_frame_init(AV1_COMMON *cm, int plane_start,
int plane_end) {
int filt_lvl[MAX_MB_PLANE], filt_lvl_r[MAX_MB_PLANE];
int plane;
int seg_id;
// n_shift is the multiplier for lf_deltas
// the multiplier is 1 for when filter_lvl is between 0 and 31;
// 2 when filter_lvl is between 32 and 63
loop_filter_info_n *const lfi = &cm->lf_info;
struct loopfilter *const lf = &cm->lf;
const struct segmentation *const seg = &cm->seg;
// update sharpness limits
update_sharpness(lfi, lf->sharpness_level);
filt_lvl[0] = cm->lf.filter_level[0];
filt_lvl[1] = cm->lf.filter_level_u;
filt_lvl[2] = cm->lf.filter_level_v;
filt_lvl_r[0] = cm->lf.filter_level[1];
filt_lvl_r[1] = cm->lf.filter_level_u;
filt_lvl_r[2] = cm->lf.filter_level_v;
assert(plane_start >= AOM_PLANE_Y);
assert(plane_end <= MAX_MB_PLANE);
for (plane = plane_start; plane < plane_end; plane++) {
if (plane == 0 && !filt_lvl[0] && !filt_lvl_r[0])
break;
else if (plane == 1 && !filt_lvl[1])
continue;
else if (plane == 2 && !filt_lvl[2])
continue;
for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) {
for (int dir = 0; dir < 2; ++dir) {
int lvl_seg = (dir == 0) ? filt_lvl[plane] : filt_lvl_r[plane];
const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir];
if (segfeature_active(seg, seg_id, seg_lf_feature_id)) {
const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id);
lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER);
}
if (!lf->mode_ref_delta_enabled) {
// we could get rid of this if we assume that deltas are set to
// zero when not in use; encoder always uses deltas
memset(lfi->lvl[plane][seg_id][dir], lvl_seg,
sizeof(lfi->lvl[plane][seg_id][dir]));
} else {
int ref, mode;
const int scale = 1 << (lvl_seg >> 5);
const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale;
lfi->lvl[plane][seg_id][dir][INTRA_FRAME][0] =
clamp(intra_lvl, 0, MAX_LOOP_FILTER);
for (ref = LAST_FRAME; ref < REF_FRAMES; ++ref) {
for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) {
const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale +
lf->mode_deltas[mode] * scale;
lfi->lvl[plane][seg_id][dir][ref][mode] =
clamp(inter_lvl, 0, MAX_LOOP_FILTER);
}
}
}
}
}
}
}
static AOM_FORCE_INLINE TX_SIZE
get_transform_size(const MACROBLOCKD *const xd, const MB_MODE_INFO *const mbmi,
const int mi_row, const int mi_col, const int plane,
const int ss_x, const int ss_y) {
assert(mbmi != NULL);
if (xd && xd->lossless[mbmi->segment_id]) return TX_4X4;
TX_SIZE tx_size = (plane == AOM_PLANE_Y)
? mbmi->tx_size
: av1_get_max_uv_txsize(mbmi->bsize, ss_x, ss_y);
assert(tx_size < TX_SIZES_ALL);
if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi) && !mbmi->skip_txfm) {
const BLOCK_SIZE sb_type = mbmi->bsize;
const int blk_row = mi_row & (mi_size_high[sb_type] - 1);
const int blk_col = mi_col & (mi_size_wide[sb_type] - 1);
const TX_SIZE mb_tx_size =
mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)];
assert(mb_tx_size < TX_SIZES_ALL);
tx_size = mb_tx_size;
}
return tx_size;
}
static const int tx_dim_to_filter_length[TX_SIZES] = { 4, 8, 14, 14, 14 };
// Return TX_SIZE from get_transform_size(), so it is plane and direction
// aware
static TX_SIZE set_lpf_parameters(
AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step,
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y,
const int plane, const struct macroblockd_plane *const plane_ptr) {
// reset to initial values
params->filter_length = 0;
// no deblocking is required
const uint32_t width = plane_ptr->dst.width;
const uint32_t height = plane_ptr->dst.height;
if ((width <= x) || (height <= y)) {
// just return the smallest transform unit size
return TX_4X4;
}
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
// for sub8x8 block, chroma prediction mode is obtained from the bottom/right
// mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row
// and mi_col should map to the bottom/right mi structure, i.e, both mi_row
// and mi_col should be odd number for chroma plane.
const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2);
const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2);
MB_MODE_INFO **mi =
cm->mi_params.mi_grid_base + mi_row * cm->mi_params.mi_stride + mi_col;
const MB_MODE_INFO *mbmi = mi[0];
// If current mbmi is not correctly setup, return an invalid value to stop
// filtering. One example is that if this tile is not coded, then its mbmi
// it not set up.
if (mbmi == NULL) return TX_INVALID;
const TX_SIZE ts = get_transform_size(xd, mi[0], mi_row, mi_col, plane,
scale_horz, scale_vert);
{
const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y);
const uint32_t transform_masks =
edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1;
const int32_t tu_edge = (coord & transform_masks) ? (0) : (1);
if (!tu_edge) return ts;
// prepare outer edge parameters. deblock the edge if it's an edge of a TU
{
const uint32_t curr_level =
get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi);
const int curr_skipped = mbmi->skip_txfm && is_inter_block(mbmi);
uint32_t level = curr_level;
if (coord) {
{
const MB_MODE_INFO *const mi_prev = *(mi - mode_step);
if (mi_prev == NULL) return TX_INVALID;
const int pv_row =
(VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert));
const int pv_col =
(VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col);
const TX_SIZE pv_ts = get_transform_size(
xd, mi_prev, pv_row, pv_col, plane, scale_horz, scale_vert);
const uint32_t pv_lvl =
get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev);
const int pv_skip_txfm =
mi_prev->skip_txfm && is_inter_block(mi_prev);
const BLOCK_SIZE bsize = get_plane_block_size(
mbmi->bsize, plane_ptr->subsampling_x, plane_ptr->subsampling_y);
assert(bsize < BLOCK_SIZES_ALL);
const int prediction_masks = edge_dir == VERT_EDGE
? block_size_wide[bsize] - 1
: block_size_high[bsize] - 1;
const int32_t pu_edge = !(coord & prediction_masks);
// if the current and the previous blocks are skipped,
// deblock the edge if the edge belongs to a PU's edge only.
