blob: 864caa6b209574985ee2d33c0339f2ccf102e9b6 [file] [log] [blame]
/*
* Copyright (c) 2020, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include "av1/common/common_data.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconintra.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodeframe_utils.h"
#include "av1/encoder/encoder_utils.h"
#include "av1/encoder/rdopt.h"
void av1_set_ssim_rdmult(const AV1_COMP *const cpi, int *errorperbit,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col, int *const rdmult) {
const AV1_COMMON *const cm = &cpi->common;
const BLOCK_SIZE bsize_base = BLOCK_16X16;
const int num_mi_w = mi_size_wide[bsize_base];
const int num_mi_h = mi_size_high[bsize_base];
const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h;
const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w;
const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h;
int row, col;
double num_of_mi = 0.0;
double geom_mean_of_scale = 1.0;
// To avoid overflow of 'geom_mean_of_scale', bsize_base must be at least
// BLOCK_8X8.
//
// For bsize=BLOCK_128X128 and bsize_base=BLOCK_8X8, the loop below would
// iterate 256 times. Considering the maximum value of
// cpi->ssim_rdmult_scaling_factors (see av1_set_mb_ssim_rdmult_scaling()),
// geom_mean_of_scale can go up to 4.8323^256, which is within DBL_MAX
// (maximum value a double data type can hold). If bsize_base is modified to
// BLOCK_4X4 (minimum possible block size), geom_mean_of_scale can go up
// to 4.8323^1024 and exceed DBL_MAX, resulting in data overflow.
assert(bsize_base >= BLOCK_8X8);
assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM);
for (row = mi_row / num_mi_w;
row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) {
for (col = mi_col / num_mi_h;
col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) {
const int index = row * num_cols + col;
assert(cpi->ssim_rdmult_scaling_factors[index] != 0.0);
geom_mean_of_scale *= cpi->ssim_rdmult_scaling_factors[index];
num_of_mi += 1.0;
}
}
geom_mean_of_scale = pow(geom_mean_of_scale, (1.0 / num_of_mi));
*rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5);
*rdmult = AOMMAX(*rdmult, 0);
av1_set_error_per_bit(errorperbit, *rdmult);
}
#if CONFIG_SALIENCY_MAP
void av1_set_saliency_map_vmaf_rdmult(const AV1_COMP *const cpi,
int *errorperbit, const BLOCK_SIZE bsize,
const int mi_row, const int mi_col,
int *const rdmult) {
const AV1_COMMON *const cm = &cpi->common;
const int num_mi_w = mi_size_wide[bsize];
const int num_mi_h = mi_size_high[bsize];
const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w;
*rdmult =
(int)(*rdmult * cpi->sm_scaling_factor[(mi_row / num_mi_h) * num_cols +
(mi_col / num_mi_w)]);
*rdmult = AOMMAX(*rdmult, 0);
av1_set_error_per_bit(errorperbit, *rdmult);
}
#endif
// TODO(angiebird): Move this function to tpl_model.c
#if !CONFIG_REALTIME_ONLY
int av1_get_cb_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x,
const BLOCK_SIZE bsize, const int mi_row,
const int mi_col) {
const AV1_COMMON *const cm = &cpi->common;
assert(IMPLIES(cpi->ppi->gf_group.size > 0,
cpi->gf_frame_index < cpi->ppi->gf_group.size));
const int tpl_idx = cpi->gf_frame_index;
int deltaq_rdmult = set_rdmult(cpi, x, -1);
if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, tpl_idx)) return deltaq_rdmult;
if (cm->superres_scale_denominator != SCALE_NUMERATOR) return deltaq_rdmult;
if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return deltaq_rdmult;
if (x->rb == 0) return deltaq_rdmult;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
int tpl_stride = tpl_frame->stride;
double intra_cost_base = 0;
double mc_dep_cost_base = 0;
double cbcmp_base = 0;
const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
for (int row = mi_row; row < mi_row + mi_high; row += step) {
for (int col = mi_col; col < mi_col + mi_wide; col += step) {
if (row >= cm->mi_params.mi_rows || col >= cm->mi_params.mi_cols)
continue;
TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
double cbcmp = (double)this_stats->srcrf_dist;
int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
intra_cost_base += log(dist_scaled) * cbcmp;
mc_dep_cost_base += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
cbcmp_base += cbcmp;
}
}
if (cbcmp_base == 0) return deltaq_rdmult;
double rk = exp((intra_cost_base - mc_dep_cost_base) / cbcmp_base);
deltaq_rdmult = (int)(deltaq_rdmult * (rk / x->rb));
return AOMMAX(deltaq_rdmult, 1);
}
#endif // !CONFIG_REALTIME_ONLY
static inline void update_filter_type_count(FRAME_COUNTS *counts,
const MACROBLOCKD *xd,
const MB_MODE_INFO *mbmi) {
int dir;
for (dir = 0; dir < 2; ++dir) {
const int ctx = av1_get_pred_context_switchable_interp(xd, dir);
InterpFilter filter = av1_extract_interp_filter(mbmi->interp_filters, dir);
// Only allow the 3 valid SWITCHABLE_FILTERS.
assert(filter < SWITCHABLE_FILTERS);
++counts->switchable_interp[ctx][filter];
}
}
// This function will copy the best reference mode information from
// MB_MODE_INFO_EXT_FRAME to MB_MODE_INFO_EXT.
static inline void copy_mbmi_ext_frame_to_mbmi_ext(
MB_MODE_INFO_EXT *mbmi_ext,
const MB_MODE_INFO_EXT_FRAME *const mbmi_ext_best, uint8_t ref_frame_type) {
memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack,
sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE]));
memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight,
sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE]));
mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context;
mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count;
memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs,
sizeof(mbmi_ext->global_mvs));
}
void av1_update_state(const AV1_COMP *const cpi, ThreadData *td,
const PICK_MODE_CONTEXT *const ctx, int mi_row,
int mi_col, BLOCK_SIZE bsize, RUN_TYPE dry_run) {
int i, x_idx, y;
const AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
struct macroblock_plane *const p = x->plane;
struct macroblockd_plane *const pd = xd->plane;
const MB_MODE_INFO *const mi = &ctx->mic;
MB_MODE_INFO *const mi_addr = xd->mi[0];
const struct segmentation *const seg = &cm->seg;
assert(bsize < BLOCK_SIZES_ALL);
const int bw = mi_size_wide[mi->bsize];
const int bh = mi_size_high[mi->bsize];
const int mis = mi_params->mi_stride;
const int mi_width = mi_size_wide[bsize];
const int mi_height = mi_size_high[bsize];
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
assert(mi->bsize == bsize);
*mi_addr = *mi;
copy_mbmi_ext_frame_to_mbmi_ext(&x->mbmi_ext, &ctx->mbmi_ext_best,
av1_ref_frame_type(ctx->mic.ref_frame));
memcpy(txfm_info->blk_skip, ctx->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
txfm_info->skip_txfm = ctx->rd_stats.skip_txfm;
xd->tx_type_map = ctx->tx_type_map;
xd->tx_type_map_stride = mi_size_wide[bsize];
// If not dry_run, copy the transform type data into the frame level buffer.
// Encoder will fetch tx types when writing bitstream.
if (!dry_run) {
const int grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
uint8_t *const tx_type_map = mi_params->tx_type_map + grid_idx;
const int mi_stride = mi_params->mi_stride;
for (int blk_row = 0; blk_row < bh; ++blk_row) {
av1_copy_array(tx_type_map + blk_row * mi_stride,
xd->tx_type_map + blk_row * xd->tx_type_map_stride, bw);
}
xd->tx_type_map = tx_type_map;
xd->tx_type_map_stride = mi_stride;
}
// If segmentation in use
if (seg->enabled) {
// For in frame complexity AQ copy the segment id from the segment map.
if (cpi->oxcf.q_cfg.aq_mode == COMPLEXITY_AQ) {
const uint8_t *const map =
seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map;
mi_addr->segment_id =
map ? get_segment_id(mi_params, map, bsize, mi_row, mi_col) : 0;
}
// Else for cyclic refresh mode update the segment map, set the segment id
// and then update the quantizer.
if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ &&
mi_addr->segment_id != AM_SEGMENT_ID_INACTIVE &&
!cpi->rc.rtc_external_ratectrl) {
av1_cyclic_refresh_update_segment(cpi, x, mi_row, mi_col, bsize,
ctx->rd_stats.rate, ctx->rd_stats.dist,
txfm_info->skip_txfm, dry_run);
}
if (mi_addr->uv_mode == UV_CFL_PRED && !is_cfl_allowed(xd))
mi_addr->uv_mode = UV_DC_PRED;
if (!dry_run && !mi_addr->skip_txfm) {
int cdf_num;
const uint8_t spatial_pred = av1_get_spatial_seg_pred(
cm, xd, &cdf_num, cpi->cyclic_refresh->skip_over4x4);
const uint8_t coded_id = av1_neg_interleave(
mi_addr->segment_id, spatial_pred, seg->last_active_segid + 1);
int64_t spatial_cost = x->mode_costs.spatial_pred_cost[cdf_num][coded_id];
td->rd_counts.seg_tmp_pred_cost[0] += spatial_cost;
const int pred_segment_id =
cm->last_frame_seg_map
? get_segment_id(mi_params, cm->last_frame_seg_map, bsize, mi_row,
mi_col)
: 0;
const int use_tmp_pred = pred_segment_id == mi_addr->segment_id;
const uint8_t tmp_pred_ctx = av1_get_pred_context_seg_id(xd);
td->rd_counts.seg_tmp_pred_cost[1] +=
x->mode_costs.tmp_pred_cost[tmp_pred_ctx][use_tmp_pred];
if (!use_tmp_pred) {
td->rd_counts.seg_tmp_pred_cost[1] += spatial_cost;
}
}
}
// Count zero motion vector.
