blob: cb0a079986dda2d7ae053cdb952c668e28173ddd [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <stdbool.h>
#include <assert.h>
#include <immintrin.h>
#include "config/av1_rtcd.h"
#include "av1/encoder/ml.h"
#include "av1/encoder/x86/ml_sse3.h"
#define CALC_OUTPUT_FOR_2ROWS \
const int index = weight_idx + (2 * i * tot_num_inputs); \
const __m256 weight0 = _mm256_loadu_ps(&weights[index]); \
const __m256 weight1 = _mm256_loadu_ps(&weights[index + tot_num_inputs]); \
const __m256 mul0 = _mm256_mul_ps(inputs256, weight0); \
const __m256 mul1 = _mm256_mul_ps(inputs256, weight1); \
hadd[i] = _mm256_hadd_ps(mul0, mul1);
static inline void nn_propagate_8to1(
const float *const inputs, const float *const weights,
const float *const bias, int num_inputs_to_process, int tot_num_inputs,
int num_outputs, float *const output_nodes, int is_clip_required) {
// Process one output row at a time.
for (int out = 0; out < num_outputs; out++) {
__m256 in_result = _mm256_setzero_ps();
float bias_val = bias[out];
for (int in = 0; in < num_inputs_to_process; in += 8) {
const __m256 inputs256 = _mm256_loadu_ps(&inputs[in]);
const int weight_idx = in + (out * tot_num_inputs);
const __m256 weight0 = _mm256_loadu_ps(&weights[weight_idx]);
const __m256 mul0 = _mm256_mul_ps(inputs256, weight0);
in_result = _mm256_add_ps(in_result, mul0);
}
const __m128 low_128 = _mm256_castps256_ps128(in_result);
const __m128 high_128 = _mm256_extractf128_ps(in_result, 1);
const __m128 sum_par_0 = _mm_add_ps(low_128, high_128);
const __m128 sum_par_1 = _mm_hadd_ps(sum_par_0, sum_par_0);
const __m128 sum_tot =
_mm_add_ps(_mm_shuffle_ps(sum_par_1, sum_par_1, 0x99), sum_par_1);
bias_val += _mm_cvtss_f32(sum_tot);
if (is_clip_required) bias_val = AOMMAX(bias_val, 0);
output_nodes[out] = bias_val;
}
}
static inline void nn_propagate_8to4(
const float *const inputs, const float *const weights,
const float *const bias, int num_inputs_to_process, int tot_num_inputs,
int num_outputs, float *const output_nodes, int is_clip_required) {
__m256 hadd[2];
for (int out = 0; out < num_outputs; out += 4) {
__m128 bias_reg = _mm_loadu_ps(&bias[out]);
__m128 in_result = _mm_setzero_ps();
for (int in = 0; in < num_inputs_to_process; in += 8) {
const __m256 inputs256 = _mm256_loadu_ps(&inputs[in]);
const int weight_idx = in + (out * tot_num_inputs);
// Process two output row at a time.
for (int i = 0; i < 2; i++) {
CALC_OUTPUT_FOR_2ROWS
}
const __m256 sum_par = _mm256_hadd_ps(hadd[0], hadd[1]);
const __m128 low_128 = _mm256_castps256_ps128(sum_par);
const __m128 high_128 = _mm256_extractf128_ps(sum_par, 1);
const __m128 result = _mm_add_ps(low_128, high_128);
in_result = _mm_add_ps(in_result, result);
}
in_result = _mm_add_ps(in_result, bias_reg);
if (is_clip_required) in_result = _mm_max_ps(in_result, _mm_setzero_ps());
_mm_storeu_ps(&output_nodes[out], in_result);
}
}
static inline void nn_propagate_8to8(
const float *const inputs, const float *const weights,
const float *const bias, int num_inputs_to_process, int tot_num_inputs,
int num_outputs, float *const output_nodes, int is_clip_required) {
__m256 hadd[4];
for (int out = 0; out < num_outputs; out += 8) {
__m256 bias_reg = _mm256_loadu_ps(&bias[out]);
__m256 in_result = _mm256_setzero_ps();
for (int in = 0; in < num_inputs_to_process; in += 8) {
const __m256 inputs256 = _mm256_loadu_ps(&inputs[in]);
const int weight_idx = in + (out * tot_num_inputs);
// Process two output rows at a time.
for (int i = 0; i < 4; i++) {
CALC_OUTPUT_FOR_2ROWS
}
const __m256 hh0 = _mm256_hadd_ps(hadd[0], hadd[1]);
const __m256 hh1 = _mm256_hadd_ps(hadd[2], hadd[3]);
__m256 ht_0 = _mm256_permute2f128_ps(hh0, hh1, 0x20);
__m256 ht_1 = _mm256_permute2f128_ps(hh0, hh1, 0x31);
__m256 result = _mm256_add_ps(ht_0, ht_1);
in_result = _mm256_add_ps(in_result, result);
}
in_result = _mm256_add_ps(in_result, bias_reg);
if (is_clip_required)
in_result = _mm256_max_ps(in_result, _mm256_setzero_ps());
_mm256_storeu_ps(&output_nodes[out], in_result);
}
}
static inline void nn_propagate_input_multiple_of_8(
const float *const inputs, const float *const weights,
const float *const bias, int num_inputs_to_process, int tot_num_inputs,
bool is_output_layer, int num_outputs, float *const output_nodes) {
// The saturation of output is considered for hidden layer which is not equal
// to final hidden layer.