if ((curr_level || pv_lvl) &&
(!pv_skip_txfm || !curr_skipped || pu_edge)) {
const int dim = (VERT_EDGE == edge_dir)
? AOMMIN(tx_size_wide_unit_log2[ts],
tx_size_wide_unit_log2[pv_ts])
: AOMMIN(tx_size_high_unit_log2[ts],
tx_size_high_unit_log2[pv_ts]);
if (plane) {
params->filter_length = (dim == 0) ? 4 : 6;
} else {
assert(dim < TX_SIZES);
assert(dim >= 0);
params->filter_length = tx_dim_to_filter_length[dim];
}
// update the level if the current block is skipped,
// but the previous one is not
level = (curr_level) ? (curr_level) : (pv_lvl);
}
}
}
// prepare common parameters
if (params->filter_length) {
const loop_filter_thresh *const limits = cm->lf_info.lfthr + level;
params->lfthr = limits;
}
}
}
return ts;
}
static const uint32_t vert_filter_length_luma[TX_SIZES_ALL][TX_SIZES_ALL] = {
// TX_4X4
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X8
{
4, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8,
},
// TX_16X16
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_32X32
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_64X64
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_4X8
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X4
{
4, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8,
},
// TX_8X16
{
4, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8,
},
// TX_16X8
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_16X32
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_32X16
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_32X64
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_64X32
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_4X16
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_16X4
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_8X32
{
4, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8,
},
// TX_32X8
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_16X64
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
// TX_64X16
{
4, 8, 14, 14, 14, 4, 8, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14, 14,
},
};
static const uint32_t horz_filter_length_luma[TX_SIZES_ALL][TX_SIZES_ALL] = {
// TX_4X4
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X8
{
4, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8,
},
// TX_16X16
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_32X32
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_64X64
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_4X8
{
4, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8,
},
// TX_8X4
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X16
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_16X8
{
4, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8,
},
// TX_16X32
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_32X16
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_32X64
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_64X32
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_4X16
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_16X4
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X32
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_32X8
{
4, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8, 8, 8, 8, 4, 8, 8, 8, 8,
},
// TX_16X64
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
// TX_64X16
{
4, 8, 14, 14, 14, 8, 4, 14, 8, 14, 14, 14, 14, 14, 4, 14, 8, 14, 14,
},
};
static const uint32_t vert_filter_length_chroma[TX_SIZES_ALL][TX_SIZES_ALL] = {
// TX_4X4
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X8
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_16X16
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_32X32
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_64X64
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_4X8
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X4
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_8X16
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_16X8
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_16X32
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_32X16
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_32X64
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_64X32
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_4X16
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_16X4
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_8X32
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_32X8
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_16X64
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
// TX_64X16
{
4, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6,
},
};
static const uint32_t horz_filter_length_chroma[TX_SIZES_ALL][TX_SIZES_ALL] = {
// TX_4X4
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X8
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_16X16
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_32X32
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_64X64
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_4X8
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_8X4
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X16
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_16X8
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_16X32
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_32X16
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_32X64
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_64X32
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_4X16
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_16X4
{
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
},
// TX_8X32
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_32X8
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_16X64
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
// TX_64X16
{
4, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,
},
};
static AOM_FORCE_INLINE void set_one_param_for_line_luma(
AV1_DEBLOCKING_PARAMETERS *const params, TX_SIZE *tx_size,
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const EDGE_DIR edge_dir, uint32_t mi_col, uint32_t mi_row,
const struct macroblockd_plane *const plane_ptr, int coord,
bool is_first_block, TX_SIZE prev_tx_size, const ptrdiff_t mode_step,
int *min_dim) {
(void)plane_ptr;
assert(mi_col << MI_SIZE_LOG2 < (uint32_t)plane_ptr->dst.width &&
mi_row << MI_SIZE_LOG2 < (uint32_t)plane_ptr->dst.height);
const int is_vert = edge_dir == VERT_EDGE;
// reset to initial values
params->filter_length = 0;
MB_MODE_INFO **mi =
cm->mi_params.mi_grid_base + mi_row * cm->mi_params.mi_stride + mi_col;
const MB_MODE_INFO *mbmi = mi[0];
assert(mbmi);
const TX_SIZE ts =
get_transform_size(xd, mi[0], mi_row, mi_col, AOM_PLANE_Y, 0, 0);
#ifndef NDEBUG
const uint32_t transform_masks =
is_vert ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1;
const int32_t tu_edge = ((coord * MI_SIZE) & transform_masks) ? (0) : (1);
assert(tu_edge);
#endif // NDEBUG
// If we are not the first block, then coord is always true, so
// !is_first_block is technically redundant. But we are keeping it here so the
// compiler can compile away this conditional if we pass in is_first_block :=
// false
bool curr_skipped = false;
if (!is_first_block || coord) {
const MB_MODE_INFO *const mi_prev = *(mi - mode_step);
const int pv_row = is_vert ? mi_row : (mi_row - 1);
const int pv_col = is_vert ? (mi_col - 1) : mi_col;
const TX_SIZE pv_ts =
is_first_block
? get_transform_size(xd, mi_prev, pv_row, pv_col, AOM_PLANE_Y, 0, 0)
: prev_tx_size;
if (is_first_block) {
*min_dim = is_vert ? block_size_high[mi_prev->bsize]
: block_size_wide[mi_prev->bsize];
}
assert(mi_prev);
uint8_t level =
get_filter_level(cm, &cm->lf_info, edge_dir, AOM_PLANE_Y, mbmi);
if (!level) {
level =
get_filter_level(cm, &cm->lf_info, edge_dir, AOM_PLANE_Y, mi_prev);
}
const int32_t pu_edge = mi_prev != mbmi;
// The quad loop filter assumes that all the transform blocks within a
// 8x16/16x8/16x16 prediction block are of the same size.
