blob: 1bd12e9e02cdd03f66a585c476d8626b141399d6 [file] [log] [blame]
/*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <smmintrin.h>
#include "aom_dsp/x86/mem_sse2.h"
#include "aom_dsp/x86/synonyms.h"
#include "config/av1_rtcd.h"
#include "av1/common/restoration.h"
#include "av1/encoder/pickrst.h"
static inline void acc_stat_sse41(int32_t *dst, const uint8_t *src,
const __m128i *shuffle, const __m128i *kl) {
const __m128i s = _mm_shuffle_epi8(xx_loadu_128(src), *shuffle);
const __m128i d0 = _mm_madd_epi16(*kl, _mm_cvtepu8_epi16(s));
const __m128i d1 =
_mm_madd_epi16(*kl, _mm_cvtepu8_epi16(_mm_srli_si128(s, 8)));
const __m128i dst0 = xx_loadu_128(dst);
const __m128i dst1 = xx_loadu_128(dst + 4);
const __m128i r0 = _mm_add_epi32(dst0, d0);
const __m128i r1 = _mm_add_epi32(dst1, d1);
xx_storeu_128(dst, r0);
xx_storeu_128(dst + 4, r1);
}
static inline void acc_stat_win7_one_line_sse4_1(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
int dgd_stride, const __m128i *shuffle, int32_t *sumX,
int32_t sumY[WIENER_WIN][WIENER_WIN], int32_t M_int[WIENER_WIN][WIENER_WIN],
int32_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
const int wiener_win = 7;
int j, k, l;
// Main loop handles two pixels at a time
// We can assume that h_start is even, since it will always be aligned to
// a tile edge + some number of restoration units, and both of those will
// be 64-pixel aligned.
// However, at the edge of the image, h_end may be odd, so we need to handle
// that case correctly.
assert(h_start % 2 == 0);
const int h_end_even = h_end & ~1;
const int has_odd_pixel = h_end & 1;
for (j = h_start; j < h_end_even; j += 2) {
const uint8_t *dgd_ij = dgd + j;
const uint8_t X1 = src[j];
const uint8_t X2 = src[j + 1];
*sumX += X1 + X2;
for (k = 0; k < wiener_win; k++) {
const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int32_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint8_t D1 = dgd_ijk[l];
const uint8_t D2 = dgd_ijk[l + 1];
sumY[k][l] += D1 + D2;
M_int[k][l] += D1 * X1 + D2 * X2;
const __m128i kl =
_mm_cvtepu8_epi16(_mm_set1_epi16(loadu_int16(dgd_ijk + l)));
acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl);
}
}
}
// If the width is odd, add in the final pixel
if (has_odd_pixel) {
const uint8_t *dgd_ij = dgd + j;
const uint8_t X1 = src[j];
*sumX += X1;
for (k = 0; k < wiener_win; k++) {
const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int32_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint8_t D1 = dgd_ijk[l];
sumY[k][l] += D1;
M_int[k][l] += D1 * X1;
// The `acc_stat_sse41` function wants its input to have interleaved
// copies of two pixels, but we only have one. However, the pixels
// are (effectively) used as inputs to a multiply-accumulate.
// So if we set the extra pixel slot to 0, then it is effectively
// ignored.
const __m128i kl = _mm_cvtepu8_epi16(_mm_set1_epi16((int16_t)D1));
acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &kl);
}
}
}
}
static inline void compute_stats_win7_opt_sse4_1(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H,
int use_downsampled_wiener_stats) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const uint8_t avg =
find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int32_t M_int32[WIENER_WIN][WIENER_WIN] = { { 0 } };
int32_t M_int32_row[WIENER_WIN][WIENER_WIN] = { { 0 } };
int64_t M_int64[WIENER_WIN][WIENER_WIN] = { { 0 } };
int32_t H_int32[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
int32_t H_int32_row[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
int64_t H_int64[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
int32_t sumX = 0;
const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
int downsample_factor =
use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
int32_t sumX_row = 0;
int32_t sumY_row[WIENER_WIN][WIENER_WIN] = { { 0 } };
const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
for (j = v_start; j < v_end; j += 64) {
const int vert_end = AOMMIN(64, v_end - j) + j;
for (i = j; i < vert_end; i = i + downsample_factor) {
if (use_downsampled_wiener_stats &&
(vert_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
downsample_factor = vert_end - i;
}
sumX_row = 0;
memset(sumY_row, 0, sizeof(int32_t) * WIENER_WIN * WIENER_WIN);
memset(M_int32_row, 0, sizeof(int32_t) * WIENER_WIN * WIENER_WIN);
memset(H_int32_row, 0, sizeof(int32_t) * WIENER_WIN2 * (WIENER_WIN * 8));
acc_stat_win7_one_line_sse4_1(
dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
dgd_stride, &shuffle, &sumX_row, sumY_row, M_int32_row, H_int32_row);
sumX += sumX_row * downsample_factor;
// Scale M matrix based on the downsampling factor
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l) {
sumY[k][l] += (sumY_row[k][l] * downsample_factor);
M_int32[k][l] += (M_int32_row[k][l] * downsample_factor);
}
}
// Scale H matrix based on the downsampling factor
for (k = 0; k < WIENER_WIN2; ++k) {
for (l = 0; l < WIENER_WIN * 8; ++l) {
H_int32[k][l] += (H_int32_row[k][l] * downsample_factor);
}
}
}
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l) {
M_int64[k][l] += M_int32[k][l];
M_int32[k][l] = 0;
}
}
for (k = 0; k < WIENER_WIN2; ++k) {
for (l = 0; l < WIENER_WIN * 8; ++l) {
H_int64[k][l] += H_int32[k][l];
H_int32[k][l] = 0;
}
}
}
const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
M[idx0] =
M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int64[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
(int64_t)avg * (sumY[k][l] + sumY[n][m]);
}
}
}
}
}
#if CONFIG_AV1_HIGHBITDEPTH
static inline void acc_stat_highbd_sse41(int64_t *dst, const uint16_t *dgd,
const __m128i *shuffle,
const __m128i *dgd_ijkl) {
// Load 256 bits from dgd in two chunks
const __m128i s0l = xx_loadu_128(dgd);
const __m128i s0h = xx_loadu_128(dgd + 4);
// s0l = [7 6 5 4 3 2 1 0] as u16 values (dgd indices)
// s0h = [11 10 9 8 7 6 5 4] as u16 values (dgd indices)
// (Slightly strange order so we can apply the same shuffle to both halves)
// Shuffle the u16 values in each half (actually using 8-bit shuffle mask)
const __m128i s1l = _mm_shuffle_epi8(s0l, *shuffle);
const __m128i s1h = _mm_shuffle_epi8(s0h, *shuffle);
// s1l = [4 3 3 2 2 1 1 0] as u16 values (dgd indices)
// s1h = [8 7 7 6 6 5 5 4] as u16 values (dgd indices)
// Multiply s1 by dgd_ijkl resulting in 8x u32 values
// Horizontally add pairs of u32 resulting in 4x u32
const __m128i dl = _mm_madd_epi16(*dgd_ijkl, s1l);
const __m128i dh = _mm_madd_epi16(*dgd_ijkl, s1h);
// dl = [d c b a] as u32 values
// dh = [h g f e] as u32 values
// Add these 8x u32 results on to dst in four parts
const __m128i dll = _mm_cvtepu32_epi64(dl);
const __m128i dlh = _mm_cvtepu32_epi64(_mm_srli_si128(dl, 8));
const __m128i dhl = _mm_cvtepu32_epi64(dh);
const __m128i dhh = _mm_cvtepu32_epi64(_mm_srli_si128(dh, 8));
// dll = [b a] as u64 values, etc.