if (!dry_run && !frame_is_intra_only(cm)) {
const MV mv = mi->mv[0].as_mv;
if (is_inter_block(mi) && mi->ref_frame[0] == LAST_FRAME &&
abs(mv.row) < 8 && abs(mv.col) < 8) {
const int ymis = AOMMIN(cm->mi_params.mi_rows - mi_row, bh);
// Accumulate low_content_frame.
for (int mi_y = 0; mi_y < ymis; mi_y += 2) x->cnt_zeromv += bw << 1;
}
}
for (i = 0; i < num_planes; ++i) {
p[i].coeff = ctx->coeff[i];
p[i].qcoeff = ctx->qcoeff[i];
p[i].dqcoeff = ctx->dqcoeff[i];
p[i].eobs = ctx->eobs[i];
p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i];
}
for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i];
// Restore the coding context of the MB to that that was in place
// when the mode was picked for it
const int cols =
AOMMIN((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width, mi_width);
const int rows = AOMMIN(
(xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height, mi_height);
for (y = 0; y < rows; y++) {
for (x_idx = 0; x_idx < cols; x_idx++) xd->mi[x_idx + y * mis] = mi_addr;
}
if (cpi->oxcf.q_cfg.aq_mode)
av1_init_plane_quantizers(cpi, x, mi_addr->segment_id, 0);
if (dry_run) return;
#if CONFIG_INTERNAL_STATS
{
unsigned int *const mode_chosen_counts =
(unsigned int *)cpi->mode_chosen_counts; // Cast const away.
if (frame_is_intra_only(cm)) {
static const int kf_mode_index[] = {
THR_DC /*DC_PRED*/,
THR_V_PRED /*V_PRED*/,
THR_H_PRED /*H_PRED*/,
THR_D45_PRED /*D45_PRED*/,
THR_D135_PRED /*D135_PRED*/,
THR_D113_PRED /*D113_PRED*/,
THR_D157_PRED /*D157_PRED*/,
THR_D203_PRED /*D203_PRED*/,
THR_D67_PRED /*D67_PRED*/,
THR_SMOOTH, /*SMOOTH_PRED*/
THR_SMOOTH_V, /*SMOOTH_V_PRED*/
THR_SMOOTH_H, /*SMOOTH_H_PRED*/
THR_PAETH /*PAETH_PRED*/,
};
++mode_chosen_counts[kf_mode_index[mi_addr->mode]];
} else {
// Note how often each mode chosen as best
++mode_chosen_counts[ctx->best_mode_index];
}
}
#endif
if (!frame_is_intra_only(cm)) {
if (is_inter_block(mi) && cm->features.interp_filter == SWITCHABLE) {
// When the frame interp filter is SWITCHABLE, several cases that always
// use the default type (EIGHTTAP_REGULAR) are described in
// av1_is_interp_needed(). Here, we should keep the counts for all
// applicable blocks, so the frame filter resetting decision in
// fix_interp_filter() is made correctly.
update_filter_type_count(td->counts, xd, mi_addr);
}
}
const int x_mis = AOMMIN(bw, mi_params->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, mi_params->mi_rows - mi_row);
if (cm->seq_params->order_hint_info.enable_ref_frame_mvs)
av1_copy_frame_mvs(cm, mi, mi_row, mi_col, x_mis, y_mis);
}
void av1_update_inter_mode_stats(FRAME_CONTEXT *fc, FRAME_COUNTS *counts,
PREDICTION_MODE mode, int16_t mode_context) {
(void)counts;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
if (mode == NEWMV) {
#if CONFIG_ENTROPY_STATS
++counts->newmv_mode[mode_ctx][0];
#endif
update_cdf(fc->newmv_cdf[mode_ctx], 0, 2);
return;
}
#if CONFIG_ENTROPY_STATS
++counts->newmv_mode[mode_ctx][1];
#endif
update_cdf(fc->newmv_cdf[mode_ctx], 1, 2);
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
#if CONFIG_ENTROPY_STATS
++counts->zeromv_mode[mode_ctx][0];
#endif
update_cdf(fc->zeromv_cdf[mode_ctx], 0, 2);
return;
}
#if CONFIG_ENTROPY_STATS
++counts->zeromv_mode[mode_ctx][1];
#endif
update_cdf(fc->zeromv_cdf[mode_ctx], 1, 2);
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
#if CONFIG_ENTROPY_STATS
++counts->refmv_mode[mode_ctx][mode != NEARESTMV];
#endif
update_cdf(fc->refmv_cdf[mode_ctx], mode != NEARESTMV, 2);
}
static void update_palette_cdf(MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
FRAME_COUNTS *counts) {
FRAME_CONTEXT *fc = xd->tile_ctx;
const BLOCK_SIZE bsize = mbmi->bsize;
const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
const int palette_bsize_ctx = av1_get_palette_bsize_ctx(bsize);
(void)counts;
if (mbmi->mode == DC_PRED) {
const int n = pmi->palette_size[0];
const int palette_mode_ctx = av1_get_palette_mode_ctx(xd);
#if CONFIG_ENTROPY_STATS
++counts->palette_y_mode[palette_bsize_ctx][palette_mode_ctx][n > 0];
#endif
update_cdf(fc->palette_y_mode_cdf[palette_bsize_ctx][palette_mode_ctx],
n > 0, 2);
if (n > 0) {
#if CONFIG_ENTROPY_STATS
++counts->palette_y_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
update_cdf(fc->palette_y_size_cdf[palette_bsize_ctx],
n - PALETTE_MIN_SIZE, PALETTE_SIZES);
}
}
if (mbmi->uv_mode == UV_DC_PRED) {
const int n = pmi->palette_size[1];
const int palette_uv_mode_ctx = (pmi->palette_size[0] > 0);
#if CONFIG_ENTROPY_STATS
++counts->palette_uv_mode[palette_uv_mode_ctx][n > 0];
#endif
update_cdf(fc->palette_uv_mode_cdf[palette_uv_mode_ctx], n > 0, 2);
if (n > 0) {
#if CONFIG_ENTROPY_STATS
++counts->palette_uv_size[palette_bsize_ctx][n - PALETTE_MIN_SIZE];
#endif
update_cdf(fc->palette_uv_size_cdf[palette_bsize_ctx],
n - PALETTE_MIN_SIZE, PALETTE_SIZES);
}
}
}
void av1_sum_intra_stats(const AV1_COMMON *const cm, FRAME_COUNTS *counts,
MACROBLOCKD *xd, const MB_MODE_INFO *const mbmi,
const MB_MODE_INFO *above_mi,
const MB_MODE_INFO *left_mi, const int intraonly) {
FRAME_CONTEXT *fc = xd->tile_ctx;
const PREDICTION_MODE y_mode = mbmi->mode;
(void)counts;
const BLOCK_SIZE bsize = mbmi->bsize;
if (intraonly) {
#if CONFIG_ENTROPY_STATS
const PREDICTION_MODE above = av1_above_block_mode(above_mi);
const PREDICTION_MODE left = av1_left_block_mode(left_mi);
const int above_ctx = intra_mode_context[above];
const int left_ctx = intra_mode_context[left];
++counts->kf_y_mode[above_ctx][left_ctx][y_mode];
#endif // CONFIG_ENTROPY_STATS
update_cdf(get_y_mode_cdf(fc, above_mi, left_mi), y_mode, INTRA_MODES);
} else {
#if CONFIG_ENTROPY_STATS
++counts->y_mode[size_group_lookup[bsize]][y_mode];
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->y_mode_cdf[size_group_lookup[bsize]], y_mode, INTRA_MODES);
}
if (av1_filter_intra_allowed(cm, mbmi)) {
const int use_filter_intra_mode =
mbmi->filter_intra_mode_info.use_filter_intra;
#if CONFIG_ENTROPY_STATS
++counts->filter_intra[mbmi->bsize][use_filter_intra_mode];
if (use_filter_intra_mode) {
++counts
->filter_intra_mode[mbmi->filter_intra_mode_info.filter_intra_mode];
}
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->filter_intra_cdfs[mbmi->bsize], use_filter_intra_mode, 2);
if (use_filter_intra_mode) {
update_cdf(fc->filter_intra_mode_cdf,
mbmi->filter_intra_mode_info.filter_intra_mode,
FILTER_INTRA_MODES);
}
}
if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[mbmi->mode - V_PRED]
[mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA];