assert(IMPLIES(
!pu_edge && (mbmi->bsize >= BLOCK_8X16 && mbmi->bsize <= BLOCK_16X16),
pv_ts == ts));
if (!pu_edge) {
curr_skipped = mbmi->skip_txfm && is_inter_block(mbmi);
}
if ((pu_edge || !curr_skipped) && level) {
params->filter_length = is_vert ? vert_filter_length_luma[ts][pv_ts]
: horz_filter_length_luma[ts][pv_ts];
// prepare common parameters
const loop_filter_thresh *const limits = cm->lf_info.lfthr + level;
params->lfthr = limits;
}
}
const int block_dim =
is_vert ? block_size_high[mbmi->bsize] : block_size_wide[mbmi->bsize];
*min_dim = AOMMIN(*min_dim, block_dim);
*tx_size = ts;
}
// Similar to set_lpf_parameters, but does so one row/col at a time to reduce
// calls to \ref get_transform_size and \ref get_filter_level
static AOM_FORCE_INLINE void set_lpf_parameters_for_line_luma(
AV1_DEBLOCKING_PARAMETERS *const params_buf, TX_SIZE *tx_buf,
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const EDGE_DIR edge_dir, uint32_t mi_col, uint32_t mi_row,
const struct macroblockd_plane *const plane_ptr, const uint32_t mi_range,
const ptrdiff_t mode_step, int *min_dim) {
const int is_vert = edge_dir == VERT_EDGE;
AV1_DEBLOCKING_PARAMETERS *params = params_buf;
TX_SIZE *tx_size = tx_buf;
uint32_t *counter_ptr = is_vert ? &mi_col : &mi_row;
TX_SIZE prev_tx_size = TX_INVALID;
// Unroll the first iteration of the loop
set_one_param_for_line_luma(params, tx_size, cm, xd, edge_dir, mi_col, mi_row,
plane_ptr, *counter_ptr, true, prev_tx_size,
mode_step, min_dim);
// Advance
int advance_units =
is_vert ? tx_size_wide_unit[*tx_size] : tx_size_high_unit[*tx_size];
prev_tx_size = *tx_size;
*counter_ptr += advance_units;
params += advance_units;
tx_size += advance_units;
while (*counter_ptr < mi_range) {
set_one_param_for_line_luma(params, tx_size, cm, xd, edge_dir, mi_col,
mi_row, plane_ptr, *counter_ptr, false,
prev_tx_size, mode_step, min_dim);
// Advance
advance_units =
is_vert ? tx_size_wide_unit[*tx_size] : tx_size_high_unit[*tx_size];
prev_tx_size = *tx_size;
*counter_ptr += advance_units;
params += advance_units;
tx_size += advance_units;
}
}
static AOM_FORCE_INLINE void set_one_param_for_line_chroma(
AV1_DEBLOCKING_PARAMETERS *const params, TX_SIZE *tx_size,
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const EDGE_DIR edge_dir, uint32_t mi_col, uint32_t mi_row, int coord,
bool is_first_block, TX_SIZE prev_tx_size,
const struct macroblockd_plane *const plane_ptr, const ptrdiff_t mode_step,
const int scale_horz, const int scale_vert, int *min_dim, int plane,
int joint_filter_chroma) {
const int is_vert = edge_dir == VERT_EDGE;
(void)plane_ptr;
assert((mi_col << MI_SIZE_LOG2) <
(uint32_t)(plane_ptr->dst.width << scale_horz) &&
(mi_row << MI_SIZE_LOG2) <
(uint32_t)(plane_ptr->dst.height << scale_vert));
// reset to initial values
params->filter_length = 0;
// for sub8x8 block, chroma prediction mode is obtained from the
// bottom/right mi structure of the co-located 8x8 luma block. so for chroma
// plane, mi_row and mi_col should map to the bottom/right mi structure,
// i.e, both mi_row and mi_col should be odd number for chroma plane.
mi_row |= scale_vert;
mi_col |= scale_horz;
MB_MODE_INFO **mi =
cm->mi_params.mi_grid_base + mi_row * cm->mi_params.mi_stride + mi_col;
const MB_MODE_INFO *mbmi = mi[0];
assert(mbmi);
const TX_SIZE ts = get_transform_size(xd, mi[0], mi_row, mi_col, plane,
scale_horz, scale_vert);
*tx_size = ts;
#ifndef NDEBUG
const uint32_t transform_masks =
is_vert ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1;
const int32_t tu_edge = ((coord * MI_SIZE) & transform_masks) ? (0) : (1);
assert(tu_edge);
#endif // NDEBUG
// If we are not the first block, then coord is always true, so
// !is_first_block is technically redundant. But we are keeping it here so the
// compiler can compile away this conditional if we pass in is_first_block :=
// false
bool curr_skipped = false;
if (!is_first_block || coord) {
const MB_MODE_INFO *const mi_prev = *(mi - mode_step);
assert(mi_prev);
const int pv_row = is_vert ? (mi_row) : (mi_row - (1 << scale_vert));
const int pv_col = is_vert ? (mi_col - (1 << scale_horz)) : (mi_col);
const TX_SIZE pv_ts =
is_first_block ? get_transform_size(xd, mi_prev, pv_row, pv_col, plane,
scale_horz, scale_vert)
: prev_tx_size;
if (is_first_block) {
*min_dim = is_vert ? tx_size_high[pv_ts] : tx_size_wide[pv_ts];
}
uint8_t level = get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi);
if (!level) {
level = get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev);
}
#ifndef NDEBUG
if (joint_filter_chroma) {
uint8_t v_level =
get_filter_level(cm, &cm->lf_info, edge_dir, AOM_PLANE_V, mbmi);
if (!v_level) {
v_level =
get_filter_level(cm, &cm->lf_info, edge_dir, AOM_PLANE_V, mi_prev);
}
assert(level == v_level);
}
#else
(void)joint_filter_chroma;
#endif // NDEBUG
const int32_t pu_edge = mi_prev != mbmi;
if (!pu_edge) {
curr_skipped = mbmi->skip_txfm && is_inter_block(mbmi);
}
// For realtime mode, u and v have the same level
if ((!curr_skipped || pu_edge) && level) {
params->filter_length = is_vert ? vert_filter_length_chroma[ts][pv_ts]
: horz_filter_length_chroma[ts][pv_ts];
const loop_filter_thresh *const limits = cm->lf_info.lfthr;
params->lfthr = limits + level;
}
}
const int tx_dim = is_vert ? tx_size_high[ts] : tx_size_wide[ts];
*min_dim = AOMMIN(*min_dim, tx_dim);
}
static AOM_FORCE_INLINE void set_lpf_parameters_for_line_chroma(
AV1_DEBLOCKING_PARAMETERS *const params_buf, TX_SIZE *tx_buf,
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const EDGE_DIR edge_dir, uint32_t mi_col, uint32_t mi_row,
const struct macroblockd_plane *const plane_ptr, const uint32_t mi_range,
const ptrdiff_t mode_step, const int scale_horz, const int scale_vert,
int *min_dim, int plane, int joint_filter_chroma) {
const int is_vert = edge_dir == VERT_EDGE;
AV1_DEBLOCKING_PARAMETERS *params = params_buf;
TX_SIZE *tx_size = tx_buf;
uint32_t *counter_ptr = is_vert ? &mi_col : &mi_row;
const uint32_t scale = is_vert ? scale_horz : scale_vert;
TX_SIZE prev_tx_size = TX_INVALID;
// Unroll the first iteration of the loop
set_one_param_for_line_chroma(params, tx_size, cm, xd, edge_dir, mi_col,
mi_row, *counter_ptr, true, prev_tx_size,
plane_ptr, mode_step, scale_horz, scale_vert,
min_dim, plane, joint_filter_chroma);
// Advance
int advance_units =
is_vert ? tx_size_wide_unit[*tx_size] : tx_size_high_unit[*tx_size];
prev_tx_size = *tx_size;
*counter_ptr += advance_units << scale;
params += advance_units;
tx_size += advance_units;
while (*counter_ptr < mi_range) {
set_one_param_for_line_chroma(params, tx_size, cm, xd, edge_dir, mi_col,
mi_row, *counter_ptr, false, prev_tx_size,
plane_ptr, mode_step, scale_horz, scale_vert,
min_dim, plane, joint_filter_chroma);
// Advance
advance_units =
is_vert ? tx_size_wide_unit[*tx_size] : tx_size_high_unit[*tx_size];
prev_tx_size = *tx_size;
*counter_ptr += advance_units << scale;
params += advance_units;
tx_size += advance_units;
}
}
static inline void filter_vert(uint8_t *dst, int dst_stride,
const AV1_DEBLOCKING_PARAMETERS *params,
const SequenceHeader *seq_params,
USE_FILTER_TYPE use_filter_type) {
const loop_filter_thresh *limits = params->lfthr;
#if CONFIG_AV1_HIGHBITDEPTH
const int use_highbitdepth = seq_params->use_highbitdepth;
const aom_bit_depth_t bit_depth = seq_params->bit_depth;
if (use_highbitdepth) {
uint16_t *dst_shortptr = CONVERT_TO_SHORTPTR(dst);