const __m128i rll = _mm_add_epi64(xx_loadu_128(dst), dll);
xx_storeu_128(dst, rll);
const __m128i rlh = _mm_add_epi64(xx_loadu_128(dst + 2), dlh);
xx_storeu_128(dst + 2, rlh);
const __m128i rhl = _mm_add_epi64(xx_loadu_128(dst + 4), dhl);
xx_storeu_128(dst + 4, rhl);
const __m128i rhh = _mm_add_epi64(xx_loadu_128(dst + 6), dhh);
xx_storeu_128(dst + 6, rhh);
}
static inline void acc_stat_highbd_win7_one_line_sse4_1(
const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
int dgd_stride, const __m128i *shuffle, int32_t *sumX,
int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN],
int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) {
int j, k, l;
const int wiener_win = WIENER_WIN;
// Main loop handles two pixels at a time
// We can assume that h_start is even, since it will always be aligned to
// a tile edge + some number of restoration units, and both of those will
// be 64-pixel aligned.
// However, at the edge of the image, h_end may be odd, so we need to handle
// that case correctly.
assert(h_start % 2 == 0);
const int h_end_even = h_end & ~1;
const int has_odd_pixel = h_end & 1;
for (j = h_start; j < h_end_even; j += 2) {
const uint16_t X1 = src[j];
const uint16_t X2 = src[j + 1];
*sumX += X1 + X2;
const uint16_t *dgd_ij = dgd + j;
for (k = 0; k < wiener_win; k++) {
const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int64_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint16_t D1 = dgd_ijk[l];
const uint16_t D2 = dgd_ijk[l + 1];
sumY[k][l] += D1 + D2;
M_int[k][l] += D1 * X1 + D2 * X2;
// Load two u16 values from dgd as a single u32
// Then broadcast to 4x u32 slots of a 128
const __m128i dgd_ijkl = _mm_set1_epi32(loadu_int32(dgd_ijk + l));
// dgd_ijkl = [y x y x y x y x] as u16
acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
&dgd_ijkl);
}
}
}
// If the width is odd, add in the final pixel
if (has_odd_pixel) {
const uint16_t X1 = src[j];
*sumX += X1;
const uint16_t *dgd_ij = dgd + j;
for (k = 0; k < wiener_win; k++) {
const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int64_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint16_t D1 = dgd_ijk[l];
sumY[k][l] += D1;
M_int[k][l] += D1 * X1;
// The `acc_stat_highbd_sse41` function wants its input to have
// interleaved copies of two pixels, but we only have one. However, the
// pixels are (effectively) used as inputs to a multiply-accumulate. So
// if we set the extra pixel slot to 0, then it is effectively ignored.
const __m128i dgd_ijkl = _mm_set1_epi32((int)D1);
acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle,
&dgd_ijkl);
}
}
}
}
static inline void compute_stats_highbd_win7_opt_sse4_1(
const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
int64_t *H, aom_bit_depth_t bit_depth) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
const uint16_t avg =
find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } };
int64_t H_int[WIENER_WIN2][WIENER_WIN * 8] = { { 0 } };
int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } };
int32_t sumX = 0;
const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
// Load just half of the 256-bit shuffle control used for the AVX2 version
const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
for (j = v_start; j < v_end; j += 64) {
const int vert_end = AOMMIN(64, v_end - j) + j;
for (i = j; i < vert_end; i++) {
acc_stat_highbd_win7_one_line_sse4_1(
dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
}
}
uint8_t bit_depth_divider = 1;
if (bit_depth == AOM_BITS_12)
bit_depth_divider = 16;
else if (bit_depth == AOM_BITS_10)
bit_depth_divider = 4;
const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
M[idx0] = (M_int[k][l] +
(avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
bit_depth_divider;
int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] =
(H_int_[n * 8 + m] +
(avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
bit_depth_divider;
}
}
}
}
}
static inline void acc_stat_highbd_win5_one_line_sse4_1(
const uint16_t *dgd, const uint16_t *src, int h_start, int h_end,
int dgd_stride, const __m128i *shuffle, int32_t *sumX,
int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
int j, k, l;
const int wiener_win = WIENER_WIN_CHROMA;
// Main loop handles two pixels at a time
// We can assume that h_start is even, since it will always be aligned to
// a tile edge + some number of restoration units, and both of those will
// be 64-pixel aligned.