#endif
update_cdf(fc->angle_delta_cdf[mbmi->mode - V_PRED],
mbmi->angle_delta[PLANE_TYPE_Y] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
if (!xd->is_chroma_ref) return;
const UV_PREDICTION_MODE uv_mode = mbmi->uv_mode;
const CFL_ALLOWED_TYPE cfl_allowed = is_cfl_allowed(xd);
#if CONFIG_ENTROPY_STATS
++counts->uv_mode[cfl_allowed][y_mode][uv_mode];
#endif // CONFIG_ENTROPY_STATS
update_cdf(fc->uv_mode_cdf[cfl_allowed][y_mode], uv_mode,
UV_INTRA_MODES - !cfl_allowed);
if (uv_mode == UV_CFL_PRED) {
const int8_t joint_sign = mbmi->cfl_alpha_signs;
const uint8_t idx = mbmi->cfl_alpha_idx;
#if CONFIG_ENTROPY_STATS
++counts->cfl_sign[joint_sign];
#endif
update_cdf(fc->cfl_sign_cdf, joint_sign, CFL_JOINT_SIGNS);
if (CFL_SIGN_U(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_u = fc->cfl_alpha_cdf[CFL_CONTEXT_U(joint_sign)];
#if CONFIG_ENTROPY_STATS
++counts->cfl_alpha[CFL_CONTEXT_U(joint_sign)][CFL_IDX_U(idx)];
#endif
update_cdf(cdf_u, CFL_IDX_U(idx), CFL_ALPHABET_SIZE);
}
if (CFL_SIGN_V(joint_sign) != CFL_SIGN_ZERO) {
aom_cdf_prob *cdf_v = fc->cfl_alpha_cdf[CFL_CONTEXT_V(joint_sign)];
#if CONFIG_ENTROPY_STATS
++counts->cfl_alpha[CFL_CONTEXT_V(joint_sign)][CFL_IDX_V(idx)];
#endif
update_cdf(cdf_v, CFL_IDX_V(idx), CFL_ALPHABET_SIZE);
}
}
const PREDICTION_MODE intra_mode = get_uv_mode(uv_mode);
if (av1_is_directional_mode(intra_mode) && av1_use_angle_delta(bsize)) {
#if CONFIG_ENTROPY_STATS
++counts->angle_delta[intra_mode - V_PRED]
[mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA];
#endif
update_cdf(fc->angle_delta_cdf[intra_mode - V_PRED],
mbmi->angle_delta[PLANE_TYPE_UV] + MAX_ANGLE_DELTA,
2 * MAX_ANGLE_DELTA + 1);
}
if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) {
update_palette_cdf(xd, mbmi, counts);
}
}
void av1_restore_context(MACROBLOCK *x, const RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
const int num_planes) {
MACROBLOCKD *xd = &x->e_mbd;
int p;
const int num_4x4_blocks_wide = mi_size_wide[bsize];
const int num_4x4_blocks_high = mi_size_high[bsize];
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
for (p = 0; p < num_planes; p++) {
int tx_col = mi_col;
int tx_row = mi_row & MAX_MIB_MASK;
memcpy(
xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
ctx->a + num_4x4_blocks_wide * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_wide) >>
xd->plane[p].subsampling_x);
memcpy(xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
ctx->l + num_4x4_blocks_high * p,
(sizeof(ENTROPY_CONTEXT) * num_4x4_blocks_high) >>
xd->plane[p].subsampling_y);
}
memcpy(xd->above_partition_context + mi_col, ctx->sa,
sizeof(*xd->above_partition_context) * mi_width);
memcpy(xd->left_partition_context + (mi_row & MAX_MIB_MASK), ctx->sl,
sizeof(xd->left_partition_context[0]) * mi_height);
xd->above_txfm_context = ctx->p_ta;
xd->left_txfm_context = ctx->p_tl;
memcpy(xd->above_txfm_context, ctx->ta,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(xd->left_txfm_context, ctx->tl,
sizeof(*xd->left_txfm_context) * mi_height);
}
void av1_save_context(const MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *ctx,
int mi_row, int mi_col, BLOCK_SIZE bsize,
const int num_planes) {
const MACROBLOCKD *xd = &x->e_mbd;
int p;
int mi_width = mi_size_wide[bsize];
int mi_height = mi_size_high[bsize];
// buffer the above/left context information of the block in search.
for (p = 0; p < num_planes; ++p) {
int tx_col = mi_col;
int tx_row = mi_row & MAX_MIB_MASK;
memcpy(
ctx->a + mi_width * p,
xd->above_entropy_context[p] + (tx_col >> xd->plane[p].subsampling_x),
(sizeof(ENTROPY_CONTEXT) * mi_width) >> xd->plane[p].subsampling_x);
memcpy(ctx->l + mi_height * p,
xd->left_entropy_context[p] + (tx_row >> xd->plane[p].subsampling_y),
(sizeof(ENTROPY_CONTEXT) * mi_height) >> xd->plane[p].subsampling_y);
}
memcpy(ctx->sa, xd->above_partition_context + mi_col,
sizeof(*xd->above_partition_context) * mi_width);
memcpy(ctx->sl, xd->left_partition_context + (mi_row & MAX_MIB_MASK),
sizeof(xd->left_partition_context[0]) * mi_height);
memcpy(ctx->ta, xd->above_txfm_context,
sizeof(*xd->above_txfm_context) * mi_width);
memcpy(ctx->tl, xd->left_txfm_context,
sizeof(*xd->left_txfm_context) * mi_height);
ctx->p_ta = xd->above_txfm_context;
ctx->p_tl = xd->left_txfm_context;
}
static void set_partial_sb_partition(const AV1_COMMON *const cm,
MB_MODE_INFO *mi, int bh_in, int bw_in,
int mi_rows_remaining,
int mi_cols_remaining, BLOCK_SIZE bsize,
MB_MODE_INFO **mib) {
int bh = bh_in;
int r, c;
for (r = 0; r < cm->seq_params->mib_size; r += bh) {
int bw = bw_in;
for (c = 0; c < cm->seq_params->mib_size; c += bw) {
const int grid_index = get_mi_grid_idx(&cm->mi_params, r, c);
const int mi_index = get_alloc_mi_idx(&cm->mi_params, r, c);
mib[grid_index] = mi + mi_index;
mib[grid_index]->bsize = find_partition_size(
bsize, mi_rows_remaining - r, mi_cols_remaining - c, &bh, &bw);
}
}
}
// This function attempts to set all mode info entries in a given superblock
// to the same block partition size.
// However, at the bottom and right borders of the image the requested size
// may not be allowed in which case this code attempts to choose the largest
// allowable partition.
void av1_set_fixed_partitioning(AV1_COMP *cpi, const TileInfo *const tile,
MB_MODE_INFO **mib, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &cpi->common;
const CommonModeInfoParams *const mi_params = &cm->mi_params;
const int mi_rows_remaining = tile->mi_row_end - mi_row;
const int mi_cols_remaining = tile->mi_col_end - mi_col;
MB_MODE_INFO *const mi_upper_left =
mi_params->mi_alloc + get_alloc_mi_idx(mi_params, mi_row, mi_col);
int bh = mi_size_high[bsize];
int bw = mi_size_wide[bsize];
assert(bsize >= mi_params->mi_alloc_bsize &&
"Attempted to use bsize < mi_params->mi_alloc_bsize");
assert((mi_rows_remaining > 0) && (mi_cols_remaining > 0));
// Apply the requested partition size to the SB if it is all "in image"
if ((mi_cols_remaining >= cm->seq_params->mib_size) &&
(mi_rows_remaining >= cm->seq_params->mib_size)) {
for (int block_row = 0; block_row < cm->seq_params->mib_size;
block_row += bh) {
for (int block_col = 0; block_col < cm->seq_params->mib_size;
block_col += bw) {
const int grid_index = get_mi_grid_idx(mi_params, block_row, block_col);
const int mi_index = get_alloc_mi_idx(mi_params, block_row, block_col);
mib[grid_index] = mi_upper_left + mi_index;
mib[grid_index]->bsize = bsize;
}
}
} else {
// Else this is a partial SB.