if (use_filter_type == USE_QUAD) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_vertical_4_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
aom_highbd_lpf_vertical_4_dual(
dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride,
limits->mblim, limits->lim, limits->hev_thr, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_vertical_6_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
aom_highbd_lpf_vertical_6_dual(
dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride,
limits->mblim, limits->lim, limits->hev_thr, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
// apply 8-tap filtering
case 8:
aom_highbd_lpf_vertical_8_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
aom_highbd_lpf_vertical_8_dual(
dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride,
limits->mblim, limits->lim, limits->hev_thr, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
// apply 14-tap filtering
case 14:
aom_highbd_lpf_vertical_14_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
aom_highbd_lpf_vertical_14_dual(
dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride,
limits->mblim, limits->lim, limits->hev_thr, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
// no filtering
default: break;
}
} else if (use_filter_type == USE_DUAL) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_vertical_4_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_vertical_6_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
break;
// apply 8-tap filtering
case 8:
aom_highbd_lpf_vertical_8_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
break;
// apply 14-tap filtering
case 14:
aom_highbd_lpf_vertical_14_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
break;
// no filtering
default: break;
}
} else {
assert(use_filter_type == USE_SINGLE);
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_vertical_4(dst_shortptr, dst_stride, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_vertical_6(dst_shortptr, dst_stride, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
// apply 8-tap filtering
case 8:
aom_highbd_lpf_vertical_8(dst_shortptr, dst_stride, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
// apply 14-tap filtering
case 14:
aom_highbd_lpf_vertical_14(dst_shortptr, dst_stride, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
// no filtering
default: break;
}
}
return;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
if (use_filter_type == USE_QUAD) {
// Only one set of loop filter parameters (mblim, lim and hev_thr) is
// passed as argument to quad loop filter because quad loop filter is
// called for those cases where all the 4 set of loop filter parameters
// are equal.
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_vertical_4_quad(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_vertical_6_quad(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 8-tap filtering
case 8:
aom_lpf_vertical_8_quad(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 14-tap filtering
case 14:
aom_lpf_vertical_14_quad(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// no filtering
default: break;
}
} else if (use_filter_type == USE_DUAL) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_vertical_4_dual(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_vertical_6_dual(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 8-tap filtering
case 8:
aom_lpf_vertical_8_dual(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 14-tap filtering
case 14:
aom_lpf_vertical_14_dual(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr);
break;
// no filtering
default: break;
}
} else {
assert(use_filter_type == USE_SINGLE);
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_vertical_4(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_vertical_6(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 8-tap filtering
case 8:
aom_lpf_vertical_8(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 14-tap filtering
case 14:
aom_lpf_vertical_14(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// no filtering
default: break;
}
}
#if !CONFIG_AV1_HIGHBITDEPTH
(void)seq_params;
#endif // !CONFIG_AV1_HIGHBITDEPTH
}
static inline void filter_vert_chroma(uint8_t *u_dst, uint8_t *v_dst,
int dst_stride,
const AV1_DEBLOCKING_PARAMETERS *params,
const SequenceHeader *seq_params,
USE_FILTER_TYPE use_filter_type) {
const loop_filter_thresh *u_limits = params->lfthr;
const loop_filter_thresh *v_limits = params->lfthr;
#if CONFIG_AV1_HIGHBITDEPTH
const int use_highbitdepth = seq_params->use_highbitdepth;
const aom_bit_depth_t bit_depth = seq_params->bit_depth;
if (use_highbitdepth) {
uint16_t *u_dst_shortptr = CONVERT_TO_SHORTPTR(u_dst);
uint16_t *v_dst_shortptr = CONVERT_TO_SHORTPTR(v_dst);
if (use_filter_type == USE_QUAD) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_vertical_4_dual(
u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_vertical_4_dual(
u_dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride,
u_limits->mblim, u_limits->lim, u_limits->hev_thr,
u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth);
aom_highbd_lpf_vertical_4_dual(
v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
aom_highbd_lpf_vertical_4_dual(
v_dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride,
v_limits->mblim, v_limits->lim, v_limits->hev_thr,
v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_vertical_6_dual(
u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_vertical_6_dual(
u_dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride,
u_limits->mblim, u_limits->lim, u_limits->hev_thr,
u_limits->mblim, u_limits->lim, u_limits->hev_thr, bit_depth);
aom_highbd_lpf_vertical_6_dual(
v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
aom_highbd_lpf_vertical_6_dual(
v_dst_shortptr + (2 * MI_SIZE * dst_stride), dst_stride,
v_limits->mblim, v_limits->lim, v_limits->hev_thr,
v_limits->mblim, v_limits->lim, v_limits->hev_thr, bit_depth);
break;
case 8:
case 14: assert(0);
// no filtering
default: break;
}
} else if (use_filter_type == USE_DUAL) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_vertical_4_dual(
u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_vertical_4_dual(
v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_vertical_6_dual(
u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_vertical_6_dual(
v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
break;
case 8:
case 14: assert(0);
// no filtering
default: break;
}
} else {
assert(use_filter_type == USE_SINGLE);
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_vertical_4(u_dst_shortptr, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr,
bit_depth);
aom_highbd_lpf_vertical_4(v_dst_shortptr, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr,
bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_vertical_6(u_dst_shortptr, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr,
bit_depth);
aom_highbd_lpf_vertical_6(v_dst_shortptr, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr,
bit_depth);
break;
case 8:
case 14: assert(0); break;
// no filtering
default: break;
}
}
return;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
if (use_filter_type == USE_QUAD) {
// Only one set of loop filter parameters (mblim, lim and hev_thr) is
// passed as argument to quad loop filter because quad loop filter is
// called for those cases where all the 4 set of loop filter parameters
// are equal.