// However, at the edge of the image, h_end may be odd, so we need to handle
// that case correctly.
assert(h_start % 2 == 0);
const int h_end_even = h_end & ~1;
const int has_odd_pixel = h_end & 1;
for (j = h_start; j < h_end_even; j += 2) {
const uint16_t X1 = src[j];
const uint16_t X2 = src[j + 1];
*sumX += X1 + X2;
const uint16_t *dgd_ij = dgd + j;
for (k = 0; k < wiener_win; k++) {
const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int64_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint16_t D1 = dgd_ijk[l];
const uint16_t D2 = dgd_ijk[l + 1];
sumY[k][l] += D1 + D2;
M_int[k][l] += D1 * X1 + D2 * X2;
// Load two u16 values from dgd as a single u32
// then broadcast to 4x u32 slots of a 128
const __m128i dgd_ijkl = _mm_set1_epi32(loadu_int32(dgd_ijk + l));
// dgd_ijkl = [y x y x y x y x] as u16
acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
&dgd_ijkl);
}
}
}
// If the width is odd, add in the final pixel
if (has_odd_pixel) {
const uint16_t X1 = src[j];
*sumX += X1;
const uint16_t *dgd_ij = dgd + j;
for (k = 0; k < wiener_win; k++) {
const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int64_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint16_t D1 = dgd_ijk[l];
sumY[k][l] += D1;
M_int[k][l] += D1 * X1;
// The `acc_stat_highbd_sse41` function wants its input to have
// interleaved copies of two pixels, but we only have one. However, the
// pixels are (effectively) used as inputs to a multiply-accumulate. So
// if we set the extra pixel slot to 0, then it is effectively ignored.
const __m128i dgd_ijkl = _mm_set1_epi32((int)D1);
acc_stat_highbd_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle,
&dgd_ijkl);
acc_stat_highbd_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle,
&dgd_ijkl);
}
}
}
}
static inline void compute_stats_highbd_win5_opt_sse4_1(
const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end,
int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M,
int64_t *H, aom_bit_depth_t bit_depth) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN_CHROMA;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8);
const uint16_t avg =
find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int32_t sumX = 0;
const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
// Load just half of the 256-bit shuffle control used for the AVX2 version
const __m128i shuffle = xx_loadu_128(g_shuffle_stats_highbd_data);
for (j = v_start; j < v_end; j += 64) {
const int vert_end = AOMMIN(64, v_end - j) + j;
for (i = j; i < vert_end; i++) {
acc_stat_highbd_win5_one_line_sse4_1(
dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
dgd_stride, &shuffle, &sumX, sumY, M_int, H_int);
}
}
uint8_t bit_depth_divider = 1;
if (bit_depth == AOM_BITS_12)
bit_depth_divider = 16;
else if (bit_depth == AOM_BITS_10)
bit_depth_divider = 4;
const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
M[idx0] = (M_int[k][l] +
(avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) /
bit_depth_divider;
int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] =
(H_int_[n * 8 + m] +
(avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) /
bit_depth_divider;
}
}
}
}
}
void av1_compute_stats_highbd_sse4_1(int wiener_win, const uint8_t *dgd8,
const uint8_t *src8, int16_t *dgd_avg,
int16_t *src_avg, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, int64_t *M, int64_t *H,
aom_bit_depth_t bit_depth) {
if (wiener_win == WIENER_WIN) {
(void)dgd_avg;
(void)src_avg;
compute_stats_highbd_win7_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
v_end, dgd_stride, src_stride, M, H,
bit_depth);
} else if (wiener_win == WIENER_WIN_CHROMA) {
(void)dgd_avg;
(void)src_avg;
compute_stats_highbd_win5_opt_sse4_1(dgd8, src8, h_start, h_end, v_start,
v_end, dgd_stride, src_stride, M, H,
bit_depth);
} else {
av1_compute_stats_highbd_c(wiener_win, dgd8, src8, dgd_avg, src_avg,
h_start, h_end, v_start, v_end, dgd_stride,
src_stride, M, H, bit_depth);
}
}
#endif // CONFIG_AV1_HIGHBITDEPTH
static inline void acc_stat_win5_one_line_sse4_1(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end,
int dgd_stride, const __m128i *shuffle, int32_t *sumX,
int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
int32_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA],
int32_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) {
const int wiener_win = WIENER_WIN_CHROMA;
int j, k, l;
// Main loop handles two pixels at a time
// We can assume that h_start is even, since it will always be aligned to
// a tile edge + some number of restoration units, and both of those will
// be 64-pixel aligned.
// However, at the edge of the image, h_end may be odd, so we need to handle
// that case correctly.
assert(h_start % 2 == 0);
const int h_end_even = h_end & ~1;
const int has_odd_pixel = h_end & 1;
for (j = h_start; j < h_end_even; j += 2) {
const uint8_t *dgd_ij = dgd + j;
const uint8_t X1 = src[j];
const uint8_t X2 = src[j + 1];
*sumX += X1 + X2;
for (k = 0; k < wiener_win; k++) {
const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int32_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint8_t D1 = dgd_ijk[l];
const uint8_t D2 = dgd_ijk[l + 1];
sumY[k][l] += D1 + D2;
M_int[k][l] += D1 * X1 + D2 * X2;
const __m128i kl =
_mm_cvtepu8_epi16(_mm_set1_epi16(loadu_int16(dgd_ijk + l)));
acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
}
}
}
// If the width is odd, add in the final pixel
if (has_odd_pixel) {
const uint8_t *dgd_ij = dgd + j;
const uint8_t X1 = src[j];
*sumX += X1;
for (k = 0; k < wiener_win; k++) {
const uint8_t *dgd_ijk = dgd_ij + k * dgd_stride;
for (l = 0; l < wiener_win; l++) {
int32_t *H_ = &H_int[(l * wiener_win + k)][0];
const uint8_t D1 = dgd_ijk[l];
sumY[k][l] += D1;
M_int[k][l] += D1 * X1;
// The `acc_stat_sse41` function wants its input to have interleaved
// copies of two pixels, but we only have one. However, the pixels
// are (effectively) used as inputs to a multiply-accumulate.
// So if we set the extra pixel slot to 0, then it is effectively
// ignored.