set_partial_sb_partition(cm, mi_upper_left, bh, bw, mi_rows_remaining,
mi_cols_remaining, bsize, mib);
}
}
int av1_is_leaf_split_partition(AV1_COMMON *cm, int mi_row, int mi_col,
BLOCK_SIZE bsize) {
const int bs = mi_size_wide[bsize];
const int hbs = bs / 2;
assert(bsize >= BLOCK_8X8);
const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
for (int i = 0; i < 4; i++) {
int x_idx = (i & 1) * hbs;
int y_idx = (i >> 1) * hbs;
if ((mi_row + y_idx >= cm->mi_params.mi_rows) ||
(mi_col + x_idx >= cm->mi_params.mi_cols))
return 0;
if (get_partition(cm, mi_row + y_idx, mi_col + x_idx, subsize) !=
PARTITION_NONE &&
subsize != BLOCK_8X8)
return 0;
}
return 1;
}
#if !CONFIG_REALTIME_ONLY
int av1_get_rdmult_delta(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col, int orig_rdmult) {
AV1_COMMON *const cm = &cpi->common;
const GF_GROUP *const gf_group = &cpi->ppi->gf_group;
assert(IMPLIES(cpi->ppi->gf_group.size > 0,
cpi->gf_frame_index < cpi->ppi->gf_group.size));
const int tpl_idx = cpi->gf_frame_index;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
int64_t intra_cost = 0;
int64_t mc_dep_cost = 0;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
if (!av1_tpl_stats_ready(&cpi->ppi->tpl_data, cpi->gf_frame_index)) {
return orig_rdmult;
}
if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) {
return orig_rdmult;
}
#ifndef NDEBUG
int mi_count = 0;
#endif
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int step = 1 << block_mis_log2;
const int row_step = step;
const int col_step_sr =
coded_to_superres_mi(step, cm->superres_scale_denominator);
for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
intra_cost += this_stats->recrf_dist << RDDIV_BITS;
mc_dep_cost += (this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta;
#ifndef NDEBUG
mi_count++;
#endif
}
}
assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
double beta = 1.0;
if (mc_dep_cost > 0 && intra_cost > 0) {
const double r0 = cpi->rd.r0;
const double rk = (double)intra_cost / mc_dep_cost;
beta = (r0 / rk);
}
int rdmult = av1_get_adaptive_rdmult(cpi, beta);
rdmult = AOMMIN(rdmult, orig_rdmult * 3 / 2);
rdmult = AOMMAX(rdmult, orig_rdmult * 1 / 2);
rdmult = AOMMAX(1, rdmult);
return rdmult;
}
// Checks to see if a super block is on a horizontal image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) {
int top_edge = 0;
int bottom_edge = cpi->common.mi_params.mi_rows;
int is_active_h_edge = 0;
// For two pass account for any formatting bars detected.
if (is_stat_consumption_stage_twopass(cpi)) {
const AV1_COMMON *const cm = &cpi->common;
const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
&cpi->ppi->twopass, cm->current_frame.display_order_hint);
if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
top_edge += (int)(this_frame_stats->inactive_zone_rows * 4);
bottom_edge -= (int)(this_frame_stats->inactive_zone_rows * 4);
bottom_edge = AOMMAX(top_edge, bottom_edge);
}
if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) ||
((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) {
is_active_h_edge = 1;
}
return is_active_h_edge;
}
// Checks to see if a super block is on a vertical image edge.
// In most cases this is the "real" edge unless there are formatting
// bars embedded in the stream.
int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) {
int left_edge = 0;
int right_edge = cpi->common.mi_params.mi_cols;
int is_active_v_edge = 0;
// For two pass account for any formatting bars detected.
if (is_stat_consumption_stage_twopass(cpi)) {
const AV1_COMMON *const cm = &cpi->common;
const FIRSTPASS_STATS *const this_frame_stats = read_one_frame_stats(
&cpi->ppi->twopass, cm->current_frame.display_order_hint);
if (this_frame_stats == NULL) return AOM_CODEC_ERROR;
// The inactive region is specified in MBs not mi units.
// The image edge is in the following MB row.
left_edge += (int)(this_frame_stats->inactive_zone_cols * 4);
right_edge -= (int)(this_frame_stats->inactive_zone_cols * 4);
right_edge = AOMMAX(left_edge, right_edge);
}
if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) ||
((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) {
is_active_v_edge = 1;
}
return is_active_v_edge;
}
void av1_get_tpl_stats_sb(AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row,
int mi_col, SuperBlockEnc *sb_enc) {
sb_enc->tpl_data_count = 0;
if (!cpi->oxcf.algo_cfg.enable_tpl_model) return;
if (cpi->common.current_frame.frame_type == KEY_FRAME) return;
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
if (update_type == INTNL_OVERLAY_UPDATE || update_type == OVERLAY_UPDATE)
return;
assert(IMPLIES(cpi->ppi->gf_group.size > 0,
cpi->gf_frame_index < cpi->ppi->gf_group.size));
AV1_COMMON *const cm = &cpi->common;
const int gf_group_index = cpi->gf_frame_index;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
if (!av1_tpl_stats_ready(tpl_data, gf_group_index)) return;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_group_index];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
int mi_count = 0;
int count = 0;
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
// mi_cols_sr is mi_cols at superres case.
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
// TPL store unit size is not the same as the motion estimation unit size.
// Here always use motion estimation size to avoid getting repetitive inter/
// intra cost.
const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d);
assert(mi_size_wide[tpl_bsize] == mi_size_high[tpl_bsize]);
const int row_step = mi_size_high[tpl_bsize];
const int col_step_sr = coded_to_superres_mi(mi_size_wide[tpl_bsize],
cm->superres_scale_denominator);
// Stride is only based on SB size, and we fill in values for every 16x16
// block in a SB.
sb_enc->tpl_stride = (mi_col_end_sr - mi_col_sr) / col_step_sr;
for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
assert(count < MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
// Handle partial SB, so that no invalid values are used later.
if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) {
sb_enc->tpl_inter_cost[count] = INT64_MAX;
sb_enc->tpl_intra_cost[count] = INT64_MAX;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
sb_enc->tpl_mv[count][i].as_int = INVALID_MV;
}
count++;
continue;
}
TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
sb_enc->tpl_inter_cost[count] = this_stats->inter_cost
<< TPL_DEP_COST_SCALE_LOG2;
sb_enc->tpl_intra_cost[count] = this_stats->intra_cost
<< TPL_DEP_COST_SCALE_LOG2;
memcpy(sb_enc->tpl_mv[count], this_stats->mv, sizeof(this_stats->mv));
mi_count++;
count++;
}
}
assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
sb_enc->tpl_data_count = mi_count;
}
// analysis_type 0: Use mc_dep_cost and intra_cost
// analysis_type 1: Use count of best inter predictor chosen
// analysis_type 2: Use cost reduction from intra to inter for best inter
// predictor chosen
int av1_get_q_for_deltaq_objective(AV1_COMP *const cpi, ThreadData *td,
int64_t *delta_dist, BLOCK_SIZE bsize,
int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
assert(IMPLIES(cpi->ppi->gf_group.size > 0,
cpi->gf_frame_index < cpi->ppi->gf_group.size));
const int tpl_idx = cpi->gf_frame_index;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2;
double intra_cost = 0;
double mc_dep_reg = 0;
double mc_dep_cost = 0;
double cbcmp_base = 1;
double srcrf_dist = 0;
double srcrf_sse = 0;
double srcrf_rate = 0;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int base_qindex = cm->quant_params.base_qindex;
if (tpl_idx >= MAX_TPL_FRAME_IDX) return base_qindex;
TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
int tpl_stride = tpl_frame->stride;
if (!tpl_frame->is_valid) return base_qindex;
#ifndef NDEBUG
int mi_count = 0;
#endif
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int step = 1 << block_mis_log2;
const int row_step = step;
const int col_step_sr =
coded_to_superres_mi(step, cm->superres_scale_denominator);
for (int row = mi_row; row < mi_row + mi_high; row += row_step) {
for (int col = mi_col_sr; col < mi_col_end_sr; col += col_step_sr) {
if (row >= cm->mi_params.mi_rows || col >= mi_cols_sr) continue;
TplDepStats *this_stats =
&tpl_stats[av1_tpl_ptr_pos(row, col, tpl_stride, block_mis_log2)];
double cbcmp = (double)this_stats->srcrf_dist;
int64_t mc_dep_delta =
RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate,
this_stats->mc_dep_dist);
double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS);
intra_cost += log(dist_scaled) * cbcmp;
mc_dep_cost += log(dist_scaled + mc_dep_delta) * cbcmp;
mc_dep_reg += log(3 * dist_scaled + mc_dep_delta) * cbcmp;
srcrf_dist += (double)(this_stats->srcrf_dist << RDDIV_BITS);
srcrf_sse += (double)(this_stats->srcrf_sse << RDDIV_BITS);
srcrf_rate += (double)(this_stats->srcrf_rate << TPL_DEP_COST_SCALE_LOG2);
#ifndef NDEBUG
mi_count++;
#endif
cbcmp_base += cbcmp;
}
}
assert(mi_count <= MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB);
int offset = 0;
double beta = 1.0;
double rk;
if (mc_dep_cost > 0 && intra_cost > 0) {
const double r0 = cpi->rd.r0;
rk = exp((intra_cost - mc_dep_cost) / cbcmp_base);
td->mb.rb = exp((intra_cost - mc_dep_reg) / cbcmp_base);
beta = (r0 / rk);
assert(beta > 0.0);
} else {
return base_qindex;
}
offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, base_qindex, beta);
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
int qindex = cm->quant_params.base_qindex + offset;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ);
int frm_qstep = av1_dc_quant_QTX(base_qindex, 0, cm->seq_params->bit_depth);
int sbs_qstep =
av1_dc_quant_QTX(base_qindex, offset, cm->seq_params->bit_depth);
if (delta_dist) {
double sbs_dist = srcrf_dist * pow((double)sbs_qstep / frm_qstep, 2.0);
double sbs_rate = srcrf_rate * ((double)frm_qstep / sbs_qstep);
sbs_dist = AOMMIN(sbs_dist, srcrf_sse);
*delta_dist = (int64_t)((sbs_dist - srcrf_dist) / rk);
*delta_dist += RDCOST(tpl_frame->base_rdmult, 4 * 256, 0);
*delta_dist += RDCOST(tpl_frame->base_rdmult, sbs_rate - srcrf_rate, 0);
}
return qindex;
}
#if !DISABLE_HDR_LUMA_DELTAQ
// offset table defined in Table3 of T-REC-H.Sup15 document.