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_vertical_4_quad(u_dst, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr);
aom_lpf_vertical_4_quad(v_dst, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_vertical_6_quad(u_dst, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr);
aom_lpf_vertical_6_quad(v_dst, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr);
break;
case 8:
case 14: assert(0);
// no filtering
default: break;
}
} else if (use_filter_type == USE_DUAL) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_vertical_4_dual(u_dst, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr,
u_limits->mblim, u_limits->lim,
u_limits->hev_thr);
aom_lpf_vertical_4_dual(v_dst, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr,
v_limits->mblim, v_limits->lim,
v_limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_vertical_6_dual(u_dst, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr,
u_limits->mblim, u_limits->lim,
u_limits->hev_thr);
aom_lpf_vertical_6_dual(v_dst, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr,
v_limits->mblim, v_limits->lim,
v_limits->hev_thr);
break;
case 8:
case 14: assert(0);
// no filtering
default: break;
}
} else {
assert(use_filter_type == USE_SINGLE);
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_vertical_4(u_dst, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr);
aom_lpf_vertical_4(v_dst, dst_stride, v_limits->mblim, v_limits->lim,
u_limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_vertical_6(u_dst, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr);
aom_lpf_vertical_6(v_dst, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr);
break;
case 8:
case 14: assert(0); break;
// no filtering
default: break;
}
}
#if !CONFIG_AV1_HIGHBITDEPTH
(void)seq_params;
#endif // !CONFIG_AV1_HIGHBITDEPTH
}
void av1_filter_block_plane_vert(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row, const uint32_t mi_col) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int plane_mi_rows =
ROUND_POWER_OF_TWO(cm->mi_params.mi_rows, scale_vert);
const int plane_mi_cols =
ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, scale_horz);
const int y_range = AOMMIN((int)(plane_mi_rows - (mi_row >> scale_vert)),
(MAX_MIB_SIZE >> scale_vert));
const int x_range = AOMMIN((int)(plane_mi_cols - (mi_col >> scale_horz)),
(MAX_MIB_SIZE >> scale_horz));
for (int y = 0; y < y_range; y++) {
uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride;
for (int x = 0; x < x_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 transform is used, it will then filter the internal edge
// aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size =
set_lpf_parameters(&params, ((ptrdiff_t)1 << scale_horz), cm, xd,
VERT_EDGE, curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
filter_vert(p, dst_stride, &params, cm->seq_params, USE_SINGLE);
// advance the destination pointer
advance_units = tx_size_wide_unit[tx_size];
x += advance_units;
p += advance_units * MI_SIZE;
}
}
}
void av1_filter_block_plane_vert_opt(
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row,
const uint32_t mi_col, AV1_DEBLOCKING_PARAMETERS *params_buf,
TX_SIZE *tx_buf, int num_mis_in_lpf_unit_height_log2) {
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
// Ensure that mi_cols/mi_rows are calculated based on frame dimension aligned
// to MI_SIZE.
const int plane_mi_cols =
CEIL_POWER_OF_TWO(plane_ptr->dst.width, MI_SIZE_LOG2);
const int plane_mi_rows =
CEIL_POWER_OF_TWO(plane_ptr->dst.height, MI_SIZE_LOG2);
// Whenever 'pipeline_lpf_mt_with_enc' is enabled, height of the unit to
// filter (i.e., y_range) is calculated based on the size of the superblock
// used.
const int y_range = AOMMIN((int)(plane_mi_rows - mi_row),
(1 << num_mis_in_lpf_unit_height_log2));
// Width of the unit to filter (i.e., x_range) should always be calculated
// based on maximum superblock size as this function is called for mi_col = 0,
// MAX_MIB_SIZE, 2 * MAX_MIB_SIZE etc.
const int x_range = AOMMIN((int)(plane_mi_cols - mi_col), MAX_MIB_SIZE);
const ptrdiff_t mode_step = 1;
for (int y = 0; y < y_range; y++) {
const uint32_t curr_y = mi_row + y;
const uint32_t x_start = mi_col;
const uint32_t x_end = mi_col + x_range;
int min_block_height = block_size_high[BLOCK_128X128];
set_lpf_parameters_for_line_luma(params_buf, tx_buf, cm, xd, VERT_EDGE,
x_start, curr_y, plane_ptr, x_end,
mode_step, &min_block_height);
AV1_DEBLOCKING_PARAMETERS *params = params_buf;
TX_SIZE *tx_size = tx_buf;
USE_FILTER_TYPE use_filter_type = USE_SINGLE;
uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride;
if ((y & 3) == 0 && (y + 3) < y_range && min_block_height >= 16) {
// If we are on a row which is a multiple of 4, and the minimum height is
// 16 pixels, then the current and right 3 cols must contain the same
// prediction block. This is because dim 16 can only happen every unit of
// 4 mi's.
use_filter_type = USE_QUAD;
y += 3;
} else if ((y + 1) < y_range && min_block_height >= 8) {
use_filter_type = USE_DUAL;
y += 1;
}
for (int x = 0; x < x_range;) {
if (*tx_size == TX_INVALID) {
params->filter_length = 0;
*tx_size = TX_4X4;
}
filter_vert(p, dst_stride, params, cm->seq_params, use_filter_type);
// advance the destination pointer
const uint32_t advance_units = tx_size_wide_unit[*tx_size];
x += advance_units;
p += advance_units * MI_SIZE;
params += advance_units;
tx_size += advance_units;
}
}
}
void av1_filter_block_plane_vert_opt_chroma(
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row,
const uint32_t mi_col, AV1_DEBLOCKING_PARAMETERS *params_buf,
TX_SIZE *tx_buf, int plane, bool joint_filter_chroma,
int num_mis_in_lpf_unit_height_log2) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
const int dst_stride = plane_ptr->dst.stride;
// Ensure that mi_cols/mi_rows are calculated based on frame dimension aligned
// to MI_SIZE.