const __m128i kl = _mm_cvtepu8_epi16(_mm_set1_epi16((int16_t)D1));
acc_stat_sse41(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &kl);
acc_stat_sse41(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &kl);
}
}
}
}
static inline void compute_stats_win5_opt_sse4_1(
const uint8_t *dgd, const uint8_t *src, int h_start, int h_end, int v_start,
int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H,
int use_downsampled_wiener_stats) {
int i, j, k, l, m, n;
const int wiener_win = WIENER_WIN_CHROMA;
const int pixel_count = (h_end - h_start) * (v_end - v_start);
const int wiener_win2 = wiener_win * wiener_win;
const int wiener_halfwin = (wiener_win >> 1);
const uint8_t avg =
find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride);
int32_t M_int32[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int32_t M_int32_row[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int32_t H_int32[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
int32_t H_int32_row[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
int64_t H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8] = { { 0 } };
int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
int32_t sumX = 0;
const uint8_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin;
int downsample_factor =
use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1;
int32_t sumX_row = 0;
int32_t sumY_row[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } };
const __m128i shuffle = xx_loadu_128(g_shuffle_stats_data);
for (j = v_start; j < v_end; j += 64) {
const int vert_end = AOMMIN(64, v_end - j) + j;
for (i = j; i < vert_end; i = i + downsample_factor) {
if (use_downsampled_wiener_stats &&
(vert_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) {
downsample_factor = vert_end - i;
}
sumX_row = 0;
memset(sumY_row, 0,
sizeof(int32_t) * WIENER_WIN_CHROMA * WIENER_WIN_CHROMA);
memset(M_int32_row, 0,
sizeof(int32_t) * WIENER_WIN_CHROMA * WIENER_WIN_CHROMA);
memset(H_int32_row, 0,
sizeof(int32_t) * WIENER_WIN2_CHROMA * (WIENER_WIN_CHROMA * 8));
acc_stat_win5_one_line_sse4_1(
dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end,
dgd_stride, &shuffle, &sumX_row, sumY_row, M_int32_row, H_int32_row);
sumX += sumX_row * downsample_factor;
// Scale M matrix based on the downsampling factor
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l) {
sumY[k][l] += (sumY_row[k][l] * downsample_factor);
M_int32[k][l] += (M_int32_row[k][l] * downsample_factor);
}
}
// Scale H matrix based on the downsampling factor
for (k = 0; k < WIENER_WIN_CHROMA * WIENER_WIN_CHROMA; ++k) {
for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) {
H_int32[k][l] += (H_int32_row[k][l] * downsample_factor);
}
}
}
for (k = 0; k < wiener_win; ++k) {
for (l = 0; l < wiener_win; ++l) {
M_int64[k][l] += M_int32[k][l];
M_int32[k][l] = 0;
}
}
for (k = 0; k < WIENER_WIN_CHROMA * WIENER_WIN_CHROMA; ++k) {
for (l = 0; l < WIENER_WIN_CHROMA * 8; ++l) {
H_int64[k][l] += H_int32[k][l];
H_int32[k][l] = 0;
}
}
}
const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count;
for (k = 0; k < wiener_win; k++) {
for (l = 0; l < wiener_win; l++) {
const int32_t idx0 = l * wiener_win + k;
M[idx0] =
M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]));
int64_t *H_ = H + idx0 * wiener_win2;
int64_t *H_int_ = &H_int64[idx0][0];
for (m = 0; m < wiener_win; m++) {
for (n = 0; n < wiener_win; n++) {
H_[m * wiener_win + n] = H_int_[n * 8 + m] + avg_square_sum -
(int64_t)avg * (sumY[k][l] + sumY[n][m]);
}
}
}
}
}
void av1_compute_stats_sse4_1(int wiener_win, const uint8_t *dgd,
const uint8_t *src, int16_t *dgd_avg,
int16_t *src_avg, int h_start, int h_end,
int v_start, int v_end, int dgd_stride,
int src_stride, int64_t *M, int64_t *H,
int use_downsampled_wiener_stats) {
if (wiener_win == WIENER_WIN) {
compute_stats_win7_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end,
dgd_stride, src_stride, M, H,
use_downsampled_wiener_stats);
} else if (wiener_win == WIENER_WIN_CHROMA) {
compute_stats_win5_opt_sse4_1(dgd, src, h_start, h_end, v_start, v_end,
dgd_stride, src_stride, M, H,
use_downsampled_wiener_stats);
} else {
av1_compute_stats_c(wiener_win, dgd, src, dgd_avg, src_avg, h_start, h_end,
v_start, v_end, dgd_stride, src_stride, M, H,
use_downsampled_wiener_stats);
}
}
static inline __m128i pair_set_epi16(int a, int b) {
return _mm_set1_epi32(
(int32_t)(((uint16_t)(a)) | (((uint32_t)(uint16_t)(b)) << 16)));
}
int64_t av1_lowbd_pixel_proj_error_sse4_1(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
int i, j, k;
const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
__m128i sum64 = _mm_setzero_si128();
const uint8_t *src = src8;
const uint8_t *dat = dat8;
int64_t err = 0;
if (params->r[0] > 0 && params->r[1] > 0) {
__m128i xq_coeff = pair_set_epi16(xq[0], xq[1]);
for (i = 0; i < height; ++i) {
__m128i sum32 = _mm_setzero_si128();
for (j = 0; j <= width - 8; j += 8) {
const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
const __m128i flt0_16b =
_mm_packs_epi32(xx_loadu_128(flt0 + j), xx_loadu_128(flt0 + j + 4));
const __m128i flt1_16b =
_mm_packs_epi32(xx_loadu_128(flt1 + j), xx_loadu_128(flt1 + j + 4));
const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS);
const __m128i flt0_0_sub_u = _mm_sub_epi16(flt0_16b, u0);
const __m128i flt1_0_sub_u = _mm_sub_epi16(flt1_16b, u0);
const __m128i v0 = _mm_madd_epi16(
xq_coeff, _mm_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u));
const __m128i v1 = _mm_madd_epi16(
xq_coeff, _mm_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u));
const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
const __m128i e0 =
_mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0);
const __m128i err0 = _mm_madd_epi16(e0, e0);
sum32 = _mm_add_epi32(sum32, err0);
}
for (k = j; k < width; ++k) {
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
sum64 = _mm_add_epi64(sum64, sum64_0);
sum64 = _mm_add_epi64(sum64, sum64_1);
}
} else if (params->r[0] > 0 || params->r[1] > 0) {
const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1];
const __m128i xq_coeff =
pair_set_epi16(xq_active, -xq_active * (1 << SGRPROJ_RST_BITS));
const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
for (i = 0; i < height; ++i) {
__m128i sum32 = _mm_setzero_si128();
for (j = 0; j <= width - 8; j += 8) {
const __m128i d0 = _mm_cvtepu8_epi16(xx_loadl_64(dat + j));