static const int hdr_thres[HDR_QP_LEVELS + 1] = { 0, 301, 367, 434, 501, 567,
634, 701, 767, 834, 1024 };
static const int hdr10_qp_offset[HDR_QP_LEVELS] = { 3, 2, 1, 0, -1,
-2, -3, -4, -5, -6 };
#endif
int av1_get_q_for_hdr(AV1_COMP *const cpi, MACROBLOCK *const x,
BLOCK_SIZE bsize, int mi_row, int mi_col) {
AV1_COMMON *const cm = &cpi->common;
assert(cm->seq_params->bit_depth == AOM_BITS_10);
#if DISABLE_HDR_LUMA_DELTAQ
(void)x;
(void)bsize;
(void)mi_row;
(void)mi_col;
return cm->quant_params.base_qindex;
#else
// calculate pixel average
const int block_luma_avg = av1_log_block_avg(cpi, x, bsize, mi_row, mi_col);
// adjust offset based on average of the pixel block
int offset = 0;
for (int i = 0; i < HDR_QP_LEVELS; i++) {
if (block_luma_avg >= hdr_thres[i] && block_luma_avg < hdr_thres[i + 1]) {
offset = (int)(hdr10_qp_offset[i] * QP_SCALE_FACTOR);
break;
}
}
const DeltaQInfo *const delta_q_info = &cm->delta_q_info;
offset = AOMMIN(offset, delta_q_info->delta_q_res * 9 - 1);
offset = AOMMAX(offset, -delta_q_info->delta_q_res * 9 + 1);
int qindex = cm->quant_params.base_qindex + offset;
qindex = AOMMIN(qindex, MAXQ);
qindex = AOMMAX(qindex, MINQ);
return qindex;
#endif
}
#endif // !CONFIG_REALTIME_ONLY
void av1_reset_simple_motion_tree_partition(SIMPLE_MOTION_DATA_TREE *sms_tree,
BLOCK_SIZE bsize) {
if (sms_tree == NULL) return;
sms_tree->partitioning = PARTITION_NONE;
if (bsize >= BLOCK_8X8) {
BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT);
for (int idx = 0; idx < 4; ++idx)
av1_reset_simple_motion_tree_partition(sms_tree->split[idx], subsize);
}
}
// Record the ref frames that have been selected by square partition blocks.
void av1_update_picked_ref_frames_mask(MACROBLOCK *const x, int ref_type,
BLOCK_SIZE bsize, int mib_size,
int mi_row, int mi_col) {
assert(mi_size_wide[bsize] == mi_size_high[bsize]);
const int sb_size_mask = mib_size - 1;
const int mi_row_in_sb = mi_row & sb_size_mask;
const int mi_col_in_sb = mi_col & sb_size_mask;
const int mi_size = mi_size_wide[bsize];
for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_size; ++i) {
for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_size; ++j) {
x->picked_ref_frames_mask[i * 32 + j] |= 1 << ref_type;
}
}
}
static void avg_cdf_symbol(aom_cdf_prob *cdf_ptr_left, aom_cdf_prob *cdf_ptr_tr,
int num_cdfs, int cdf_stride, int nsymbs,
int wt_left, int wt_tr) {
for (int i = 0; i < num_cdfs; i++) {
for (int j = 0; j <= nsymbs; j++) {
cdf_ptr_left[i * cdf_stride + j] =
(aom_cdf_prob)(((int)cdf_ptr_left[i * cdf_stride + j] * wt_left +
(int)cdf_ptr_tr[i * cdf_stride + j] * wt_tr +
((wt_left + wt_tr) / 2)) /
(wt_left + wt_tr));
assert(cdf_ptr_left[i * cdf_stride + j] >= 0 &&
cdf_ptr_left[i * cdf_stride + j] < CDF_PROB_TOP);
}
}
}
#define AVERAGE_CDF(cname_left, cname_tr, nsymbs) \
AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, CDF_SIZE(nsymbs))
#define AVG_CDF_STRIDE(cname_left, cname_tr, nsymbs, cdf_stride) \
do { \
aom_cdf_prob *cdf_ptr_left = (aom_cdf_prob *)cname_left; \
aom_cdf_prob *cdf_ptr_tr = (aom_cdf_prob *)cname_tr; \
int array_size = (int)sizeof(cname_left) / sizeof(aom_cdf_prob); \
int num_cdfs = array_size / cdf_stride; \
avg_cdf_symbol(cdf_ptr_left, cdf_ptr_tr, num_cdfs, cdf_stride, nsymbs, \
wt_left, wt_tr); \
} while (0)
static void avg_nmv(nmv_context *nmv_left, nmv_context *nmv_tr, int wt_left,
int wt_tr) {
AVERAGE_CDF(nmv_left->joints_cdf, nmv_tr->joints_cdf, 4);
for (int i = 0; i < 2; i++) {
AVERAGE_CDF(nmv_left->comps[i].classes_cdf, nmv_tr->comps[i].classes_cdf,
MV_CLASSES);
AVERAGE_CDF(nmv_left->comps[i].class0_fp_cdf,
nmv_tr->comps[i].class0_fp_cdf, MV_FP_SIZE);
AVERAGE_CDF(nmv_left->comps[i].fp_cdf, nmv_tr->comps[i].fp_cdf, MV_FP_SIZE);
AVERAGE_CDF(nmv_left->comps[i].sign_cdf, nmv_tr->comps[i].sign_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].class0_hp_cdf,
nmv_tr->comps[i].class0_hp_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].hp_cdf, nmv_tr->comps[i].hp_cdf, 2);
AVERAGE_CDF(nmv_left->comps[i].class0_cdf, nmv_tr->comps[i].class0_cdf,
CLASS0_SIZE);
AVERAGE_CDF(nmv_left->comps[i].bits_cdf, nmv_tr->comps[i].bits_cdf, 2);
}
}
// In case of row-based multi-threading of encoder, since we always
// keep a top - right sync, we can average the top - right SB's CDFs and
// the left SB's CDFs and use the same for current SB's encoding to
// improve the performance. This function facilitates the averaging
// of CDF and used only when row-mt is enabled in encoder.
void av1_avg_cdf_symbols(FRAME_CONTEXT *ctx_left, FRAME_CONTEXT *ctx_tr,
int wt_left, int wt_tr) {
AVERAGE_CDF(ctx_left->txb_skip_cdf, ctx_tr->txb_skip_cdf, 2);
AVERAGE_CDF(ctx_left->eob_extra_cdf, ctx_tr->eob_extra_cdf, 2);
AVERAGE_CDF(ctx_left->dc_sign_cdf, ctx_tr->dc_sign_cdf, 2);
AVERAGE_CDF(ctx_left->eob_flag_cdf16, ctx_tr->eob_flag_cdf16, 5);
AVERAGE_CDF(ctx_left->eob_flag_cdf32, ctx_tr->eob_flag_cdf32, 6);
AVERAGE_CDF(ctx_left->eob_flag_cdf64, ctx_tr->eob_flag_cdf64, 7);
AVERAGE_CDF(ctx_left->eob_flag_cdf128, ctx_tr->eob_flag_cdf128, 8);
AVERAGE_CDF(ctx_left->eob_flag_cdf256, ctx_tr->eob_flag_cdf256, 9);
AVERAGE_CDF(ctx_left->eob_flag_cdf512, ctx_tr->eob_flag_cdf512, 10);
AVERAGE_CDF(ctx_left->eob_flag_cdf1024, ctx_tr->eob_flag_cdf1024, 11);
AVERAGE_CDF(ctx_left->coeff_base_eob_cdf, ctx_tr->coeff_base_eob_cdf, 3);
AVERAGE_CDF(ctx_left->coeff_base_cdf, ctx_tr->coeff_base_cdf, 4);
AVERAGE_CDF(ctx_left->coeff_br_cdf, ctx_tr->coeff_br_cdf, BR_CDF_SIZE);
AVERAGE_CDF(ctx_left->newmv_cdf, ctx_tr->newmv_cdf, 2);
AVERAGE_CDF(ctx_left->zeromv_cdf, ctx_tr->zeromv_cdf, 2);
AVERAGE_CDF(ctx_left->refmv_cdf, ctx_tr->refmv_cdf, 2);
AVERAGE_CDF(ctx_left->drl_cdf, ctx_tr->drl_cdf, 2);
AVERAGE_CDF(ctx_left->inter_compound_mode_cdf,
ctx_tr->inter_compound_mode_cdf, INTER_COMPOUND_MODES);
AVERAGE_CDF(ctx_left->compound_type_cdf, ctx_tr->compound_type_cdf,
MASKED_COMPOUND_TYPES);
AVERAGE_CDF(ctx_left->wedge_idx_cdf, ctx_tr->wedge_idx_cdf, 16);
AVERAGE_CDF(ctx_left->interintra_cdf, ctx_tr->interintra_cdf, 2);
AVERAGE_CDF(ctx_left->wedge_interintra_cdf, ctx_tr->wedge_interintra_cdf, 2);
AVERAGE_CDF(ctx_left->interintra_mode_cdf, ctx_tr->interintra_mode_cdf,
INTERINTRA_MODES);
AVERAGE_CDF(ctx_left->motion_mode_cdf, ctx_tr->motion_mode_cdf, MOTION_MODES);