const int mi_cols =
((plane_ptr->dst.width << scale_horz) + MI_SIZE - 1) >> MI_SIZE_LOG2;
const int mi_rows =
((plane_ptr->dst.height << scale_vert) + MI_SIZE - 1) >> MI_SIZE_LOG2;
const int plane_mi_rows = ROUND_POWER_OF_TWO(mi_rows, scale_vert);
const int plane_mi_cols = ROUND_POWER_OF_TWO(mi_cols, scale_horz);
const int y_range =
AOMMIN((int)(plane_mi_rows - (mi_row >> scale_vert)),
((1 << num_mis_in_lpf_unit_height_log2) >> scale_vert));
const int x_range = AOMMIN((int)(plane_mi_cols - (mi_col >> scale_horz)),
(MAX_MIB_SIZE >> scale_horz));
const ptrdiff_t mode_step = (ptrdiff_t)1 << scale_horz;
for (int y = 0; y < y_range; y++) {
const uint32_t curr_y = mi_row + (y << scale_vert);
const uint32_t x_start = mi_col + (0 << scale_horz);
const uint32_t x_end = mi_col + (x_range << scale_horz);
int min_height = tx_size_high[TX_64X64];
set_lpf_parameters_for_line_chroma(params_buf, tx_buf, cm, xd, VERT_EDGE,
x_start, curr_y, plane_ptr, x_end,
mode_step, scale_horz, scale_vert,
&min_height, plane, joint_filter_chroma);
AV1_DEBLOCKING_PARAMETERS *params = params_buf;
TX_SIZE *tx_size = tx_buf;
int use_filter_type = USE_SINGLE;
int y_inc = 0;
if ((y & 3) == 0 && (y + 3) < y_range && min_height >= 16) {
// If we are on a row which is a multiple of 4, and the minimum height is
// 16 pixels, then the current and below 3 rows must contain the same tx
// block. This is because dim 16 can only happen every unit of 4 mi's.
use_filter_type = USE_QUAD;
y_inc = 3;
} else if (y % 2 == 0 && (y + 1) < y_range && min_height >= 8) {
// If we are on an even row, and the minimum height is 8 pixels, then the
// current and below rows must contain the same tx block. This is because
// dim 4 can only happen every unit of 2**0, and 8 every unit of 2**1,
// etc.
use_filter_type = USE_DUAL;
y_inc = 1;
}
for (int x = 0; x < x_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will filter the vertical edge aligned with a 8x8 block.
// If 4x4 transform is used, it will then filter the internal edge
// aligned with a 4x4 block
if (*tx_size == TX_INVALID) {
params->filter_length = 0;
*tx_size = TX_4X4;
}
const int offset = y * MI_SIZE * dst_stride + x * MI_SIZE;
if (joint_filter_chroma) {
uint8_t *u_dst = plane_ptr[0].dst.buf + offset;
uint8_t *v_dst = plane_ptr[1].dst.buf + offset;
filter_vert_chroma(u_dst, v_dst, dst_stride, params, cm->seq_params,
use_filter_type);
} else {
uint8_t *dst_ptr = plane_ptr->dst.buf + offset;
filter_vert(dst_ptr, dst_stride, params, cm->seq_params,
use_filter_type);
}
// advance the destination pointer
const uint32_t advance_units = tx_size_wide_unit[*tx_size];
x += advance_units;
params += advance_units;
tx_size += advance_units;
}
y += y_inc;
}
}
static inline void filter_horz(uint8_t *dst, int dst_stride,
const AV1_DEBLOCKING_PARAMETERS *params,
const SequenceHeader *seq_params,
USE_FILTER_TYPE use_filter_type) {
const loop_filter_thresh *limits = params->lfthr;
#if CONFIG_AV1_HIGHBITDEPTH
const int use_highbitdepth = seq_params->use_highbitdepth;
const aom_bit_depth_t bit_depth = seq_params->bit_depth;
if (use_highbitdepth) {
uint16_t *dst_shortptr = CONVERT_TO_SHORTPTR(dst);
if (use_filter_type == USE_QUAD) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_horizontal_4_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
aom_highbd_lpf_horizontal_4_dual(
dst_shortptr + (2 * MI_SIZE), dst_stride, limits->mblim,
limits->lim, limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr, bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_horizontal_6_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
aom_highbd_lpf_horizontal_6_dual(
dst_shortptr + (2 * MI_SIZE), dst_stride, limits->mblim,
limits->lim, limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr, bit_depth);
break;
// apply 8-tap filtering
case 8:
aom_highbd_lpf_horizontal_8_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
aom_highbd_lpf_horizontal_8_dual(
dst_shortptr + (2 * MI_SIZE), dst_stride, limits->mblim,
limits->lim, limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr, bit_depth);
break;
// apply 14-tap filtering
case 14:
aom_highbd_lpf_horizontal_14_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
aom_highbd_lpf_horizontal_14_dual(
dst_shortptr + (2 * MI_SIZE), dst_stride, limits->mblim,
limits->lim, limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr, bit_depth);
break;
// no filtering
default: break;
}
} else if (use_filter_type == USE_DUAL) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_horizontal_4_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_horizontal_6_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
break;
// apply 8-tap filtering
case 8:
aom_highbd_lpf_horizontal_8_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
break;
// apply 14-tap filtering
case 14:
aom_highbd_lpf_horizontal_14_dual(
dst_shortptr, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim, limits->hev_thr,
bit_depth);
break;
// no filtering
default: break;
}
} else {
assert(use_filter_type == USE_SINGLE);
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_horizontal_4(dst_shortptr, dst_stride, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_horizontal_6(dst_shortptr, dst_stride, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
// apply 8-tap filtering
case 8:
aom_highbd_lpf_horizontal_8(dst_shortptr, dst_stride, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
// apply 14-tap filtering
case 14:
aom_highbd_lpf_horizontal_14(dst_shortptr, dst_stride, limits->mblim,
limits->lim, limits->hev_thr, bit_depth);
break;
// no filtering
default: break;
}
}
return;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
if (use_filter_type == USE_QUAD) {
// Only one set of loop filter parameters (mblim, lim and hev_thr) is
// passed as argument to quad loop filter because quad loop filter is
// called for those cases where all the 4 set of loop filter parameters
// are equal.