const __m128i s0 = _mm_cvtepu8_epi16(xx_loadl_64(src + j));
const __m128i flt_16b =
_mm_packs_epi32(xx_loadu_128(flt + j), xx_loadu_128(flt + j + 4));
const __m128i v0 =
_mm_madd_epi16(xq_coeff, _mm_unpacklo_epi16(flt_16b, d0));
const __m128i v1 =
_mm_madd_epi16(xq_coeff, _mm_unpackhi_epi16(flt_16b, d0));
const __m128i vr0 = _mm_srai_epi32(_mm_add_epi32(v0, rounding), shift);
const __m128i vr1 = _mm_srai_epi32(_mm_add_epi32(v1, rounding), shift);
const __m128i e0 =
_mm_sub_epi16(_mm_add_epi16(_mm_packs_epi32(vr0, vr1), d0), s0);
const __m128i err0 = _mm_madd_epi16(e0, e0);
sum32 = _mm_add_epi32(sum32, err0);
}
for (k = j; k < width; ++k) {
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
int32_t v = xq_active * (flt[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
flt += flt_stride;
const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
sum64 = _mm_add_epi64(sum64, sum64_0);
sum64 = _mm_add_epi64(sum64, sum64_1);
}
} else {
__m128i sum32 = _mm_setzero_si128();
for (i = 0; i < height; ++i) {
for (j = 0; j <= width - 16; j += 16) {
const __m128i d = xx_loadu_128(dat + j);
const __m128i s = xx_loadu_128(src + j);
const __m128i d0 = _mm_cvtepu8_epi16(d);
const __m128i d1 = _mm_cvtepu8_epi16(_mm_srli_si128(d, 8));
const __m128i s0 = _mm_cvtepu8_epi16(s);
const __m128i s1 = _mm_cvtepu8_epi16(_mm_srli_si128(s, 8));
const __m128i diff0 = _mm_sub_epi16(d0, s0);
const __m128i diff1 = _mm_sub_epi16(d1, s1);
const __m128i err0 = _mm_madd_epi16(diff0, diff0);
const __m128i err1 = _mm_madd_epi16(diff1, diff1);
sum32 = _mm_add_epi32(sum32, err0);
sum32 = _mm_add_epi32(sum32, err1);
}
for (k = j; k < width; ++k) {
const int32_t e = (int32_t)(dat[k]) - src[k];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
}
const __m128i sum64_0 = _mm_cvtepi32_epi64(sum32);
const __m128i sum64_1 = _mm_cvtepi32_epi64(_mm_srli_si128(sum32, 8));
sum64 = _mm_add_epi64(sum64_0, sum64_1);
}
int64_t sum[2];
xx_storeu_128(sum, sum64);
err += sum[0] + sum[1];
return err;
}
// When params->r[0] > 0 and params->r[1] > 0. In this case all elements of
// C and H need to be computed.
static inline void calc_proj_params_r0_r1_sse4_1(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint8_t *src = src8;
const uint8_t *dat = dat8;
__m128i h00, h01, h11, c0, c1;
const __m128i zero = _mm_setzero_si128();
h01 = h11 = c0 = c1 = h00 = zero;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; j += 4) {
const __m128i u_load = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)(dat + i * dat_stride + j))));
const __m128i s_load = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)(src + i * src_stride + j))));
__m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
__m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
__m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
__m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
s = _mm_sub_epi32(s, d);
f1 = _mm_sub_epi32(f1, d);
f2 = _mm_sub_epi32(f2, d);
const __m128i h00_even = _mm_mul_epi32(f1, f1);
const __m128i h00_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
h00 = _mm_add_epi64(h00, h00_even);
h00 = _mm_add_epi64(h00, h00_odd);
const __m128i h01_even = _mm_mul_epi32(f1, f2);
const __m128i h01_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f2, 32));
h01 = _mm_add_epi64(h01, h01_even);
h01 = _mm_add_epi64(h01, h01_odd);
const __m128i h11_even = _mm_mul_epi32(f2, f2);
const __m128i h11_odd =
_mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
h11 = _mm_add_epi64(h11, h11_even);
h11 = _mm_add_epi64(h11, h11_odd);
const __m128i c0_even = _mm_mul_epi32(f1, s);
const __m128i c0_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
c0 = _mm_add_epi64(c0, c0_even);
c0 = _mm_add_epi64(c0, c0_odd);
const __m128i c1_even = _mm_mul_epi32(f2, s);
const __m128i c1_odd =
_mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
c1 = _mm_add_epi64(c1, c1_even);
c1 = _mm_add_epi64(c1, c1_odd);
}
}
__m128i c_low = _mm_unpacklo_epi64(c0, c1);
const __m128i c_high = _mm_unpackhi_epi64(c0, c1);
c_low = _mm_add_epi64(c_low, c_high);
__m128i h0x_low = _mm_unpacklo_epi64(h00, h01);
const __m128i h0x_high = _mm_unpackhi_epi64(h00, h01);
h0x_low = _mm_add_epi64(h0x_low, h0x_high);
// Using the symmetric properties of H, calculations of H[1][0] are not
// needed.
__m128i h1x_low = _mm_unpacklo_epi64(zero, h11);
const __m128i h1x_high = _mm_unpackhi_epi64(zero, h11);
h1x_low = _mm_add_epi64(h1x_low, h1x_high);
xx_storeu_128(C, c_low);
xx_storeu_128(H[0], h0x_low);
xx_storeu_128(H[1], h1x_low);
H[0][0] /= size;
H[0][1] /= size;
H[1][1] /= size;
// Since H is a symmetric matrix
H[1][0] = H[0][1];
C[0] /= size;
C[1] /= size;
}
// When only params->r[0] > 0. In this case only H[0][0] and C[0] are
// non-zero and need to be computed.
static inline void calc_proj_params_r0_sse4_1(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8,
int dat_stride, int32_t *flt0,
int flt0_stride, int64_t H[2][2],
int64_t C[2]) {
const int size = width * height;
const uint8_t *src = src8;
const uint8_t *dat = dat8;
__m128i h00, c0;
const __m128i zero = _mm_setzero_si128();
c0 = h00 = zero;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; j += 4) {
const __m128i u_load = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)(dat + i * dat_stride + j))));
const __m128i s_load = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)(src + i * src_stride + j))));
__m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
__m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
__m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
s = _mm_sub_epi32(s, d);
f1 = _mm_sub_epi32(f1, d);
const __m128i h00_even = _mm_mul_epi32(f1, f1);
const __m128i h00_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
h00 = _mm_add_epi64(h00, h00_even);
h00 = _mm_add_epi64(h00, h00_odd);
const __m128i c0_even = _mm_mul_epi32(f1, s);
const __m128i c0_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
c0 = _mm_add_epi64(c0, c0_even);
c0 = _mm_add_epi64(c0, c0_odd);
}
}
const __m128i h00_val = _mm_add_epi64(h00, _mm_srli_si128(h00, 8));
const __m128i c0_val = _mm_add_epi64(c0, _mm_srli_si128(c0, 8));
const __m128i c = _mm_unpacklo_epi64(c0_val, zero);
const __m128i h0x = _mm_unpacklo_epi64(h00_val, zero);
xx_storeu_128(C, c);
xx_storeu_128(H[0], h0x);
H[0][0] /= size;
C[0] /= size;
}
// When only params->r[1] > 0. In this case only H[1][1] and C[1] are
// non-zero and need to be computed.
