| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <stdbool.h> |
| #include <assert.h> |
| #include <immintrin.h> |
| |
| #include "config/av1_rtcd.h" |
| #include "av1/encoder/ml.h" |
| #include "av1/encoder/x86/ml_sse3.h" |
| |
| #define CALC_OUTPUT_FOR_2ROWS \ |
| const int index = weight_idx + (2 * i * tot_num_inputs); \ |
| const __m256 weight0 = _mm256_loadu_ps(&weights[index]); \ |
| const __m256 weight1 = _mm256_loadu_ps(&weights[index + tot_num_inputs]); \ |
| const __m256 mul0 = _mm256_mul_ps(inputs256, weight0); \ |
| const __m256 mul1 = _mm256_mul_ps(inputs256, weight1); \ |
| hadd[i] = _mm256_hadd_ps(mul0, mul1); |
| |
| static inline void nn_propagate_8to1( |
| const float *const inputs, const float *const weights, |
| const float *const bias, int num_inputs_to_process, int tot_num_inputs, |
| int num_outputs, float *const output_nodes, int is_clip_required) { |
| // Process one output row at a time. |
| for (int out = 0; out < num_outputs; out++) { |
| __m256 in_result = _mm256_setzero_ps(); |
| float bias_val = bias[out]; |
| for (int in = 0; in < num_inputs_to_process; in += 8) { |
| const __m256 inputs256 = _mm256_loadu_ps(&inputs[in]); |
| const int weight_idx = in + (out * tot_num_inputs); |
| const __m256 weight0 = _mm256_loadu_ps(&weights[weight_idx]); |
| const __m256 mul0 = _mm256_mul_ps(inputs256, weight0); |
| in_result = _mm256_add_ps(in_result, mul0); |
| } |
| const __m128 low_128 = _mm256_castps256_ps128(in_result); |
| const __m128 high_128 = _mm256_extractf128_ps(in_result, 1); |
| const __m128 sum_par_0 = _mm_add_ps(low_128, high_128); |
| const __m128 sum_par_1 = _mm_hadd_ps(sum_par_0, sum_par_0); |
| const __m128 sum_tot = |
| _mm_add_ps(_mm_shuffle_ps(sum_par_1, sum_par_1, 0x99), sum_par_1); |
| |
| bias_val += _mm_cvtss_f32(sum_tot); |
| if (is_clip_required) bias_val = AOMMAX(bias_val, 0); |
| output_nodes[out] = bias_val; |
| } |
| } |
| |
| static inline void nn_propagate_8to4( |
| const float *const inputs, const float *const weights, |
| const float *const bias, int num_inputs_to_process, int tot_num_inputs, |
| int num_outputs, float *const output_nodes, int is_clip_required) { |
| __m256 hadd[2]; |
| for (int out = 0; out < num_outputs; out += 4) { |
| __m128 bias_reg = _mm_loadu_ps(&bias[out]); |
| __m128 in_result = _mm_setzero_ps(); |
| for (int in = 0; in < num_inputs_to_process; in += 8) { |
| const __m256 inputs256 = _mm256_loadu_ps(&inputs[in]); |
| const int weight_idx = in + (out * tot_num_inputs); |
| // Process two output row at a time. |
| for (int i = 0; i < 2; i++) { |
| CALC_OUTPUT_FOR_2ROWS |
| } |
| |
| const __m256 sum_par = _mm256_hadd_ps(hadd[0], hadd[1]); |
| const __m128 low_128 = _mm256_castps256_ps128(sum_par); |
| const __m128 high_128 = _mm256_extractf128_ps(sum_par, 1); |
| const __m128 result = _mm_add_ps(low_128, high_128); |
| |
| in_result = _mm_add_ps(in_result, result); |
| } |
| |
| in_result = _mm_add_ps(in_result, bias_reg); |
| if (is_clip_required) in_result = _mm_max_ps(in_result, _mm_setzero_ps()); |
| _mm_storeu_ps(&output_nodes[out], in_result); |
| } |
| } |
| |
| static inline void nn_propagate_8to8( |
| const float *const inputs, const float *const weights, |