const int is_clip_required =
!is_output_layer && num_inputs_to_process == tot_num_inputs;
if (num_outputs % 8 == 0) {
nn_propagate_8to8(inputs, weights, bias, num_inputs_to_process,
tot_num_inputs, num_outputs, output_nodes,
is_clip_required);
} else if (num_outputs % 4 == 0) {
nn_propagate_8to4(inputs, weights, bias, num_inputs_to_process,
tot_num_inputs, num_outputs, output_nodes,
is_clip_required);
} else {
nn_propagate_8to1(inputs, weights, bias, num_inputs_to_process,
tot_num_inputs, num_outputs, output_nodes,
is_clip_required);
}
}
void av1_nn_predict_avx2(const float *input_nodes,
const NN_CONFIG *const nn_config, int reduce_prec,
float *const output) {
float buf[2][NN_MAX_NODES_PER_LAYER];
int buf_index = 0;
int num_inputs = nn_config->num_inputs;
assert(num_inputs > 0 && num_inputs <= NN_MAX_NODES_PER_LAYER);
for (int layer = 0; layer <= nn_config->num_hidden_layers; layer++) {
const float *layer_weights = nn_config->weights[layer];
const float *layer_bias = nn_config->bias[layer];
bool is_output_layer = layer == nn_config->num_hidden_layers;
float *const output_nodes = is_output_layer ? output : &buf[buf_index][0];
const int num_outputs = is_output_layer
? nn_config->num_outputs
: nn_config->num_hidden_nodes[layer];
assert(num_outputs > 0 && num_outputs <= NN_MAX_NODES_PER_LAYER);
// Process input multiple of 8 using AVX2 intrinsic.
if (num_inputs % 8 == 0) {
nn_propagate_input_multiple_of_8(input_nodes, layer_weights, layer_bias,
num_inputs, num_inputs, is_output_layer,
num_outputs, output_nodes);
} else {
// When number of inputs is not multiple of 8, use hybrid approach of AVX2
// and SSE3 based on the need.
const int in_mul_8 = num_inputs / 8;
const int num_inputs_to_process = in_mul_8 * 8;
int bias_is_considered = 0;
if (in_mul_8) {
nn_propagate_input_multiple_of_8(
input_nodes, layer_weights, layer_bias, num_inputs_to_process,
num_inputs, is_output_layer, num_outputs, output_nodes);
bias_is_considered = 1;
}
const float *out_temp = bias_is_considered ? output_nodes : layer_bias;
const int input_remaining = num_inputs % 8;
if (input_remaining % 4 == 0 && num_outputs % 8 == 0) {
for (int out = 0; out < num_outputs; out += 8) {
__m128 out_h = _mm_loadu_ps(&out_temp[out + 4]);
__m128 out_l = _mm_loadu_ps(&out_temp[out]);
for (int in = in_mul_8 * 8; in < num_inputs; in += 4) {
av1_nn_propagate_4to8_sse3(&input_nodes[in],
&layer_weights[out * num_inputs + in],
&out_h, &out_l, num_inputs);
}
if (!is_output_layer) {
const __m128 zero = _mm_setzero_ps();
out_h = _mm_max_ps(out_h, zero);
out_l = _mm_max_ps(out_l, zero);
}
_mm_storeu_ps(&output_nodes[out + 4], out_h);
_mm_storeu_ps(&output_nodes[out], out_l);
}
} else if (input_remaining % 4 == 0 && num_outputs % 4 == 0) {
for (int out = 0; out < num_outputs; out += 4) {
__m128 outputs = _mm_loadu_ps(&out_temp[out]);
for (int in = in_mul_8 * 8; in < num_inputs; in += 4) {
av1_nn_propagate_4to4_sse3(&input_nodes[in],
&layer_weights[out * num_inputs + in],
&outputs, num_inputs);
}
if (!is_output_layer) outputs = _mm_max_ps(outputs, _mm_setzero_ps());
_mm_storeu_ps(&output_nodes[out], outputs);
}
} else if (input_remaining % 4 == 0) {
for (int out = 0; out < num_outputs; out++) {
__m128 outputs = _mm_load1_ps(&out_temp[out]);
for (int in = in_mul_8 * 8; in < num_inputs; in += 4) {
av1_nn_propagate_4to1_sse3(&input_nodes[in],
&layer_weights[out * num_inputs + in],
&outputs);
}
if (!is_output_layer) outputs = _mm_max_ps(outputs, _mm_setzero_ps());
output_nodes[out] = _mm_cvtss_f32(outputs);
}
} else {
// Use SSE instructions for scalar operations to avoid the latency
// of swapping between SIMD and FPU modes.
for (int out = 0; out < num_outputs; out++) {
__m128 outputs = _mm_load1_ps(&out_temp[out]);
for (int in_node = in_mul_8 * 8; in_node < num_inputs; in_node++) {
__m128 input = _mm_load1_ps(&input_nodes[in_node]);
__m128 weight =
_mm_load1_ps(&layer_weights[num_inputs * out + in_node]);
outputs = _mm_add_ps(outputs, _mm_mul_ps(input, weight));
}
if (!is_output_layer) outputs = _mm_max_ps(outputs, _mm_setzero_ps());
output_nodes[out] = _mm_cvtss_f32(outputs);
}
}
}
// Before processing the next layer, treat the output of current layer as
// input to next layer.
input_nodes = output_nodes;
num_inputs = num_outputs;
buf_index = 1 - buf_index;
}
if (reduce_prec) av1_nn_output_prec_reduce(output, nn_config->num_outputs);
}