static inline void calc_proj_params_r1_sse4_1(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8,
int dat_stride, int32_t *flt1,
int flt1_stride, int64_t H[2][2],
int64_t C[2]) {
const int size = width * height;
const uint8_t *src = src8;
const uint8_t *dat = dat8;
__m128i h11, c1;
const __m128i zero = _mm_setzero_si128();
c1 = h11 = zero;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; j += 4) {
const __m128i u_load = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)(dat + i * dat_stride + j))));
const __m128i s_load = _mm_cvtepu8_epi32(
_mm_cvtsi32_si128(*((int *)(src + i * src_stride + j))));
__m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
__m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
__m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
s = _mm_sub_epi32(s, d);
f2 = _mm_sub_epi32(f2, d);
const __m128i h11_even = _mm_mul_epi32(f2, f2);
const __m128i h11_odd =
_mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
h11 = _mm_add_epi64(h11, h11_even);
h11 = _mm_add_epi64(h11, h11_odd);
const __m128i c1_even = _mm_mul_epi32(f2, s);
const __m128i c1_odd =
_mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
c1 = _mm_add_epi64(c1, c1_even);
c1 = _mm_add_epi64(c1, c1_odd);
}
}
const __m128i h11_val = _mm_add_epi64(h11, _mm_srli_si128(h11, 8));
const __m128i c1_val = _mm_add_epi64(c1, _mm_srli_si128(c1, 8));
const __m128i c = _mm_unpacklo_epi64(zero, c1_val);
const __m128i h1x = _mm_unpacklo_epi64(zero, h11_val);
xx_storeu_128(C, c);
xx_storeu_128(H[1], h1x);
H[1][1] /= size;
C[1] /= size;
}
// SSE4.1 variant of av1_calc_proj_params_c.
void av1_calc_proj_params_sse4_1(const uint8_t *src8, int width, int height,
int src_stride, const uint8_t *dat8,
int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2],
const sgr_params_type *params) {
if ((params->r[0] > 0) && (params->r[1] > 0)) {
calc_proj_params_r0_r1_sse4_1(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C);
} else if (params->r[0] > 0) {
calc_proj_params_r0_sse4_1(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, H, C);
} else if (params->r[1] > 0) {
calc_proj_params_r1_sse4_1(src8, width, height, src_stride, dat8,
dat_stride, flt1, flt1_stride, H, C);
}
}
#if CONFIG_AV1_HIGHBITDEPTH
static inline void calc_proj_params_r0_r1_high_bd_sse4_1(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
__m128i h00, h01, h11, c0, c1;
const __m128i zero = _mm_setzero_si128();
h01 = h11 = c0 = c1 = h00 = zero;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; j += 4) {
const __m128i u_load = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
const __m128i s_load = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
__m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
__m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
__m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
__m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
s = _mm_sub_epi32(s, d);
f1 = _mm_sub_epi32(f1, d);
f2 = _mm_sub_epi32(f2, d);
const __m128i h00_even = _mm_mul_epi32(f1, f1);
const __m128i h00_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
h00 = _mm_add_epi64(h00, h00_even);
h00 = _mm_add_epi64(h00, h00_odd);
const __m128i h01_even = _mm_mul_epi32(f1, f2);
const __m128i h01_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f2, 32));
h01 = _mm_add_epi64(h01, h01_even);
h01 = _mm_add_epi64(h01, h01_odd);
const __m128i h11_even = _mm_mul_epi32(f2, f2);
const __m128i h11_odd =
_mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
h11 = _mm_add_epi64(h11, h11_even);
h11 = _mm_add_epi64(h11, h11_odd);
const __m128i c0_even = _mm_mul_epi32(f1, s);
const __m128i c0_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
c0 = _mm_add_epi64(c0, c0_even);
c0 = _mm_add_epi64(c0, c0_odd);
const __m128i c1_even = _mm_mul_epi32(f2, s);
const __m128i c1_odd =
_mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
c1 = _mm_add_epi64(c1, c1_even);
c1 = _mm_add_epi64(c1, c1_odd);
}
}
__m128i c_low = _mm_unpacklo_epi64(c0, c1);
const __m128i c_high = _mm_unpackhi_epi64(c0, c1);
c_low = _mm_add_epi64(c_low, c_high);
__m128i h0x_low = _mm_unpacklo_epi64(h00, h01);
const __m128i h0x_high = _mm_unpackhi_epi64(h00, h01);
h0x_low = _mm_add_epi64(h0x_low, h0x_high);
// Using the symmetric properties of H, calculations of H[1][0] are not
// needed.
__m128i h1x_low = _mm_unpacklo_epi64(zero, h11);
const __m128i h1x_high = _mm_unpackhi_epi64(zero, h11);
h1x_low = _mm_add_epi64(h1x_low, h1x_high);
xx_storeu_128(C, c_low);
xx_storeu_128(H[0], h0x_low);
xx_storeu_128(H[1], h1x_low);
H[0][0] /= size;
H[0][1] /= size;
H[1][1] /= size;
// Since H is a symmetric matrix
H[1][0] = H[0][1];
C[0] /= size;
C[1] /= size;
}
// When only params->r[0] > 0. In this case only H[0][0] and C[0] are
// non-zero and need to be computed.