| const float *const bias, int num_inputs_to_process, int tot_num_inputs, |
| int num_outputs, float *const output_nodes, int is_clip_required) { |
| __m256 hadd[4]; |
| for (int out = 0; out < num_outputs; out += 8) { |
| __m256 bias_reg = _mm256_loadu_ps(&bias[out]); |
| __m256 in_result = _mm256_setzero_ps(); |
| for (int in = 0; in < num_inputs_to_process; in += 8) { |
| const __m256 inputs256 = _mm256_loadu_ps(&inputs[in]); |
| const int weight_idx = in + (out * tot_num_inputs); |
| // Process two output rows at a time. |
| for (int i = 0; i < 4; i++) { |
| CALC_OUTPUT_FOR_2ROWS |
| } |
| const __m256 hh0 = _mm256_hadd_ps(hadd[0], hadd[1]); |
| const __m256 hh1 = _mm256_hadd_ps(hadd[2], hadd[3]); |
| |
| __m256 ht_0 = _mm256_permute2f128_ps(hh0, hh1, 0x20); |
| __m256 ht_1 = _mm256_permute2f128_ps(hh0, hh1, 0x31); |
| |
| __m256 result = _mm256_add_ps(ht_0, ht_1); |
| in_result = _mm256_add_ps(in_result, result); |
| } |
| in_result = _mm256_add_ps(in_result, bias_reg); |
| if (is_clip_required) |
| in_result = _mm256_max_ps(in_result, _mm256_setzero_ps()); |
| _mm256_storeu_ps(&output_nodes[out], in_result); |
| } |
| } |
| |
| static inline void nn_propagate_input_multiple_of_8( |
| const float *const inputs, const float *const weights, |
| const float *const bias, int num_inputs_to_process, int tot_num_inputs, |
| bool is_output_layer, int num_outputs, float *const output_nodes) { |
| // The saturation of output is considered for hidden layer which is not equal |
| // to final hidden layer. |
| const int is_clip_required = |
| !is_output_layer && num_inputs_to_process == tot_num_inputs; |
| if (num_outputs % 8 == 0) { |
| nn_propagate_8to8(inputs, weights, bias, num_inputs_to_process, |
| tot_num_inputs, num_outputs, output_nodes, |
| is_clip_required); |
| } else if (num_outputs % 4 == 0) { |
| nn_propagate_8to4(inputs, weights, bias, num_inputs_to_process, |
| tot_num_inputs, num_outputs, output_nodes, |
| is_clip_required); |
| } else { |
| nn_propagate_8to1(inputs, weights, bias, num_inputs_to_process, |
| tot_num_inputs, num_outputs, output_nodes, |
| is_clip_required); |
| } |
| } |
| |
| void av1_nn_predict_avx2(const float *input_nodes, |
| const NN_CONFIG *const nn_config, int reduce_prec, |
| float *const output) { |
| float buf[2][NN_MAX_NODES_PER_LAYER]; |
| int buf_index = 0; |
| int num_inputs = nn_config->num_inputs; |
| assert(num_inputs > 0 && num_inputs <= NN_MAX_NODES_PER_LAYER); |
| |
| for (int layer = 0; layer <= nn_config->num_hidden_layers; layer++) { |
| const float *layer_weights = nn_config->weights[layer]; |
| const float *layer_bias = nn_config->bias[layer]; |
| bool is_output_layer = layer == nn_config->num_hidden_layers; |
| float *const output_nodes = is_output_layer ? output : &buf[buf_index][0]; |
| const int num_outputs = is_output_layer |
| ? nn_config->num_outputs |
| : nn_config->num_hidden_nodes[layer]; |
| assert(num_outputs > 0 && num_outputs <= NN_MAX_NODES_PER_LAYER); |
| |
| // Process input multiple of 8 using AVX2 intrinsic. |
| if (num_inputs % 8 == 0) { |
| nn_propagate_input_multiple_of_8(input_nodes, layer_weights, layer_bias, |
