| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <assert.h> |
| #include <math.h> |
| |
| #include "./aom_dsp_rtcd.h" |
| #include "./av1_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_dsp/blend.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/aom_timer.h" |
| #include "aom_ports/mem.h" |
| #include "aom_ports/system_state.h" |
| |
| #if CONFIG_CFL |
| #include "av1/common/cfl.h" |
| #endif |
| #include "av1/common/common.h" |
| #include "av1/common/common_data.h" |
| #include "av1/common/entropy.h" |
| #include "av1/common/entropymode.h" |
| #include "av1/common/idct.h" |
| #include "av1/common/mvref_common.h" |
| #include "av1/common/obmc.h" |
| #include "av1/common/pred_common.h" |
| #include "av1/common/quant_common.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/reconintra.h" |
| #include "av1/common/scan.h" |
| #include "av1/common/seg_common.h" |
| #include "av1/common/txb_common.h" |
| #include "av1/common/warped_motion.h" |
| |
| #include "av1/encoder/aq_variance.h" |
| #include "av1/encoder/av1_quantize.h" |
| #include "av1/encoder/cost.h" |
| #include "av1/encoder/encodemb.h" |
| #include "av1/encoder/encodemv.h" |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encodetxb.h" |
| #include "av1/encoder/hybrid_fwd_txfm.h" |
| #include "av1/encoder/mcomp.h" |
| #include "av1/encoder/palette.h" |
| #include "av1/encoder/ratectrl.h" |
| #include "av1/encoder/rd.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/tokenize.h" |
| #include "av1/encoder/tx_prune_model_weights.h" |
| |
| #define DUAL_FILTER_SET_SIZE (SWITCHABLE_FILTERS * SWITCHABLE_FILTERS) |
| static const int filter_sets[DUAL_FILTER_SET_SIZE][2] = { |
| { 0, 0 }, { 0, 1 }, { 0, 2 }, { 1, 0 }, { 1, 1 }, |
| { 1, 2 }, { 2, 0 }, { 2, 1 }, { 2, 2 }, |
| }; |
| |
| #define LAST_FRAME_MODE_MASK \ |
| ((1 << INTRA_FRAME) | (1 << LAST2_FRAME) | (1 << LAST3_FRAME) | \ |
| (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \ |
| (1 << ALTREF_FRAME)) |
| #define LAST2_FRAME_MODE_MASK \ |
| ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST3_FRAME) | \ |
| (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \ |
| (1 << ALTREF_FRAME)) |
| #define LAST3_FRAME_MODE_MASK \ |
| ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ |
| (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \ |
| (1 << ALTREF_FRAME)) |
| #define GOLDEN_FRAME_MODE_MASK \ |
| ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ |
| (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | (1 << ALTREF2_FRAME) | \ |
| (1 << ALTREF_FRAME)) |
| #define BWDREF_FRAME_MODE_MASK \ |
| ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ |
| (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << ALTREF2_FRAME) | \ |
| (1 << ALTREF_FRAME)) |
| #define ALTREF2_FRAME_MODE_MASK \ |
| ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ |
| (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | \ |
| (1 << ALTREF_FRAME)) |
| #define ALTREF_FRAME_MODE_MASK \ |
| ((1 << INTRA_FRAME) | (1 << LAST_FRAME) | (1 << LAST2_FRAME) | \ |
| (1 << LAST3_FRAME) | (1 << GOLDEN_FRAME) | (1 << BWDREF_FRAME) | \ |
| (1 << ALTREF2_FRAME)) |
| |
| #if CONFIG_EXT_COMP_REFS |
| #define SECOND_REF_FRAME_MASK \ |
| ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | \ |
| (1 << GOLDEN_FRAME) | (1 << LAST2_FRAME) | 0x01) |
| #else // !CONFIG_EXT_COMP_REFS |
| #define SECOND_REF_FRAME_MASK \ |
| ((1 << ALTREF_FRAME) | (1 << ALTREF2_FRAME) | (1 << BWDREF_FRAME) | 0x01) |
| #endif // CONFIG_EXT_COMP_REFS |
| |
| #define NEW_MV_DISCOUNT_FACTOR 8 |
| |
| #define ANGLE_SKIP_THRESH 10 |
| |
| static const double ADST_FLIP_SVM[8] = { |
| /* vertical */ |
| -6.6623, -2.8062, -3.2531, 3.1671, |
| /* horizontal */ |
| -7.7051, -3.2234, -3.6193, 3.4533 |
| }; |
| |
| typedef struct { |
| PREDICTION_MODE mode; |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } MODE_DEFINITION; |
| |
| typedef struct { |
| MV_REFERENCE_FRAME ref_frame[2]; |
| } REF_DEFINITION; |
| |
| struct rdcost_block_args { |
| const AV1_COMP *cpi; |
| MACROBLOCK *x; |
| ENTROPY_CONTEXT t_above[2 * MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT t_left[2 * MAX_MIB_SIZE]; |
| RD_STATS rd_stats; |
| int64_t this_rd; |
| int64_t best_rd; |
| int exit_early; |
| int use_fast_coef_costing; |
| }; |
| |
| #define LAST_NEW_MV_INDEX 6 |
| static const MODE_DEFINITION av1_mode_order[MAX_MODES] = { |
| { NEARESTMV, { LAST_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { LAST2_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { LAST3_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { ALTREF2_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } }, |
| { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } }, |
| |
| { DC_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| |
| { NEWMV, { LAST_FRAME, NONE_FRAME } }, |
| { NEWMV, { LAST2_FRAME, NONE_FRAME } }, |
| { NEWMV, { LAST3_FRAME, NONE_FRAME } }, |
| { NEWMV, { BWDREF_FRAME, NONE_FRAME } }, |
| { NEWMV, { ALTREF2_FRAME, NONE_FRAME } }, |
| { NEWMV, { ALTREF_FRAME, NONE_FRAME } }, |
| { NEWMV, { GOLDEN_FRAME, NONE_FRAME } }, |
| |
| { NEARMV, { LAST_FRAME, NONE_FRAME } }, |
| { NEARMV, { LAST2_FRAME, NONE_FRAME } }, |
| { NEARMV, { LAST3_FRAME, NONE_FRAME } }, |
| { NEARMV, { BWDREF_FRAME, NONE_FRAME } }, |
| { NEARMV, { ALTREF2_FRAME, NONE_FRAME } }, |
| { NEARMV, { ALTREF_FRAME, NONE_FRAME } }, |
| { NEARMV, { GOLDEN_FRAME, NONE_FRAME } }, |
| |
| { GLOBALMV, { LAST_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { LAST2_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { LAST3_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { BWDREF_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { ALTREF2_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { GOLDEN_FRAME, NONE_FRAME } }, |
| { GLOBALMV, { ALTREF_FRAME, NONE_FRAME } }, |
| |
| // TODO(zoeliu): May need to reconsider the order on the modes to check |
| |
| { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| |
| #if CONFIG_EXT_COMP_REFS |
| { NEAREST_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEAREST_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEAREST_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| #endif // CONFIG_EXT_COMP_REFS |
| |
| { PAETH_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| |
| { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { SMOOTH_V_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { SMOOTH_H_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF_FRAME } }, |
| |
| { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, BWDREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST2_FRAME, BWDREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST3_FRAME, BWDREF_FRAME } }, |
| |
| { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { GOLDEN_FRAME, BWDREF_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF2_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEAR_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF2_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEAR_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF2_FRAME } }, |
| |
| { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { NEW_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, |
| |
| { H_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { V_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D135_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D203_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D157_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D67_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D113_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| { D45_PRED, { INTRA_FRAME, NONE_FRAME } }, |
| |
| #if CONFIG_EXT_COMP_REFS |
| { NEAR_NEARMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, LAST2_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, LAST2_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, LAST2_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, LAST3_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, LAST3_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, LAST3_FRAME } }, |
| |
| { NEAR_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEW_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEAREST_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEW_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEAR_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { NEW_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| { GLOBAL_GLOBALMV, { LAST_FRAME, GOLDEN_FRAME } }, |
| |
| { NEAR_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEAREST_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEW_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEAR_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { NEW_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| { GLOBAL_GLOBALMV, { BWDREF_FRAME, ALTREF_FRAME } }, |
| #endif // CONFIG_EXT_COMP_REFS |
| }; |
| |
| static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = { |
| DC_PRED, H_PRED, V_PRED, SMOOTH_PRED, PAETH_PRED, |
| SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED, D157_PRED, |
| D67_PRED, D113_PRED, D45_PRED, |
| }; |
| |
| #if CONFIG_CFL |
| static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = { |
| UV_DC_PRED, UV_CFL_PRED, UV_H_PRED, UV_V_PRED, |
| UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED, |
| UV_D135_PRED, UV_D203_PRED, UV_D157_PRED, UV_D67_PRED, |
| UV_D113_PRED, UV_D45_PRED, |
| }; |
| #else |
| #define uv_rd_search_mode_order intra_rd_search_mode_order |
| #endif // CONFIG_CFL |
| |
| static INLINE int write_uniform_cost(int n, int v) { |
| const int l = get_unsigned_bits(n); |
| const int m = (1 << l) - n; |
| if (l == 0) return 0; |
| if (v < m) |
| return av1_cost_literal(l - 1); |
| else |
| return av1_cost_literal(l); |
| } |
| |
| // constants for prune 1 and prune 2 decision boundaries |
| #define FAST_EXT_TX_CORR_MID 0.0 |
| #define FAST_EXT_TX_EDST_MID 0.1 |
| #define FAST_EXT_TX_CORR_MARGIN 0.5 |
| #define FAST_EXT_TX_EDST_MARGIN 0.3 |
| |
| int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_stats, |
| BLOCK_SIZE bsize, int64_t ref_best_rd, int fast); |
| int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_stats, |
| BLOCK_SIZE bsize, int64_t ref_best_rd, int fast); |
| |
| static unsigned pixel_dist_visible_only( |
| const AV1_COMP *const cpi, const MACROBLOCK *x, const uint8_t *src, |
| const int src_stride, const uint8_t *dst, const int dst_stride, |
| const BLOCK_SIZE tx_bsize, int txb_rows, int txb_cols, int visible_rows, |
| int visible_cols) { |
| unsigned sse; |
| |
| if (txb_rows == visible_rows && txb_cols == visible_cols) { |
| cpi->fn_ptr[tx_bsize].vf(src, src_stride, dst, dst_stride, &sse); |
| return sse; |
| } |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| uint64_t sse64 = aom_highbd_sse_odd_size(src, src_stride, dst, dst_stride, |
| visible_cols, visible_rows); |
| return (unsigned int)ROUND_POWER_OF_TWO(sse64, (xd->bd - 8) * 2); |
| } |
| sse = aom_sse_odd_size(src, src_stride, dst, dst_stride, visible_cols, |
| visible_rows); |
| return sse; |
| } |
| |
| #if CONFIG_DIST_8X8 |
| static uint64_t cdef_dist_8x8_16bit(uint16_t *dst, int dstride, uint16_t *src, |
| int sstride, int coeff_shift) { |
| uint64_t svar = 0; |
| uint64_t dvar = 0; |
| uint64_t sum_s = 0; |
| uint64_t sum_d = 0; |
| uint64_t sum_s2 = 0; |
| uint64_t sum_d2 = 0; |
| uint64_t sum_sd = 0; |
| uint64_t dist = 0; |
| |
| int i, j; |
| for (i = 0; i < 8; i++) { |
| for (j = 0; j < 8; j++) { |
| sum_s += src[i * sstride + j]; |
| sum_d += dst[i * dstride + j]; |
| sum_s2 += src[i * sstride + j] * src[i * sstride + j]; |
| sum_d2 += dst[i * dstride + j] * dst[i * dstride + j]; |
| sum_sd += src[i * sstride + j] * dst[i * dstride + j]; |
| } |
| } |
| /* Compute the variance -- the calculation cannot go negative. */ |
| svar = sum_s2 - ((sum_s * sum_s + 32) >> 6); |
| dvar = sum_d2 - ((sum_d * sum_d + 32) >> 6); |
| |
| // Tuning of jm's original dering distortion metric used in CDEF tool, |
| // suggested by jm |
| const uint64_t a = 4; |
| const uint64_t b = 2; |
| const uint64_t c1 = (400 * a << 2 * coeff_shift); |
| const uint64_t c2 = (b * 20000 * a * a << 4 * coeff_shift); |
| |
| dist = (uint64_t)floor(.5 + (sum_d2 + sum_s2 - 2 * sum_sd) * .5 * |
| (svar + dvar + c1) / |
| (sqrt(svar * (double)dvar + c2))); |
| |
| // Calibrate dist to have similar rate for the same QP with MSE only |
| // distortion (as in master branch) |
| dist = (uint64_t)((float)dist * 0.75); |
| |
| return dist; |
| } |
| |
| static int od_compute_var_4x4(uint16_t *x, int stride) { |
| int sum; |
| int s2; |
| int i; |
| sum = 0; |
| s2 = 0; |
| for (i = 0; i < 4; i++) { |
| int j; |
| for (j = 0; j < 4; j++) { |
| int t; |
| |
| t = x[i * stride + j]; |
| sum += t; |
| s2 += t * t; |
| } |
| } |
| |
| return (s2 - (sum * sum >> 4)) >> 4; |
| } |
| |
| /* OD_DIST_LP_MID controls the frequency weighting filter used for computing |
| the distortion. For a value X, the filter is [1 X 1]/(X + 2) and |
| is applied both horizontally and vertically. For X=5, the filter is |
| a good approximation for the OD_QM8_Q4_HVS quantization matrix. */ |
| #define OD_DIST_LP_MID (5) |
| #define OD_DIST_LP_NORM (OD_DIST_LP_MID + 2) |
| |
| static double od_compute_dist_8x8(int use_activity_masking, uint16_t *x, |
| uint16_t *y, od_coeff *e_lp, int stride) { |
| double sum; |
| int min_var; |
| double mean_var; |
| double var_stat; |
| double activity; |
| double calibration; |
| int i; |
| int j; |
| double vardist; |
| |
| vardist = 0; |
| |
| #if 1 |
| min_var = INT_MAX; |
| mean_var = 0; |
| for (i = 0; i < 3; i++) { |
| for (j = 0; j < 3; j++) { |
| int varx; |
| int vary; |
| varx = od_compute_var_4x4(x + 2 * i * stride + 2 * j, stride); |
| vary = od_compute_var_4x4(y + 2 * i * stride + 2 * j, stride); |
| min_var = OD_MINI(min_var, varx); |
| mean_var += 1. / (1 + varx); |
| /* The cast to (double) is to avoid an overflow before the sqrt.*/ |
| vardist += varx - 2 * sqrt(varx * (double)vary) + vary; |
| } |
| } |
| /* We use a different variance statistic depending on whether activity |
| masking is used, since the harmonic mean appeared slightly worse with |
| masking off. The calibration constant just ensures that we preserve the |
| rate compared to activity=1. */ |
| if (use_activity_masking) { |
| calibration = 1.95; |
| var_stat = 9. / mean_var; |
| } else { |
| calibration = 1.62; |
| var_stat = min_var; |
| } |
| /* 1.62 is a calibration constant, 0.25 is a noise floor and 1/6 is the |
| activity masking constant. */ |
| activity = calibration * pow(.25 + var_stat, -1. / 6); |
| #else |
| activity = 1; |
| #endif // 1 |
| sum = 0; |
| for (i = 0; i < 8; i++) { |
| for (j = 0; j < 8; j++) |
| sum += e_lp[i * stride + j] * (double)e_lp[i * stride + j]; |
| } |
| /* Normalize the filter to unit DC response. */ |
| sum *= 1. / (OD_DIST_LP_NORM * OD_DIST_LP_NORM * OD_DIST_LP_NORM * |
| OD_DIST_LP_NORM); |
| return activity * activity * (sum + vardist); |
| } |
| |
| // Note : Inputs x and y are in a pixel domain |
| static double od_compute_dist_common(int activity_masking, uint16_t *x, |
| uint16_t *y, int bsize_w, int bsize_h, |
| int qindex, od_coeff *tmp, |
| od_coeff *e_lp) { |
| int i, j; |
| double sum = 0; |
| const int mid = OD_DIST_LP_MID; |
| |
| for (j = 0; j < bsize_w; j++) { |
| e_lp[j] = mid * tmp[j] + 2 * tmp[bsize_w + j]; |
| e_lp[(bsize_h - 1) * bsize_w + j] = mid * tmp[(bsize_h - 1) * bsize_w + j] + |
| 2 * tmp[(bsize_h - 2) * bsize_w + j]; |
| } |
| for (i = 1; i < bsize_h - 1; i++) { |
| for (j = 0; j < bsize_w; j++) { |
| e_lp[i * bsize_w + j] = mid * tmp[i * bsize_w + j] + |
| tmp[(i - 1) * bsize_w + j] + |
| tmp[(i + 1) * bsize_w + j]; |
| } |
| } |
| for (i = 0; i < bsize_h; i += 8) { |
| for (j = 0; j < bsize_w; j += 8) { |
| sum += od_compute_dist_8x8(activity_masking, &x[i * bsize_w + j], |
| &y[i * bsize_w + j], &e_lp[i * bsize_w + j], |
| bsize_w); |
| } |
| } |
| /* Scale according to linear regression against SSE, for 8x8 blocks. */ |
| if (activity_masking) { |
| sum *= 2.2 + (1.7 - 2.2) * (qindex - 99) / (210 - 99) + |
| (qindex < 99 ? 2.5 * (qindex - 99) / 99 * (qindex - 99) / 99 : 0); |
| } else { |
| sum *= qindex >= 128 |
| ? 1.4 + (0.9 - 1.4) * (qindex - 128) / (209 - 128) |
| : qindex <= 43 ? 1.5 + (2.0 - 1.5) * (qindex - 43) / (16 - 43) |
| : 1.5 + (1.4 - 1.5) * (qindex - 43) / (128 - 43); |
| } |
| |
| return sum; |
| } |
| |
| static double od_compute_dist(uint16_t *x, uint16_t *y, int bsize_w, |
| int bsize_h, int qindex) { |
| assert(bsize_w >= 8 && bsize_h >= 8); |
| |
| int activity_masking = 0; |
| |
| int i, j; |
| DECLARE_ALIGNED(16, od_coeff, e[MAX_TX_SQUARE]); |
| DECLARE_ALIGNED(16, od_coeff, tmp[MAX_TX_SQUARE]); |
| DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_TX_SQUARE]); |
| for (i = 0; i < bsize_h; i++) { |
| for (j = 0; j < bsize_w; j++) { |
| e[i * bsize_w + j] = x[i * bsize_w + j] - y[i * bsize_w + j]; |
| } |
| } |
| int mid = OD_DIST_LP_MID; |
| for (i = 0; i < bsize_h; i++) { |
| tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1]; |
| tmp[i * bsize_w + bsize_w - 1] = |
| mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2]; |
| for (j = 1; j < bsize_w - 1; j++) { |
| tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] + |
| e[i * bsize_w + j + 1]; |
| } |
| } |
| return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h, |
| qindex, tmp, e_lp); |
| } |
| |
| static double od_compute_dist_diff(uint16_t *x, int16_t *e, int bsize_w, |
| int bsize_h, int qindex) { |
| assert(bsize_w >= 8 && bsize_h >= 8); |
| |
| int activity_masking = 0; |
| |
| DECLARE_ALIGNED(16, uint16_t, y[MAX_TX_SQUARE]); |
| DECLARE_ALIGNED(16, od_coeff, tmp[MAX_TX_SQUARE]); |
| DECLARE_ALIGNED(16, od_coeff, e_lp[MAX_TX_SQUARE]); |
| int i, j; |
| for (i = 0; i < bsize_h; i++) { |
| for (j = 0; j < bsize_w; j++) { |
| y[i * bsize_w + j] = x[i * bsize_w + j] - e[i * bsize_w + j]; |
| } |
| } |
| int mid = OD_DIST_LP_MID; |
| for (i = 0; i < bsize_h; i++) { |
| tmp[i * bsize_w] = mid * e[i * bsize_w] + 2 * e[i * bsize_w + 1]; |
| tmp[i * bsize_w + bsize_w - 1] = |
| mid * e[i * bsize_w + bsize_w - 1] + 2 * e[i * bsize_w + bsize_w - 2]; |
| for (j = 1; j < bsize_w - 1; j++) { |
| tmp[i * bsize_w + j] = mid * e[i * bsize_w + j] + e[i * bsize_w + j - 1] + |
| e[i * bsize_w + j + 1]; |
| } |
| } |
| return od_compute_dist_common(activity_masking, x, y, bsize_w, bsize_h, |
| qindex, tmp, e_lp); |
| } |
| |
| int64_t av1_dist_8x8(const AV1_COMP *const cpi, const MACROBLOCK *x, |
| const uint8_t *src, int src_stride, const uint8_t *dst, |
| int dst_stride, const BLOCK_SIZE tx_bsize, int bsw, |
| int bsh, int visible_w, int visible_h, int qindex) { |
| int64_t d = 0; |
| int i, j; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| DECLARE_ALIGNED(16, uint16_t, orig[MAX_TX_SQUARE]); |
| DECLARE_ALIGNED(16, uint16_t, rec[MAX_TX_SQUARE]); |
| |
| assert(bsw >= 8); |
| assert(bsh >= 8); |
| assert((bsw & 0x07) == 0); |
| assert((bsh & 0x07) == 0); |
| |
| if (x->tune_metric == AOM_TUNE_CDEF_DIST || |
| x->tune_metric == AOM_TUNE_DAALA_DIST) { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; |
| |
| if ((bsw == visible_w) && (bsh == visible_h)) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i]; |
| } else { |
| for (j = 0; j < visible_h; j++) |
| for (i = 0; i < visible_w; i++) |
| rec[j * bsw + i] = CONVERT_TO_SHORTPTR(dst)[j * dst_stride + i]; |
| |
| if (visible_w < bsw) { |
| for (j = 0; j < bsh; j++) |
| for (i = visible_w; i < bsw; i++) |
| rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; |
| } |
| |
| if (visible_h < bsh) { |
| for (j = visible_h; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| rec[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; |
| } |
| } |
| } else { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i]; |
| |
| if ((bsw == visible_w) && (bsh == visible_h)) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) rec[j * bsw + i] = dst[j * dst_stride + i]; |
| } else { |
| for (j = 0; j < visible_h; j++) |
| for (i = 0; i < visible_w; i++) |
| rec[j * bsw + i] = dst[j * dst_stride + i]; |
| |
| if (visible_w < bsw) { |
| for (j = 0; j < bsh; j++) |
| for (i = visible_w; i < bsw; i++) |
| rec[j * bsw + i] = src[j * src_stride + i]; |
| } |
| |
| if (visible_h < bsh) { |
| for (j = visible_h; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| rec[j * bsw + i] = src[j * src_stride + i]; |
| } |
| } |
| } |
| } |
| |
| if (x->tune_metric == AOM_TUNE_DAALA_DIST) { |
| d = (int64_t)od_compute_dist(orig, rec, bsw, bsh, qindex); |
| } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) { |
| int coeff_shift = AOMMAX(xd->bd - 8, 0); |
| |
| for (i = 0; i < bsh; i += 8) { |
| for (j = 0; j < bsw; j += 8) { |
| d += cdef_dist_8x8_16bit(&rec[i * bsw + j], bsw, &orig[i * bsw + j], |
| bsw, coeff_shift); |
| } |
| } |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| d = ((uint64_t)d) >> 2 * coeff_shift; |
| } else { |