AVERAGE_CDF(ctx_left->obmc_cdf, ctx_tr->obmc_cdf, 2);
AVERAGE_CDF(ctx_left->palette_y_size_cdf, ctx_tr->palette_y_size_cdf,
PALETTE_SIZES);
AVERAGE_CDF(ctx_left->palette_uv_size_cdf, ctx_tr->palette_uv_size_cdf,
PALETTE_SIZES);
for (int j = 0; j < PALETTE_SIZES; j++) {
int nsymbs = j + PALETTE_MIN_SIZE;
AVG_CDF_STRIDE(ctx_left->palette_y_color_index_cdf[j],
ctx_tr->palette_y_color_index_cdf[j], nsymbs,
CDF_SIZE(PALETTE_COLORS));
AVG_CDF_STRIDE(ctx_left->palette_uv_color_index_cdf[j],
ctx_tr->palette_uv_color_index_cdf[j], nsymbs,
CDF_SIZE(PALETTE_COLORS));
}
AVERAGE_CDF(ctx_left->palette_y_mode_cdf, ctx_tr->palette_y_mode_cdf, 2);
AVERAGE_CDF(ctx_left->palette_uv_mode_cdf, ctx_tr->palette_uv_mode_cdf, 2);
AVERAGE_CDF(ctx_left->comp_inter_cdf, ctx_tr->comp_inter_cdf, 2);
AVERAGE_CDF(ctx_left->single_ref_cdf, ctx_tr->single_ref_cdf, 2);
AVERAGE_CDF(ctx_left->comp_ref_type_cdf, ctx_tr->comp_ref_type_cdf, 2);
AVERAGE_CDF(ctx_left->uni_comp_ref_cdf, ctx_tr->uni_comp_ref_cdf, 2);
AVERAGE_CDF(ctx_left->comp_ref_cdf, ctx_tr->comp_ref_cdf, 2);
AVERAGE_CDF(ctx_left->comp_bwdref_cdf, ctx_tr->comp_bwdref_cdf, 2);
AVERAGE_CDF(ctx_left->txfm_partition_cdf, ctx_tr->txfm_partition_cdf, 2);
AVERAGE_CDF(ctx_left->compound_index_cdf, ctx_tr->compound_index_cdf, 2);
AVERAGE_CDF(ctx_left->comp_group_idx_cdf, ctx_tr->comp_group_idx_cdf, 2);
AVERAGE_CDF(ctx_left->skip_mode_cdfs, ctx_tr->skip_mode_cdfs, 2);
AVERAGE_CDF(ctx_left->skip_txfm_cdfs, ctx_tr->skip_txfm_cdfs, 2);
AVERAGE_CDF(ctx_left->intra_inter_cdf, ctx_tr->intra_inter_cdf, 2);
avg_nmv(&ctx_left->nmvc, &ctx_tr->nmvc, wt_left, wt_tr);
avg_nmv(&ctx_left->ndvc, &ctx_tr->ndvc, wt_left, wt_tr);
AVERAGE_CDF(ctx_left->intrabc_cdf, ctx_tr->intrabc_cdf, 2);
AVERAGE_CDF(ctx_left->seg.pred_cdf, ctx_tr->seg.pred_cdf, 2);
AVERAGE_CDF(ctx_left->seg.spatial_pred_seg_cdf,
ctx_tr->seg.spatial_pred_seg_cdf, MAX_SEGMENTS);
AVERAGE_CDF(ctx_left->filter_intra_cdfs, ctx_tr->filter_intra_cdfs, 2);
AVERAGE_CDF(ctx_left->filter_intra_mode_cdf, ctx_tr->filter_intra_mode_cdf,
FILTER_INTRA_MODES);
AVERAGE_CDF(ctx_left->switchable_restore_cdf, ctx_tr->switchable_restore_cdf,
RESTORE_SWITCHABLE_TYPES);
AVERAGE_CDF(ctx_left->wiener_restore_cdf, ctx_tr->wiener_restore_cdf, 2);
AVERAGE_CDF(ctx_left->sgrproj_restore_cdf, ctx_tr->sgrproj_restore_cdf, 2);
AVERAGE_CDF(ctx_left->y_mode_cdf, ctx_tr->y_mode_cdf, INTRA_MODES);
AVG_CDF_STRIDE(ctx_left->uv_mode_cdf[0], ctx_tr->uv_mode_cdf[0],
UV_INTRA_MODES - 1, CDF_SIZE(UV_INTRA_MODES));
AVERAGE_CDF(ctx_left->uv_mode_cdf[1], ctx_tr->uv_mode_cdf[1], UV_INTRA_MODES);
for (int i = 0; i < PARTITION_CONTEXTS; i++) {
if (i < 4) {
AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 4,
CDF_SIZE(10));
} else if (i < 16) {
AVERAGE_CDF(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 10);
} else {
AVG_CDF_STRIDE(ctx_left->partition_cdf[i], ctx_tr->partition_cdf[i], 8,
CDF_SIZE(10));
}
}
AVERAGE_CDF(ctx_left->switchable_interp_cdf, ctx_tr->switchable_interp_cdf,
SWITCHABLE_FILTERS);
AVERAGE_CDF(ctx_left->kf_y_cdf, ctx_tr->kf_y_cdf, INTRA_MODES);
AVERAGE_CDF(ctx_left->angle_delta_cdf, ctx_tr->angle_delta_cdf,
2 * MAX_ANGLE_DELTA + 1);
AVG_CDF_STRIDE(ctx_left->tx_size_cdf[0], ctx_tr->tx_size_cdf[0], MAX_TX_DEPTH,
CDF_SIZE(MAX_TX_DEPTH + 1));
AVERAGE_CDF(ctx_left->tx_size_cdf[1], ctx_tr->tx_size_cdf[1],
MAX_TX_DEPTH + 1);
AVERAGE_CDF(ctx_left->tx_size_cdf[2], ctx_tr->tx_size_cdf[2],
MAX_TX_DEPTH + 1);
AVERAGE_CDF(ctx_left->tx_size_cdf[3], ctx_tr->tx_size_cdf[3],
MAX_TX_DEPTH + 1);
AVERAGE_CDF(ctx_left->delta_q_cdf, ctx_tr->delta_q_cdf, DELTA_Q_PROBS + 1);
AVERAGE_CDF(ctx_left->delta_lf_cdf, ctx_tr->delta_lf_cdf, DELTA_LF_PROBS + 1);
for (int i = 0; i < FRAME_LF_COUNT; i++) {
AVERAGE_CDF(ctx_left->delta_lf_multi_cdf[i], ctx_tr->delta_lf_multi_cdf[i],
DELTA_LF_PROBS + 1);
}
AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[1], ctx_tr->intra_ext_tx_cdf[1], 7,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->intra_ext_tx_cdf[2], ctx_tr->intra_ext_tx_cdf[2], 5,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[1], ctx_tr->inter_ext_tx_cdf[1], 16,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[2], ctx_tr->inter_ext_tx_cdf[2], 12,
CDF_SIZE(TX_TYPES));
AVG_CDF_STRIDE(ctx_left->inter_ext_tx_cdf[3], ctx_tr->inter_ext_tx_cdf[3], 2,
CDF_SIZE(TX_TYPES));
AVERAGE_CDF(ctx_left->cfl_sign_cdf, ctx_tr->cfl_sign_cdf, CFL_JOINT_SIGNS);
AVERAGE_CDF(ctx_left->cfl_alpha_cdf, ctx_tr->cfl_alpha_cdf,
CFL_ALPHABET_SIZE);
}
// Check neighbor blocks' motion information.
static int check_neighbor_blocks(MB_MODE_INFO **mi, int mi_stride,
const TileInfo *const tile_info, int mi_row,
int mi_col) {
int is_above_low_motion = 1;
int is_left_low_motion = 1;
const int thr = 24;
// Check above block.
if (mi_row > tile_info->mi_row_start) {
const MB_MODE_INFO *above_mbmi = mi[-mi_stride];
const int_mv above_mv = above_mbmi->mv[0];
if (above_mbmi->mode >= INTRA_MODE_END &&
(abs(above_mv.as_mv.row) > thr || abs(above_mv.as_mv.col) > thr))
is_above_low_motion = 0;
}
// Check left block.
if (mi_col > tile_info->mi_col_start) {
const MB_MODE_INFO *left_mbmi = mi[-1];
const int_mv left_mv = left_mbmi->mv[0];
if (left_mbmi->mode >= INTRA_MODE_END &&
(abs(left_mv.as_mv.row) > thr || abs(left_mv.as_mv.col) > thr))
is_left_low_motion = 0;
}
return (is_above_low_motion && is_left_low_motion);
}
// Check this block's motion in a fast way.
static int fast_detect_non_zero_motion(AV1_COMP *cpi, const uint8_t *src_y,
int src_ystride,
const uint8_t *last_src_y,
int last_src_ystride, int mi_row,
int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const BLOCK_SIZE bsize = cm->seq_params->sb_size;
unsigned int blk_sad = INT_MAX;
if (cpi->src_sad_blk_64x64 != NULL) {
const int sb_size_by_mb = (bsize == BLOCK_128X128)
? (cm->seq_params->mib_size >> 1)
: cm->seq_params->mib_size;
const int sb_cols =
(cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb;
const int sbi_col = mi_col / sb_size_by_mb;
const int sbi_row = mi_row / sb_size_by_mb;
blk_sad = (unsigned int)cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols];
} else {
blk_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y,
last_src_ystride);
}
// Search 4 1-away points.