static inline void calc_proj_params_r0_high_bd_sse4_1(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
__m128i h00, c0;
const __m128i zero = _mm_setzero_si128();
c0 = h00 = zero;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; j += 4) {
const __m128i u_load = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
const __m128i s_load = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
__m128i f1 = _mm_loadu_si128((__m128i *)(flt0 + i * flt0_stride + j));
__m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
__m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
s = _mm_sub_epi32(s, d);
f1 = _mm_sub_epi32(f1, d);
const __m128i h00_even = _mm_mul_epi32(f1, f1);
const __m128i h00_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(f1, 32));
h00 = _mm_add_epi64(h00, h00_even);
h00 = _mm_add_epi64(h00, h00_odd);
const __m128i c0_even = _mm_mul_epi32(f1, s);
const __m128i c0_odd =
_mm_mul_epi32(_mm_srli_epi64(f1, 32), _mm_srli_epi64(s, 32));
c0 = _mm_add_epi64(c0, c0_even);
c0 = _mm_add_epi64(c0, c0_odd);
}
}
const __m128i h00_val = _mm_add_epi64(h00, _mm_srli_si128(h00, 8));
const __m128i c0_val = _mm_add_epi64(c0, _mm_srli_si128(c0, 8));
const __m128i c = _mm_unpacklo_epi64(c0_val, zero);
const __m128i h0x = _mm_unpacklo_epi64(h00_val, zero);
xx_storeu_128(C, c);
xx_storeu_128(H[0], h0x);
H[0][0] /= size;
C[0] /= size;
}
// When only params->r[1] > 0. In this case only H[1][1] and C[1] are
// non-zero and need to be computed.
static inline void calc_proj_params_r1_high_bd_sse4_1(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2]) {
const int size = width * height;
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
__m128i h11, c1;
const __m128i zero = _mm_setzero_si128();
c1 = h11 = zero;
for (int i = 0; i < height; ++i) {
for (int j = 0; j < width; j += 4) {
const __m128i u_load = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j)));
const __m128i s_load = _mm_cvtepu16_epi32(
_mm_loadl_epi64((__m128i *)(src + i * src_stride + j)));
__m128i f2 = _mm_loadu_si128((__m128i *)(flt1 + i * flt1_stride + j));
__m128i d = _mm_slli_epi32(u_load, SGRPROJ_RST_BITS);
__m128i s = _mm_slli_epi32(s_load, SGRPROJ_RST_BITS);
s = _mm_sub_epi32(s, d);
f2 = _mm_sub_epi32(f2, d);
const __m128i h11_even = _mm_mul_epi32(f2, f2);
const __m128i h11_odd =
_mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(f2, 32));
h11 = _mm_add_epi64(h11, h11_even);
h11 = _mm_add_epi64(h11, h11_odd);
const __m128i c1_even = _mm_mul_epi32(f2, s);
const __m128i c1_odd =
_mm_mul_epi32(_mm_srli_epi64(f2, 32), _mm_srli_epi64(s, 32));
c1 = _mm_add_epi64(c1, c1_even);
c1 = _mm_add_epi64(c1, c1_odd);
}
}
const __m128i h11_val = _mm_add_epi64(h11, _mm_srli_si128(h11, 8));
const __m128i c1_val = _mm_add_epi64(c1, _mm_srli_si128(c1, 8));
const __m128i c = _mm_unpacklo_epi64(zero, c1_val);
const __m128i h1x = _mm_unpacklo_epi64(zero, h11_val);
xx_storeu_128(C, c);
xx_storeu_128(H[1], h1x);
H[1][1] /= size;
C[1] /= size;
}
// SSE4.1 variant of av1_calc_proj_params_high_bd_c.
void av1_calc_proj_params_high_bd_sse4_1(const uint8_t *src8, int width,
int height, int src_stride,
const uint8_t *dat8, int dat_stride,
int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride,
int64_t H[2][2], int64_t C[2],
const sgr_params_type *params) {
if ((params->r[0] > 0) && (params->r[1] > 0)) {
calc_proj_params_r0_r1_high_bd_sse4_1(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, flt1,
flt1_stride, H, C);
} else if (params->r[0] > 0) {
calc_proj_params_r0_high_bd_sse4_1(src8, width, height, src_stride, dat8,
dat_stride, flt0, flt0_stride, H, C);
} else if (params->r[1] > 0) {
calc_proj_params_r1_high_bd_sse4_1(src8, width, height, src_stride, dat8,
dat_stride, flt1, flt1_stride, H, C);
}
}
int64_t av1_highbd_pixel_proj_error_sse4_1(
const uint8_t *src8, int width, int height, int src_stride,
const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride,
int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) {
int i, j, k;
const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS;
const __m128i rounding = _mm_set1_epi32(1 << (shift - 1));
__m128i sum64 = _mm_setzero_si128();
const uint16_t *src = CONVERT_TO_SHORTPTR(src8);
const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8);
int64_t err = 0;
if (params->r[0] > 0 && params->r[1] > 0) { // Both filters are enabled
const __m128i xq0 = _mm_set1_epi32(xq[0]);
const __m128i xq1 = _mm_set1_epi32(xq[1]);
for (i = 0; i < height; ++i) {
__m128i sum32 = _mm_setzero_si128();
for (j = 0; j <= width - 8; j += 8) {
// Load 8x pixels from source image
const __m128i s0 = xx_loadu_128(src + j);
// s0 = [7 6 5 4 3 2 1 0] as i16 (indices of src[])
// Load 8x pixels from corrupted image
const __m128i d0 = xx_loadu_128(dat + j);
// d0 = [7 6 5 4 3 2 1 0] as i16 (indices of dat[])
// Shift each pixel value up by SGRPROJ_RST_BITS
const __m128i u0 = _mm_slli_epi16(d0, SGRPROJ_RST_BITS);
// Split u0 into two halves and pad each from u16 to i32
const __m128i u0l = _mm_cvtepu16_epi32(u0);
const __m128i u0h = _mm_cvtepu16_epi32(_mm_srli_si128(u0, 8));
// u0h = [7 6 5 4] as i32, u0l = [3 2 1 0] as i32, all dat[] indices
// Load 8 pixels from first and second filtered images
const __m128i flt0l = xx_loadu_128(flt0 + j);
const __m128i flt0h = xx_loadu_128(flt0 + j + 4);
const __m128i flt1l = xx_loadu_128(flt1 + j);
const __m128i flt1h = xx_loadu_128(flt1 + j + 4);
// flt0 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt0+j)
// flt1 = [7 6 5 4] [3 2 1 0] as i32 (indices of flt1+j)
// Subtract shifted corrupt image from each filtered image