| // Otherwise, MSE by default |
| d = pixel_dist_visible_only(cpi, x, src, src_stride, dst, dst_stride, |
| tx_bsize, bsh, bsw, visible_h, visible_w); |
| } |
| |
| return d; |
| } |
| |
| static int64_t dist_8x8_diff(const MACROBLOCK *x, const uint8_t *src, |
| int src_stride, const int16_t *diff, |
| int diff_stride, int bsw, int bsh, int visible_w, |
| int visible_h, int qindex) { |
| int64_t d = 0; |
| int i, j; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| DECLARE_ALIGNED(16, uint16_t, orig[MAX_TX_SQUARE]); |
| DECLARE_ALIGNED(16, int16_t, diff16[MAX_TX_SQUARE]); |
| |
| assert(bsw >= 8); |
| assert(bsh >= 8); |
| assert((bsw & 0x07) == 0); |
| assert((bsh & 0x07) == 0); |
| |
| if (x->tune_metric == AOM_TUNE_CDEF_DIST || |
| x->tune_metric == AOM_TUNE_DAALA_DIST) { |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| orig[j * bsw + i] = CONVERT_TO_SHORTPTR(src)[j * src_stride + i]; |
| } else { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) orig[j * bsw + i] = src[j * src_stride + i]; |
| } |
| |
| if ((bsw == visible_w) && (bsh == visible_h)) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| diff16[j * bsw + i] = diff[j * diff_stride + i]; |
| } else { |
| for (j = 0; j < visible_h; j++) |
| for (i = 0; i < visible_w; i++) |
| diff16[j * bsw + i] = diff[j * diff_stride + i]; |
| |
| if (visible_w < bsw) { |
| for (j = 0; j < bsh; j++) |
| for (i = visible_w; i < bsw; i++) diff16[j * bsw + i] = 0; |
| } |
| |
| if (visible_h < bsh) { |
| for (j = visible_h; j < bsh; j++) |
| for (i = 0; i < bsw; i++) diff16[j * bsw + i] = 0; |
| } |
| } |
| } |
| |
| if (x->tune_metric == AOM_TUNE_DAALA_DIST) { |
| d = (int64_t)od_compute_dist_diff(orig, diff16, bsw, bsh, qindex); |
| } else if (x->tune_metric == AOM_TUNE_CDEF_DIST) { |
| int coeff_shift = AOMMAX(xd->bd - 8, 0); |
| DECLARE_ALIGNED(16, uint16_t, dst16[MAX_TX_SQUARE]); |
| |
| for (i = 0; i < bsh; i++) { |
| for (j = 0; j < bsw; j++) { |
| dst16[i * bsw + j] = orig[i * bsw + j] - diff16[i * bsw + j]; |
| } |
| } |
| |
| for (i = 0; i < bsh; i += 8) { |
| for (j = 0; j < bsw; j += 8) { |
| d += cdef_dist_8x8_16bit(&dst16[i * bsw + j], bsw, &orig[i * bsw + j], |
| bsw, coeff_shift); |
| } |
| } |
| // Don't scale 'd' for HBD since it will be done by caller side for diff |
| // input |
| } else { |
| // Otherwise, MSE by default |
| d = aom_sum_squares_2d_i16(diff, diff_stride, visible_w, visible_h); |
| } |
| |
| return d; |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| static void get_energy_distribution_fine(const AV1_COMP *cpi, BLOCK_SIZE bsize, |
| const uint8_t *src, int src_stride, |
| const uint8_t *dst, int dst_stride, |
| double *hordist, double *verdist) { |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| unsigned int esq[16] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; |
| |
| const int f_index = bsize - BLOCK_16X16; |
| if (f_index < 0) { |
| const int w_shift = bw == 8 ? 1 : 2; |
| const int h_shift = bh == 8 ? 1 : 2; |
| if (cpi->common.use_highbitdepth) { |
| const uint16_t *src16 = CONVERT_TO_SHORTPTR(src); |
| const uint16_t *dst16 = CONVERT_TO_SHORTPTR(dst); |
| for (int i = 0; i < bh; ++i) |
| for (int j = 0; j < bw; ++j) { |
| const int index = (j >> w_shift) + ((i >> h_shift) << 2); |
| esq[index] += |
| (src16[j + i * src_stride] - dst16[j + i * dst_stride]) * |
| (src16[j + i * src_stride] - dst16[j + i * dst_stride]); |
| } |
| } else { |
| for (int i = 0; i < bh; ++i) |
| for (int j = 0; j < bw; ++j) { |
| const int index = (j >> w_shift) + ((i >> h_shift) << 2); |
| esq[index] += (src[j + i * src_stride] - dst[j + i * dst_stride]) * |
| (src[j + i * src_stride] - dst[j + i * dst_stride]); |
| } |
| } |
| } else { |
| cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[0]); |
| cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, |
| &esq[1]); |
| cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, |
| &esq[2]); |
| cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[3]); |
| src += bh / 4 * src_stride; |
| dst += bh / 4 * dst_stride; |
| |
| cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[4]); |
| cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, |
| &esq[5]); |
| cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, |
| &esq[6]); |
| cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[7]); |
| src += bh / 4 * src_stride; |
| dst += bh / 4 * dst_stride; |
| |
| cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[8]); |
| cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, |
| &esq[9]); |
| cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, |
| &esq[10]); |
| cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[11]); |
| src += bh / 4 * src_stride; |
| dst += bh / 4 * dst_stride; |
| |
| cpi->fn_ptr[f_index].vf(src, src_stride, dst, dst_stride, &esq[12]); |
| cpi->fn_ptr[f_index].vf(src + bw / 4, src_stride, dst + bw / 4, dst_stride, |
| &esq[13]); |
| cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, dst + bw / 2, dst_stride, |
| &esq[14]); |
| cpi->fn_ptr[f_index].vf(src + 3 * bw / 4, src_stride, dst + 3 * bw / 4, |
| dst_stride, &esq[15]); |
| } |
| |
| double total = (double)esq[0] + esq[1] + esq[2] + esq[3] + esq[4] + esq[5] + |
| esq[6] + esq[7] + esq[8] + esq[9] + esq[10] + esq[11] + |
| esq[12] + esq[13] + esq[14] + esq[15]; |
| if (total > 0) { |
| const double e_recip = 1.0 / total; |
| hordist[0] = ((double)esq[0] + esq[4] + esq[8] + esq[12]) * e_recip; |
| hordist[1] = ((double)esq[1] + esq[5] + esq[9] + esq[13]) * e_recip; |
| hordist[2] = ((double)esq[2] + esq[6] + esq[10] + esq[14]) * e_recip; |
| verdist[0] = ((double)esq[0] + esq[1] + esq[2] + esq[3]) * e_recip; |
| verdist[1] = ((double)esq[4] + esq[5] + esq[6] + esq[7]) * e_recip; |
| verdist[2] = ((double)esq[8] + esq[9] + esq[10] + esq[11]) * e_recip; |
| } else { |
| hordist[0] = verdist[0] = 0.25; |
| hordist[1] = verdist[1] = 0.25; |
| hordist[2] = verdist[2] = 0.25; |
| } |
| } |
| |
| static int adst_vs_flipadst(const AV1_COMP *cpi, BLOCK_SIZE bsize, |
| const uint8_t *src, int src_stride, |
| const uint8_t *dst, int dst_stride) { |
| int prune_bitmask = 0; |
| double svm_proj_h = 0, svm_proj_v = 0; |
| double hdist[3] = { 0, 0, 0 }, vdist[3] = { 0, 0, 0 }; |
| get_energy_distribution_fine(cpi, bsize, src, src_stride, dst, dst_stride, |
| hdist, vdist); |
| |
| svm_proj_v = vdist[0] * ADST_FLIP_SVM[0] + vdist[1] * ADST_FLIP_SVM[1] + |
| vdist[2] * ADST_FLIP_SVM[2] + ADST_FLIP_SVM[3]; |
| svm_proj_h = hdist[0] * ADST_FLIP_SVM[4] + hdist[1] * ADST_FLIP_SVM[5] + |
| hdist[2] * ADST_FLIP_SVM[6] + ADST_FLIP_SVM[7]; |
| if (svm_proj_v > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) |
| prune_bitmask |= 1 << FLIPADST_1D; |
| else if (svm_proj_v < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) |
| prune_bitmask |= 1 << ADST_1D; |
| |
| if (svm_proj_h > FAST_EXT_TX_EDST_MID + FAST_EXT_TX_EDST_MARGIN) |
| prune_bitmask |= 1 << (FLIPADST_1D + 8); |
| else if (svm_proj_h < FAST_EXT_TX_EDST_MID - FAST_EXT_TX_EDST_MARGIN) |
| prune_bitmask |= 1 << (ADST_1D + 8); |
| |
| return prune_bitmask; |
| } |
| |
| static void get_horver_correlation(const int16_t *diff, int stride, int w, |
| int h, double *hcorr, double *vcorr) { |
| // Returns hor/ver correlation coefficient |
| const int num = (h - 1) * (w - 1); |
| double num_r; |
| int i, j; |
| int64_t xy_sum = 0, xz_sum = 0; |
| int64_t x_sum = 0, y_sum = 0, z_sum = 0; |
| int64_t x2_sum = 0, y2_sum = 0, z2_sum = 0; |
| double x_var_n, y_var_n, z_var_n, xy_var_n, xz_var_n; |
| *hcorr = *vcorr = 1; |
| |
| assert(num > 0); |
| num_r = 1.0 / num; |
| for (i = 1; i < h; ++i) { |
| for (j = 1; j < w; ++j) { |
| const int16_t x = diff[i * stride + j]; |
| const int16_t y = diff[i * stride + j - 1]; |
| const int16_t z = diff[(i - 1) * stride + j]; |
| xy_sum += x * y; |
| xz_sum += x * z; |
| x_sum += x; |
| y_sum += y; |
| z_sum += z; |
| x2_sum += x * x; |
| y2_sum += y * y; |
| z2_sum += z * z; |
| } |
| } |
| x_var_n = x2_sum - (x_sum * x_sum) * num_r; |
| y_var_n = y2_sum - (y_sum * y_sum) * num_r; |
| z_var_n = z2_sum - (z_sum * z_sum) * num_r; |
| xy_var_n = xy_sum - (x_sum * y_sum) * num_r; |
| xz_var_n = xz_sum - (x_sum * z_sum) * num_r; |
| if (x_var_n > 0 && y_var_n > 0) { |
| *hcorr = xy_var_n / sqrt(x_var_n * y_var_n); |
| *hcorr = *hcorr < 0 ? 0 : *hcorr; |
| } |
| if (x_var_n > 0 && z_var_n > 0) { |
| *vcorr = xz_var_n / sqrt(x_var_n * z_var_n); |
| *vcorr = *vcorr < 0 ? 0 : *vcorr; |
| } |
| } |
| |
| static int dct_vs_idtx(const int16_t *diff, int stride, int w, int h) { |
| double hcorr, vcorr; |
| int prune_bitmask = 0; |
| get_horver_correlation(diff, stride, w, h, &hcorr, &vcorr); |
| |
| if (vcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) |
| prune_bitmask |= 1 << IDTX_1D; |
| else if (vcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) |
| prune_bitmask |= 1 << DCT_1D; |
| |
| if (hcorr > FAST_EXT_TX_CORR_MID + FAST_EXT_TX_CORR_MARGIN) |
| prune_bitmask |= 1 << (IDTX_1D + 8); |
| else if (hcorr < FAST_EXT_TX_CORR_MID - FAST_EXT_TX_CORR_MARGIN) |
| prune_bitmask |= 1 << (DCT_1D + 8); |
| return prune_bitmask; |
| } |
| |
| // Performance drop: 0.5%, Speed improvement: 24% |
| static int prune_two_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, const MACROBLOCKD *xd, |
| int adst_flipadst, int dct_idtx) { |
| int prune = 0; |
| |
| if (adst_flipadst) { |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| prune |= adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, |
| pd->dst.buf, pd->dst.stride); |
| } |
| if (dct_idtx) { |
| av1_subtract_plane(x, bsize, 0); |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const int bw = 4 << (b_width_log2_lookup[bsize]); |
| const int bh = 4 << (b_height_log2_lookup[bsize]); |
| prune |= dct_vs_idtx(p->src_diff, bw, bw, bh); |
| } |
| |
| return prune; |
| } |
| |
| // Performance drop: 0.3%, Speed improvement: 5% |
| static int prune_one_for_sby(const AV1_COMP *cpi, BLOCK_SIZE bsize, |
| const MACROBLOCK *x, const MACROBLOCKD *xd) { |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| return adst_vs_flipadst(cpi, bsize, p->src.buf, p->src.stride, pd->dst.buf, |
| pd->dst.stride); |
| } |
| |
| // 1D Transforms used in inter set, this needs to be changed if |
| // ext_tx_used_inter is changed |
| static const int ext_tx_used_inter_1D[EXT_TX_SETS_INTER][TX_TYPES_1D] = { |
| { 1, 0, 0, 0 }, |
| { 1, 1, 1, 1 }, |
| { 1, 1, 1, 1 }, |
| { 1, 0, 0, 1 }, |
| }; |
| |
| static void get_energy_distribution_finer(const int16_t *diff, int stride, |
| int bw, int bh, float *hordist, |
| float *verdist) { |
| // First compute downscaled block energy values (esq); downscale factors |
| // are defined by w_shift and h_shift. |
| unsigned int esq[256]; |
| const int w_shift = bw <= 8 ? 0 : 1; |
| const int h_shift = bh <= 8 ? 0 : 1; |
| const int esq_w = bw <= 8 ? bw : bw / 2; |
| const int esq_h = bh <= 8 ? bh : bh / 2; |
| const int esq_sz = esq_w * esq_h; |
| int i, j; |
| memset(esq, 0, esq_sz * sizeof(esq[0])); |
| for (i = 0; i < bh; i++) { |
| unsigned int *cur_esq_row = esq + (i >> h_shift) * esq_w; |
| const int16_t *cur_diff_row = diff + i * stride; |
| for (j = 0; j < bw; j++) { |
| cur_esq_row[j >> w_shift] += cur_diff_row[j] * cur_diff_row[j]; |
| } |
| } |
| |
| uint64_t total = 0; |
| for (i = 0; i < esq_sz; i++) total += esq[i]; |
| |
| // Output hordist and verdist arrays are normalized 1D projections of esq |
| if (total == 0) { |
| float hor_val = 1.0f / esq_w; |
| for (j = 0; j < esq_w - 1; j++) hordist[j] = hor_val; |
| float ver_val = 1.0f / esq_h; |
| for (i = 0; i < esq_h - 1; i++) verdist[i] = ver_val; |
| return; |
| } |
| |
| const float e_recip = 1.0f / (float)total; |
| memset(hordist, 0, (esq_w - 1) * sizeof(hordist[0])); |
| memset(verdist, 0, (esq_h - 1) * sizeof(verdist[0])); |
| const unsigned int *cur_esq_row; |
| for (i = 0; i < esq_h - 1; i++) { |
| cur_esq_row = esq + i * esq_w; |
| for (j = 0; j < esq_w - 1; j++) { |
| hordist[j] += (float)cur_esq_row[j]; |
| verdist[i] += (float)cur_esq_row[j]; |
| } |
| verdist[i] += (float)cur_esq_row[j]; |
| } |
| cur_esq_row = esq + i * esq_w; |
| for (j = 0; j < esq_w - 1; j++) hordist[j] += (float)cur_esq_row[j]; |
| |
| for (j = 0; j < esq_w - 1; j++) hordist[j] *= e_recip; |
| for (i = 0; i < esq_h - 1; i++) verdist[i] *= e_recip; |
| } |
| |
| // Instead of 1D projections of the block energy distribution computed by |
| // get_energy_distribution_finer() this function computes a full |
| // two-dimensional energy distribution of the input block. |
| static void get_2D_energy_distribution(const int16_t *diff, int stride, int bw, |
| int bh, float *edist) { |
| unsigned int esq[256] = { 0 }; |
| const int esq_w = bw >> 2; |
| const int esq_h = bh >> 2; |
| const int esq_sz = esq_w * esq_h; |
| uint64_t total = 0; |
| for (int i = 0; i < bh; i += 4) { |
| for (int j = 0; j < bw; j += 4) { |
| unsigned int cur_sum_energy = 0; |
| for (int k = 0; k < 4; k++) { |
| const int16_t *cur_diff = diff + (i + k) * stride + j; |
| cur_sum_energy += cur_diff[0] * cur_diff[0] + |
| cur_diff[1] * cur_diff[1] + |
| cur_diff[2] * cur_diff[2] + cur_diff[3] * cur_diff[3]; |
| } |
| esq[(i >> 2) * esq_w + (j >> 2)] = cur_sum_energy; |
| total += cur_sum_energy; |
| } |
| } |
| |
| const float e_recip = 1.0f / (float)total; |
| for (int i = 0; i < esq_sz - 1; i++) edist[i] = esq[i] * e_recip; |
| } |
| |
| // Similar to get_horver_correlation, but also takes into account first |
| // row/column, when computing horizontal/vertical correlation. |
| static void get_horver_correlation_full(const int16_t *diff, int stride, int w, |
| int h, float *hcorr, float *vcorr) { |
| const float num_hor = (float)(h * (w - 1)); |
| const float num_ver = (float)((h - 1) * w); |
| int i, j; |
| |
| // The following notation is used: |
| // x - current pixel |
| // y - left neighbor pixel |
| // z - top neighbor pixel |
| int64_t xy_sum = 0, xz_sum = 0; |
| int64_t xhor_sum = 0, xver_sum = 0, y_sum = 0, z_sum = 0; |
| int64_t x2hor_sum = 0, x2ver_sum = 0, y2_sum = 0, z2_sum = 0; |
| |
| int16_t x, y, z; |
| for (j = 1; j < w; ++j) { |
| x = diff[j]; |
| y = diff[j - 1]; |
| xy_sum += x * y; |
| xhor_sum += x; |
| y_sum += y; |
| x2hor_sum += x * x; |
| y2_sum += y * y; |
| } |
| for (i = 1; i < h; ++i) { |
| x = diff[i * stride]; |
| z = diff[(i - 1) * stride]; |
| xz_sum += x * z; |
| xver_sum += x; |
| z_sum += z; |
| x2ver_sum += x * x; |
| z2_sum += z * z; |
| for (j = 1; j < w; ++j) { |
| x = diff[i * stride + j]; |
| y = diff[i * stride + j - 1]; |
| z = diff[(i - 1) * stride + j]; |
| xy_sum += x * y; |
| xz_sum += x * z; |
| xhor_sum += x; |
| xver_sum += x; |
| y_sum += y; |
| z_sum += z; |
| x2hor_sum += x * x; |
| x2ver_sum += x * x; |
| y2_sum += y * y; |
| z2_sum += z * z; |
| } |
| } |
| const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor; |
| const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor; |
| const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor; |
| const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver; |
| const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver; |
| const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver; |
| |
| *hcorr = *vcorr = 1; |
| if (xhor_var_n > 0 && y_var_n > 0) { |
| *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n); |
| *hcorr = *hcorr < 0 ? 0 : *hcorr; |
| } |
| if (xver_var_n > 0 && z_var_n > 0) { |
| *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n); |
| *vcorr = *vcorr < 0 ? 0 : *vcorr; |
| } |
| } |
| |
| // Performs a forward pass through a neural network with 2 fully-connected |
| // layers, assuming ReLU as activation function. Number of output neurons |
| // is always equal to 4. |
| // fc1, fc2 - weight matrices of the respective layers. |
| // b1, b2 - bias vectors of the respective layers. |
| static void compute_1D_scores(float *features, int num_features, |
| const float *fc1, const float *b1, |
| const float *fc2, const float *b2, |
| int num_hidden_units, float *dst_scores) { |
| assert(num_hidden_units <= 32); |
| float hidden_layer[32]; |
| for (int i = 0; i < num_hidden_units; i++) { |
| const float *cur_coef = fc1 + i * num_features; |
| hidden_layer[i] = 0.0f; |
| for (int j = 0; j < num_features; j++) |
| hidden_layer[i] += cur_coef[j] * features[j]; |
| hidden_layer[i] = AOMMAX(hidden_layer[i] + b1[i], 0.0f); |
| } |
| for (int i = 0; i < 4; i++) { |
| const float *cur_coef = fc2 + i * num_hidden_units; |
| dst_scores[i] = 0.0f; |
| for (int j = 0; j < num_hidden_units; j++) |
| dst_scores[i] += cur_coef[j] * hidden_layer[j]; |
| dst_scores[i] += b2[i]; |
| } |
| } |
| |
| // Transforms raw scores into a probability distribution across 16 TX types |
| static void score_2D_transform_pow8(float *scores_2D, float shift) { |
| float sum = 0.0f; |
| int i; |
| |
| for (i = 0; i < 16; i++) { |
| float v, v2, v4; |
| v = AOMMAX(scores_2D[i] + shift, 0.0f); |
| v2 = v * v; |
| v4 = v2 * v2; |
| scores_2D[i] = v4 * v4; |
| sum += scores_2D[i]; |
| } |
| for (i = 0; i < 16; i++) scores_2D[i] /= sum; |
| } |
| |
| // Similarly to compute_1D_scores() performs a forward pass through a |
| // neural network with two fully-connected layers. The only difference |
| // is that it assumes 1 output neuron, as required by the classifier used |
| // for TX size pruning. |
| static float compute_tx_split_prune_score(float *features, int num_features, |
| const float *fc1, const float *b1, |
| const float *fc2, float b2, |
| int num_hidden_units) { |
| assert(num_hidden_units <= 64); |
| float hidden_layer[64]; |
| for (int i = 0; i < num_hidden_units; i++) { |
| const float *cur_coef = fc1 + i * num_features; |
| hidden_layer[i] = 0.0f; |
| for (int j = 0; j < num_features; j++) |
| hidden_layer[i] += cur_coef[j] * features[j]; |
| hidden_layer[i] = AOMMAX(hidden_layer[i] + b1[i], 0.0f); |
| } |
| float dst_score = 0.0f; |
| for (int j = 0; j < num_hidden_units; j++) |
| dst_score += fc2[j] * hidden_layer[j]; |
| dst_score += b2; |
| return dst_score; |
| } |
| |
| static int prune_tx_split(BLOCK_SIZE bsize, const int16_t *diff, float hcorr, |
| float vcorr) { |
| if (bsize <= BLOCK_4X4 || bsize > BLOCK_16X16) return 0; |
| |
| float features[17]; |
| const int bw = block_size_wide[bsize], bh = block_size_high[bsize]; |
| const int feature_num = (bw / 4) * (bh / 4) + 1; |
| assert(feature_num <= 17); |
| |
| get_2D_energy_distribution(diff, bw, bw, bh, features); |
| features[feature_num - 2] = hcorr; |
| features[feature_num - 1] = vcorr; |
| |
| const int bidx = bsize - BLOCK_4X4 - 1; |
| const float *fc1 = av1_prune_tx_split_learned_weights[bidx]; |
| const float *b1 = |
| fc1 + av1_prune_tx_split_num_hidden_units[bidx] * feature_num; |
| const float *fc2 = b1 + av1_prune_tx_split_num_hidden_units[bidx]; |
| float b2 = *(fc2 + av1_prune_tx_split_num_hidden_units[bidx]); |
| float score = |
| compute_tx_split_prune_score(features, feature_num, fc1, b1, fc2, b2, |
| av1_prune_tx_split_num_hidden_units[bidx]); |
| |
| return (score > av1_prune_tx_split_thresholds[bidx]); |
| } |
| |
| static void prune_tx_2D(BLOCK_SIZE bsize, MACROBLOCK *x, |
| TX_TYPE_PRUNE_MODE prune_mode, int use_tx_split_prune) { |
| if (bsize >= BLOCK_32X32) return; |
| aom_clear_system_state(); |
| const struct macroblock_plane *const p = &x->plane[0]; |
| float hfeatures[16], vfeatures[16]; |
| float hscores[4], vscores[4]; |
| float scores_2D[16]; |
| const int tx_type_table_2D[16] = { |
| DCT_DCT, DCT_ADST, DCT_FLIPADST, V_DCT, |
| ADST_DCT, ADST_ADST, ADST_FLIPADST, V_ADST, |
| FLIPADST_DCT, FLIPADST_ADST, FLIPADST_FLIPADST, V_FLIPADST, |
| H_DCT, H_ADST, H_FLIPADST, IDTX |
| }; |
| const int bw = block_size_wide[bsize], bh = block_size_high[bsize]; |
| const int hfeatures_num = bw <= 8 ? bw : bw / 2; |
| const int vfeatures_num = bh <= 8 ? bh : bh / 2; |
| assert(hfeatures_num <= 16); |
| assert(vfeatures_num <= 16); |
| |
| get_energy_distribution_finer(p->src_diff, bw, bw, bh, hfeatures, vfeatures); |
| get_horver_correlation_full(p->src_diff, bw, bw, bh, |
| &hfeatures[hfeatures_num - 1], |
| &vfeatures[vfeatures_num - 1]); |
| const int bidx = AOMMAX(bsize - BLOCK_4X4, 0); |
| const float *fc1_hor = av1_prune_2D_learned_weights_hor[bidx]; |
| const float *b1_hor = |
| fc1_hor + av1_prune_2D_num_hidden_units_hor[bidx] * hfeatures_num; |
| const float *fc2_hor = b1_hor + av1_prune_2D_num_hidden_units_hor[bidx]; |
| const float *b2_hor = fc2_hor + av1_prune_2D_num_hidden_units_hor[bidx] * 4; |
| compute_1D_scores(hfeatures, hfeatures_num, fc1_hor, b1_hor, fc2_hor, b2_hor, |
| av1_prune_2D_num_hidden_units_hor[bidx], hscores); |
| |
| const float *fc1_ver = av1_prune_2D_learned_weights_ver[bidx]; |
| const float *b1_ver = |
| fc1_ver + av1_prune_2D_num_hidden_units_ver[bidx] * vfeatures_num; |
| const float *fc2_ver = b1_ver + av1_prune_2D_num_hidden_units_ver[bidx]; |
| const float *b2_ver = fc2_ver + av1_prune_2D_num_hidden_units_ver[bidx] * 4; |