const uint8_t *const search_pos[4] = {
last_src_y - last_src_ystride,
last_src_y - 1,
last_src_y + 1,
last_src_y + last_src_ystride,
};
unsigned int sad_arr[4];
cpi->ppi->fn_ptr[bsize].sdx4df(src_y, src_ystride, search_pos,
last_src_ystride, sad_arr);
blk_sad = (blk_sad * 5) >> 3;
return (blk_sad < sad_arr[0] && blk_sad < sad_arr[1] &&
blk_sad < sad_arr[2] && blk_sad < sad_arr[3]);
}
// Grade the temporal variation of the source by comparing the current sb and
// its collocated block in the last frame.
void av1_source_content_sb(AV1_COMP *cpi, MACROBLOCK *x, TileDataEnc *tile_data,
int mi_row, int mi_col) {
if (cpi->last_source->y_width != cpi->source->y_width ||
cpi->last_source->y_height != cpi->source->y_height)
return;
#if CONFIG_AV1_HIGHBITDEPTH
if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) return;
#endif
unsigned int tmp_sse;
unsigned int tmp_variance;
const BLOCK_SIZE bsize = cpi->common.seq_params->sb_size;
uint8_t *src_y = cpi->source->y_buffer;
const int src_ystride = cpi->source->y_stride;
const int src_offset = src_ystride * (mi_row << 2) + (mi_col << 2);
uint8_t *last_src_y = cpi->last_source->y_buffer;
const int last_src_ystride = cpi->last_source->y_stride;
const int last_src_offset = last_src_ystride * (mi_row << 2) + (mi_col << 2);
uint64_t avg_source_sse_threshold_verylow = 10000; // ~1.5*1.5*(64*64)
uint64_t avg_source_sse_threshold_low[2] = { 100000, // ~5*5*(64*64)
36000 }; // ~3*3*(64*64)
uint64_t avg_source_sse_threshold_high = 1000000; // ~15*15*(64*64)
if (cpi->sf.rt_sf.increase_source_sad_thresh) {
avg_source_sse_threshold_high = avg_source_sse_threshold_high << 1;
avg_source_sse_threshold_low[0] = avg_source_sse_threshold_low[0] << 1;
avg_source_sse_threshold_verylow = avg_source_sse_threshold_verylow << 1;
}
uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5
src_y += src_offset;
last_src_y += last_src_offset;
tmp_variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y,
last_src_ystride, &tmp_sse);
// rd thresholds
if (tmp_sse < avg_source_sse_threshold_low[1])
x->content_state_sb.source_sad_rd = kLowSad;
// nonrd thresholds
if (tmp_sse == 0) {
x->content_state_sb.source_sad_nonrd = kZeroSad;
return;
}
if (tmp_sse < avg_source_sse_threshold_verylow)
x->content_state_sb.source_sad_nonrd = kVeryLowSad;
else if (tmp_sse < avg_source_sse_threshold_low[0])
x->content_state_sb.source_sad_nonrd = kLowSad;
else if (tmp_sse > avg_source_sse_threshold_high)
x->content_state_sb.source_sad_nonrd = kHighSad;
// Detect large lighting change.
// Note: tmp_sse - tmp_variance = ((sum * sum) >> 12)
if (tmp_variance < (tmp_sse >> 1) && (tmp_sse - tmp_variance) > sum_sq_thresh)
x->content_state_sb.lighting_change = 1;
if ((tmp_sse - tmp_variance) < (sum_sq_thresh >> 1))
x->content_state_sb.low_sumdiff = 1;
if (tmp_sse > ((avg_source_sse_threshold_high * 7) >> 3) &&
!x->content_state_sb.lighting_change && !x->content_state_sb.low_sumdiff)
x->sb_force_fixed_part = 0;
if (!cpi->sf.rt_sf.use_rtc_tf || cpi->rc.high_source_sad ||
cpi->rc.frame_source_sad > 20000 || cpi->svc.number_spatial_layers > 1)
return;
// In-place temporal filter. If psnr calculation is enabled, we store the
// source for that.
AV1_COMMON *const cm = &cpi->common;
// Calculate n*mean^2
const unsigned int nmean2 = tmp_sse - tmp_variance;
const int ac_q_step = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0,
cm->seq_params->bit_depth);
const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc;
const int avg_q_step = av1_ac_quant_QTX(p_rc->avg_frame_qindex[INTER_FRAME],
0, cm->seq_params->bit_depth);
const unsigned int threshold =
(cpi->sf.rt_sf.use_rtc_tf == 1)
? (clamp(avg_q_step, 250, 1000)) * ac_q_step
: 250 * ac_q_step;
// TODO(yunqing): use a weighted sum instead of averaging in filtering.
if (tmp_variance <= threshold && nmean2 <= 15) {
// Check neighbor blocks. If neighbor blocks aren't low-motion blocks,
// skip temporal filtering for this block.
MB_MODE_INFO **mi = cm->mi_params.mi_grid_base +
get_mi_grid_idx(&cm->mi_params, mi_row, mi_col);
const TileInfo *const tile_info = &tile_data->tile_info;
const int is_neighbor_blocks_low_motion = check_neighbor_blocks(
mi, cm->mi_params.mi_stride, tile_info, mi_row, mi_col);
if (!is_neighbor_blocks_low_motion) return;
// Only consider 64x64 SB for now. Need to extend to 128x128 for large SB
// size.
// Test several nearby points. If non-zero mv exists, don't do temporal
// filtering.
const int is_this_blk_low_motion = fast_detect_non_zero_motion(
cpi, src_y, src_ystride, last_src_y, last_src_ystride, mi_row, mi_col);
if (!is_this_blk_low_motion) return;
const int shift_x[2] = { 0, cpi->source->subsampling_x };
const int shift_y[2] = { 0, cpi->source->subsampling_y };
const uint8_t h = block_size_high[bsize];
const uint8_t w = block_size_wide[bsize];
for (int plane = 0; plane < av1_num_planes(cm); ++plane) {
uint8_t *src = cpi->source->buffers[plane];
const int src_stride = cpi->source->strides[plane != 0];
uint8_t *last_src = cpi->last_source->buffers[plane];
const int last_src_stride = cpi->last_source->strides[plane != 0];
src += src_stride * (mi_row << (2 - shift_y[plane != 0])) +
(mi_col << (2 - shift_x[plane != 0]));
last_src += last_src_stride * (mi_row << (2 - shift_y[plane != 0])) +
(mi_col << (2 - shift_x[plane != 0]));
for (int i = 0; i < (h >> shift_y[plane != 0]); ++i) {
for (int j = 0; j < (w >> shift_x[plane != 0]); ++j) {
src[j] = (last_src[j] + src[j]) >> 1;
}
src += src_stride;
last_src += last_src_stride;
}
}
}
}
// Memset the mbmis at the current superblock to 0
void av1_reset_mbmi(CommonModeInfoParams *const mi_params, BLOCK_SIZE sb_size,
int mi_row, int mi_col) {
// size of sb in unit of mi (BLOCK_4X4)
const int sb_size_mi = mi_size_wide[sb_size];
const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
// size of sb in unit of allocated mi size
const int sb_size_alloc_mi = mi_size_wide[sb_size] / mi_alloc_size_1d;
assert(mi_params->mi_alloc_stride % sb_size_alloc_mi == 0 &&
"mi is not allocated as a multiple of sb!");
assert(mi_params->mi_stride % sb_size_mi == 0 &&
"mi_grid_base is not allocated as a multiple of sb!");
const int mi_rows = mi_size_high[sb_size];
for (int cur_mi_row = 0; cur_mi_row < mi_rows; cur_mi_row++) {
assert(get_mi_grid_idx(mi_params, 0, mi_col + mi_alloc_size_1d) <
mi_params->mi_stride);
const int mi_grid_idx =
get_mi_grid_idx(mi_params, mi_row + cur_mi_row, mi_col);
const int alloc_mi_idx =
get_alloc_mi_idx(mi_params, mi_row + cur_mi_row, mi_col);
memset(&mi_params->mi_grid_base[mi_grid_idx], 0,
sb_size_mi * sizeof(*mi_params->mi_grid_base));
memset(&mi_params->tx_type_map[mi_grid_idx], 0,
sb_size_mi * sizeof(*mi_params->tx_type_map));
if (cur_mi_row % mi_alloc_size_1d == 0) {
memset(&mi_params->mi_alloc[alloc_mi_idx], 0,
sb_size_alloc_mi * sizeof(*mi_params->mi_alloc));
}
}
}
void av1_backup_sb_state(SB_FIRST_PASS_STATS *sb_fp_stats, const AV1_COMP *cpi,
ThreadData *td, const TileDataEnc *tile_data,
int mi_row, int mi_col) {
MACROBLOCK *x = &td->mb;
MACROBLOCKD *xd = &x->e_mbd;
const TileInfo *tile_info = &tile_data->tile_info;
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
xd->above_txfm_context =
cm->above_contexts.txfm[tile_info->tile_row] + mi_col;
xd->left_txfm_context =
xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK);
av1_save_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size, num_planes);
sb_fp_stats->rd_count = td->rd_counts;
sb_fp_stats->split_count = x->txfm_search_info.txb_split_count;
sb_fp_stats->fc = *td->counts;
// Don't copy in row_mt case, otherwise run into data race. No behavior change
// in row_mt case.