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_horizontal_4_quad(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_horizontal_6_quad(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 8-tap filtering
case 8:
aom_lpf_horizontal_8_quad(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 14-tap filtering
case 14:
aom_lpf_horizontal_14_quad(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// no filtering
default: break;
}
} else if (use_filter_type == USE_DUAL) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_horizontal_4_dual(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_horizontal_6_dual(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 8-tap filtering
case 8:
aom_lpf_horizontal_8_dual(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 14-tap filtering
case 14:
aom_lpf_horizontal_14_dual(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr, limits->mblim, limits->lim,
limits->hev_thr);
break;
// no filtering
default: break;
}
} else {
assert(use_filter_type == USE_SINGLE);
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_horizontal_4(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_horizontal_6(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 8-tap filtering
case 8:
aom_lpf_horizontal_8(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// apply 14-tap filtering
case 14:
aom_lpf_horizontal_14(dst, dst_stride, limits->mblim, limits->lim,
limits->hev_thr);
break;
// no filtering
default: break;
}
}
#if !CONFIG_AV1_HIGHBITDEPTH
(void)seq_params;
#endif // !CONFIG_AV1_HIGHBITDEPTH
}
static inline void filter_horz_chroma(uint8_t *u_dst, uint8_t *v_dst,
int dst_stride,
const AV1_DEBLOCKING_PARAMETERS *params,
const SequenceHeader *seq_params,
USE_FILTER_TYPE use_filter_type) {
const loop_filter_thresh *u_limits = params->lfthr;
const loop_filter_thresh *v_limits = params->lfthr;
#if CONFIG_AV1_HIGHBITDEPTH
const int use_highbitdepth = seq_params->use_highbitdepth;
const aom_bit_depth_t bit_depth = seq_params->bit_depth;
if (use_highbitdepth) {
uint16_t *u_dst_shortptr = CONVERT_TO_SHORTPTR(u_dst);
uint16_t *v_dst_shortptr = CONVERT_TO_SHORTPTR(v_dst);
if (use_filter_type == USE_QUAD) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_horizontal_4_dual(
u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_4_dual(
u_dst_shortptr + (2 * MI_SIZE), dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_4_dual(
v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_4_dual(
v_dst_shortptr + (2 * MI_SIZE), dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_horizontal_6_dual(
u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_6_dual(
u_dst_shortptr + (2 * MI_SIZE), dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_6_dual(
v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_6_dual(
v_dst_shortptr + (2 * MI_SIZE), dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
break;
case 8:
case 14: assert(0);
// no filtering
default: break;
}
} else if (use_filter_type == USE_DUAL) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_horizontal_4_dual(
u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_4_dual(
v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_horizontal_6_dual(
u_dst_shortptr, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_6_dual(
v_dst_shortptr, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
break;
case 8:
case 14: assert(0);
// no filtering
default: break;
}
} else {
assert(use_filter_type == USE_SINGLE);
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_highbd_lpf_horizontal_4(u_dst_shortptr, dst_stride,
u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_4(v_dst_shortptr, dst_stride,
v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_highbd_lpf_horizontal_6(u_dst_shortptr, dst_stride,
u_limits->mblim, u_limits->lim,
u_limits->hev_thr, bit_depth);
aom_highbd_lpf_horizontal_6(v_dst_shortptr, dst_stride,
v_limits->mblim, v_limits->lim,
v_limits->hev_thr, bit_depth);
break;
case 8:
case 14: assert(0); break;
// no filtering
default: break;
}
}
return;
}
#endif // CONFIG_AV1_HIGHBITDEPTH
if (use_filter_type == USE_QUAD) {
// Only one set of loop filter parameters (mblim, lim and hev_thr) is
// passed as argument to quad loop filter because quad loop filter is
// called for those cases where all the 4 set of loop filter parameters
// are equal.
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_horizontal_4_quad(u_dst, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr);
aom_lpf_horizontal_4_quad(v_dst, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_horizontal_6_quad(u_dst, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr);
aom_lpf_horizontal_6_quad(v_dst, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr);
break;
case 8:
case 14: assert(0);
// no filtering
default: break;
}
} else if (use_filter_type == USE_DUAL) {
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_horizontal_4_dual(u_dst, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr,
u_limits->mblim, u_limits->lim,
u_limits->hev_thr);
aom_lpf_horizontal_4_dual(v_dst, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr,
v_limits->mblim, v_limits->lim,
v_limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_horizontal_6_dual(u_dst, dst_stride, u_limits->mblim,
u_limits->lim, u_limits->hev_thr,
u_limits->mblim, u_limits->lim,
u_limits->hev_thr);
aom_lpf_horizontal_6_dual(v_dst, dst_stride, v_limits->mblim,
v_limits->lim, v_limits->hev_thr,
v_limits->mblim, v_limits->lim,
v_limits->hev_thr);
break;
case 8:
case 14: assert(0);
// no filtering
default: break;
}
} else {
assert(use_filter_type == USE_SINGLE);
switch (params->filter_length) {
// apply 4-tap filtering
case 4:
aom_lpf_horizontal_4(u_dst, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr);
aom_lpf_horizontal_4(v_dst, dst_stride, v_limits->mblim, v_limits->lim,
u_limits->hev_thr);
break;
case 6: // apply 6-tap filter for chroma plane only
aom_lpf_horizontal_6(u_dst, dst_stride, u_limits->mblim, u_limits->lim,
u_limits->hev_thr);
aom_lpf_horizontal_6(v_dst, dst_stride, v_limits->mblim, v_limits->lim,
v_limits->hev_thr);
break;
case 8:
case 14: assert(0); break;
// no filtering
default: break;
}
}
#if !CONFIG_AV1_HIGHBITDEPTH
(void)seq_params;
#endif // !CONFIG_AV1_HIGHBITDEPTH
}
void av1_filter_block_plane_horz(const AV1_COMMON *const cm,
const MACROBLOCKD *const xd, const int plane,
const MACROBLOCKD_PLANE *const plane_ptr,
const uint32_t mi_row, const uint32_t mi_col) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
const int plane_mi_rows =
ROUND_POWER_OF_TWO(cm->mi_params.mi_rows, scale_vert);
const int plane_mi_cols =
ROUND_POWER_OF_TWO(cm->mi_params.mi_cols, scale_horz);
const int y_range = AOMMIN((int)(plane_mi_rows - (mi_row >> scale_vert)),
(MAX_MIB_SIZE >> scale_vert));
const int x_range = AOMMIN((int)(plane_mi_cols - (mi_col >> scale_horz)),
(MAX_MIB_SIZE >> scale_horz));
for (int x = 0; x < x_range; x++) {
uint8_t *p = dst_ptr + x * MI_SIZE;
for (int y = 0; y < y_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 transform is used, it will then filter the internal
// edge aligned with a 4x4 block
const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE;
const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE;
uint32_t advance_units;
TX_SIZE tx_size;
AV1_DEBLOCKING_PARAMETERS params;
memset(&params, 0, sizeof(params));
tx_size = set_lpf_parameters(
&params, (cm->mi_params.mi_stride << scale_vert), cm, xd, HORZ_EDGE,
curr_x, curr_y, plane, plane_ptr);
if (tx_size == TX_INVALID) {
params.filter_length = 0;
tx_size = TX_4X4;
}
filter_horz(p, dst_stride, &params, cm->seq_params, USE_SINGLE);
// advance the destination pointer
advance_units = tx_size_high_unit[tx_size];
y += advance_units;
p += advance_units * dst_stride * MI_SIZE;
}
}
}
void av1_filter_block_plane_horz_opt(
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row,
const uint32_t mi_col, AV1_DEBLOCKING_PARAMETERS *params_buf,
TX_SIZE *tx_buf, int num_mis_in_lpf_unit_height_log2) {
uint8_t *const dst_ptr = plane_ptr->dst.buf;
const int dst_stride = plane_ptr->dst.stride;
// Ensure that mi_cols/mi_rows are calculated based on frame dimension aligned
// to MI_SIZE.