| compute_1D_scores(vfeatures, vfeatures_num, fc1_ver, b1_ver, fc2_ver, b2_ver, |
| av1_prune_2D_num_hidden_units_ver[bidx], vscores); |
| |
| float score_2D_average = 0.0f; |
| for (int i = 0; i < 4; i++) { |
| float *cur_scores_2D = scores_2D + i * 4; |
| cur_scores_2D[0] = vscores[i] * hscores[0]; |
| cur_scores_2D[1] = vscores[i] * hscores[1]; |
| cur_scores_2D[2] = vscores[i] * hscores[2]; |
| cur_scores_2D[3] = vscores[i] * hscores[3]; |
| score_2D_average += cur_scores_2D[0] + cur_scores_2D[1] + cur_scores_2D[2] + |
| cur_scores_2D[3]; |
| } |
| score_2D_average /= 16; |
| score_2D_transform_pow8(scores_2D, (20 - score_2D_average)); |
| |
| // TODO(huisu@google.com): support more tx set types. |
| const int tx_set_types[2] = { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT }; |
| for (int tx_set_idx = 0; tx_set_idx < 2; ++tx_set_idx) { |
| const int tx_set_type = tx_set_types[tx_set_idx]; |
| // Always keep the TX type with the highest score, prune all others with |
| // score below score_thresh. |
| int max_score_i = 0; |
| float max_score = 0.0f; |
| for (int i = 0; i < 16; i++) { |
| if (scores_2D[i] > max_score && |
| av1_ext_tx_used[tx_set_type][tx_type_table_2D[i]]) { |
| max_score = scores_2D[i]; |
| max_score_i = i; |
| } |
| } |
| |
| int pruning_aggressiveness = 0; |
| if (prune_mode == PRUNE_2D_ACCURATE) { |
| if (tx_set_type == EXT_TX_SET_ALL16) |
| pruning_aggressiveness = 6; |
| else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT) |
| pruning_aggressiveness = 4; |
| } else if (prune_mode == PRUNE_2D_FAST) { |
| if (tx_set_type == EXT_TX_SET_ALL16) |
| pruning_aggressiveness = 10; |
| else if (tx_set_type == EXT_TX_SET_DTT9_IDTX_1DDCT) |
| pruning_aggressiveness = 7; |
| } |
| const float score_thresh = |
| av1_prune_2D_adaptive_thresholds[bidx][pruning_aggressiveness - 1]; |
| |
| int prune_bitmask = 0; |
| for (int i = 0; i < 16; i++) { |
| if (scores_2D[i] < score_thresh && i != max_score_i) |
| prune_bitmask |= (1 << tx_type_table_2D[i]); |
| } |
| x->tx_search_prune[tx_set_type] = prune_bitmask; |
| } |
| |
| // Also apply TX size pruning if it's turned on. The value |
| // of prune_tx_split_flag indicates whether we should do |
| // full TX size search (flag=0) or use the largest available |
| // TX size without performing any further search (flag=1). |
| int prune_tx_split_flag = 0; |
| if (use_tx_split_prune) { |
| prune_tx_split_flag = |
| prune_tx_split(bsize, p->src_diff, hfeatures[hfeatures_num - 1], |
| vfeatures[vfeatures_num - 1]); |
| } |
| x->tx_search_prune[0] |= (prune_tx_split_flag << TX_TYPES); |
| } |
| |
| static void prune_tx(const AV1_COMP *cpi, BLOCK_SIZE bsize, MACROBLOCK *x, |
| const MACROBLOCKD *const xd, int tx_set_type, |
| int use_tx_split_prune) { |
| av1_zero(x->tx_search_prune); |
| const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| if (!is_inter_block(mbmi) || cpi->sf.tx_type_search.prune_mode == NO_PRUNE || |
| x->use_default_inter_tx_type || xd->lossless[mbmi->segment_id] || |
| x->cb_partition_scan) |
| return; |
| int tx_set = ext_tx_set_index[1][tx_set_type]; |
| assert(tx_set >= 0); |
| const int *tx_set_1D = ext_tx_used_inter_1D[tx_set]; |
| switch (cpi->sf.tx_type_search.prune_mode) { |
| case NO_PRUNE: return; |
| case PRUNE_ONE: |
| if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) return; |
| x->tx_search_prune[tx_set_type] = prune_one_for_sby(cpi, bsize, x, xd); |
| break; |
| case PRUNE_TWO: |
| if (!(tx_set_1D[FLIPADST_1D] & tx_set_1D[ADST_1D])) { |
| if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) return; |
| x->tx_search_prune[tx_set_type] = |
| prune_two_for_sby(cpi, bsize, x, xd, 0, 1); |
| } |
| if (!(tx_set_1D[DCT_1D] & tx_set_1D[IDTX_1D])) { |
| x->tx_search_prune[tx_set_type] = |
| prune_two_for_sby(cpi, bsize, x, xd, 1, 0); |
| } |
| x->tx_search_prune[tx_set_type] = |
| prune_two_for_sby(cpi, bsize, x, xd, 1, 1); |
| break; |
| case PRUNE_2D_ACCURATE: |
| case PRUNE_2D_FAST: |
| prune_tx_2D(bsize, x, cpi->sf.tx_type_search.prune_mode, |
| use_tx_split_prune); |
| break; |
| default: assert(0); |
| } |
| } |
| |
| static int do_tx_type_search(TX_TYPE tx_type, int prune, |
| TX_TYPE_PRUNE_MODE mode) { |
| // TODO(sarahparker) implement for non ext tx |
| if (mode >= PRUNE_2D_ACCURATE) { |
| return !((prune >> tx_type) & 1); |
| } else { |
| return !(((prune >> vtx_tab[tx_type]) & 1) | |
| ((prune >> (htx_tab[tx_type] + 8)) & 1)); |
| } |
| } |
| |
| static void model_rd_from_sse(const AV1_COMP *const cpi, |
| const MACROBLOCKD *const xd, BLOCK_SIZE bsize, |
| int plane, int64_t sse, int *rate, |
| int64_t *dist) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int dequant_shift = |
| (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? xd->bd - 5 : 3; |
| |
| // Fast approximate the modelling function. |
| if (cpi->sf.simple_model_rd_from_var) { |
| const int64_t square_error = sse; |
| int quantizer = (pd->dequant_Q3[1] >> dequant_shift); |
| |
| if (quantizer < 120) |
| *rate = (int)((square_error * (280 - quantizer)) >> |
| (16 - AV1_PROB_COST_SHIFT)); |
| else |
| *rate = 0; |
| *dist = (square_error * quantizer) >> 8; |
| } else { |
| av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[bsize], |
| pd->dequant_Q3[1] >> dequant_shift, rate, |
| dist); |
| } |
| |
| *dist <<= 4; |
| } |
| |
| static void model_rd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, |
| int plane_to, int *out_rate_sum, |
| int64_t *out_dist_sum, int *skip_txfm_sb, |
| int64_t *skip_sse_sb) { |
| // Note our transform coeffs are 8 times an orthogonal transform. |
| // Hence quantizer step is also 8 times. To get effective quantizer |
| // we need to divide by 8 before sending to modeling function. |
| int plane; |
| const int ref = xd->mi[0]->mbmi.ref_frame[0]; |
| |
| int64_t rate_sum = 0; |
| int64_t dist_sum = 0; |
| int64_t total_sse = 0; |
| |
| x->pred_sse[ref] = 0; |
| |
| for (plane = plane_from; plane <= plane_to; ++plane) { |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); |
| unsigned int sse; |
| int rate; |
| int64_t dist; |
| |
| if (x->skip_chroma_rd && plane) continue; |
| |
| // TODO(geza): Write direct sse functions that do not compute |
| // variance as well. |
| cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| &sse); |
| |
| if (plane == 0) x->pred_sse[ref] = sse; |
| |
| total_sse += sse; |
| |
| model_rd_from_sse(cpi, xd, bs, plane, sse, &rate, &dist); |
| |
| rate_sum += rate; |
| dist_sum += dist; |
| } |
| |
| *skip_txfm_sb = total_sse == 0; |
| *skip_sse_sb = total_sse << 4; |
| *out_rate_sum = (int)rate_sum; |
| *out_dist_sum = dist_sum; |
| } |
| |
| static void check_block_skip(const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, |
| int plane_to, int *skip_txfm_sb) { |
| *skip_txfm_sb = 1; |
| for (int plane = plane_from; plane <= plane_to; ++plane) { |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE bs = get_plane_block_size(bsize, pd); |
| unsigned int sse; |
| |
| if (x->skip_chroma_rd && plane) continue; |
| |
| // Since fast HBD variance functions scale down sse by 4 bit, we first use |
| // fast vf implementation to rule out blocks with non-zero scaled sse. Then, |
| // only if the source is HBD and the scaled sse is 0, accurate sse |
| // computation is applied to determine if the sse is really 0. This step is |
| // necessary for HBD lossless coding. |
| cpi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| &sse); |
| if (sse) { |
| *skip_txfm_sb = 0; |
| return; |
| } else if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| uint64_t sse64 = aom_highbd_sse_odd_size( |
| p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, |
| block_size_wide[bs], block_size_high[bs]); |
| |
| if (sse64) { |
| *skip_txfm_sb = 0; |
| return; |
| } |
| } |
| } |
| return; |
| } |
| |
| int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, |
| intptr_t block_size, int64_t *ssz) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += coeff[i] * coeff[i]; |
| } |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| int64_t av1_block_error_fp_c(const int16_t *coeff, const int16_t *dqcoeff, |
| int block_size) { |
| int i; |
| int64_t error = 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| } |
| |
| return error; |
| } |
| |
| int64_t av1_highbd_block_error_c(const tran_low_t *coeff, |
| const tran_low_t *dqcoeff, intptr_t block_size, |
| int64_t *ssz, int bd) { |
| int i; |
| int64_t error = 0, sqcoeff = 0; |
| int shift = 2 * (bd - 8); |
| int rounding = shift > 0 ? 1 << (shift - 1) : 0; |
| |
| for (i = 0; i < block_size; i++) { |
| const int64_t diff = coeff[i] - dqcoeff[i]; |
| error += diff * diff; |
| sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; |
| } |
| assert(error >= 0 && sqcoeff >= 0); |
| error = (error + rounding) >> shift; |
| sqcoeff = (sqcoeff + rounding) >> shift; |
| |
| *ssz = sqcoeff; |
| return error; |
| } |
| |
| // Get transform block visible dimensions cropped to the MI units. |
| static void get_txb_dimensions(const MACROBLOCKD *xd, int plane, |
| BLOCK_SIZE plane_bsize, int blk_row, int blk_col, |
| BLOCK_SIZE tx_bsize, int *width, int *height, |
| int *visible_width, int *visible_height) { |
| assert(tx_bsize <= plane_bsize); |
| int txb_height = block_size_high[tx_bsize]; |
| int txb_width = block_size_wide[tx_bsize]; |
| const int block_height = block_size_high[plane_bsize]; |
| const int block_width = block_size_wide[plane_bsize]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| // TODO(aconverse@google.com): Investigate using crop_width/height here rather |
| // than the MI size |
| const int block_rows = |
| (xd->mb_to_bottom_edge >= 0) |
| ? block_height |
| : (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + block_height; |
| const int block_cols = |
| (xd->mb_to_right_edge >= 0) |
| ? block_width |
| : (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + block_width; |
| const int tx_unit_size = tx_size_wide_log2[0]; |
| if (width) *width = txb_width; |
| if (height) *height = txb_height; |
| *visible_width = clamp(block_cols - (blk_col << tx_unit_size), 0, txb_width); |
| *visible_height = |
| clamp(block_rows - (blk_row << tx_unit_size), 0, txb_height); |
| } |
| |
| // Compute the pixel domain distortion from src and dst on all visible 4x4s in |
| // the |
| // transform block. |
| static unsigned pixel_dist(const AV1_COMP *const cpi, const MACROBLOCK *x, |
| int plane, const uint8_t *src, const int src_stride, |
| const uint8_t *dst, const int dst_stride, |
| int blk_row, int blk_col, |
| const BLOCK_SIZE plane_bsize, |
| const BLOCK_SIZE tx_bsize) { |
| int txb_rows, txb_cols, visible_rows, visible_cols; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| |
| get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, |
| &txb_cols, &txb_rows, &visible_cols, &visible_rows); |
| assert(visible_rows > 0); |
| assert(visible_cols > 0); |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && plane == 0 && txb_cols >= 8 && txb_rows >= 8) |
| return (unsigned)av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride, |
| tx_bsize, txb_cols, txb_rows, visible_cols, |
| visible_rows, x->qindex); |
| #endif // CONFIG_DIST_8X8 |
| |
| unsigned sse = pixel_dist_visible_only(cpi, x, src, src_stride, dst, |
| dst_stride, tx_bsize, txb_rows, |
| txb_cols, visible_rows, visible_cols); |
| |
| return sse; |
| } |
| |
| // Compute the pixel domain distortion from diff on all visible 4x4s in the |
| // transform block. |
| static int64_t pixel_diff_dist(const MACROBLOCK *x, int plane, |
| const int16_t *diff, const int diff_stride, |
| int blk_row, int blk_col, |
| const BLOCK_SIZE plane_bsize, |
| const BLOCK_SIZE tx_bsize) { |
| int visible_rows, visible_cols; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| #if CONFIG_DIST_8X8 |
| int txb_height = block_size_high[tx_bsize]; |
| int txb_width = block_size_wide[tx_bsize]; |
| const int src_stride = x->plane[plane].src.stride; |
| const int src_idx = (blk_row * src_stride + blk_col) << tx_size_wide_log2[0]; |
| const uint8_t *src = &x->plane[plane].src.buf[src_idx]; |
| #endif |
| |
| get_txb_dimensions(xd, plane, plane_bsize, blk_row, blk_col, tx_bsize, NULL, |
| NULL, &visible_cols, &visible_rows); |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && plane == 0 && txb_width >= 8 && txb_height >= 8) |
| return dist_8x8_diff(x, src, src_stride, diff, diff_stride, txb_width, |
| txb_height, visible_cols, visible_rows, x->qindex); |
| else |
| #endif |
| return aom_sum_squares_2d_i16(diff, diff_stride, visible_cols, |
| visible_rows); |
| } |
| |
| int av1_count_colors(const uint8_t *src, int stride, int rows, int cols, |
| int *val_count) { |
| const int max_pix_val = 1 << 8; |
| memset(val_count, 0, max_pix_val * sizeof(val_count[0])); |
| for (int r = 0; r < rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| const int this_val = src[r * stride + c]; |
| assert(this_val < max_pix_val); |
| ++val_count[this_val]; |
| } |
| } |
| int n = 0; |
| for (int i = 0; i < max_pix_val; ++i) { |
| if (val_count[i]) ++n; |
| } |
| return n; |
| } |
| |
| int av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, int cols, |
| int bit_depth, int *val_count) { |
| assert(bit_depth <= 12); |
| const int max_pix_val = 1 << bit_depth; |
| const uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| memset(val_count, 0, max_pix_val * sizeof(val_count[0])); |
| for (int r = 0; r < rows; ++r) { |
| for (int c = 0; c < cols; ++c) { |
| const int this_val = src[r * stride + c]; |
| assert(this_val < max_pix_val); |
| ++val_count[this_val]; |
| } |
| } |
| int n = 0; |
| for (int i = 0; i < max_pix_val; ++i) { |
| if (val_count[i]) ++n; |
| } |
| return n; |
| } |
| |
| void av1_inverse_transform_block_facade(MACROBLOCKD *xd, int plane, int block, |
| int blk_row, int blk_col, int eob, |
| int reduced_tx_set) { |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| const PLANE_TYPE plane_type = get_plane_type(plane); |
| const TX_SIZE tx_size = av1_get_tx_size(plane, xd); |
| const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col, |
| tx_size, reduced_tx_set); |
| const int dst_stride = pd->dst.stride; |
| uint8_t *dst = |
| &pd->dst.buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, |
| dst_stride, eob, reduced_tx_set); |
| } |
| |
| void av1_dist_block(const AV1_COMP *cpi, MACROBLOCK *x, int plane, |
| BLOCK_SIZE plane_bsize, int block, int blk_row, int blk_col, |
| TX_SIZE tx_size, int64_t *out_dist, int64_t *out_sse, |
| OUTPUT_STATUS output_status) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| #if CONFIG_DIST_8X8 |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #else // CONFIG_DIST_8X8 |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| #endif // CONFIG_DIST_8X8 |
| |
| if (cpi->sf.use_transform_domain_distortion |
| // Any 64-pt transforms only preserves half the coefficients. |
| // Therefore transform domain distortion is not valid for these |
| // transform sizes. |
| && txsize_sqr_up_map[tx_size] != TX_64X64 |
| #if CONFIG_DIST_8X8 |
| && !x->using_dist_8x8 |
| #endif |
| ) { |
| // Transform domain distortion computation is more efficient as it does |
| // not involve an inverse transform, but it is less accurate. |
| const int buffer_length = av1_get_max_eob(tx_size); |
| int64_t this_sse; |
| // TX-domain results need to shift down to Q2/D10 to match pixel |
| // domain distortion values which are in Q2^2 |
| int shift = (MAX_TX_SCALE - av1_get_tx_scale(tx_size)) * 2; |
| tran_low_t *const coeff = BLOCK_OFFSET(p->coeff, block); |
| tran_low_t *const dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| *out_dist = av1_highbd_block_error(coeff, dqcoeff, buffer_length, |
| &this_sse, xd->bd); |
| else |
| *out_dist = av1_block_error(coeff, dqcoeff, buffer_length, &this_sse); |
| |
| *out_dist = RIGHT_SIGNED_SHIFT(*out_dist, shift); |
| *out_sse = RIGHT_SIGNED_SHIFT(this_sse, shift); |
| } else { |
| const BLOCK_SIZE tx_bsize = txsize_to_bsize[tx_size]; |
| const int bsw = block_size_wide[tx_bsize]; |
| const int bsh = block_size_high[tx_bsize]; |
| const int src_stride = x->plane[plane].src.stride; |
| const int dst_stride = xd->plane[plane].dst.stride; |
| // Scale the transform block index to pixel unit. |
| const int src_idx = (blk_row * src_stride + blk_col) |
| << tx_size_wide_log2[0]; |
| const int dst_idx = (blk_row * dst_stride + blk_col) |
| << tx_size_wide_log2[0]; |
| const uint8_t *src = &x->plane[plane].src.buf[src_idx]; |
| const uint8_t *dst = &xd->plane[plane].dst.buf[dst_idx]; |
| const tran_low_t *dqcoeff = BLOCK_OFFSET(pd->dqcoeff, block); |
| const uint16_t eob = p->eobs[block]; |
| |
| assert(cpi != NULL); |
| assert(tx_size_wide_log2[0] == tx_size_high_log2[0]); |
| |
| { |
| const int diff_stride = block_size_wide[plane_bsize]; |
| const int diff_idx = (blk_row * diff_stride + blk_col) |
| << tx_size_wide_log2[0]; |
| const int16_t *diff = &p->src_diff[diff_idx]; |
| *out_sse = pixel_diff_dist(x, plane, diff, diff_stride, blk_row, blk_col, |
| plane_bsize, tx_bsize); |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| *out_sse = ROUND_POWER_OF_TWO(*out_sse, (xd->bd - 8) * 2); |
| } |
| *out_sse *= 16; |
| |
| if (eob) { |
| if (output_status == OUTPUT_HAS_DECODED_PIXELS) { |
| *out_dist = pixel_dist(cpi, x, plane, src, src_stride, dst, dst_stride, |
| blk_row, blk_col, plane_bsize, tx_bsize); |
| } else { |
| uint8_t *recon; |
| DECLARE_ALIGNED(16, uint16_t, recon16[MAX_TX_SQUARE]) = { 0 }; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| recon = CONVERT_TO_BYTEPTR(recon16); |
| else |
| recon = (uint8_t *)recon16; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| aom_highbd_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0, |
| NULL, 0, bsw, bsh, xd->bd); |
| } else { |
| aom_convolve_copy(dst, dst_stride, recon, MAX_TX_SIZE, NULL, 0, NULL, |
| 0, bsw, bsh); |
| } |
| |
| const PLANE_TYPE plane_type = get_plane_type(plane); |
| TX_TYPE tx_type = |
| av1_get_tx_type(plane_type, xd, blk_row, blk_col, tx_size, |
| cpi->common.reduced_tx_set_used); |
| av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, recon, |
| MAX_TX_SIZE, eob, |
| cpi->common.reduced_tx_set_used); |
| |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && plane == 0 && (bsw < 8 || bsh < 8)) { |
| // Save decoded pixels for inter block in pd->pred to avoid |
| // block_8x8_rd_txfm_daala_dist() need to produce them |
| // by calling av1_inverse_transform_block() again. |
| const int pred_stride = block_size_wide[plane_bsize]; |
| const int pred_idx = (blk_row * pred_stride + blk_col) |
| << tx_size_wide_log2[0]; |
| int16_t *pred = &pd->pred[pred_idx]; |
| int i, j; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| pred[j * pred_stride + i] = |
| CONVERT_TO_SHORTPTR(recon)[j * MAX_TX_SIZE + i]; |
| } else { |
| for (j = 0; j < bsh; j++) |
| for (i = 0; i < bsw; i++) |
| pred[j * pred_stride + i] = recon[j * MAX_TX_SIZE + i]; |
| } |
| } |
| #endif // CONFIG_DIST_8X8 |
| *out_dist = |
| pixel_dist(cpi, x, plane, src, src_stride, recon, MAX_TX_SIZE, |
| blk_row, blk_col, plane_bsize, tx_bsize); |
| } |
| *out_dist *= 16; |
| } else { |
| *out_dist = *out_sse; |
| } |
| } |
| } |
| |
| static void update_txk_array(TX_TYPE *txk_type, BLOCK_SIZE bsize, int blk_row, |
| int blk_col, TX_SIZE tx_size, TX_TYPE tx_type) { |
| const int txk_type_idx = av1_get_txk_type_index(bsize, blk_row, blk_col); |
| txk_type[txk_type_idx] = tx_type; |
| |
| const int txw = tx_size_wide_unit[tx_size]; |
| const int txh = tx_size_high_unit[tx_size]; |
| // The 16x16 unit is due to the constraint from tx_64x64 which sets the |
| // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block |
| // size, the constraint takes effect in 32x16 / 16x32 size too. To solve |
| // the intricacy, cover all the 16x16 units inside a 64 level transform. |
| if (txw == tx_size_wide_unit[TX_64X64] || |
| txh == tx_size_high_unit[TX_64X64]) { |
| const int tx_unit = tx_size_wide_unit[TX_16X16]; |
| for (int idy = 0; idy < txh; idy += tx_unit) { |
| for (int idx = 0; idx < txw; idx += tx_unit) { |
| const int this_index = |
| av1_get_txk_type_index(bsize, blk_row + idy, blk_col + idx); |
| txk_type[this_index] = tx_type; |
| } |
| } |
| } |
| } |
| |
| static int64_t search_txk_type(const AV1_COMP *cpi, MACROBLOCK *x, int plane, |
| int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, |
| const ENTROPY_CONTEXT *a, |
| const ENTROPY_CONTEXT *l, int fast_tx_search, |
| int use_fast_coef_costing, |
| RD_STATS *best_rd_stats) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| int rate_cost = 0; |
| const int is_inter = is_inter_block(mbmi); |
| TX_TYPE txk_start = DCT_DCT; |
| TX_TYPE txk_end = TX_TYPES - 1; |
| |
| if (!(!is_inter && x->use_default_intra_tx_type) && |
| !(is_inter && x->use_default_inter_tx_type)) |
| if (x->rd_model == LOW_TXFM_RD || x->cb_partition_scan) |
| if (plane == 0) txk_end = DCT_DCT; |
| |
| TX_TYPE best_tx_type = txk_start; |
| int64_t best_rd = INT64_MAX; |
| uint8_t best_txb_ctx = 0; |