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
memcpy(sb_fp_stats->inter_mode_rd_models, tile_data->inter_mode_rd_models,
sizeof(sb_fp_stats->inter_mode_rd_models));
}
memcpy(sb_fp_stats->thresh_freq_fact, x->thresh_freq_fact,
sizeof(sb_fp_stats->thresh_freq_fact));
const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
sb_fp_stats->current_qindex =
cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex;
#if CONFIG_INTERNAL_STATS
memcpy(sb_fp_stats->mode_chosen_counts, cpi->mode_chosen_counts,
sizeof(sb_fp_stats->mode_chosen_counts));
#endif // CONFIG_INTERNAL_STATS
}
void av1_restore_sb_state(const SB_FIRST_PASS_STATS *sb_fp_stats, AV1_COMP *cpi,
ThreadData *td, TileDataEnc *tile_data, int mi_row,
int mi_col) {
MACROBLOCK *x = &td->mb;
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
av1_restore_context(x, &sb_fp_stats->x_ctx, mi_row, mi_col, sb_size,
num_planes);
td->rd_counts = sb_fp_stats->rd_count;
x->txfm_search_info.txb_split_count = sb_fp_stats->split_count;
*td->counts = sb_fp_stats->fc;
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
memcpy(tile_data->inter_mode_rd_models, sb_fp_stats->inter_mode_rd_models,
sizeof(sb_fp_stats->inter_mode_rd_models));
}
memcpy(x->thresh_freq_fact, sb_fp_stats->thresh_freq_fact,
sizeof(sb_fp_stats->thresh_freq_fact));
const int alloc_mi_idx = get_alloc_mi_idx(&cm->mi_params, mi_row, mi_col);
cm->mi_params.mi_alloc[alloc_mi_idx].current_qindex =
sb_fp_stats->current_qindex;
#if CONFIG_INTERNAL_STATS
memcpy(cpi->mode_chosen_counts, sb_fp_stats->mode_chosen_counts,
sizeof(sb_fp_stats->mode_chosen_counts));
#endif // CONFIG_INTERNAL_STATS
}
/*! Checks whether to skip updating the entropy cost based on tile info.
*
* This function contains the common code used to skip the cost update of coeff,
* mode, mv and dv symbols.
*/
static int skip_cost_update(const SequenceHeader *seq_params,
const TileInfo *const tile_info, const int mi_row,
const int mi_col,
INTERNAL_COST_UPDATE_TYPE upd_level) {
if (upd_level == INTERNAL_COST_UPD_SB) return 0;
if (upd_level == INTERNAL_COST_UPD_OFF) return 1;
// upd_level is at most as frequent as each sb_row in a tile.
if (mi_col != tile_info->mi_col_start) return 1;
if (upd_level == INTERNAL_COST_UPD_SBROW_SET) {
const int mib_size_log2 = seq_params->mib_size_log2;
const int sb_row = (mi_row - tile_info->mi_row_start) >> mib_size_log2;
const int sb_size = seq_params->mib_size * MI_SIZE;
const int tile_height =
(tile_info->mi_row_end - tile_info->mi_row_start) * MI_SIZE;
// When upd_level = INTERNAL_COST_UPD_SBROW_SET, the cost update happens
// once for 2, 4 sb rows for sb size 128, sb size 64 respectively. However,
// as the update will not be equally spaced in smaller resolutions making
// it equally spaced by calculating (mv_num_rows_cost_update) the number of
// rows after which the cost update should happen.
const int sb_size_update_freq_map[2] = { 2, 4 };
const int update_freq_sb_rows =
sb_size_update_freq_map[sb_size != MAX_SB_SIZE];
const int update_freq_num_rows = sb_size * update_freq_sb_rows;
// Round-up the division result to next integer.
const int num_updates_per_tile =
(tile_height + update_freq_num_rows - 1) / update_freq_num_rows;
const int num_rows_update_per_tile = num_updates_per_tile * sb_size;
// Round-up the division result to next integer.
const int num_sb_rows_per_update =
(tile_height + num_rows_update_per_tile - 1) / num_rows_update_per_tile;
if ((sb_row % num_sb_rows_per_update) != 0) return 1;
}
return 0;
}
// Checks for skip status of mv cost update.
static int skip_mv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
const int mi_row, const int mi_col) {
const AV1_COMMON *cm = &cpi->common;
// For intra frames, mv cdfs are not updated during the encode. Hence, the mv
// cost calculation is skipped in this case.
if (frame_is_intra_only(cm)) return 1;
return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
cpi->sf.inter_sf.mv_cost_upd_level);
}
// Checks for skip status of dv cost update.
static int skip_dv_cost_update(AV1_COMP *cpi, const TileInfo *const tile_info,
const int mi_row, const int mi_col) {
const AV1_COMMON *cm = &cpi->common;
// Intrabc is only applicable to intra frames. So skip if intrabc is not
// allowed.
if (!av1_allow_intrabc(cm) || is_stat_generation_stage(cpi)) {
return 1;
}
return skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
cpi->sf.intra_sf.dv_cost_upd_level);
}
// Update the rate costs of some symbols according to the frequency directed
// by speed features
void av1_set_cost_upd_freq(AV1_COMP *cpi, ThreadData *td,
const TileInfo *const tile_info, const int mi_row,
const int mi_col) {
AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCK *const x = &td->mb;
MACROBLOCKD *const xd = &x->e_mbd;
if (cm->features.disable_cdf_update) {
return;
}
switch (cpi->sf.inter_sf.coeff_cost_upd_level) {
case INTERNAL_COST_UPD_OFF:
case INTERNAL_COST_UPD_TILE: // Tile level
break;
case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
case INTERNAL_COST_UPD_SBROW: // SB row level in tile
case INTERNAL_COST_UPD_SB: // SB level
if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
cpi->sf.inter_sf.coeff_cost_upd_level))
break;
av1_fill_coeff_costs(&x->coeff_costs, xd->tile_ctx, num_planes);
break;
default: assert(0);
}
switch (cpi->sf.inter_sf.mode_cost_upd_level) {
case INTERNAL_COST_UPD_OFF:
case INTERNAL_COST_UPD_TILE: // Tile level
break;
case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
case INTERNAL_COST_UPD_SBROW: // SB row level in tile
case INTERNAL_COST_UPD_SB: // SB level
if (skip_cost_update(cm->seq_params, tile_info, mi_row, mi_col,
cpi->sf.inter_sf.mode_cost_upd_level))
break;
av1_fill_mode_rates(cm, &x->mode_costs, xd->tile_ctx);
break;
default: assert(0);
}
switch (cpi->sf.inter_sf.mv_cost_upd_level) {
case INTERNAL_COST_UPD_OFF:
case INTERNAL_COST_UPD_TILE: // Tile level
break;
case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
case INTERNAL_COST_UPD_SBROW: // SB row level in tile
case INTERNAL_COST_UPD_SB: // SB level
// Checks for skip status of mv cost update.
if (skip_mv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
av1_fill_mv_costs(&xd->tile_ctx->nmvc,
cm->features.cur_frame_force_integer_mv,
cm->features.allow_high_precision_mv, x->mv_costs);
break;
default: assert(0);
}
switch (cpi->sf.intra_sf.dv_cost_upd_level) {
case INTERNAL_COST_UPD_OFF:
case INTERNAL_COST_UPD_TILE: // Tile level
break;
case INTERNAL_COST_UPD_SBROW_SET: // SB row set level in tile
case INTERNAL_COST_UPD_SBROW: // SB row level in tile
case INTERNAL_COST_UPD_SB: // SB level
// Checks for skip status of dv cost update.
if (skip_dv_cost_update(cpi, tile_info, mi_row, mi_col)) break;
av1_fill_dv_costs(&xd->tile_ctx->ndvc, x->dv_costs);
break;
default: assert(0);
}
}
void av1_dealloc_src_diff_buf(struct macroblock *mb, int num_planes) {
for (int plane = 0; plane < num_planes; ++plane) {
aom_free(mb->plane[plane].src_diff);
mb->plane[plane].src_diff = NULL;
}
}
void av1_alloc_src_diff_buf(const struct AV1Common *cm, struct macroblock *mb) {
const int num_planes = av1_num_planes(cm);
#ifndef NDEBUG
for (int plane = 0; plane < num_planes; ++plane) {
assert(!mb->plane[plane].src_diff);
}
#endif
for (int plane = 0; plane < num_planes; ++plane) {
const int subsampling_xy =
plane ? cm->seq_params->subsampling_x + cm->seq_params->subsampling_y
: 0;
const int sb_size = MAX_SB_SQUARE >> subsampling_xy;
CHECK_MEM_ERROR(cm, mb->plane[plane].src_diff,
(int16_t *)aom_memalign(
32, sizeof(*mb->plane[plane].src_diff) * sb_size));
}
}