// This gives our two basis vectors for the projection
const __m128i flt0l_subu = _mm_sub_epi32(flt0l, u0l);
const __m128i flt0h_subu = _mm_sub_epi32(flt0h, u0h);
const __m128i flt1l_subu = _mm_sub_epi32(flt1l, u0l);
const __m128i flt1h_subu = _mm_sub_epi32(flt1h, u0h);
// flt?h_subu = [ f[7]-u[7] f[6]-u[6] f[5]-u[5] f[4]-u[4] ] as i32
// flt?l_subu = [ f[3]-u[3] f[2]-u[2] f[1]-u[1] f[0]-u[0] ] as i32
// Multiply each basis vector by the corresponding coefficient
const __m128i v0l = _mm_mullo_epi32(flt0l_subu, xq0);
const __m128i v0h = _mm_mullo_epi32(flt0h_subu, xq0);
const __m128i v1l = _mm_mullo_epi32(flt1l_subu, xq1);
const __m128i v1h = _mm_mullo_epi32(flt1h_subu, xq1);
// Add together the contribution from each scaled basis vector
const __m128i vl = _mm_add_epi32(v0l, v1l);
const __m128i vh = _mm_add_epi32(v0h, v1h);
// Right-shift v with appropriate rounding
const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
// Saturate each i32 value to i16 and combine lower and upper halves
const __m128i vr = _mm_packs_epi32(vrl, vrh);
// Add twin-subspace-sgr-filter to corrupt image then subtract source
const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
// Calculate squared error and add adjacent values
const __m128i err0 = _mm_madd_epi16(e0, e0);
sum32 = _mm_add_epi32(sum32, err0);
}
const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
sum64 = _mm_add_epi64(sum64, sum32l);
const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
sum64 = _mm_add_epi64(sum64, sum32h);
// Process remaining pixels in this row (modulo 8)
for (k = j; k < width; ++k) {
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
flt0 += flt0_stride;
flt1 += flt1_stride;
}
} else if (params->r[0] > 0 || params->r[1] > 0) { // Only one filter enabled
const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1];
const __m128i xq_active = _mm_set1_epi32(xq_on);
const __m128i xq_inactive =
_mm_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS));
const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1;
const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride;
for (i = 0; i < height; ++i) {
__m128i sum32 = _mm_setzero_si128();
for (j = 0; j <= width - 8; j += 8) {
// Load 8x pixels from source image
const __m128i s0 = xx_loadu_128(src + j);
// s0 = [7 6 5 4 3 2 1 0] as u16 (indices of src[])
// Load 8x pixels from corrupted image and pad each u16 to i32
const __m128i d0 = xx_loadu_128(dat + j);
const __m128i d0h = _mm_cvtepu16_epi32(_mm_srli_si128(d0, 8));
const __m128i d0l = _mm_cvtepu16_epi32(d0);
// d0h, d0l = [7 6 5 4], [3 2 1 0] as u32 (indices of dat[])
// Load 8 pixels from the filtered image
const __m128i flth = xx_loadu_128(flt + j + 4);
const __m128i fltl = xx_loadu_128(flt + j);
// flth, fltl = [7 6 5 4], [3 2 1 0] as i32 (indices of flt+j)
const __m128i flth_xq = _mm_mullo_epi32(flth, xq_active);
const __m128i fltl_xq = _mm_mullo_epi32(fltl, xq_active);
const __m128i d0h_xq = _mm_mullo_epi32(d0h, xq_inactive);
const __m128i d0l_xq = _mm_mullo_epi32(d0l, xq_inactive);
const __m128i vh = _mm_add_epi32(flth_xq, d0h_xq);
const __m128i vl = _mm_add_epi32(fltl_xq, d0l_xq);
// vh = [ xq0(f[7]-d[7]) xq0(f[6]-d[6]) xq0(f[5]-d[5]) xq0(f[4]-d[4]) ]
// vl = [ xq0(f[3]-d[3]) xq0(f[2]-d[2]) xq0(f[1]-d[1]) xq0(f[0]-d[0]) ]
// Shift this down with appropriate rounding
const __m128i vrh = _mm_srai_epi32(_mm_add_epi32(vh, rounding), shift);
const __m128i vrl = _mm_srai_epi32(_mm_add_epi32(vl, rounding), shift);
// Saturate vr0 and vr1 from i32 to i16 then pack together
const __m128i vr = _mm_packs_epi32(vrl, vrh);
// Subtract twin-subspace-sgr filtered from source image to get error
const __m128i e0 = _mm_sub_epi16(_mm_add_epi16(vr, d0), s0);
// Calculate squared error and add adjacent values
const __m128i err0 = _mm_madd_epi16(e0, e0);
sum32 = _mm_add_epi32(sum32, err0);
}
const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
sum64 = _mm_add_epi64(sum64, sum32l);
const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
sum64 = _mm_add_epi64(sum64, sum32h);
// Process remaining pixels in this row (modulo 8)
for (k = j; k < width; ++k) {
const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS);
int32_t v = xq_on * (flt[k] - u);
const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
flt += flt_stride;
}
} else { // Neither filter is enabled
for (i = 0; i < height; ++i) {
__m128i sum32 = _mm_setzero_si128();
for (j = 0; j <= width - 16; j += 16) {
// Load 2x8 u16 from source image
const __m128i s0 = xx_loadu_128(src + j);
const __m128i s1 = xx_loadu_128(src + j + 8);
// Load 2x8 u16 from corrupted image
const __m128i d0 = xx_loadu_128(dat + j);
const __m128i d1 = xx_loadu_128(dat + j + 8);
// Subtract corrupted image from source image
const __m128i diff0 = _mm_sub_epi16(d0, s0);
const __m128i diff1 = _mm_sub_epi16(d1, s1);
// Square error and add adjacent values
const __m128i err0 = _mm_madd_epi16(diff0, diff0);
const __m128i err1 = _mm_madd_epi16(diff1, diff1);
sum32 = _mm_add_epi32(sum32, err0);
sum32 = _mm_add_epi32(sum32, err1);
}
const __m128i sum32l = _mm_cvtepu32_epi64(sum32);
sum64 = _mm_add_epi64(sum64, sum32l);
const __m128i sum32h = _mm_cvtepu32_epi64(_mm_srli_si128(sum32, 8));
sum64 = _mm_add_epi64(sum64, sum32h);
// Process remaining pixels (modulu 8)
for (k = j; k < width; ++k) {
const int32_t e = (int32_t)(dat[k]) - src[k];
err += ((int64_t)e * e);
}
dat += dat_stride;
src += src_stride;
}
}
// Sum 4 values from sum64l and sum64h into err
int64_t sum[2];
xx_storeu_128(sum, sum64);
err += sum[0] + sum[1];
return err;
}
#endif // CONFIG_AV1_HIGHBITDEPTH