| uint16_t best_eob = 0; |
| av1_invalid_rd_stats(best_rd_stats); |
| const TxSetType tx_set_type = get_ext_tx_set_type( |
| tx_size, plane_bsize, is_inter, cm->reduced_tx_set_used); |
| int prune = 0; |
| if (is_inter && plane == 0 && !fast_tx_search && |
| cpi->sf.tx_type_search.prune_mode > NO_PRUNE) |
| prune = x->tx_search_prune[tx_set_type]; |
| for (TX_TYPE tx_type = txk_start; tx_type <= txk_end; ++tx_type) { |
| if (txk_end != DCT_DCT) { |
| if (is_inter && plane == 0 && |
| cpi->sf.tx_type_search.prune_mode > NO_PRUNE) { |
| if (!do_tx_type_search(tx_type, prune, |
| cpi->sf.tx_type_search.prune_mode)) |
| continue; |
| } |
| } |
| if (fast_tx_search && tx_type != DCT_DCT && tx_type != H_DCT && |
| tx_type != V_DCT) |
| continue; |
| if (plane == 0) { |
| if (!is_inter && x->use_default_intra_tx_type && |
| tx_type != get_default_tx_type(0, xd, tx_size)) |
| continue; |
| if (is_inter && x->use_default_inter_tx_type && |
| tx_type != get_default_tx_type(0, xd, tx_size)) |
| continue; |
| const int txk_type_idx = |
| av1_get_txk_type_index(plane_bsize, blk_row, blk_col); |
| mbmi->txk_type[txk_type_idx] = tx_type; |
| } |
| const TX_TYPE ref_tx_type = |
| av1_get_tx_type(get_plane_type(plane), xd, blk_row, blk_col, tx_size, |
| cm->reduced_tx_set_used); |
| if (tx_type != ref_tx_type) { |
| // use av1_get_tx_type() to check if the tx_type is valid for the current |
| // mode if it's not, we skip it here. |
| continue; |
| } |
| |
| const SCAN_ORDER *scan_order = get_scan(tx_size, tx_type); |
| RD_STATS this_rd_stats; |
| av1_invalid_rd_stats(&this_rd_stats); |
| if (cpi->sf.optimize_coefficients != FULL_TRELLIS_OPT) { |
| av1_xform_quant( |
| cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); |
| rate_cost = |
| av1_cost_coeffs(cpi, x, plane, blk_row, blk_col, block, tx_size, |
| scan_order, a, l, use_fast_coef_costing); |
| } else { |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, |
| tx_size, AV1_XFORM_QUANT_FP); |
| av1_optimize_b(cpi, x, plane, blk_row, blk_col, block, plane_bsize, |
| tx_size, a, l, 1, &rate_cost); |
| const int eob = x->plane[plane].eobs[block]; |
| if (eob) |
| rate_cost += |
| av1_tx_type_cost(cm, x, xd, mbmi->sb_type, plane, tx_size, tx_type); |
| else |
| rate_cost = |
| av1_cost_coeffs(cpi, x, plane, blk_row, blk_col, block, tx_size, |
| scan_order, a, l, use_fast_coef_costing); |
| } |
| av1_dist_block(cpi, x, plane, plane_bsize, block, blk_row, blk_col, tx_size, |
| &this_rd_stats.dist, &this_rd_stats.sse, |
| OUTPUT_HAS_PREDICTED_PIXELS); |
| |
| this_rd_stats.rate = rate_cost; |
| |
| const int64_t rd = |
| RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); |
| |
| if (rd < best_rd) { |
| best_rd = rd; |
| *best_rd_stats = this_rd_stats; |
| best_tx_type = tx_type; |
| best_txb_ctx = x->plane[plane].txb_entropy_ctx[block]; |
| best_eob = x->plane[plane].eobs[block]; |
| } |
| |
| // Skip transform type search when we found the block has been quantized to |
| // all zero and at the same time, it has better rdcost than doing transform. |
| if (cpi->sf.tx_type_search.skip_tx_search && !best_eob) break; |
| } |
| |
| if (best_eob == 0) best_tx_type = DCT_DCT; |
| |
| if (plane == 0) { |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| best_tx_type); |
| } |
| |
| x->plane[plane].txb_entropy_ctx[block] = best_txb_ctx; |
| x->plane[plane].eobs[block] = best_eob; |
| |
| if (!is_inter && best_eob) { |
| // intra mode needs decoded result such that the next transform block |
| // can use it for prediction. |
| if (cpi->sf.optimize_coefficients != FULL_TRELLIS_OPT) { |
| av1_xform_quant( |
| cm, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| USE_B_QUANT_NO_TRELLIS ? AV1_XFORM_QUANT_B : AV1_XFORM_QUANT_FP); |
| } else { |
| av1_xform_quant(cm, x, plane, block, blk_row, blk_col, plane_bsize, |
| tx_size, AV1_XFORM_QUANT_FP); |
| av1_optimize_b(cpi, x, plane, blk_row, blk_col, block, plane_bsize, |
| tx_size, a, l, 1, &rate_cost); |
| } |
| |
| av1_inverse_transform_block_facade(xd, plane, block, blk_row, blk_col, |
| x->plane[plane].eobs[block], |
| cm->reduced_tx_set_used); |
| } |
| return best_rd; |
| } |
| |
| static void block_rd_txfm(int plane, int block, int blk_row, int blk_col, |
| BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { |
| struct rdcost_block_args *args = arg; |
| MACROBLOCK *const x = args->x; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const AV1_COMP *cpi = args->cpi; |
| ENTROPY_CONTEXT *a = args->t_above + blk_col; |
| ENTROPY_CONTEXT *l = args->t_left + blk_row; |
| const AV1_COMMON *cm = &cpi->common; |
| int64_t rd1, rd2, rd; |
| RD_STATS this_rd_stats; |
| |
| #if CONFIG_DIST_8X8 |
| // If sub8x8 tx, 8x8 or larger partition, and luma channel, |
| // dist-8x8 disables early skip, because the distortion metrics for |
| // sub8x8 tx (MSE) and reference distortion from 8x8 or larger partition |
| // (new distortion metric) are different. |
| // Exception is: dist-8x8 is enabled but still MSE is used, |
| // i.e. "--tune=" encoder option is not used. |
| int bw = block_size_wide[plane_bsize]; |
| int bh = block_size_high[plane_bsize]; |
| int disable_early_skip = |
| x->using_dist_8x8 && plane == AOM_PLANE_Y && bw >= 8 && bh >= 8 && |
| (tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4) && |
| x->tune_metric != AOM_TUNE_PSNR; |
| #endif // CONFIG_DIST_8X8 |
| |
| av1_init_rd_stats(&this_rd_stats); |
| |
| if (args->exit_early) return; |
| |
| if (!is_inter_block(mbmi)) { |
| av1_predict_intra_block_facade(cm, xd, plane, blk_col, blk_row, tx_size); |
| av1_subtract_txb(x, plane, plane_bsize, blk_col, blk_row, tx_size); |
| } |
| |
| search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| a, l, 0, args->use_fast_coef_costing, &this_rd_stats); |
| |
| #if CONFIG_CFL |
| if (plane == AOM_PLANE_Y && xd->cfl.store_y && is_cfl_allowed(mbmi)) { |
| assert(!is_inter_block(mbmi) || plane_bsize < BLOCK_8X8); |
| cfl_store_tx(xd, blk_row, blk_col, tx_size, plane_bsize); |
| } |
| #endif // CONFIG_CFL |
| |
| #if CONFIG_RD_DEBUG |
| av1_update_txb_coeff_cost(&this_rd_stats, plane, tx_size, blk_row, blk_col, |
| this_rd_stats.rate); |
| #endif // CONFIG_RD_DEBUG |
| av1_set_txb_context(x, plane, block, tx_size, a, l); |
| |
| if (plane == 0) |
| x->blk_skip[plane][blk_row * (block_size_wide[plane_bsize] >> |
| tx_size_wide_log2[0]) + |
| blk_col] = (x->plane[plane].eobs[block] == 0); |
| |
| rd1 = RDCOST(x->rdmult, this_rd_stats.rate, this_rd_stats.dist); |
| rd2 = RDCOST(x->rdmult, 0, this_rd_stats.sse); |
| |
| // TODO(jingning): temporarily enabled only for luma component |
| rd = AOMMIN(rd1, rd2); |
| |
| this_rd_stats.skip &= !x->plane[plane].eobs[block]; |
| |
| av1_merge_rd_stats(&args->rd_stats, &this_rd_stats); |
| |
| args->this_rd += rd; |
| |
| #if CONFIG_DIST_8X8 |
| if (!disable_early_skip) |
| #endif |
| if (args->this_rd > args->best_rd) { |
| args->exit_early = 1; |
| return; |
| } |
| } |
| |
| #if CONFIG_DIST_8X8 |
| static void dist_8x8_sub8x8_txfm_rd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, |
| struct rdcost_block_args *args) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| const struct macroblock_plane *const p = &x->plane[0]; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| const uint8_t *src = &p->src.buf[0]; |
| const uint8_t *dst = &pd->dst.buf[0]; |
| const int16_t *pred = &pd->pred[0]; |
| int bw = block_size_wide[bsize]; |
| int bh = block_size_high[bsize]; |
| int visible_w = bw; |
| int visible_h = bh; |
| |
| int i, j; |
| int64_t rd, rd1, rd2; |
| int64_t sse = INT64_MAX, dist = INT64_MAX; |
| int qindex = x->qindex; |
| |
| assert((bw & 0x07) == 0); |
| assert((bh & 0x07) == 0); |
| |
| get_txb_dimensions(xd, 0, bsize, 0, 0, bsize, &bw, &bh, &visible_w, |
| &visible_h); |
| |
| const int diff_stride = block_size_wide[bsize]; |
| const int16_t *diff = p->src_diff; |
| sse = dist_8x8_diff(x, src, src_stride, diff, diff_stride, bw, bh, visible_w, |
| visible_h, qindex); |
| sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); |
| sse *= 16; |
| |
| if (!is_inter_block(mbmi)) { |
| dist = av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride, bsize, bw, bh, |
| visible_w, visible_h, qindex); |
| dist *= 16; |
| } else { |
| // For inter mode, the decoded pixels are provided in pd->pred, |
| // while the predicted pixels are in dst. |
| uint8_t *pred8; |
| DECLARE_ALIGNED(16, uint16_t, pred16[MAX_SB_SQUARE]); |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| pred8 = CONVERT_TO_BYTEPTR(pred16); |
| else |
| pred8 = (uint8_t *)pred16; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (j = 0; j < bh; j++) |
| for (i = 0; i < bw; i++) |
| CONVERT_TO_SHORTPTR(pred8)[j * bw + i] = pred[j * bw + i]; |
| } else { |
| for (j = 0; j < bh; j++) |
| for (i = 0; i < bw; i++) pred8[j * bw + i] = (uint8_t)pred[j * bw + i]; |
| } |
| |
| dist = av1_dist_8x8(cpi, x, src, src_stride, pred8, bw, bsize, bw, bh, |
| visible_w, visible_h, qindex); |
| dist *= 16; |
| } |
| |
| #ifdef DEBUG_DIST_8X8 |
| if (x->tune_metric == AOM_TUNE_PSNR && xd->bd == 8) { |
| assert(args->rd_stats.sse == sse); |
| assert(args->rd_stats.dist == dist); |
| } |
| #endif // DEBUG_DIST_8X8 |
| |
| args->rd_stats.sse = sse; |
| args->rd_stats.dist = dist; |
| |
| rd1 = RDCOST(x->rdmult, args->rd_stats.rate, args->rd_stats.dist); |
| rd2 = RDCOST(x->rdmult, 0, args->rd_stats.sse); |
| rd = AOMMIN(rd1, rd2); |
| |
| args->rd_stats.rdcost = rd; |
| args->this_rd = rd; |
| |
| if (args->this_rd > args->best_rd) args->exit_early = 1; |
| } |
| #endif // CONFIG_DIST_8X8 |
| |
| static int skip_invalid_tx_size_for_filter_intra(const MB_MODE_INFO *mbmi, |
| int plane, |
| RD_STATS *rd_stats) { |
| if (plane == 0 && !is_inter_block(mbmi) && |
| mbmi->filter_intra_mode_info.use_filter_intra && |
| !av1_filter_intra_allowed_txsize(mbmi->tx_size)) { |
| rd_stats->rate = INT_MAX; |
| rd_stats->dist = INT64_MAX; |
| rd_stats->skip = 0; |
| rd_stats->sse = INT64_MAX; |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| static void txfm_rd_in_plane(MACROBLOCK *x, const AV1_COMP *cpi, |
| RD_STATS *rd_stats, int64_t ref_best_rd, int plane, |
| BLOCK_SIZE bsize, TX_SIZE tx_size, |
| int use_fast_coef_casting) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| struct rdcost_block_args args; |
| av1_zero(args); |
| args.x = x; |
| args.cpi = cpi; |
| args.best_rd = ref_best_rd; |
| args.use_fast_coef_costing = use_fast_coef_casting; |
| av1_init_rd_stats(&args.rd_stats); |
| |
| if (plane == 0) xd->mi[0]->mbmi.tx_size = tx_size; |
| |
| if (skip_invalid_tx_size_for_filter_intra(&xd->mi[0]->mbmi, plane, |
| rd_stats)) { |
| return; |
| } |
| |
| av1_get_entropy_contexts(bsize, tx_size, pd, args.t_above, args.t_left); |
| |
| av1_foreach_transformed_block_in_plane(xd, bsize, plane, block_rd_txfm, |
| &args); |
| #if CONFIG_DIST_8X8 |
| int bw = block_size_wide[bsize]; |
| int bh = block_size_high[bsize]; |
| |
| if (x->using_dist_8x8 && !args.exit_early && plane == 0 && bw >= 8 && |
| bh >= 8 && (tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4)) |
| dist_8x8_sub8x8_txfm_rd(cpi, x, bsize, &args); |
| #endif |
| |
| if (args.exit_early) { |
| av1_invalid_rd_stats(rd_stats); |
| } else { |
| *rd_stats = args.rd_stats; |
| } |
| } |
| |
| static int tx_size_cost(const AV1_COMMON *const cm, const MACROBLOCK *const x, |
| BLOCK_SIZE bsize, TX_SIZE tx_size) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| |
| if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type)) { |
| const int is_inter = is_inter_block(mbmi); |
| const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize, is_inter); |
| const int depth = tx_size_to_depth(tx_size, bsize, is_inter); |
| const int tx_size_ctx = get_tx_size_context(xd); |
| int r_tx_size = x->tx_size_cost[tx_size_cat][tx_size_ctx][depth]; |
| return r_tx_size; |
| } else { |
| return 0; |
| } |
| } |
| |
| // TODO(angiebird): use this function whenever it's possible |
| int av1_tx_type_cost(const AV1_COMMON *cm, const MACROBLOCK *x, |
| const MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane, |
| TX_SIZE tx_size, TX_TYPE tx_type) { |
| if (plane > 0) return 0; |
| |
| const TX_SIZE square_tx_size = txsize_sqr_map[tx_size]; |
| |
| const MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| const int is_inter = is_inter_block(mbmi); |
| if (get_ext_tx_types(tx_size, bsize, is_inter, cm->reduced_tx_set_used) > 1 && |
| !xd->lossless[xd->mi[0]->mbmi.segment_id]) { |
| const int ext_tx_set = |
| get_ext_tx_set(tx_size, bsize, is_inter, cm->reduced_tx_set_used); |
| if (is_inter) { |
| if (ext_tx_set > 0) |
| return x->inter_tx_type_costs[ext_tx_set][square_tx_size][tx_type]; |
| } else { |
| if (ext_tx_set > 0) { |
| PREDICTION_MODE intra_dir; |
| if (mbmi->filter_intra_mode_info.use_filter_intra) |
| intra_dir = fimode_to_intradir[mbmi->filter_intra_mode_info |
| .filter_intra_mode]; |
| else |
| intra_dir = mbmi->mode; |
| return x->intra_tx_type_costs[ext_tx_set][square_tx_size][intra_dir] |
| [tx_type]; |
| } |
| } |
| } |
| return 0; |
| } |
| |
| static int64_t txfm_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, int64_t ref_best_rd, BLOCK_SIZE bs, |
| TX_TYPE tx_type, TX_SIZE tx_size) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int64_t rd = INT64_MAX; |
| const int skip_ctx = av1_get_skip_context(xd); |
| int s0, s1; |
| const int is_inter = is_inter_block(mbmi); |
| const int tx_select = |
| cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(mbmi->sb_type); |
| int ctx = txfm_partition_context( |
| xd->above_txfm_context, xd->left_txfm_context, mbmi->sb_type, tx_size); |
| const int r_tx_size = is_inter ? x->txfm_partition_cost[ctx][0] |
| : tx_size_cost(cm, x, bs, tx_size); |
| |
| assert(IMPLIES(is_rect_tx(tx_size), is_rect_tx_allowed_bsize(bs))); |
| |
| s0 = x->skip_cost[skip_ctx][0]; |
| s1 = x->skip_cost[skip_ctx][1]; |
| |
| mbmi->tx_type = tx_type; |
| mbmi->tx_size = tx_size; |
| if (skip_invalid_tx_size_for_filter_intra(mbmi, AOM_PLANE_Y, rd_stats)) { |
| return INT64_MAX; |
| } |
| txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs, tx_size, |
| cpi->sf.use_fast_coef_costing); |
| if (rd_stats->rate == INT_MAX) return INT64_MAX; |
| |
| if (rd_stats->skip) { |
| if (is_inter) { |
| rd = RDCOST(x->rdmult, s1, rd_stats->sse); |
| } else { |
| rd = RDCOST(x->rdmult, s1 + r_tx_size * tx_select, rd_stats->sse); |
| } |
| } else { |
| rd = RDCOST(x->rdmult, rd_stats->rate + s0 + r_tx_size * tx_select, |
| rd_stats->dist); |
| } |
| |
| if (tx_select) rd_stats->rate += r_tx_size; |
| |
| if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && |
| !(rd_stats->skip)) |
| rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse)); |
| |
| return rd; |
| } |
| |
| static int skip_txfm_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs, |
| TX_TYPE tx_type, TX_SIZE tx_size) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int is_inter = is_inter_block(mbmi); |
| |
| if (x->cb_partition_scan && tx_type != DCT_DCT) return 1; |
| |
| if (mbmi->ref_mv_idx > 0 && tx_type != DCT_DCT) return 1; |
| if (!is_inter && x->use_default_intra_tx_type && |
| tx_type != get_default_tx_type(0, xd, tx_size)) |
| return 1; |
| if (is_inter && x->use_default_inter_tx_type && |
| tx_type != get_default_tx_type(0, xd, tx_size)) |
| return 1; |
| const AV1_COMMON *const cm = &cpi->common; |
| const TxSetType tx_set_type = |
| get_ext_tx_set_type(tx_size, bs, is_inter, cm->reduced_tx_set_used); |
| if (!av1_ext_tx_used[tx_set_type][tx_type]) return 1; |
| if (is_inter) { |
| if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) { |
| if (!do_tx_type_search(tx_type, x->tx_search_prune[tx_set_type], |
| cpi->sf.tx_type_search.prune_mode)) |
| return 1; |
| } |
| } |
| return 0; |
| } |
| |
| static int64_t estimate_yrd_for_sb(const AV1_COMP *const cpi, BLOCK_SIZE bs, |
| MACROBLOCK *x, int *r, int64_t *d, int *s, |
| int64_t *sse, int64_t ref_best_rd) { |
| RD_STATS rd_stats; |
| x->rd_model = LOW_TXFM_RD; |
| int64_t rd = txfm_yrd(cpi, x, &rd_stats, ref_best_rd, bs, DCT_DCT, |
| max_txsize_lookup[bs]); |
| x->rd_model = FULL_TXFM_RD; |
| *r = rd_stats.rate; |
| *d = rd_stats.dist; |
| *s = rd_stats.skip; |
| *sse = rd_stats.sse; |
| return rd; |
| } |
| |
| static void choose_largest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| TX_TYPE tx_type, best_tx_type = DCT_DCT; |
| int64_t this_rd, best_rd = INT64_MAX; |
| const int skip_ctx = av1_get_skip_context(xd); |
| int s0 = x->skip_cost[skip_ctx][0]; |
| int s1 = x->skip_cost[skip_ctx][1]; |
| const int is_inter = is_inter_block(mbmi); |
| av1_invalid_rd_stats(rd_stats); |
| |
| mbmi->tx_size = tx_size_from_tx_mode(bs, cm->tx_mode); |
| mbmi->min_tx_size = mbmi->tx_size; |
| const TxSetType tx_set_type = |
| get_ext_tx_set_type(mbmi->tx_size, bs, is_inter, cm->reduced_tx_set_used); |
| prune_tx(cpi, bs, x, xd, tx_set_type, 0); |
| if (skip_invalid_tx_size_for_filter_intra(mbmi, AOM_PLANE_Y, rd_stats)) { |
| return; |
| } |
| if (get_ext_tx_types(mbmi->tx_size, bs, is_inter, cm->reduced_tx_set_used) > |
| 1 && |
| !xd->lossless[mbmi->segment_id]) { |
| for (tx_type = DCT_DCT; tx_type < TX_TYPES; ++tx_type) { |
| if (!av1_ext_tx_used[tx_set_type][tx_type]) continue; |
| RD_STATS this_rd_stats; |
| if (is_inter) { |
| if (x->use_default_inter_tx_type && |
| tx_type != get_default_tx_type(0, xd, mbmi->tx_size)) |
| continue; |
| if (cpi->sf.tx_type_search.prune_mode > NO_PRUNE) { |
| if (!do_tx_type_search(tx_type, x->tx_search_prune[tx_set_type], |
| cpi->sf.tx_type_search.prune_mode)) |
| continue; |
| } |
| } else { |
| if (x->use_default_intra_tx_type && |
| tx_type != get_default_tx_type(0, xd, mbmi->tx_size)) |
| continue; |
| } |
| |
| mbmi->tx_type = tx_type; |
| |
| txfm_rd_in_plane(x, cpi, &this_rd_stats, ref_best_rd, AOM_PLANE_Y, bs, |
| mbmi->tx_size, cpi->sf.use_fast_coef_costing); |
| |
| if (this_rd_stats.rate == INT_MAX) continue; |
| |
| if (this_rd_stats.skip) { |
| this_rd = RDCOST(x->rdmult, s1, this_rd_stats.sse); |
| } else { |
| this_rd_stats.rate += av1_tx_type_cost(cm, x, xd, bs, AOM_PLANE_Y, |
| mbmi->tx_size, tx_type); |
| this_rd = |
| RDCOST(x->rdmult, this_rd_stats.rate + s0, this_rd_stats.dist); |
| } |
| if (is_inter_block(mbmi) && !xd->lossless[mbmi->segment_id] && |
| !this_rd_stats.skip) |
| this_rd = AOMMIN(this_rd, RDCOST(x->rdmult, s1, this_rd_stats.sse)); |
| |
| if (this_rd < best_rd) { |
| best_rd = this_rd; |
| best_tx_type = mbmi->tx_type; |
| *rd_stats = this_rd_stats; |
| } |
| } |
| } else { |
| mbmi->tx_type = DCT_DCT; |
| txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, AOM_PLANE_Y, bs, |
| mbmi->tx_size, cpi->sf.use_fast_coef_costing); |
| } |
| mbmi->tx_type = best_tx_type; |
| // Reset the pruning flags. |
| av1_zero(x->tx_search_prune); |
| } |
| |
| static void choose_smallest_tx_size(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, int64_t ref_best_rd, |
| BLOCK_SIZE bs) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| |
| mbmi->tx_size = TX_4X4; |
| mbmi->tx_type = DCT_DCT; |
| mbmi->min_tx_size = TX_4X4; |
| |
| if (skip_invalid_tx_size_for_filter_intra(mbmi, AOM_PLANE_Y, rd_stats)) { |
| return; |
| } |
| txfm_rd_in_plane(x, cpi, rd_stats, ref_best_rd, 0, bs, mbmi->tx_size, |
| cpi->sf.use_fast_coef_costing); |
| } |
| |
| static INLINE int bsize_to_num_blk(BLOCK_SIZE bsize) { |
| int num_blk = 1 << (num_pels_log2_lookup[bsize] - 2 * tx_size_wide_log2[0]); |
| return num_blk; |
| } |
| |
| static int get_search_init_depth(int mi_width, int mi_height, |
| const SPEED_FEATURES *sf) { |
| if (sf->tx_size_search_method == USE_LARGESTALL) return MAX_VARTX_DEPTH; |
| int init_depth = (mi_height != mi_width) ? sf->tx_size_search_init_depth_rect |
| : sf->tx_size_search_init_depth_sqr; |
| // If either dimension is 128, search one level less. |
| if (mi_width == 32 || mi_height == 32) |
| init_depth = AOMMIN(init_depth + 1, MAX_TX_DEPTH); |
| return init_depth; |
| } |
| |
| static void choose_tx_size_type_from_rd(const AV1_COMP *const cpi, |
| MACROBLOCK *x, RD_STATS *rd_stats, |
| int64_t ref_best_rd, BLOCK_SIZE bs) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int64_t rd = INT64_MAX; |
| int n; |
| int start_tx; |
| int depth; |
| int64_t best_rd = INT64_MAX, last_rd = INT64_MAX; |
| const TX_SIZE max_rect_tx_size = get_max_rect_tx_size(bs); |
| TX_SIZE best_tx_size = max_rect_tx_size; |
| TX_TYPE best_tx_type = DCT_DCT; |
| TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| const int n4 = bsize_to_num_blk(bs); |
| const int tx_select = cm->tx_mode == TX_MODE_SELECT; |
| |
| av1_invalid_rd_stats(rd_stats); |
| |
| if (tx_select) { |
| start_tx = max_rect_tx_size; |
| depth = get_search_init_depth(mi_size_wide[bs], mi_size_high[bs], &cpi->sf); |
| } else { |
| const TX_SIZE chosen_tx_size = tx_size_from_tx_mode(bs, cm->tx_mode); |
| start_tx = chosen_tx_size; |
| depth = MAX_TX_DEPTH; |
| } |
| |
| prune_tx(cpi, bs, x, xd, EXT_TX_SET_ALL16, 0); |