| num_inputs, num_inputs, is_output_layer, |
| num_outputs, output_nodes); |
| } else { |
| // When number of inputs is not multiple of 8, use hybrid approach of AVX2 |
| // and SSE3 based on the need. |
| const int in_mul_8 = num_inputs / 8; |
| const int num_inputs_to_process = in_mul_8 * 8; |
| int bias_is_considered = 0; |
| if (in_mul_8) { |
| nn_propagate_input_multiple_of_8( |
| input_nodes, layer_weights, layer_bias, num_inputs_to_process, |
| num_inputs, is_output_layer, num_outputs, output_nodes); |
| bias_is_considered = 1; |
| } |
| |
| const float *out_temp = bias_is_considered ? output_nodes : layer_bias; |
| const int input_remaining = num_inputs % 8; |
| if (input_remaining % 4 == 0 && num_outputs % 8 == 0) { |
| for (int out = 0; out < num_outputs; out += 8) { |
| __m128 out_h = _mm_loadu_ps(&out_temp[out + 4]); |
| __m128 out_l = _mm_loadu_ps(&out_temp[out]); |
| for (int in = in_mul_8 * 8; in < num_inputs; in += 4) { |
| av1_nn_propagate_4to8_sse3(&input_nodes[in], |
| &layer_weights[out * num_inputs + in], |
| &out_h, &out_l, num_inputs); |
| } |
| if (!is_output_layer) { |
| const __m128 zero = _mm_setzero_ps(); |
| out_h = _mm_max_ps(out_h, zero); |
| out_l = _mm_max_ps(out_l, zero); |
| } |
| _mm_storeu_ps(&output_nodes[out + 4], out_h); |
| _mm_storeu_ps(&output_nodes[out], out_l); |
| } |
| } else if (input_remaining % 4 == 0 && num_outputs % 4 == 0) { |
| for (int out = 0; out < num_outputs; out += 4) { |
| __m128 outputs = _mm_loadu_ps(&out_temp[out]); |
| for (int in = in_mul_8 * 8; in < num_inputs; in += 4) { |
| av1_nn_propagate_4to4_sse3(&input_nodes[in], |
| &layer_weights[out * num_inputs + in], |
| &outputs, num_inputs); |
| } |
| if (!is_output_layer) outputs = _mm_max_ps(outputs, _mm_setzero_ps()); |
| _mm_storeu_ps(&output_nodes[out], outputs); |
| } |
| } else if (input_remaining % 4 == 0) { |
| for (int out = 0; out < num_outputs; out++) { |
| __m128 outputs = _mm_load1_ps(&out_temp[out]); |
| for (int in = in_mul_8 * 8; in < num_inputs; in += 4) { |
| av1_nn_propagate_4to1_sse3(&input_nodes[in], |
| &layer_weights[out * num_inputs + in], |
| &outputs); |
| } |
| if (!is_output_layer) outputs = _mm_max_ps(outputs, _mm_setzero_ps()); |
| output_nodes[out] = _mm_cvtss_f32(outputs); |
| } |
| } else { |
| // Use SSE instructions for scalar operations to avoid the latency |
| // of swapping between SIMD and FPU modes. |
| for (int out = 0; out < num_outputs; out++) { |
| __m128 outputs = _mm_load1_ps(&out_temp[out]); |
| for (int in_node = in_mul_8 * 8; in_node < num_inputs; in_node++) { |
| __m128 input = _mm_load1_ps(&input_nodes[in_node]); |
| __m128 weight = |
| _mm_load1_ps(&layer_weights[num_inputs * out + in_node]); |
| outputs = _mm_add_ps(outputs, _mm_mul_ps(input, weight)); |
| } |
| if (!is_output_layer) outputs = _mm_max_ps(outputs, _mm_setzero_ps()); |
| output_nodes[out] = _mm_cvtss_f32(outputs); |
| } |
| } |
| } |
| // Before processing the next layer, treat the output of current layer as |
| // input to next layer. |
| input_nodes = output_nodes; |
| num_inputs = num_outputs; |
| buf_index = 1 - buf_index; |
| } |
| if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs); |
| } |