const int plane_mi_cols =
CEIL_POWER_OF_TWO(plane_ptr->dst.width, MI_SIZE_LOG2);
const int plane_mi_rows =
CEIL_POWER_OF_TWO(plane_ptr->dst.height, MI_SIZE_LOG2);
const int y_range = AOMMIN((int)(plane_mi_rows - mi_row),
(1 << num_mis_in_lpf_unit_height_log2));
const int x_range = AOMMIN((int)(plane_mi_cols - mi_col), MAX_MIB_SIZE);
const ptrdiff_t mode_step = cm->mi_params.mi_stride;
for (int x = 0; x < x_range; x++) {
const uint32_t curr_x = mi_col + x;
const uint32_t y_start = mi_row;
const uint32_t y_end = mi_row + y_range;
int min_block_width = block_size_high[BLOCK_128X128];
set_lpf_parameters_for_line_luma(params_buf, tx_buf, cm, xd, HORZ_EDGE,
curr_x, y_start, plane_ptr, y_end,
mode_step, &min_block_width);
AV1_DEBLOCKING_PARAMETERS *params = params_buf;
TX_SIZE *tx_size = tx_buf;
USE_FILTER_TYPE filter_type = USE_SINGLE;
uint8_t *p = dst_ptr + x * MI_SIZE;
if ((x & 3) == 0 && (x + 3) < x_range && min_block_width >= 16) {
// If we are on a col which is a multiple of 4, and the minimum width is
// 16 pixels, then the current and right 3 cols must contain the same
// prediction block. This is because dim 16 can only happen every unit of
// 4 mi's.
filter_type = USE_QUAD;
x += 3;
} else if ((x + 1) < x_range && min_block_width >= 8) {
filter_type = USE_DUAL;
x += 1;
}
for (int y = 0; y < y_range;) {
if (*tx_size == TX_INVALID) {
params->filter_length = 0;
*tx_size = TX_4X4;
}
filter_horz(p, dst_stride, params, cm->seq_params, filter_type);
// advance the destination pointer
const uint32_t advance_units = tx_size_high_unit[*tx_size];
y += advance_units;
p += advance_units * dst_stride * MI_SIZE;
params += advance_units;
tx_size += advance_units;
}
}
}
void av1_filter_block_plane_horz_opt_chroma(
const AV1_COMMON *const cm, const MACROBLOCKD *const xd,
const MACROBLOCKD_PLANE *const plane_ptr, const uint32_t mi_row,
const uint32_t mi_col, AV1_DEBLOCKING_PARAMETERS *params_buf,
TX_SIZE *tx_buf, int plane, bool joint_filter_chroma,
int num_mis_in_lpf_unit_height_log2) {
const uint32_t scale_horz = plane_ptr->subsampling_x;
const uint32_t scale_vert = plane_ptr->subsampling_y;
const int dst_stride = plane_ptr->dst.stride;
// Ensure that mi_cols/mi_rows are calculated based on frame dimension aligned
// to MI_SIZE.
const int mi_cols =
((plane_ptr->dst.width << scale_horz) + MI_SIZE - 1) >> MI_SIZE_LOG2;
const int mi_rows =
((plane_ptr->dst.height << scale_vert) + MI_SIZE - 1) >> MI_SIZE_LOG2;
const int plane_mi_rows = ROUND_POWER_OF_TWO(mi_rows, scale_vert);
const int plane_mi_cols = ROUND_POWER_OF_TWO(mi_cols, scale_horz);
const int y_range =
AOMMIN((int)(plane_mi_rows - (mi_row >> scale_vert)),
((1 << num_mis_in_lpf_unit_height_log2) >> scale_vert));
const int x_range = AOMMIN((int)(plane_mi_cols - (mi_col >> scale_horz)),
(MAX_MIB_SIZE >> scale_horz));
const ptrdiff_t mode_step = cm->mi_params.mi_stride << scale_vert;
for (int x = 0; x < x_range; x++) {
const uint32_t y_start = mi_row + (0 << scale_vert);
const uint32_t curr_x = mi_col + (x << scale_horz);
const uint32_t y_end = mi_row + (y_range << scale_vert);
int min_width = tx_size_wide[TX_64X64];
set_lpf_parameters_for_line_chroma(params_buf, tx_buf, cm, xd, HORZ_EDGE,
curr_x, y_start, plane_ptr, y_end,
mode_step, scale_horz, scale_vert,
&min_width, plane, joint_filter_chroma);
AV1_DEBLOCKING_PARAMETERS *params = params_buf;
TX_SIZE *tx_size = tx_buf;
USE_FILTER_TYPE use_filter_type = USE_SINGLE;
int x_inc = 0;
if ((x & 3) == 0 && (x + 3) < x_range && min_width >= 16) {
// If we are on a col which is a multiple of 4, and the minimum width is
// 16 pixels, then the current and right 3 cols must contain the same tx
// block. This is because dim 16 can only happen every unit of 4 mi's.
use_filter_type = USE_QUAD;
x_inc = 3;
} else if (x % 2 == 0 && (x + 1) < x_range && min_width >= 8) {
// If we are on an even col, and the minimum width is 8 pixels, then the
// current and left cols must contain the same tx block. This is because
// dim 4 can only happen every unit of 2**0, and 8 every unit of 2**1,
// etc.
use_filter_type = USE_DUAL;
x_inc = 1;
}
for (int y = 0; y < y_range;) {
// inner loop always filter vertical edges in a MI block. If MI size
// is 8x8, it will first filter the vertical edge aligned with a 8x8
// block. If 4x4 transform is used, it will then filter the internal
// edge aligned with a 4x4 block
if (*tx_size == TX_INVALID) {
params->filter_length = 0;
*tx_size = TX_4X4;
}
const int offset = y * MI_SIZE * dst_stride + x * MI_SIZE;
if (joint_filter_chroma) {
uint8_t *u_dst = plane_ptr[0].dst.buf + offset;
uint8_t *v_dst = plane_ptr[1].dst.buf + offset;
filter_horz_chroma(u_dst, v_dst, dst_stride, params, cm->seq_params,
use_filter_type);
} else {
uint8_t *dst_ptr = plane_ptr->dst.buf + offset;
filter_horz(dst_ptr, dst_stride, params, cm->seq_params,
use_filter_type);
}
// advance the destination pointer
const int advance_units = tx_size_high_unit[*tx_size];
y += advance_units;
params += advance_units;
tx_size += advance_units;
}
x += x_inc;
}
}