| |
| last_rd = INT64_MAX; |
| for (n = start_tx; depth <= MAX_TX_DEPTH; |
| depth++, n = sub_tx_size_map[0][n]) { |
| TX_TYPE tx_start = DCT_DCT; |
| TX_TYPE tx_end = TX_TYPES; |
| // The tx_type becomes dummy when lv_map is on. The tx_type search will be |
| // performed in search_txk_type() |
| tx_end = DCT_DCT + 1; |
| TX_TYPE tx_type; |
| for (tx_type = tx_start; tx_type < tx_end; ++tx_type) { |
| RD_STATS this_rd_stats; |
| if (skip_txfm_search(cpi, x, bs, tx_type, n)) continue; |
| |
| if (mbmi->ref_mv_idx > 0) x->rd_model = LOW_TXFM_RD; |
| rd = txfm_yrd(cpi, x, &this_rd_stats, ref_best_rd, bs, tx_type, n); |
| x->rd_model = FULL_TXFM_RD; |
| |
| // Early termination in transform size search. |
| if (cpi->sf.tx_size_search_breakout && |
| (rd == INT64_MAX || |
| (this_rd_stats.skip == 1 && tx_type != DCT_DCT && n != start_tx) || |
| (n != (int)start_tx && rd > last_rd))) { |
| break; |
| } |
| |
| last_rd = rd; |
| ref_best_rd = AOMMIN(rd, ref_best_rd); |
| if (rd < best_rd) { |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); |
| memcpy(best_blk_skip, x->blk_skip[0], sizeof(best_blk_skip[0]) * n4); |
| best_tx_type = tx_type; |
| best_tx_size = n; |
| best_rd = rd; |
| *rd_stats = this_rd_stats; |
| } |
| #if !USE_TXTYPE_SEARCH_FOR_SUB8X8_IN_CB4X4 |
| const int is_inter = is_inter_block(mbmi); |
| if (mbmi->sb_type < BLOCK_8X8 && is_inter) break; |
| #endif // !USE_TXTYPE_SEARCH_FOR_SUB8X8_IN_CB4X4 |
| } |
| if (n == TX_4X4) break; |
| } |
| mbmi->tx_size = best_tx_size; |
| mbmi->tx_type = best_tx_type; |
| memcpy(mbmi->txk_type, best_txk_type, |
| sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); |
| memcpy(x->blk_skip[0], best_blk_skip, sizeof(best_blk_skip[0]) * n4); |
| |
| mbmi->min_tx_size = mbmi->tx_size; |
| // Reset the pruning flags. |
| av1_zero(x->tx_search_prune); |
| } |
| |
| static void super_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bs, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| av1_init_rd_stats(rd_stats); |
| |
| assert(bs == xd->mi[0]->mbmi.sb_type); |
| |
| if (xd->lossless[xd->mi[0]->mbmi.segment_id]) { |
| choose_smallest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); |
| } else if (cpi->sf.tx_size_search_method == USE_LARGESTALL) { |
| choose_largest_tx_size(cpi, x, rd_stats, ref_best_rd, bs); |
| } else { |
| choose_tx_size_type_from_rd(cpi, x, rd_stats, ref_best_rd, bs); |
| } |
| } |
| |
| // Return the rate cost for luma prediction mode info. of intra blocks. |
| static int intra_mode_info_cost_y(const AV1_COMP *cpi, const MACROBLOCK *x, |
| const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, |
| int mode_cost) { |
| int total_rate = mode_cost; |
| const int use_palette = mbmi->palette_mode_info.palette_size[0] > 0; |
| const int use_filter_intra = mbmi->filter_intra_mode_info.use_filter_intra; |
| const int use_intrabc = mbmi->use_intrabc; |
| // Can only activate one mode. |
| assert(((mbmi->mode != DC_PRED) + use_palette + use_intrabc + |
| use_filter_intra) <= 1); |
| const int try_palette = |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); |
| if (try_palette && mbmi->mode == DC_PRED) { |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| const int mode_ctx = av1_get_palette_mode_ctx(xd); |
| total_rate += x->palette_y_mode_cost[bsize_ctx][mode_ctx][use_palette]; |
| if (use_palette) { |
| const uint8_t *const color_map = xd->plane[0].color_index_map; |
| int block_width, block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, |
| &cols); |
| const int plt_size = mbmi->palette_mode_info.palette_size[0]; |
| int palette_mode_cost = |
| x->palette_y_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] + |
| write_uniform_cost(plt_size, color_map[0]); |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 0, color_cache); |
| palette_mode_cost += |
| av1_palette_color_cost_y(&mbmi->palette_mode_info, color_cache, |
| n_cache, cpi->common.bit_depth); |
| palette_mode_cost += |
| av1_cost_color_map(x, 0, bsize, mbmi->tx_size, PALETTE_MAP); |
| total_rate += palette_mode_cost; |
| } |
| } |
| if (mbmi->mode == DC_PRED && av1_filter_intra_allowed_txsize(mbmi->tx_size)) { |
| total_rate += x->filter_intra_cost[mbmi->tx_size][use_filter_intra]; |
| if (use_filter_intra) { |
| total_rate += x->filter_intra_mode_cost[mbmi->filter_intra_mode_info |
| .filter_intra_mode]; |
| } |
| } |
| if (av1_is_directional_mode(mbmi->mode)) { |
| if (av1_use_angle_delta(bsize)) { |
| #if CONFIG_EXT_INTRA_MOD |
| total_rate += x->angle_delta_cost[mbmi->mode - V_PRED] |
| [MAX_ANGLE_DELTA + |
| mbmi->angle_delta[PLANE_TYPE_Y]]; |
| #else |
| total_rate += |
| write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, |
| MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_Y]); |
| #endif // CONFIG_EXT_INTRA_MOD |
| } |
| } |
| if (av1_allow_intrabc(&cpi->common)) |
| total_rate += x->intrabc_cost[use_intrabc]; |
| return total_rate; |
| } |
| |
| // Return the rate cost for chroma prediction mode info. of intra blocks. |
| static int intra_mode_info_cost_uv(const AV1_COMP *cpi, const MACROBLOCK *x, |
| const MB_MODE_INFO *mbmi, BLOCK_SIZE bsize, |
| int mode_cost) { |
| int total_rate = mode_cost; |
| const int use_palette = mbmi->palette_mode_info.palette_size[1] > 0; |
| const UV_PREDICTION_MODE mode = mbmi->uv_mode; |
| // Can only activate one mode. |
| assert(((mode != UV_DC_PRED) + use_palette + mbmi->use_intrabc) <= 1); |
| |
| const int try_palette = |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); |
| if (try_palette && mode == UV_DC_PRED) { |
| const PALETTE_MODE_INFO *pmi = &mbmi->palette_mode_info; |
| total_rate += |
| x->palette_uv_mode_cost[pmi->palette_size[0] > 0][use_palette]; |
| if (use_palette) { |
| const int bsize_ctx = av1_get_palette_bsize_ctx(bsize); |
| const int plt_size = pmi->palette_size[1]; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const uint8_t *const color_map = xd->plane[1].color_index_map; |
| int palette_mode_cost = |
| x->palette_uv_size_cost[bsize_ctx][plt_size - PALETTE_MIN_SIZE] + |
| write_uniform_cost(plt_size, color_map[0]); |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 1, color_cache); |
| palette_mode_cost += av1_palette_color_cost_uv(pmi, color_cache, n_cache, |
| cpi->common.bit_depth); |
| palette_mode_cost += |
| av1_cost_color_map(x, 1, bsize, mbmi->tx_size, PALETTE_MAP); |
| total_rate += palette_mode_cost; |
| } |
| } |
| if (av1_is_directional_mode(get_uv_mode(mode))) { |
| if (av1_use_angle_delta(bsize)) { |
| #if CONFIG_EXT_INTRA_MOD |
| total_rate += |
| x->angle_delta_cost[mode - V_PRED][mbmi->angle_delta[PLANE_TYPE_UV] + |
| MAX_ANGLE_DELTA]; |
| #else |
| total_rate += write_uniform_cost( |
| 2 * MAX_ANGLE_DELTA + 1, |
| MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_UV]); |
| #endif // CONFIG_EXT_INTRA_MOD |
| } |
| } |
| return total_rate; |
| } |
| |
| static int conditional_skipintra(PREDICTION_MODE mode, |
| PREDICTION_MODE best_intra_mode) { |
| if (mode == D113_PRED && best_intra_mode != V_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| if (mode == D67_PRED && best_intra_mode != V_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D203_PRED && best_intra_mode != H_PRED && |
| best_intra_mode != D45_PRED) |
| return 1; |
| if (mode == D157_PRED && best_intra_mode != H_PRED && |
| best_intra_mode != D135_PRED) |
| return 1; |
| return 0; |
| } |
| |
| // Model based RD estimation for luma intra blocks. |
| static int64_t intra_model_yrd(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, int mode_cost) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| assert(!is_inter_block(mbmi)); |
| RD_STATS this_rd_stats; |
| int row, col; |
| int64_t temp_sse, this_rd; |
| TX_SIZE tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); |
| if (mbmi->filter_intra_mode_info.use_filter_intra) { |
| tx_size = av1_max_tx_size_for_filter_intra(bsize, cm->tx_mode); |
| if (!av1_filter_intra_allowed_txsize(tx_size)) return INT64_MAX; |
| } |
| const int stepr = tx_size_high_unit[tx_size]; |
| const int stepc = tx_size_wide_unit[tx_size]; |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| mbmi->tx_size = tx_size; |
| // Prediction. |
| for (row = 0; row < max_blocks_high; row += stepr) { |
| for (col = 0; col < max_blocks_wide; col += stepc) { |
| av1_predict_intra_block_facade(cm, xd, 0, col, row, tx_size); |
| } |
| } |
| // RD estimation. |
| model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &this_rd_stats.rate, |
| &this_rd_stats.dist, &this_rd_stats.skip, &temp_sse); |
| if (av1_is_directional_mode(mbmi->mode) && av1_use_angle_delta(bsize)) { |
| #if CONFIG_EXT_INTRA_MOD |
| mode_cost += |
| x->angle_delta_cost[mbmi->mode - V_PRED] |
| [MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_Y]]; |
| #else |
| mode_cost += |
| write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, |
| MAX_ANGLE_DELTA + mbmi->angle_delta[PLANE_TYPE_Y]); |
| #endif // CONFIG_EXT_INTRA_MOD |
| } |
| if (mbmi->mode == DC_PRED && av1_filter_intra_allowed_txsize(mbmi->tx_size)) { |
| if (mbmi->filter_intra_mode_info.use_filter_intra) { |
| const int mode = mbmi->filter_intra_mode_info.filter_intra_mode; |
| mode_cost += x->filter_intra_cost[mbmi->tx_size][1] + |
| x->filter_intra_mode_cost[mode]; |
| } else { |
| mode_cost += x->filter_intra_cost[mbmi->tx_size][0]; |
| } |
| } |
| this_rd = |
| RDCOST(x->rdmult, this_rd_stats.rate + mode_cost, this_rd_stats.dist); |
| return this_rd; |
| } |
| |
| // Extends 'color_map' array from 'orig_width x orig_height' to 'new_width x |
| // new_height'. Extra rows and columns are filled in by copying last valid |
| // row/column. |
| static void extend_palette_color_map(uint8_t *const color_map, int orig_width, |
| int orig_height, int new_width, |
| int new_height) { |
| int j; |
| assert(new_width >= orig_width); |
| assert(new_height >= orig_height); |
| if (new_width == orig_width && new_height == orig_height) return; |
| |
| for (j = orig_height - 1; j >= 0; --j) { |
| memmove(color_map + j * new_width, color_map + j * orig_width, orig_width); |
| // Copy last column to extra columns. |
| memset(color_map + j * new_width + orig_width, |
| color_map[j * new_width + orig_width - 1], new_width - orig_width); |
| } |
| // Copy last row to extra rows. |
| for (j = orig_height; j < new_height; ++j) { |
| memcpy(color_map + j * new_width, color_map + (orig_height - 1) * new_width, |
| new_width); |
| } |
| } |
| |
| // Bias toward using colors in the cache. |
| // TODO(huisu): Try other schemes to improve compression. |
| static void optimize_palette_colors(uint16_t *color_cache, int n_cache, |
| int n_colors, int stride, int *centroids) { |
| if (n_cache <= 0) return; |
| for (int i = 0; i < n_colors * stride; i += stride) { |
| int min_diff = abs(centroids[i] - (int)color_cache[0]); |
| int idx = 0; |
| for (int j = 1; j < n_cache; ++j) { |
| const int this_diff = abs(centroids[i] - color_cache[j]); |
| if (this_diff < min_diff) { |
| min_diff = this_diff; |
| idx = j; |
| } |
| } |
| if (min_diff <= 1) centroids[i] = color_cache[idx]; |
| } |
| } |
| |
| // Given the base colors as specified in centroids[], calculate the RD cost |
| // of palette mode. |
| static void palette_rd_y( |
| const AV1_COMP *const cpi, MACROBLOCK *x, MB_MODE_INFO *mbmi, |
| BLOCK_SIZE bsize, int dc_mode_cost, const int *data, int *centroids, int n, |
| uint16_t *color_cache, int n_cache, MB_MODE_INFO *best_mbmi, |
| uint8_t *best_palette_color_map, int64_t *best_rd, int64_t *best_model_rd, |
| int *rate, int *rate_tokenonly, int *rate_overhead, int64_t *distortion, |
| int *skippable, PICK_MODE_CONTEXT *ctx, uint8_t *blk_skip) { |
| optimize_palette_colors(color_cache, n_cache, n, 1, centroids); |
| int k = av1_remove_duplicates(centroids, n); |
| if (k < PALETTE_MIN_SIZE) { |
| // Too few unique colors to create a palette. And DC_PRED will work |
| // well for that case anyway. So skip. |
| return; |
| } |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| if (cpi->common.use_highbitdepth) |
| for (int i = 0; i < k; ++i) |
| pmi->palette_colors[i] = |
| clip_pixel_highbd((int)centroids[i], cpi->common.bit_depth); |
| else |
| for (int i = 0; i < k; ++i) |
| pmi->palette_colors[i] = clip_pixel(centroids[i]); |
| pmi->palette_size[0] = k; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| uint8_t *const color_map = xd->plane[0].color_index_map; |
| int block_width, block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, |
| &cols); |
| av1_calc_indices(data, centroids, color_map, rows * cols, k, 1); |
| extend_palette_color_map(color_map, cols, rows, block_width, block_height); |
| const int palette_mode_cost = |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, dc_mode_cost); |
| int64_t this_model_rd = intra_model_yrd(cpi, x, bsize, palette_mode_cost); |
| if (*best_model_rd != INT64_MAX && |
| this_model_rd > *best_model_rd + (*best_model_rd >> 1)) |
| return; |
| if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; |
| RD_STATS tokenonly_rd_stats; |
| super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); |
| if (tokenonly_rd_stats.rate == INT_MAX) return; |
| int this_rate = tokenonly_rd_stats.rate + palette_mode_cost; |
| int64_t this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) { |
| tokenonly_rd_stats.rate -= |
| tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); |
| } |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| memcpy(best_palette_color_map, color_map, |
| block_width * block_height * sizeof(color_map[0])); |
| *best_mbmi = *mbmi; |
| memcpy(blk_skip, x->blk_skip[0], sizeof(uint8_t) * ctx->num_4x4_blk); |
| *rate_overhead = this_rate - tokenonly_rd_stats.rate; |
| if (rate) *rate = this_rate; |
| if (rate_tokenonly) *rate_tokenonly = tokenonly_rd_stats.rate; |
| if (distortion) *distortion = tokenonly_rd_stats.dist; |
| if (skippable) *skippable = tokenonly_rd_stats.skip; |
| } |
| } |
| |
| static int rd_pick_palette_intra_sby( |
| const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int dc_mode_cost, MB_MODE_INFO *best_mbmi, uint8_t *best_palette_color_map, |
| int64_t *best_rd, int64_t *best_model_rd, int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, PICK_MODE_CONTEXT *ctx, |
| uint8_t *best_blk_skip) { |
| int rate_overhead = 0; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mic = xd->mi[0]; |
| MB_MODE_INFO *const mbmi = &mic->mbmi; |
| assert(!is_inter_block(mbmi)); |
| assert(av1_allow_palette(cpi->common.allow_screen_content_tools, bsize)); |
| int colors, n; |
| const int src_stride = x->plane[0].src.stride; |
| const uint8_t *const src = x->plane[0].src.buf; |
| uint8_t *const color_map = xd->plane[0].color_index_map; |
| int block_width, block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 0, xd, &block_width, &block_height, &rows, |
| &cols); |
| |
| int count_buf[1 << 12]; // Maximum (1 << 12) color levels. |
| if (cpi->common.use_highbitdepth) |
| colors = av1_count_colors_highbd(src, src_stride, rows, cols, |
| cpi->common.bit_depth, count_buf); |
| else |
| colors = av1_count_colors(src, src_stride, rows, cols, count_buf); |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| |
| if (colors > 1 && colors <= 64) { |
| int r, c, i; |
| const int max_itr = 50; |
| int *const data = x->palette_buffer->kmeans_data_buf; |
| int centroids[PALETTE_MAX_SIZE]; |
| int lb, ub, val; |
| uint16_t *src16 = CONVERT_TO_SHORTPTR(src); |
| if (cpi->common.use_highbitdepth) |
| lb = ub = src16[0]; |
| else |
| lb = ub = src[0]; |
| |
| if (cpi->common.use_highbitdepth) { |
| for (r = 0; r < rows; ++r) { |
| for (c = 0; c < cols; ++c) { |
| val = src16[r * src_stride + c]; |
| data[r * cols + c] = val; |
| if (val < lb) |
| lb = val; |
| else if (val > ub) |
| ub = val; |
| } |
| } |
| } else { |
| for (r = 0; r < rows; ++r) { |
| for (c = 0; c < cols; ++c) { |
| val = src[r * src_stride + c]; |
| data[r * cols + c] = val; |
| if (val < lb) |
| lb = val; |
| else if (val > ub) |
| ub = val; |
| } |
| } |
| } |
| |
| mbmi->mode = DC_PRED; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 0, color_cache); |
| |
| // Find the dominant colors, stored in top_colors[]. |
| int top_colors[PALETTE_MAX_SIZE] = { 0 }; |
| for (i = 0; i < AOMMIN(colors, PALETTE_MAX_SIZE); ++i) { |
| int max_count = 0; |
| for (int j = 0; j < (1 << cpi->common.bit_depth); ++j) { |
| if (count_buf[j] > max_count) { |
| max_count = count_buf[j]; |
| top_colors[i] = j; |
| } |
| } |
| assert(max_count > 0); |
| count_buf[top_colors[i]] = 0; |
| } |
| |
| // Try the dominant colors directly. |
| // TODO(huisu@google.com): Try to avoid duplicate computation in cases |
| // where the dominant colors and the k-means results are similar. |
| for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) { |
| for (i = 0; i < n; ++i) centroids[i] = top_colors[i]; |
| palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n, |
| color_cache, n_cache, best_mbmi, best_palette_color_map, |
| best_rd, best_model_rd, rate, rate_tokenonly, &rate_overhead, |
| distortion, skippable, ctx, best_blk_skip); |
| } |
| |
| // K-means clustering. |
| for (n = AOMMIN(colors, PALETTE_MAX_SIZE); n >= 2; --n) { |
| if (colors == PALETTE_MIN_SIZE) { |
| // Special case: These colors automatically become the centroids. |
| assert(colors == n); |
| assert(colors == 2); |
| centroids[0] = lb; |
| centroids[1] = ub; |
| } else { |
| for (i = 0; i < n; ++i) { |
| centroids[i] = lb + (2 * i + 1) * (ub - lb) / n / 2; |
| } |
| av1_k_means(data, centroids, color_map, rows * cols, n, 1, max_itr); |
| } |
| palette_rd_y(cpi, x, mbmi, bsize, dc_mode_cost, data, centroids, n, |
| color_cache, n_cache, best_mbmi, best_palette_color_map, |
| best_rd, best_model_rd, rate, rate_tokenonly, &rate_overhead, |
| distortion, skippable, ctx, best_blk_skip); |
| } |
| } |
| |
| if (best_mbmi->palette_mode_info.palette_size[0] > 0) { |
| memcpy(color_map, best_palette_color_map, |
| block_width * block_height * sizeof(best_palette_color_map[0])); |
| } |
| *mbmi = *best_mbmi; |
| return rate_overhead; |
| } |
| |
| // Return 1 if an filter intra mode is selected; return 0 otherwise. |
| static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize, int mode_cost, |
| int64_t *best_rd, int64_t *best_model_rd, |
| PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mic = xd->mi[0]; |
| MB_MODE_INFO *mbmi = &mic->mbmi; |
| int filter_intra_selected_flag = 0; |
| FILTER_INTRA_MODE mode; |
| TX_SIZE best_tx_size = TX_8X8; |
| FILTER_INTRA_MODE_INFO filter_intra_mode_info; |
| TX_TYPE best_tx_type; |
| TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; |
| (void)ctx; |
| av1_zero(filter_intra_mode_info); |
| mbmi->filter_intra_mode_info.use_filter_intra = 1; |
| mbmi->mode = DC_PRED; |
| mbmi->palette_mode_info.palette_size[0] = 0; |
| |
| for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { |
| int64_t this_rd, this_model_rd; |
| RD_STATS tokenonly_rd_stats; |
| mbmi->filter_intra_mode_info.filter_intra_mode = mode; |
| this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost); |
| if (*best_model_rd != INT64_MAX && |
| this_model_rd > *best_model_rd + (*best_model_rd >> 1)) |
| continue; |
| if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; |
| super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); |
| if (tokenonly_rd_stats.rate == INT_MAX) continue; |
| const int this_rate = |
| tokenonly_rd_stats.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost); |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| best_tx_size = mbmi->tx_size; |
| filter_intra_mode_info = mbmi->filter_intra_mode_info; |
| best_tx_type = mbmi->tx_type; |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); |
| memcpy(ctx->blk_skip[0], x->blk_skip[0], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| *rate = this_rate; |
| *rate_tokenonly = tokenonly_rd_stats.rate; |
| *distortion = tokenonly_rd_stats.dist; |
| *skippable = tokenonly_rd_stats.skip; |
| filter_intra_selected_flag = 1; |
| } |
| } |
| |
| if (filter_intra_selected_flag) { |
| mbmi->mode = DC_PRED; |
| mbmi->tx_size = best_tx_size; |
| mbmi->filter_intra_mode_info = filter_intra_mode_info; |
| mbmi->tx_type = best_tx_type; |
| memcpy(mbmi->txk_type, best_txk_type, |
| sizeof(best_txk_type[0]) * TXK_TYPE_BUF_LEN); |
| return 1; |
| } else { |
| return 0; |
| } |
| } |
| |
| // Run RD calculation with given luma intra prediction angle., and return |
| // the RD cost. Update the best mode info. if the RD cost is the best so far. |
| static int64_t calc_rd_given_intra_angle( |
| const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mode_cost, |
| int64_t best_rd_in, int8_t angle_delta, int max_angle_delta, int *rate, |
| RD_STATS *rd_stats, int *best_angle_delta, TX_SIZE *best_tx_size, |
| TX_TYPE *best_tx_type, int64_t *best_rd, int64_t *best_model_rd, |
| TX_TYPE *best_txk_type, uint8_t *best_blk_skip) { |
| int this_rate; |
| RD_STATS tokenonly_rd_stats; |
| int64_t this_rd, this_model_rd; |
| MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi; |
| const int n4 = bsize_to_num_blk(bsize); |
| assert(!is_inter_block(mbmi)); |
| |
| mbmi->angle_delta[PLANE_TYPE_Y] = angle_delta; |
| this_model_rd = intra_model_yrd(cpi, x, bsize, mode_cost); |
| if (*best_model_rd != INT64_MAX && |
| this_model_rd > *best_model_rd + (*best_model_rd >> 1)) |
| return INT64_MAX; |
| if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; |
| super_block_yrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in); |
| if (tokenonly_rd_stats.rate == INT_MAX) return INT64_MAX; |
| |
| this_rate = |
| tokenonly_rd_stats.rate + mode_cost + |
| #if CONFIG_EXT_INTRA_MOD |
| x->angle_delta_cost[mbmi->mode - V_PRED] |
| [max_angle_delta + mbmi->angle_delta[PLANE_TYPE_Y]]; |
| #else |
| write_uniform_cost(2 * max_angle_delta + 1, |
| mbmi->angle_delta[PLANE_TYPE_Y] + max_angle_delta); |
| #endif // CONFIG_EXT_INTRA_MOD |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| |
| if (this_rd < *best_rd) { |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| memcpy(best_blk_skip, x->blk_skip[0], sizeof(best_blk_skip[0]) * n4); |
| *best_rd = this_rd; |
| *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_Y]; |
| *best_tx_size = mbmi->tx_size; |
| *best_tx_type = mbmi->tx_type; |
| *rate = this_rate; |
| rd_stats->rate = tokenonly_rd_stats.rate; |
| rd_stats->dist = tokenonly_rd_stats.dist; |
| rd_stats->skip = tokenonly_rd_stats.skip; |
| } |
| return this_rd; |
| } |
| |
| // With given luma directional intra prediction mode, pick the best angle delta |
| // Return the RD cost corresponding to the best angle delta. |
| static int64_t rd_pick_intra_angle_sby(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int *rate, RD_STATS *rd_stats, |
| BLOCK_SIZE bsize, int mode_cost, |
| int64_t best_rd, |
| int64_t *best_model_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mic = xd->mi[0]; |
| MB_MODE_INFO *mbmi = &mic->mbmi; |
| assert(!is_inter_block(mbmi)); |
| int i, angle_delta, best_angle_delta = 0; |
| int first_try = 1; |
| int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; |
| TX_SIZE best_tx_size = mbmi->tx_size; |
| TX_TYPE best_tx_type = mbmi->tx_type; |
| const int n4 = bsize_to_num_blk(bsize); |
| TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| |
| for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; |
| |
| for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| for (i = 0; i < 2; ++i) { |
| best_rd_in = (best_rd == INT64_MAX) |
| ? INT64_MAX |
| : (best_rd + (best_rd >> (first_try ? 3 : 5))); |
| this_rd = calc_rd_given_intra_angle( |
| cpi, x, bsize, mode_cost, best_rd_in, (1 - 2 * i) * angle_delta, |
| MAX_ANGLE_DELTA, rate, rd_stats, &best_angle_delta, &best_tx_size, |
| &best_tx_type, &best_rd, best_model_rd, best_txk_type, best_blk_skip); |
| rd_cost[2 * angle_delta + i] = this_rd; |
| if (first_try && this_rd == INT64_MAX) return best_rd; |
| first_try = 0; |
| if (angle_delta == 0) { |
| rd_cost[1] = this_rd; |
| break; |
| } |
| } |
| } |
| |
| assert(best_rd != INT64_MAX); |
| for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| int64_t rd_thresh; |
| for (i = 0; i < 2; ++i) { |
| int skip_search = 0; |
| rd_thresh = best_rd + (best_rd >> 5); |
| if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && |
| rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) |
| skip_search = 1; |
| if (!skip_search) { |
| calc_rd_given_intra_angle(cpi, x, bsize, mode_cost, best_rd, |
| (1 - 2 * i) * angle_delta, MAX_ANGLE_DELTA, |
| rate, rd_stats, &best_angle_delta, |
| &best_tx_size, &best_tx_type, &best_rd, |
| best_model_rd, best_txk_type, best_blk_skip); |
| } |
| } |
| } |
| |
| mbmi->tx_size = best_tx_size; |
| mbmi->angle_delta[PLANE_TYPE_Y] = best_angle_delta; |
| mbmi->tx_type = best_tx_type; |
| memcpy(mbmi->txk_type, best_txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| memcpy(x->blk_skip[0], best_blk_skip, sizeof(best_blk_skip[0]) * n4); |
| return best_rd; |
| } |
| |
| // Indices are sign, integer, and fractional part of the gradient value |
| static const uint8_t gradient_to_angle_bin[2][7][16] = { |
| { |
| { 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 0, 0, 0, 0 }, |
| { 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 }, |
| { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, |
| { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, |
| }, |
| { |
| { 6, 6, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 4, 4, 4, 4 }, |
| { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3 }, |
| { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, |
| { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, |
| { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 }, |
| { 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, |
| { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 }, |
| }, |
| }; |
| |
| /* clang-format off */ |
| static const uint8_t mode_to_angle_bin[INTRA_MODES] = { |
| 0, 2, 6, 0, 4, 3, 5, 7, 1, 0, |
| 0, |
| }; |
| /* clang-format on */ |
| |
| static void angle_estimation(const uint8_t *src, int src_stride, int rows, |
| int cols, BLOCK_SIZE bsize, |
| uint8_t *directional_mode_skip_mask) { |
| memset(directional_mode_skip_mask, 0, |
| INTRA_MODES * sizeof(*directional_mode_skip_mask)); |
| // Check if angle_delta is used |
| if (!av1_use_angle_delta(bsize)) return; |
| uint64_t hist[DIRECTIONAL_MODES]; |
| memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); |
| src += src_stride; |
| int r, c, dx, dy; |
| for (r = 1; r < rows; ++r) { |
| for (c = 1; c < cols; ++c) { |
| dx = src[c] - src[c - 1]; |
| dy = src[c] - src[c - src_stride]; |
| int index; |
| const int temp = dx * dx + dy * dy; |
| if (dy == 0) { |
| index = 2; |
| } else { |
| const int sn = (dx > 0) ^ (dy > 0); |
| dx = abs(dx); |
| dy = abs(dy); |
| const int remd = (dx % dy) * 16 / dy; |
| const int quot = dx / dy; |
| index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; |
| } |
| hist[index] += temp; |
| } |
| src += src_stride; |
| } |
| |
| int i; |
| uint64_t hist_sum = 0; |
| for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; |
| for (i = 0; i < INTRA_MODES; ++i) { |
| if (av1_is_directional_mode(i)) { |
| const uint8_t angle_bin = mode_to_angle_bin[i]; |
| uint64_t score = 2 * hist[angle_bin]; |
| int weight = 2; |
| if (angle_bin > 0) { |
| score += hist[angle_bin - 1]; |
| ++weight; |
| } |
| if (angle_bin < DIRECTIONAL_MODES - 1) { |
| score += hist[angle_bin + 1]; |
| ++weight; |
| } |
| if (score * ANGLE_SKIP_THRESH < hist_sum * weight) |
| directional_mode_skip_mask[i] = 1; |
| } |
| } |
| } |
| |
| static void highbd_angle_estimation(const uint8_t *src8, int src_stride, |
| int rows, int cols, BLOCK_SIZE bsize, |
| uint8_t *directional_mode_skip_mask) { |
| memset(directional_mode_skip_mask, 0, |
| INTRA_MODES * sizeof(*directional_mode_skip_mask)); |
| // Check if angle_delta is used |
| if (!av1_use_angle_delta(bsize)) return; |
| uint16_t *src = CONVERT_TO_SHORTPTR(src8); |
| uint64_t hist[DIRECTIONAL_MODES]; |
| memset(hist, 0, DIRECTIONAL_MODES * sizeof(hist[0])); |
| src += src_stride; |
| int r, c, dx, dy; |
| for (r = 1; r < rows; ++r) { |
| for (c = 1; c < cols; ++c) { |
| dx = src[c] - src[c - 1]; |
| dy = src[c] - src[c - src_stride]; |
| int index; |
| const int temp = dx * dx + dy * dy; |
| if (dy == 0) { |
| index = 2; |
| } else { |
| const int sn = (dx > 0) ^ (dy > 0); |
| dx = abs(dx); |
| dy = abs(dy); |
| const int remd = (dx % dy) * 16 / dy; |
| const int quot = dx / dy; |
| index = gradient_to_angle_bin[sn][AOMMIN(quot, 6)][AOMMIN(remd, 15)]; |
| } |
| hist[index] += temp; |
| } |
| src += src_stride; |
| } |
| |
| int i; |
| uint64_t hist_sum = 0; |
| for (i = 0; i < DIRECTIONAL_MODES; ++i) hist_sum += hist[i]; |
| for (i = 0; i < INTRA_MODES; ++i) { |
| if (av1_is_directional_mode(i)) { |
| const uint8_t angle_bin = mode_to_angle_bin[i]; |
| uint64_t score = 2 * hist[angle_bin]; |
| int weight = 2; |
| if (angle_bin > 0) { |
| score += hist[angle_bin - 1]; |
| ++weight; |
| } |
| if (angle_bin < DIRECTIONAL_MODES - 1) { |
| score += hist[angle_bin + 1]; |
| ++weight; |
| } |
| if (score * ANGLE_SKIP_THRESH < hist_sum * weight) |
| directional_mode_skip_mask[i] = 1; |
| } |
| } |
| } |
| |
| // Given selected prediction mode, search for the best tx type and size. |
| static void intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, const int *bmode_costs, |
| int64_t *best_rd, int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| MB_MODE_INFO *best_mbmi, PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| RD_STATS rd_stats; |
| super_block_yrd(cpi, x, &rd_stats, bsize, *best_rd); |
| if (rd_stats.rate == INT_MAX) return; |
| int this_rate_tokenonly = rd_stats.rate; |
| if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->sb_type)) { |
| // super_block_yrd above includes the cost of the tx_size in the |
| // tokenonly rate, but for intra blocks, tx_size is always coded |
| // (prediction granularity), so we account for it in the full rate, |
| // not the tokenonly rate. |
| this_rate_tokenonly -= tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); |
| } |
| const int this_rate = |
| rd_stats.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]); |
| const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist); |
| if (this_rd < *best_rd) { |
| *best_mbmi = *mbmi; |
| *best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = rd_stats.dist; |
| *skippable = rd_stats.skip; |
| memcpy(ctx->blk_skip[0], x->blk_skip[0], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| } |
| } |
| |
| // This function is used only for intra_only frames |
| static int64_t rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize, int64_t best_rd, |
| PICK_MODE_CONTEXT *ctx) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mic = xd->mi[0]; |
| MB_MODE_INFO *const mbmi = &mic->mbmi; |
| assert(!is_inter_block(mbmi)); |
| int64_t best_model_rd = INT64_MAX; |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| int is_directional_mode; |
| uint8_t directional_mode_skip_mask[INTRA_MODES]; |
| const int src_stride = x->plane[0].src.stride; |
| const uint8_t *src = x->plane[0].src.buf; |
| int beat_best_rd = 0; |
| const int *bmode_costs; |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const int try_palette = |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); |
| uint8_t *best_palette_color_map = |
| try_palette ? x->palette_buffer->best_palette_color_map : NULL; |
| const MODE_INFO *above_mi = xd->above_mi; |
| const MODE_INFO *left_mi = xd->left_mi; |
| const PREDICTION_MODE A = av1_above_block_mode(above_mi); |
| const PREDICTION_MODE L = av1_left_block_mode(left_mi); |
| const int above_ctx = intra_mode_context[A]; |
| const int left_ctx = intra_mode_context[L]; |
| bmode_costs = x->y_mode_costs[above_ctx][left_ctx]; |
| |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| highbd_angle_estimation(src, src_stride, rows, cols, bsize, |
| directional_mode_skip_mask); |
| else |
| angle_estimation(src, src_stride, rows, cols, bsize, |
| directional_mode_skip_mask); |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| pmi->palette_size[0] = 0; |
| |
| if (cpi->sf.tx_type_search.fast_intra_tx_type_search) |
| x->use_default_intra_tx_type = 1; |
| else |
| x->use_default_intra_tx_type = 0; |
| |
| MB_MODE_INFO best_mbmi = *mbmi; |
| /* Y Search for intra prediction mode */ |
| for (int mode_idx = DC_PRED; mode_idx < INTRA_MODES; ++mode_idx) { |
| RD_STATS this_rd_stats; |
| int this_rate, this_rate_tokenonly, s; |
| int64_t this_distortion, this_rd, this_model_rd; |
| mbmi->mode = intra_rd_search_mode_order[mode_idx]; |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| this_model_rd = intra_model_yrd(cpi, x, bsize, bmode_costs[mbmi->mode]); |
| if (best_model_rd != INT64_MAX && |
| this_model_rd > best_model_rd + (best_model_rd >> 1)) |
| continue; |
| if (this_model_rd < best_model_rd) best_model_rd = this_model_rd; |
| is_directional_mode = av1_is_directional_mode(mbmi->mode); |
| if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue; |
| if (is_directional_mode && av1_use_angle_delta(bsize)) { |
| this_rd_stats.rate = INT_MAX; |
| rd_pick_intra_angle_sby(cpi, x, &this_rate, &this_rd_stats, bsize, |
| bmode_costs[mbmi->mode], best_rd, &best_model_rd); |
| } else { |
| super_block_yrd(cpi, x, &this_rd_stats, bsize, best_rd); |
| } |
| this_rate_tokenonly = this_rd_stats.rate; |
| this_distortion = this_rd_stats.dist; |
| s = this_rd_stats.skip; |
| |
| if (this_rate_tokenonly == INT_MAX) continue; |
| |
| if (!xd->lossless[mbmi->segment_id] && |
| block_signals_txsize(mbmi->sb_type)) { |
| // super_block_yrd above includes the cost of the tx_size in the |
| // tokenonly rate, but for intra blocks, tx_size is always coded |
| // (prediction granularity), so we account for it in the full rate, |
| // not the tokenonly rate. |
| this_rate_tokenonly -= |
| tx_size_cost(&cpi->common, x, bsize, mbmi->tx_size); |
| } |
| this_rate = |
| this_rd_stats.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode]); |
| this_rd = RDCOST(x->rdmult, this_rate, this_distortion); |
| if (this_rd < best_rd) { |
| best_mbmi = *mbmi; |
| best_rd = this_rd; |
| beat_best_rd = 1; |
| *rate = this_rate; |
| *rate_tokenonly = this_rate_tokenonly; |
| *distortion = this_distortion; |
| *skippable = s; |
| memcpy(ctx->blk_skip[0], x->blk_skip[0], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| } |
| } |
| |
| if (try_palette) { |
| rd_pick_palette_intra_sby(cpi, x, bsize, bmode_costs[DC_PRED], &best_mbmi, |
| best_palette_color_map, &best_rd, &best_model_rd, |
| rate, rate_tokenonly, distortion, skippable, ctx, |
| ctx->blk_skip[0]); |
| } |
| |
| if (beat_best_rd && !xd->lossless[mbmi->segment_id]) { |
| if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion, |
| skippable, bsize, bmode_costs[DC_PRED], |
| &best_rd, &best_model_rd, ctx)) { |
| best_mbmi = *mbmi; |
| } |
| } |
| |
| // If previous searches use only the default tx type, do an extra search for |
| // the best tx type. |
| if (x->use_default_intra_tx_type) { |
| *mbmi = best_mbmi; |
| x->use_default_intra_tx_type = 0; |
| intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, rate_tokenonly, |
| distortion, skippable, &best_mbmi, ctx); |
| } |
| |
| *mbmi = best_mbmi; |
| return best_rd; |
| } |
| |
| // Return value 0: early termination triggered, no valid rd cost available; |
| // 1: rd cost values are valid. |
| static int super_block_uvrd(const AV1_COMP *const cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t ref_best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_U]; |
| const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); |
| int plane; |
| int is_cost_valid = 1; |
| av1_init_rd_stats(rd_stats); |
| |
| if (ref_best_rd < 0) is_cost_valid = 0; |
| |
| if (x->skip_chroma_rd) return is_cost_valid; |
| |
| bsize = scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y); |
| |
| if (is_inter_block(mbmi) && is_cost_valid) { |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) |
| av1_subtract_plane(x, bsize, plane); |
| } |
| |
| if (is_cost_valid) { |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) { |
| RD_STATS pn_rd_stats; |
| txfm_rd_in_plane(x, cpi, &pn_rd_stats, ref_best_rd, plane, bsize, |
| uv_tx_size, cpi->sf.use_fast_coef_costing); |
| if (pn_rd_stats.rate == INT_MAX) { |
| is_cost_valid = 0; |
| break; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) > ref_best_rd && |
| RDCOST(x->rdmult, 0, rd_stats->sse) > ref_best_rd) { |
| is_cost_valid = 0; |
| break; |
| } |
| } |
| } |
| |
| if (!is_cost_valid) { |
| // reset cost value |
| av1_invalid_rd_stats(rd_stats); |
| } |
| |
| return is_cost_valid; |
| } |
| |
| void av1_tx_block_rd_b(const AV1_COMP *cpi, MACROBLOCK *x, TX_SIZE tx_size, |
| int blk_row, int blk_col, int plane, int block, |
| int plane_bsize, const ENTROPY_CONTEXT *a, |
| const ENTROPY_CONTEXT *l, RD_STATS *rd_stats, |
| int fast_tx_search, TX_SIZE_RD_INFO *rd_info_array) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, plane, a, l, &txb_ctx); |
| const uint16_t cur_joint_ctx = |
| (txb_ctx.dc_sign_ctx << 8) + txb_ctx.txb_skip_ctx; |
| |
| const int txk_type_idx = |
| av1_get_txk_type_index(plane_bsize, blk_row, blk_col); |
| // Look up RD and terminate early in case when we've already processed exactly |
| // the same residual with exactly the same entropy context. |
| if (rd_info_array != NULL && rd_info_array->valid && |
| rd_info_array->entropy_context == cur_joint_ctx) { |
| rd_stats->rate += rd_info_array->rate; |
| rd_stats->dist += rd_info_array->dist; |
| rd_stats->sse += rd_info_array->sse; |
| rd_stats->skip &= rd_info_array->eob == 0; |
| p->eobs[block] = rd_info_array->eob; |
| p->txb_entropy_ctx[block] = rd_info_array->txb_entropy_ctx; |
| if (plane == 0) { |
| x->e_mbd.mi[0]->mbmi.txk_type[txk_type_idx] = rd_info_array->tx_type; |
| } |
| return; |
| } |
| |
| RD_STATS this_rd_stats; |
| search_txk_type(cpi, x, plane, block, blk_row, blk_col, plane_bsize, tx_size, |
| a, l, fast_tx_search, 0, &this_rd_stats); |
| |
| av1_merge_rd_stats(rd_stats, &this_rd_stats); |
| |
| // Save RD results for possible reuse in future. |
| if (rd_info_array != NULL) { |
| rd_info_array->valid = 1; |
| rd_info_array->entropy_context = cur_joint_ctx; |
| rd_info_array->rate = this_rd_stats.rate; |
| rd_info_array->dist = this_rd_stats.dist; |
| rd_info_array->sse = this_rd_stats.sse; |
| rd_info_array->eob = p->eobs[block]; |
| rd_info_array->txb_entropy_ctx = p->txb_entropy_ctx[block]; |
| if (plane == 0) { |
| rd_info_array->tx_type = x->e_mbd.mi[0]->mbmi.txk_type[txk_type_idx]; |
| } |
| } |
| } |
| |
| static void select_tx_block(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, |
| int blk_col, int plane, int block, TX_SIZE tx_size, |
| int depth, BLOCK_SIZE plane_bsize, |
| ENTROPY_CONTEXT *ta, ENTROPY_CONTEXT *tl, |
| TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, |
| RD_STATS *rd_stats, int64_t ref_best_rd, |
| int *is_cost_valid, int fast_tx_search, |
| TX_SIZE_RD_INFO_NODE *rd_info_node) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| struct macroblock_plane *const p = &x->plane[plane]; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| const int bw = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| int64_t this_rd = INT64_MAX; |
| ENTROPY_CONTEXT *pta = ta + blk_col; |
| ENTROPY_CONTEXT *ptl = tl + blk_row; |
| int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, |
| mbmi->sb_type, tx_size); |
| int64_t sum_rd = INT64_MAX; |
| int tmp_eob = 0; |
| RD_STATS sum_rd_stats; |
| TX_TYPE best_tx_type = TX_TYPES; |
| |
| av1_init_rd_stats(&sum_rd_stats); |
| |
| assert(tx_size < TX_SIZES_ALL); |
| |
| if (ref_best_rd < 0) { |
| *is_cost_valid = 0; |
| return; |
| } |
| |
| av1_init_rd_stats(rd_stats); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| // TX no split |
| { |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, plane, pta, ptl, &txb_ctx); |
| |
| const int zero_blk_rate = x->coeff_costs[txs_ctx][get_plane_type(plane)] |
| .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; |
| |
| rd_stats->ref_rdcost = ref_best_rd; |
| rd_stats->zero_rate = zero_blk_rate; |
| const int index = av1_get_txb_size_index(plane_bsize, blk_row, blk_col); |
| mbmi->inter_tx_size[index] = tx_size; |
| av1_tx_block_rd_b( |
| cpi, x, tx_size, blk_row, blk_col, plane, block, plane_bsize, pta, ptl, |
| rd_stats, fast_tx_search, |
| rd_info_node != NULL ? rd_info_node->rd_info_array : NULL); |
| if (rd_stats->rate == INT_MAX) return; |
| |
| if ((RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= |
| RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || |
| rd_stats->skip == 1) && |
| !xd->lossless[mbmi->segment_id]) { |
| #if CONFIG_RD_DEBUG |
| av1_update_txb_coeff_cost(rd_stats, plane, tx_size, blk_row, blk_col, |
| zero_blk_rate - rd_stats->rate); |
| #endif // CONFIG_RD_DEBUG |
| rd_stats->rate = zero_blk_rate; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip = 1; |
| x->blk_skip[plane][blk_row * bw + blk_col] = 1; |
| p->eobs[block] = 0; |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| DCT_DCT); |
| } else { |
| x->blk_skip[plane][blk_row * bw + blk_col] = 0; |
| rd_stats->skip = 0; |
| } |
| |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) |
| rd_stats->rate += x->txfm_partition_cost[ctx][0]; |
| this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| tmp_eob = p->txb_entropy_ctx[block]; |
| const int txk_type_idx = |
| av1_get_txk_type_index(plane_bsize, blk_row, blk_col); |
| best_tx_type = mbmi->txk_type[txk_type_idx]; |
| } |
| |
| int tx_split_prune_flag = 0; |
| if (cpi->sf.tx_type_search.prune_mode >= PRUNE_2D_ACCURATE) |
| tx_split_prune_flag = ((x->tx_search_prune[0] >> TX_TYPES) & 1); |
| |
| if (cpi->sf.txb_split_cap) |
| if (p->eobs[block] == 0) tx_split_prune_flag = 1; |
| |
| // TX split |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH && tx_split_prune_flag == 0) { |
| const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int sub_step = bsw * bsh; |
| RD_STATS this_rd_stats; |
| int this_cost_valid = 1; |
| int64_t tmp_rd = 0; |
| #if CONFIG_DIST_8X8 |
| int sub8x8_eob[4] = { 0, 0, 0, 0 }; |
| #endif |
| sum_rd_stats.rate = x->txfm_partition_cost[ctx][1]; |
| |
| assert(tx_size < TX_SIZES_ALL); |
| |
| ref_best_rd = AOMMIN(this_rd, ref_best_rd); |
| |
| int blk_idx = 0; |
| for (int r = 0; r < tx_size_high_unit[tx_size]; r += bsh) { |
| for (int c = 0; c < tx_size_wide_unit[tx_size]; c += bsw, ++blk_idx) { |
| const int offsetr = blk_row + r; |
| const int offsetc = blk_col + c; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| assert(blk_idx < 4); |
| select_tx_block( |
| cpi, x, offsetr, offsetc, plane, block, sub_txs, depth + 1, |
| plane_bsize, ta, tl, tx_above, tx_left, &this_rd_stats, |
| ref_best_rd - tmp_rd, &this_cost_valid, fast_tx_search, |
| (rd_info_node != NULL) ? rd_info_node->children[blk_idx] : NULL); |
| |
| #if CONFIG_DIST_8X8 |
| if (!x->using_dist_8x8) |
| #endif |
| if (!this_cost_valid) break; |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && plane == 0 && tx_size == TX_8X8) { |
| sub8x8_eob[2 * (r / bsh) + (c / bsw)] = p->eobs[block]; |
| } |
| #endif // CONFIG_DIST_8X8 |
| av1_merge_rd_stats(&sum_rd_stats, &this_rd_stats); |
| |
| tmp_rd = RDCOST(x->rdmult, sum_rd_stats.rate, sum_rd_stats.dist); |
| #if CONFIG_DIST_8X8 |
| if (!x->using_dist_8x8) |
| #endif |
| if (this_rd < tmp_rd) break; |
| block += sub_step; |
| } |
| } |
| #if CONFIG_DIST_8X8 |
| if (x->using_dist_8x8 && this_cost_valid && plane == 0 && |
| tx_size == TX_8X8) { |
| const int src_stride = p->src.stride; |
| const int dst_stride = pd->dst.stride; |
| |
| const uint8_t *src = |
| &p->src.buf[(blk_row * src_stride + blk_col) << tx_size_wide_log2[0]]; |
| const uint8_t *dst = |
| &pd->dst |
| .buf[(blk_row * dst_stride + blk_col) << tx_size_wide_log2[0]]; |
| |
| int64_t dist_8x8; |
| const int qindex = x->qindex; |
| const int pred_stride = block_size_wide[plane_bsize]; |
| const int pred_idx = (blk_row * pred_stride + blk_col) |
| << tx_size_wide_log2[0]; |
| const int16_t *pred = &pd->pred[pred_idx]; |
| int i, j; |
| int row, col; |
| |
| uint8_t *pred8; |
| DECLARE_ALIGNED(16, uint16_t, pred8_16[8 * 8]); |
| |
| dist_8x8 = av1_dist_8x8(cpi, x, src, src_stride, dst, dst_stride, |
| BLOCK_8X8, 8, 8, 8, 8, qindex) * |
| 16; |
| |
| #ifdef DEBUG_DIST_8X8 |
| if (x->tune_metric == AOM_TUNE_PSNR && xd->bd == 8) |
| assert(sum_rd_stats.sse == dist_8x8); |
| #endif // DEBUG_DIST_8X8 |
| |
| sum_rd_stats.sse = dist_8x8; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| pred8 = CONVERT_TO_BYTEPTR(pred8_16); |
| else |
| pred8 = (uint8_t *)pred8_16; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| for (row = 0; row < 2; ++row) { |
| for (col = 0; col < 2; ++col) { |
| int idx = row * 2 + col; |
| int eob = sub8x8_eob[idx]; |
| |
| if (eob > 0) { |
| for (j = 0; j < 4; j++) |
| for (i = 0; i < 4; i++) |
| CONVERT_TO_SHORTPTR(pred8) |
| [(row * 4 + j) * 8 + 4 * col + i] = |
| pred[(row * 4 + j) * pred_stride + 4 * col + i]; |
| } else { |
| for (j = 0; j < 4; j++) |
| for (i = 0; i < 4; i++) |
| CONVERT_TO_SHORTPTR(pred8) |
| [(row * 4 + j) * 8 + 4 * col + i] = CONVERT_TO_SHORTPTR( |
| dst)[(row * 4 + j) * dst_stride + 4 * col + i]; |
| } |
| } |
| } |
| } else { |
| for (row = 0; row < 2; ++row) { |
| for (col = 0; col < 2; ++col) { |
| int idx = row * 2 + col; |
| int eob = sub8x8_eob[idx]; |
| |
| if (eob > 0) { |
| for (j = 0; j < 4; j++) |
| for (i = 0; i < 4; i++) |
| pred8[(row * 4 + j) * 8 + 4 * col + i] = |
| (uint8_t)pred[(row * 4 + j) * pred_stride + 4 * col + i]; |
| } else { |
| for (j = 0; j < 4; j++) |
| for (i = 0; i < 4; i++) |
| pred8[(row * 4 + j) * 8 + 4 * col + i] = |
| dst[(row * 4 + j) * dst_stride + 4 * col + i]; |
| } |
| } |
| } |
| } |
| dist_8x8 = av1_dist_8x8(cpi, x, src, src_stride, pred8, 8, BLOCK_8X8, 8, |
| 8, 8, 8, qindex) * |
| 16; |
| |
| #ifdef DEBUG_DIST_8X8 |
| if (x->tune_metric == AOM_TUNE_PSNR && xd->bd == 8) |
| assert(sum_rd_stats.dist == dist_8x8); |
| #endif // DEBUG_DIST_8X8 |
| |
| sum_rd_stats.dist = dist_8x8; |
| tmp_rd = RDCOST(x->rdmult, sum_rd_stats.rate, sum_rd_stats.dist); |
| } |
| #endif // CONFIG_DIST_8X8 |
| if (this_cost_valid) sum_rd = tmp_rd; |
| } |
| |
| if (this_rd < sum_rd) { |
| const TX_SIZE tx_size_selected = tx_size; |
| |
| p->txb_entropy_ctx[block] = tmp_eob; |
| |
| av1_set_txb_context(x, plane, block, tx_size_selected, pta, ptl); |
| |
| txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, |
| tx_size); |
| for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) { |
| for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) { |
| const int index = |
| av1_get_txb_size_index(plane_bsize, blk_row + idy, blk_col + idx); |
| mbmi->inter_tx_size[index] = tx_size_selected; |
| } |
| } |
| |
| mbmi->tx_size = tx_size_selected; |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| best_tx_type); |
| if (this_rd == INT64_MAX) *is_cost_valid = 0; |
| x->blk_skip[plane][blk_row * bw + blk_col] = rd_stats->skip; |
| } else { |
| *rd_stats = sum_rd_stats; |
| if (sum_rd == INT64_MAX) *is_cost_valid = 0; |
| } |
| } |
| |
| static void select_inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int64_t ref_best_rd, int fast_tx_search, |
| TX_SIZE_RD_INFO_NODE *rd_info_tree) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int is_cost_valid = 1; |
| int64_t this_rd = 0; |
| |
| if (ref_best_rd < 0) is_cost_valid = 0; |
| |
| av1_init_rd_stats(rd_stats); |
| |
| if (is_cost_valid) { |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_max_rect_tx_size(plane_bsize); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| int idx, idy; |
| int block = 0; |
| int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_above[MAX_MIB_SIZE * 2]; |
| TXFM_CONTEXT tx_left[MAX_MIB_SIZE * 2]; |
| |
| RD_STATS pn_rd_stats; |
| const int init_depth = get_search_init_depth(mi_width, mi_height, &cpi->sf); |
| av1_init_rd_stats(&pn_rd_stats); |
| |
| av1_get_entropy_contexts(bsize, 0, pd, ctxa, ctxl); |
| memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); |
| memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); |
| |
| for (idy = 0; idy < mi_height; idy += bh) { |
| for (idx = 0; idx < mi_width; idx += bw) { |
| select_tx_block(cpi, x, idy, idx, 0, block, max_tx_size, init_depth, |
| plane_bsize, ctxa, ctxl, tx_above, tx_left, |
| &pn_rd_stats, ref_best_rd - this_rd, &is_cost_valid, |
| fast_tx_search, rd_info_tree); |
| if (!is_cost_valid || pn_rd_stats.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| return; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| this_rd += |
| AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist), |
| RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse)); |
| block += step; |
| if (rd_info_tree != NULL) rd_info_tree += 1; |
| } |
| } |
| } |
| int64_t zero_rd = RDCOST(x->rdmult, rd_stats->zero_rate, rd_stats->sse); |
| this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| if (zero_rd < this_rd) { |
| this_rd = zero_rd; |
| rd_stats->rate = rd_stats->zero_rate; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip = 1; |
| } |
| if (this_rd > ref_best_rd) is_cost_valid = 0; |
| |
| if (!is_cost_valid) { |
| // reset cost value |
| av1_invalid_rd_stats(rd_stats); |
| } |
| } |
| |
| static int64_t select_tx_size_fix_type(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, |
| int64_t ref_best_rd, TX_TYPE tx_type, |
| TX_SIZE_RD_INFO_NODE *rd_info_tree) { |
| const int fast_tx_search = cpi->sf.tx_size_search_method > USE_FULL_RD; |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int is_inter = is_inter_block(mbmi); |
| const int skip_ctx = av1_get_skip_context(xd); |
| int s0 = x->skip_cost[skip_ctx][0]; |
| int s1 = x->skip_cost[skip_ctx][1]; |
| int64_t rd; |
| const int max_blocks_high = max_block_high(xd, bsize, 0); |
| const int max_blocks_wide = max_block_wide(xd, bsize, 0); |
| |
| // TODO(debargha): enable this as a speed feature where the |
| // select_inter_block_yrd() function above will use a simplified search |
| // such as not using full optimize, but the inter_block_yrd() function |
| // will use more complex search given that the transform partitions have |
| // already been decided. |
| |
| (void)cm; |
| (void)mi_row; |
| (void)mi_col; |
| |
| mbmi->tx_type = tx_type; |
| int64_t rd_thresh = ref_best_rd; |
| if (fast_tx_search && rd_thresh < INT64_MAX) { |
| if (INT64_MAX - rd_thresh > (rd_thresh >> 3)) rd_thresh += (rd_thresh >> 3); |
| } |
| assert(rd_thresh > 0); |
| select_inter_block_yrd(cpi, x, rd_stats, bsize, rd_thresh, fast_tx_search, |
| rd_info_tree); |
| if (rd_stats->rate == INT_MAX) return INT64_MAX; |
| |
| mbmi->min_tx_size = mbmi->inter_tx_size[0]; |
| for (int row = 0; row < max_blocks_high; ++row) { |
| for (int col = 0; col < max_blocks_wide; ++col) { |
| const int index = av1_get_txb_size_index(bsize, row, col); |
| mbmi->min_tx_size = |
| TXSIZEMIN(mbmi->min_tx_size, mbmi->inter_tx_size[index]); |
| } |
| } |
| |
| // If fast_tx_search is true, only DCT and 1D DCT were tested in |
| // select_inter_block_yrd() above. Do a better search for tx type with |
| // tx sizes already decided. |
| if (fast_tx_search) { |
| if (!inter_block_yrd(cpi, x, rd_stats, bsize, ref_best_rd, 0)) |
| return INT64_MAX; |
| } |
| |
| if (rd_stats->skip) |
| rd = RDCOST(x->rdmult, s1, rd_stats->sse); |
| else |
| rd = RDCOST(x->rdmult, rd_stats->rate + s0, rd_stats->dist); |
| |
| if (is_inter && !xd->lossless[xd->mi[0]->mbmi.segment_id] && |
| !(rd_stats->skip)) |
| rd = AOMMIN(rd, RDCOST(x->rdmult, s1, rd_stats->sse)); |
| |
| return rd; |
| } |
| |
| // Finds rd cost for a y block, given the transform size partitions |
| static void tx_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, |
| int blk_col, int plane, int block, TX_SIZE tx_size, |
| BLOCK_SIZE plane_bsize, int depth, |
| ENTROPY_CONTEXT *above_ctx, ENTROPY_CONTEXT *left_ctx, |
| TXFM_CONTEXT *tx_above, TXFM_CONTEXT *tx_left, |
| int64_t ref_best_rd, RD_STATS *rd_stats, int fast) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| assert(tx_size < TX_SIZES_ALL); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_uv_tx_size(mbmi, pd->subsampling_x, pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| |
| int ctx = txfm_partition_context(tx_above + blk_col, tx_left + blk_row, |
| mbmi->sb_type, tx_size); |
| |
| av1_init_rd_stats(rd_stats); |
| if (tx_size == plane_tx_size || plane) { |
| ENTROPY_CONTEXT *ta = above_ctx + blk_col; |
| ENTROPY_CONTEXT *tl = left_ctx + blk_row; |
| const TX_SIZE txs_ctx = get_txsize_entropy_ctx(tx_size); |
| TXB_CTX txb_ctx; |
| get_txb_ctx(plane_bsize, tx_size, plane, ta, tl, &txb_ctx); |
| |
| const int zero_blk_rate = x->coeff_costs[txs_ctx][get_plane_type(plane)] |
| .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; |
| rd_stats->zero_rate = zero_blk_rate; |
| rd_stats->ref_rdcost = ref_best_rd; |
| av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, |
| plane_bsize, ta, tl, rd_stats, fast, NULL); |
| const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) >= |
| RDCOST(x->rdmult, zero_blk_rate, rd_stats->sse) || |
| rd_stats->skip == 1) { |
| rd_stats->rate = zero_blk_rate; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip = 1; |
| x->blk_skip[plane][blk_row * mi_width + blk_col] = 1; |
| x->plane[plane].eobs[block] = 0; |
| x->plane[plane].txb_entropy_ctx[block] = 0; |
| update_txk_array(mbmi->txk_type, plane_bsize, blk_row, blk_col, tx_size, |
| DCT_DCT); |
| } else { |
| rd_stats->skip = 0; |
| x->blk_skip[plane][blk_row * mi_width + blk_col] = 0; |
| } |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) |
| rd_stats->rate += x->txfm_partition_cost[ctx][0]; |
| av1_set_txb_context(x, plane, block, tx_size, ta, tl); |
| txfm_partition_update(tx_above + blk_col, tx_left + blk_row, tx_size, |
| tx_size); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int step = bsh * bsw; |
| RD_STATS pn_rd_stats; |
| int64_t this_rd = 0; |
| assert(bsw > 0 && bsh > 0); |
| |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| |
| av1_init_rd_stats(&pn_rd_stats); |
| tx_block_yrd(cpi, x, offsetr, offsetc, plane, block, sub_txs, |
| plane_bsize, depth + 1, above_ctx, left_ctx, tx_above, |
| tx_left, ref_best_rd - this_rd, &pn_rd_stats, fast); |
| if (pn_rd_stats.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| return; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| this_rd += RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist); |
| block += step; |
| } |
| } |
| |
| if (tx_size > TX_4X4 && depth < MAX_VARTX_DEPTH) |
| rd_stats->rate += x->txfm_partition_cost[ctx][1]; |
| } |
| } |
| |
| // Return value 0: early termination triggered, no valid rd cost available; |
| // 1: rd cost values are valid. |
| int inter_block_yrd(const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_stats, |
| BLOCK_SIZE bsize, int64_t ref_best_rd, int fast) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| int is_cost_valid = 1; |
| int64_t this_rd = 0; |
| |
| if (ref_best_rd < 0) is_cost_valid = 0; |
| |
| av1_init_rd_stats(rd_stats); |
| |
| if (is_cost_valid) { |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| const int mi_width = mi_size_wide[plane_bsize]; |
| const int mi_height = mi_size_high[plane_bsize]; |
| const TX_SIZE max_tx_size = get_vartx_max_txsize( |
| xd, plane_bsize, pd->subsampling_x || pd->subsampling_y); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| const int init_depth = get_search_init_depth(mi_width, mi_height, &cpi->sf); |
| int idx, idy; |
| int block = 0; |
| int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; |
| ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE]; |
| TXFM_CONTEXT tx_above[MAX_MIB_SIZE * 2]; |
| TXFM_CONTEXT tx_left[MAX_MIB_SIZE * 2]; |
| RD_STATS pn_rd_stats; |
| |
| av1_get_entropy_contexts(bsize, 0, pd, ctxa, ctxl); |
| memcpy(tx_above, xd->above_txfm_context, sizeof(TXFM_CONTEXT) * mi_width); |
| memcpy(tx_left, xd->left_txfm_context, sizeof(TXFM_CONTEXT) * mi_height); |
| |
| for (idy = 0; idy < mi_height; idy += bh) { |
| for (idx = 0; idx < mi_width; idx += bw) { |
| av1_init_rd_stats(&pn_rd_stats); |
| tx_block_yrd(cpi, x, idy, idx, 0, block, max_tx_size, plane_bsize, |
| init_depth, ctxa, ctxl, tx_above, tx_left, |
| ref_best_rd - this_rd, &pn_rd_stats, fast); |
| if (pn_rd_stats.rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| return 0; |
| } |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| this_rd += |
| AOMMIN(RDCOST(x->rdmult, pn_rd_stats.rate, pn_rd_stats.dist), |
| RDCOST(x->rdmult, pn_rd_stats.zero_rate, pn_rd_stats.sse)); |
| block += step; |
| } |
| } |
| } |
| int64_t zero_rd = RDCOST(x->rdmult, rd_stats->zero_rate, rd_stats->sse); |
| this_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| if (zero_rd < this_rd) { |
| this_rd = zero_rd; |
| rd_stats->rate = rd_stats->zero_rate; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats->skip = 1; |
| } |
| if (this_rd > ref_best_rd) is_cost_valid = 0; |
| |
| if (!is_cost_valid) { |
| // reset cost value |
| av1_invalid_rd_stats(rd_stats); |
| } |
| return is_cost_valid; |
| } |
| |
| static uint32_t get_block_residue_hash(MACROBLOCK *x, BLOCK_SIZE bsize) { |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const int16_t *diff = &p->src_diff[0]; |
| uint16_t hash_data[MAX_SB_SQUARE]; |
| memcpy(hash_data, diff, sizeof(*hash_data) * rows * cols); |
| return (av1_get_crc_value(&x->tx_rd_record.crc_calculator, |
| (uint8_t *)hash_data, 2 * rows * cols) |
| << 7) + |
| bsize; |
| } |
| |
| static void save_tx_rd_info(int n4, uint32_t hash, const MACROBLOCK *const x, |
| const RD_STATS *const rd_stats, |
| TX_RD_RECORD *tx_rd_record) { |
| int index; |
| if (tx_rd_record->num < RD_RECORD_BUFFER_LEN) { |
| index = |
| (tx_rd_record->index_start + tx_rd_record->num) % RD_RECORD_BUFFER_LEN; |
| ++tx_rd_record->num; |
| } else { |
| index = tx_rd_record->index_start; |
| tx_rd_record->index_start = |
| (tx_rd_record->index_start + 1) % RD_RECORD_BUFFER_LEN; |
| } |
| TX_RD_INFO *const tx_rd_info = &tx_rd_record->tx_rd_info[index]; |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| tx_rd_info->hash_value = hash; |
| tx_rd_info->tx_type = mbmi->tx_type; |
| tx_rd_info->tx_size = mbmi->tx_size; |
| tx_rd_info->min_tx_size = mbmi->min_tx_size; |
| memcpy(tx_rd_info->blk_skip, x->blk_skip[0], |
| sizeof(tx_rd_info->blk_skip[0]) * n4); |
| av1_copy(tx_rd_info->inter_tx_size, mbmi->inter_tx_size); |
| av1_copy(tx_rd_info->txk_type, mbmi->txk_type); |
| tx_rd_info->rd_stats = *rd_stats; |
| } |
| |
| static void fetch_tx_rd_info(int n4, const TX_RD_INFO *const tx_rd_info, |
| RD_STATS *const rd_stats, MACROBLOCK *const x) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| mbmi->tx_type = tx_rd_info->tx_type; |
| mbmi->tx_size = tx_rd_info->tx_size; |
| mbmi->min_tx_size = tx_rd_info->min_tx_size; |
| memcpy(x->blk_skip[0], tx_rd_info->blk_skip, |
| sizeof(tx_rd_info->blk_skip[0]) * n4); |
| av1_copy(mbmi->inter_tx_size, tx_rd_info->inter_tx_size); |
| av1_copy(mbmi->txk_type, tx_rd_info->txk_type); |
| *rd_stats = tx_rd_info->rd_stats; |
| } |
| |
| static int find_tx_size_rd_info(TX_SIZE_RD_RECORD *cur_record, |
| const uint32_t hash) { |
| // Linear search through the circular buffer to find matching hash. |
| int index; |
| for (int i = cur_record->num - 1; i >= 0; i--) { |
| index = (cur_record->index_start + i) % TX_SIZE_RD_RECORD_BUFFER_LEN; |
| if (cur_record->hash_vals[index] == hash) return index; |
| } |
| |
| // If not found - add new RD info into the buffer and return its index |
| if (cur_record->num < TX_SIZE_RD_RECORD_BUFFER_LEN) { |
| index = (cur_record->index_start + cur_record->num) % |
| TX_SIZE_RD_RECORD_BUFFER_LEN; |
| cur_record->num++; |
| } else { |
| index = cur_record->index_start; |
| cur_record->index_start = |
| (cur_record->index_start + 1) % TX_SIZE_RD_RECORD_BUFFER_LEN; |
| } |
| |
| cur_record->hash_vals[index] = hash; |
| av1_zero(cur_record->tx_rd_info[index]); |
| return index; |
| } |
| |
| // Go through all TX blocks that could be used in TX size search, compute |
| // residual hash values for them and find matching RD info that stores previous |
| // RD search results for these TX blocks. The idea is to prevent repeated |
| // rate/distortion computations that happen because of the combination of |
| // partition and TX size search. The resulting RD info records are returned in |
| // the form of a quadtree for easier access in actual TX size search. |
| static int find_tx_size_rd_records(MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, |
| TX_SIZE_RD_INFO_NODE *dst_rd_info) { |
| TX_SIZE_RD_RECORD *rd_records_table[4] = { x->tx_size_rd_record_8X8, |
| x->tx_size_rd_record_16X16, |
| x->tx_size_rd_record_32X32, |
| x->tx_size_rd_record_64X64 }; |
| const TX_SIZE max_square_tx_size = max_txsize_lookup[bsize]; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| |
| // Hashing is performed only for square TX sizes larger than TX_4X4 |
| if (max_square_tx_size < TX_8X8) return 0; |
| |
| const int bw_mi = mi_size_wide[bsize]; |
| const int diff_stride = bw; |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const int16_t *diff = &p->src_diff[0]; |
| |
| // Coordinates of the top-left corner of current block within the superblock |
| // measured in pixels: |
| const int mi_row_in_sb = (mi_row % MAX_MIB_SIZE) << MI_SIZE_LOG2; |
| const int mi_col_in_sb = (mi_col % MAX_MIB_SIZE) << MI_SIZE_LOG2; |
| int cur_rd_info_idx = 0; |
| int cur_tx_depth = 0; |
| uint8_t parent_idx_buf[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 }; |
| uint8_t child_idx_buf[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 }; |
| const int hash_dc_level = 1 << x->e_mbd.bd; |
| |
| TX_SIZE cur_tx_size = max_txsize_rect_lookup[bsize]; |
| while (cur_tx_depth <= MAX_VARTX_DEPTH) { |
| const int cur_tx_bw = tx_size_wide[cur_tx_size]; |
| const int cur_tx_bh = tx_size_high[cur_tx_size]; |
| if (cur_tx_bw < 8 || cur_tx_bh < 8) break; |
| const TX_SIZE next_tx_size = sub_tx_size_map[1][cur_tx_size]; |
| for (int row = 0; row < bh; row += cur_tx_bh) { |
| for (int col = 0; col < bw; col += cur_tx_bw) { |
| if (cur_tx_bw != cur_tx_bh) { |
| // Use dummy nodes for all rectangular transforms within the |
| // TX size search tree. |
| dst_rd_info[cur_rd_info_idx].rd_info_array = NULL; |
| } else { |
| // Get spatial location of this TX block within the superblock |
| // (measured in cur_tx_bsize units). |
| const int row_in_sb = (mi_row_in_sb + row) / cur_tx_bh; |
| const int col_in_sb = (mi_col_in_sb + col) / cur_tx_bw; |
| |
| // Compute FNV-1a hash for this TX block. |
| uint32_t hash = 2166136261; |
| for (int i = 0; i < cur_tx_bh; i++) { |
| const int16_t *cur_diff_row = diff + (row + i) * diff_stride + col; |
| for (int j = 0; j < cur_tx_bw; j++) { |
| hash = hash ^ (cur_diff_row[j] + hash_dc_level); |
| hash = (uint32_t)((int64_t)hash * 16777619); |
| } |
| } |
| |
| // Find corresponding RD info based on the hash value. |
| const int rd_record_idx = |
| row_in_sb * (MAX_MIB_SIZE >> (cur_tx_size + 1 - TX_8X8)) + |
| col_in_sb; |
| |
| int idx = find_tx_size_rd_info( |
| &rd_records_table[cur_tx_size - TX_8X8][rd_record_idx], hash); |
| dst_rd_info[cur_rd_info_idx].rd_info_array = |
| &rd_records_table[cur_tx_size - TX_8X8][rd_record_idx] |
| .tx_rd_info[idx]; |
| } |
| |
| // Update the output quadtree RD info structure. |
| av1_zero(dst_rd_info[cur_rd_info_idx].children); |
| const int this_mi_row = row / MI_SIZE; |
| const int this_mi_col = col / MI_SIZE; |
| if (cur_tx_depth > 0) { // Set up child pointers. |
| const int mi_index = this_mi_row * bw_mi + this_mi_col; |
| const int child_idx = child_idx_buf[mi_index]; |
| assert(child_idx < 4); |
| dst_rd_info[parent_idx_buf[mi_index]].children[child_idx] = |
| &dst_rd_info[cur_rd_info_idx]; |
| } |
| if (cur_tx_depth < MAX_VARTX_DEPTH) { // Set up parent and child idx. |
| const int tx_bh_mi = cur_tx_bh / MI_SIZE; |
| const int tx_bw_mi = cur_tx_bw / MI_SIZE; |
| for (int i = this_mi_row; i < this_mi_row + tx_bh_mi; ++i) { |
| memset(parent_idx_buf + i * bw_mi + this_mi_col, cur_rd_info_idx, |
| tx_bw_mi); |
| } |
| int child_idx = 0; |
| const int next_tx_bh_mi = tx_size_wide_unit[next_tx_size]; |
| const int next_tx_bw_mi = tx_size_wide_unit[next_tx_size]; |
| for (int i = this_mi_row; i < this_mi_row + tx_bh_mi; |
| i += next_tx_bh_mi) { |
| for (int j = this_mi_col; j < this_mi_col + tx_bw_mi; |
| j += next_tx_bw_mi) { |
| assert(child_idx < 4); |
| child_idx_buf[i * bw_mi + j] = child_idx++; |
| } |
| } |
| } |
| ++cur_rd_info_idx; |
| } |
| } |
| cur_tx_size = next_tx_size; |
| ++cur_tx_depth; |
| } |
| return 1; |
| } |
| |
| static const uint32_t skip_pred_threshold[3][BLOCK_SIZES_ALL] = { |
| { |
| 50, 50, 50, 55, 47, 47, 53, 53, 53, 53, 53, 53, 53, |
| #if CONFIG_EXT_PARTITION |
| 53, 53, 53, |
| #endif |
| 50, 50, 55, 55, 53, 53, |
| #if CONFIG_EXT_PARTITION |
| 53, 53, |
| #endif |
| }, |
| { |
| 69, 69, 69, 67, 68, 68, 53, 53, 53, 53, 53, 53, 53, |
| #if CONFIG_EXT_PARTITION |
| 53, 53, 53, |
| #endif |
| 69, 69, 67, 67, 53, 53, |
| #if CONFIG_EXT_PARTITION |
| 53, 53, |
| #endif |
| }, |
| { |
| 70, 73, 73, 70, 73, 73, 58, 58, 58, 58, 58, 58, 58, |
| #if CONFIG_EXT_PARTITION |
| 58, 58, 58, |
| #endif |
| 70, 70, 70, 70, 58, 58, |
| #if CONFIG_EXT_PARTITION |
| 58, 58, |
| #endif |
| } |
| }; |
| |
| // Uses simple features on top of DCT coefficients to quickly predict |
| // whether optimal RD decision is to skip encoding the residual. |
| // The sse value is stored in dist. |
| static int predict_skip_flag(MACROBLOCK *x, BLOCK_SIZE bsize, int64_t *dist, |
| int reduced_tx_set) { |
| int max_tx_size = get_max_rect_tx_size(bsize); |
| if (tx_size_high[max_tx_size] > 16 || tx_size_wide[max_tx_size] > 16) |
| max_tx_size = AOMMIN(max_txsize_lookup[bsize], TX_16X16); |
| const int tx_h = tx_size_high[max_tx_size]; |
| const int tx_w = tx_size_wide[max_tx_size]; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const MACROBLOCKD *xd = &x->e_mbd; |
| const uint32_t dc_q = (uint32_t)av1_dc_quant_QTX(x->qindex, 0, xd->bd); |
| |
| *dist = pixel_diff_dist(x, 0, x->plane[0].src_diff, bw, 0, 0, bsize, bsize); |
| const int64_t mse = *dist / bw / bh; |
| // Normalized quantizer takes the transform upscaling factor (8 for tx size |
| // smaller than 32) into account. |
| const uint32_t normalized_dc_q = dc_q >> 3; |
| const int64_t mse_thresh = (int64_t)normalized_dc_q * normalized_dc_q / 8; |
| // Predict not to skip when mse is larger than threshold. |
| if (mse > mse_thresh) return 0; |
| |
| DECLARE_ALIGNED(32, tran_low_t, DCT_coefs[32 * 32]); |
| TxfmParam param; |
| param.tx_type = DCT_DCT; |
| param.tx_size = max_tx_size; |
| param.bd = xd->bd; |
| param.is_hbd = get_bitdepth_data_path_index(xd); |
| param.lossless = 0; |
| const struct macroblockd_plane *const pd = &xd->plane[0]; |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(xd->mi[0]->mbmi.sb_type, pd); |
| param.tx_set_type = |
| get_ext_tx_set_type(param.tx_size, plane_bsize, |
| is_inter_block(&xd->mi[0]->mbmi), reduced_tx_set); |
| const uint32_t ac_q = (uint32_t)av1_ac_quant_QTX(x->qindex, 0, xd->bd); |
| uint32_t max_quantized_coef = 0; |
| const int bd_idx = (xd->bd == 8) ? 0 : ((xd->bd == 10) ? 1 : 2); |
| const uint32_t max_qcoef_thresh = skip_pred_threshold[bd_idx][bsize]; |
| const int16_t *src_diff = x->plane[0].src_diff; |
| for (int row = 0; row < bh; row += tx_h) { |
| for (int col = 0; col < bw; col += tx_w) { |
| av1_highbd_fwd_txfm(src_diff + col, DCT_coefs, bw, ¶m); |
| |
| // Operating on TX domain, not pixels; we want the QTX quantizers |
| for (int i = 0; i < tx_w * tx_h; ++i) { |
| uint32_t cur_quantized_coef = |
| (100 * (uint32_t)abs(DCT_coefs[i])) / (i ? ac_q : dc_q); |
| if (cur_quantized_coef > max_quantized_coef) { |
| max_quantized_coef = cur_quantized_coef; |
| if (max_quantized_coef >= max_qcoef_thresh) return 0; |
| } |
| } |
| } |
| src_diff += tx_h * bw; |
| } |
| return max_quantized_coef < max_qcoef_thresh; |
| } |
| |
| // Used to set proper context for early termination with skip = 1. |
| static void set_skip_flag(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, int bsize, int64_t dist) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int n4 = bsize_to_num_blk(bsize); |
| const TX_SIZE tx_size = get_max_rect_tx_size(bsize); |
| mbmi->tx_type = DCT_DCT; |
| memset(mbmi->txk_type, DCT_DCT, sizeof(mbmi->txk_type[0]) * TXK_TYPE_BUF_LEN); |
| memset(mbmi->inter_tx_size, tx_size, sizeof(mbmi->inter_tx_size)); |
| mbmi->tx_size = tx_size; |
| mbmi->min_tx_size = tx_size; |
| memset(x->blk_skip[0], 1, sizeof(uint8_t) * n4); |
| rd_stats->skip = 1; |
| |
| (void)cpi; |
| |
| // Rate. |
| const int tx_size_ctx = get_txsize_entropy_ctx(tx_size); |
| ENTROPY_CONTEXT ctxa[2 * MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT ctxl[2 * MAX_MIB_SIZE]; |
| av1_get_entropy_contexts(bsize, 0, &xd->plane[0], ctxa, ctxl); |
| TXB_CTX txb_ctx; |
| // Because plane is 0, plane_bsize equal to bsize |
| get_txb_ctx(bsize, tx_size, 0, ctxa, ctxl, &txb_ctx); |
| int rate = x->coeff_costs[tx_size_ctx][PLANE_TYPE_Y] |
| .txb_skip_cost[txb_ctx.txb_skip_ctx][1]; |
| if (tx_size > TX_4X4) { |
| int ctx = txfm_partition_context( |
| xd->above_txfm_context, xd->left_txfm_context, mbmi->sb_type, tx_size); |
| rate += x->txfm_partition_cost[ctx][0]; |
| } |
| rd_stats->rate = rate; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| dist = ROUND_POWER_OF_TWO(dist, (xd->bd - 8) * 2); |
| rd_stats->dist = rd_stats->sse = (dist << 4); |
| } |
| |
| static void select_tx_type_yrd(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_stats, BLOCK_SIZE bsize, int mi_row, |
| int mi_col, int64_t ref_best_rd) { |
| const AV1_COMMON *cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int64_t rd = INT64_MAX; |
| int64_t best_rd = INT64_MAX; |
| TX_TYPE tx_type, best_tx_type = DCT_DCT; |
| const int is_inter = is_inter_block(mbmi); |
| TX_SIZE best_tx_size[INTER_TX_SIZE_BUF_LEN] = { 0 }; |
| TX_SIZE best_tx = max_txsize_rect_lookup[bsize]; |
| TX_SIZE best_min_tx_size = TX_SIZES_ALL; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| TX_TYPE txk_start = DCT_DCT; |
| TX_TYPE txk_end = DCT_DCT + 1; |
| const int n4 = bsize_to_num_blk(bsize); |
| // Get the tx_size 1 level down |
| const TX_SIZE min_tx_size = sub_tx_size_map[1][max_txsize_rect_lookup[bsize]]; |
| const TxSetType tx_set_type = get_ext_tx_set_type( |
| min_tx_size, bsize, is_inter, cm->reduced_tx_set_used); |
| int within_border = mi_row >= xd->tile.mi_row_start && |
| (mi_row + mi_size_high[bsize] < xd->tile.mi_row_end) && |
| mi_col >= xd->tile.mi_col_start && |
| (mi_col + mi_size_wide[bsize] < xd->tile.mi_col_end); |
| |
| av1_invalid_rd_stats(rd_stats); |
| |
| const uint32_t hash = get_block_residue_hash(x, bsize); |
| TX_RD_RECORD *tx_rd_record = &x->tx_rd_record; |
| |
| if (ref_best_rd != INT64_MAX && within_border) { |
| for (int i = 0; i < tx_rd_record->num; ++i) { |
| const int index = (tx_rd_record->index_start + i) % RD_RECORD_BUFFER_LEN; |
| // If there is a match in the tx_rd_record, fetch the RD decision and |
| // terminate early. |
| if (tx_rd_record->tx_rd_info[index].hash_value == hash) { |
| TX_RD_INFO *tx_rd_info = &tx_rd_record->tx_rd_info[index]; |
| fetch_tx_rd_info(n4, tx_rd_info, rd_stats, x); |
| return; |
| } |
| } |
| } |
| |
| // If we predict that skip is the optimal RD decision - set the respective |
| // context and terminate early. |
| int64_t dist; |
| if (is_inter && cpi->sf.tx_type_search.use_skip_flag_prediction && |
| predict_skip_flag(x, bsize, &dist, cm->reduced_tx_set_used)) { |
| set_skip_flag(cpi, x, rd_stats, bsize, dist); |
| // Save the RD search results into tx_rd_record. |
| if (within_border) save_tx_rd_info(n4, hash, x, rd_stats, tx_rd_record); |
| return; |
| } |
| |
| // Precompute residual hashes and find existing or add new RD records to |
| // store and reuse rate and distortion values to speed up TX size search. |
| TX_SIZE_RD_INFO_NODE matched_rd_info[16 + 64 + 256]; |
| int found_rd_info = 0; |
| if (ref_best_rd != INT64_MAX && within_border) { |
| found_rd_info = |
| find_tx_size_rd_records(x, bsize, mi_row, mi_col, matched_rd_info); |
| } |
| |
| prune_tx(cpi, bsize, x, xd, tx_set_type, |
| cpi->sf.tx_type_search.use_tx_size_pruning); |
| |
| int found = 0; |
| |
| for (tx_type = txk_start; tx_type < txk_end; ++tx_type) { |
| RD_STATS this_rd_stats; |
| av1_init_rd_stats(&this_rd_stats); |
| if (!av1_ext_tx_used[tx_set_type][tx_type]) continue; |
| |
| rd = select_tx_size_fix_type(cpi, x, &this_rd_stats, bsize, mi_row, mi_col, |
| ref_best_rd, tx_type, |
| found_rd_info ? matched_rd_info : NULL); |
| |
| ref_best_rd = AOMMIN(rd, ref_best_rd); |
| if (rd < best_rd) { |
| best_rd = rd; |
| *rd_stats = this_rd_stats; |
| best_tx_type = mbmi->tx_type; |
| best_tx = mbmi->tx_size; |
| best_min_tx_size = mbmi->min_tx_size; |
| memcpy(best_blk_skip, x->blk_skip[0], sizeof(best_blk_skip[0]) * n4); |
| found = 1; |
| av1_copy(best_tx_size, mbmi->inter_tx_size); |
| } |
| } |
| |
| // Reset the pruning flags. |
| av1_zero(x->tx_search_prune); |
| |
| // We should always find at least one candidate unless ref_best_rd is less |
| // than INT64_MAX (in which case, all the calls to select_tx_size_fix_type |
| // might have failed to find something better) |
| assert(IMPLIES(!found, ref_best_rd != INT64_MAX)); |
| if (!found) return; |
| |
| // We found a candidate transform to use. Copy our results from the "best" |
| // array into mbmi. |
| mbmi->tx_type = best_tx_type; |
| av1_copy(mbmi->inter_tx_size, best_tx_size); |
| mbmi->tx_size = best_tx; |
| mbmi->min_tx_size = best_min_tx_size; |
| memcpy(x->blk_skip[0], best_blk_skip, sizeof(best_blk_skip[0]) * n4); |
| |
| // Save the RD search results into tx_rd_record. |
| if (within_border) save_tx_rd_info(n4, hash, x, rd_stats, tx_rd_record); |
| } |
| |
| static void tx_block_rd(const AV1_COMP *cpi, MACROBLOCK *x, int blk_row, |
| int blk_col, int plane, int block, TX_SIZE tx_size, |
| BLOCK_SIZE plane_bsize, ENTROPY_CONTEXT *above_ctx, |
| ENTROPY_CONTEXT *left_ctx, RD_STATS *rd_stats, |
| int fast) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const int max_blocks_high = max_block_high(xd, plane_bsize, plane); |
| const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); |
| |
| assert(tx_size < TX_SIZES_ALL); |
| |
| if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; |
| |
| const TX_SIZE plane_tx_size = |
| plane ? av1_get_uv_tx_size(mbmi, pd->subsampling_x, pd->subsampling_y) |
| : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, |
| blk_col)]; |
| |
| if (tx_size == plane_tx_size || plane) { |
| ENTROPY_CONTEXT *ta = above_ctx + blk_col; |
| ENTROPY_CONTEXT *tl = left_ctx + blk_row; |
| av1_tx_block_rd_b(cpi, x, tx_size, blk_row, blk_col, plane, block, |
| plane_bsize, ta, tl, rd_stats, fast, NULL); |
| av1_set_txb_context(x, plane, block, tx_size, ta, tl); |
| } else { |
| const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size]; |
| assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size)); |
| assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size)); |
| const int bsw = tx_size_wide_unit[sub_txs]; |
| const int bsh = tx_size_high_unit[sub_txs]; |
| const int step = bsh * bsw; |
| assert(bsw > 0 && bsh > 0); |
| for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { |
| for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { |
| const int offsetr = blk_row + row; |
| const int offsetc = blk_col + col; |
| if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue; |
| tx_block_rd(cpi, x, offsetr, offsetc, plane, block, sub_txs, |
| plane_bsize, above_ctx, left_ctx, rd_stats, fast); |
| block += step; |
| } |
| } |
| } |
| } |
| |
| // Return value 0: early termination triggered, no valid rd cost available; |
| // 1: rd cost values are valid. |
| int inter_block_uvrd(const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_stats, |
| BLOCK_SIZE bsize, int64_t ref_best_rd, int fast) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int plane; |
| int is_cost_valid = 1; |
| int64_t this_rd = 0; |
| |
| if (ref_best_rd < 0) is_cost_valid = 0; |
| |
| av1_init_rd_stats(rd_stats); |
| |
| if (x->skip_chroma_rd) return is_cost_valid; |
| const BLOCK_SIZE bsizec = scale_chroma_bsize( |
| bsize, xd->plane[1].subsampling_x, xd->plane[1].subsampling_y); |
| |
| if (is_inter_block(mbmi) && is_cost_valid) { |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) |
| av1_subtract_plane(x, bsizec, plane); |
| } |
| |
| if (is_cost_valid) { |
| for (plane = 1; plane < MAX_MB_PLANE; ++plane) { |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsizec, pd); |
| const int mi_width = block_size_wide[plane_bsize] >> tx_size_wide_log2[0]; |
| const int mi_height = |
| block_size_high[plane_bsize] >> tx_size_high_log2[0]; |
| TX_SIZE max_tx_size = get_vartx_max_txsize( |
| xd, plane_bsize, pd->subsampling_x || pd->subsampling_y); |
| const int bh = tx_size_high_unit[max_tx_size]; |
| const int bw = tx_size_wide_unit[max_tx_size]; |
| int idx, idy; |
| int block = 0; |
| const int step = bh * bw; |
| ENTROPY_CONTEXT ta[2 * MAX_MIB_SIZE]; |
| ENTROPY_CONTEXT tl[2 * MAX_MIB_SIZE]; |
| RD_STATS pn_rd_stats; |
| av1_init_rd_stats(&pn_rd_stats); |
| av1_get_entropy_contexts(bsizec, 0, pd, ta, tl); |
| |
| for (idy = 0; idy < mi_height; idy += bh) { |
| for (idx = 0; idx < mi_width; idx += bw) { |
| tx_block_rd(cpi, x, idy, idx, plane, block, max_tx_size, plane_bsize, |
| ta, tl, &pn_rd_stats, fast); |
| block += step; |
| } |
| } |
| |
| if (pn_rd_stats.rate == INT_MAX) { |
| is_cost_valid = 0; |
| break; |
| } |
| |
| av1_merge_rd_stats(rd_stats, &pn_rd_stats); |
| |
| this_rd = AOMMIN(RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist), |
| RDCOST(x->rdmult, rd_stats->zero_rate, rd_stats->sse)); |
| |
| if (this_rd > ref_best_rd) { |
| is_cost_valid = 0; |
| break; |
| } |
| } |
| } |
| |
| if (!is_cost_valid) { |
| // reset cost value |
| av1_invalid_rd_stats(rd_stats); |
| } |
| |
| return is_cost_valid; |
| } |
| |
| static void rd_pick_palette_intra_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int dc_mode_cost, |
| uint8_t *best_palette_color_map, |
| MB_MODE_INFO *const best_mbmi, |
| int64_t *best_rd, int *rate, |
| int *rate_tokenonly, int64_t *distortion, |
| int *skippable) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| assert(!is_inter_block(mbmi)); |
| assert( |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type)); |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| int this_rate; |
| int64_t this_rd; |
| int colors_u, colors_v, colors; |
| const int src_stride = x->plane[1].src.stride; |
| const uint8_t *const src_u = x->plane[1].src.buf; |
| const uint8_t *const src_v = x->plane[2].src.buf; |
| uint8_t *const color_map = xd->plane[1].color_index_map; |
| RD_STATS tokenonly_rd_stats; |
| int plane_block_width, plane_block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, |
| &plane_block_height, &rows, &cols); |
| |
| mbmi->uv_mode = UV_DC_PRED; |
| |
| int count_buf[1 << 12]; // Maximum (1 << 12) color levels. |
| if (cpi->common.use_highbitdepth) { |
| colors_u = av1_count_colors_highbd(src_u, src_stride, rows, cols, |
| cpi->common.bit_depth, count_buf); |
| colors_v = av1_count_colors_highbd(src_v, src_stride, rows, cols, |
| cpi->common.bit_depth, count_buf); |
| } else { |
| colors_u = av1_count_colors(src_u, src_stride, rows, cols, count_buf); |
| colors_v = av1_count_colors(src_v, src_stride, rows, cols, count_buf); |
| } |
| |
| uint16_t color_cache[2 * PALETTE_MAX_SIZE]; |
| const int n_cache = av1_get_palette_cache(xd, 1, color_cache); |
| |
| colors = colors_u > colors_v ? colors_u : colors_v; |
| if (colors > 1 && colors <= 64) { |
| int r, c, n, i, j; |
| const int max_itr = 50; |
| int lb_u, ub_u, val_u; |
| int lb_v, ub_v, val_v; |
| int *const data = x->palette_buffer->kmeans_data_buf; |
| int centroids[2 * PALETTE_MAX_SIZE]; |
| |
| uint16_t *src_u16 = CONVERT_TO_SHORTPTR(src_u); |
| uint16_t *src_v16 = CONVERT_TO_SHORTPTR(src_v); |
| if (cpi->common.use_highbitdepth) { |
| lb_u = src_u16[0]; |
| ub_u = src_u16[0]; |
| lb_v = src_v16[0]; |
| ub_v = src_v16[0]; |
| } else { |
| lb_u = src_u[0]; |
| ub_u = src_u[0]; |
| lb_v = src_v[0]; |
| ub_v = src_v[0]; |
| } |
| |
| for (r = 0; r < rows; ++r) { |
| for (c = 0; c < cols; ++c) { |
| if (cpi->common.use_highbitdepth) { |
| val_u = src_u16[r * src_stride + c]; |
| val_v = src_v16[r * src_stride + c]; |
| data[(r * cols + c) * 2] = val_u; |
| data[(r * cols + c) * 2 + 1] = val_v; |
| } else { |
| val_u = src_u[r * src_stride + c]; |
| val_v = src_v[r * src_stride + c]; |
| data[(r * cols + c) * 2] = val_u; |
| data[(r * cols + c) * 2 + 1] = val_v; |
| } |
| if (val_u < lb_u) |
| lb_u = val_u; |
| else if (val_u > ub_u) |
| ub_u = val_u; |
| if (val_v < lb_v) |
| lb_v = val_v; |
| else if (val_v > ub_v) |
| ub_v = val_v; |
| } |
| } |
| |
| for (n = colors > PALETTE_MAX_SIZE ? PALETTE_MAX_SIZE : colors; n >= 2; |
| --n) { |
| for (i = 0; i < n; ++i) { |
| centroids[i * 2] = lb_u + (2 * i + 1) * (ub_u - lb_u) / n / 2; |
| centroids[i * 2 + 1] = lb_v + (2 * i + 1) * (ub_v - lb_v) / n / 2; |
| } |
| av1_k_means(data, centroids, color_map, rows * cols, n, 2, max_itr); |
| optimize_palette_colors(color_cache, n_cache, n, 2, centroids); |
| // Sort the U channel colors in ascending order. |
| for (i = 0; i < 2 * (n - 1); i += 2) { |
| int min_idx = i; |
| int min_val = centroids[i]; |
| for (j = i + 2; j < 2 * n; j += 2) |
| if (centroids[j] < min_val) min_val = centroids[j], min_idx = j; |
| if (min_idx != i) { |
| int temp_u = centroids[i], temp_v = centroids[i + 1]; |
| centroids[i] = centroids[min_idx]; |
| centroids[i + 1] = centroids[min_idx + 1]; |
| centroids[min_idx] = temp_u, centroids[min_idx + 1] = temp_v; |
| } |
| } |
| av1_calc_indices(data, centroids, color_map, rows * cols, n, 2); |
| extend_palette_color_map(color_map, cols, rows, plane_block_width, |
| plane_block_height); |
| pmi->palette_size[1] = n; |
| for (i = 1; i < 3; ++i) { |
| for (j = 0; j < n; ++j) { |
| if (cpi->common.use_highbitdepth) |
| pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = clip_pixel_highbd( |
| (int)centroids[j * 2 + i - 1], cpi->common.bit_depth); |
| else |
| pmi->palette_colors[i * PALETTE_MAX_SIZE + j] = |
| clip_pixel((int)centroids[j * 2 + i - 1]); |
| } |
| } |
| |
| super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, *best_rd); |
| if (tokenonly_rd_stats.rate == INT_MAX) continue; |
| this_rate = tokenonly_rd_stats.rate + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, dc_mode_cost); |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| *best_mbmi = *mbmi; |
| memcpy(best_palette_color_map, color_map, |
| plane_block_width * plane_block_height * |
| sizeof(best_palette_color_map[0])); |
| *rate = this_rate; |
| *distortion = tokenonly_rd_stats.dist; |
| *rate_tokenonly = tokenonly_rd_stats.rate; |
| *skippable = tokenonly_rd_stats.skip; |
| } |
| } |
| } |
| if (best_mbmi->palette_mode_info.palette_size[1] > 0) { |
| memcpy(color_map, best_palette_color_map, |
| plane_block_width * plane_block_height * |
| sizeof(best_palette_color_map[0])); |
| } |
| } |
| |
| // Run RD calculation with given chroma intra prediction angle., and return |
| // the RD cost. Update the best mode info. if the RD cost is the best so far. |
| static int64_t pick_intra_angle_routine_sbuv( |
| const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats, |
| int *best_angle_delta, int64_t *best_rd) { |
| MB_MODE_INFO *mbmi = &x->e_mbd.mi[0]->mbmi; |
| assert(!is_inter_block(mbmi)); |
| int this_rate; |
| int64_t this_rd; |
| RD_STATS tokenonly_rd_stats; |
| |
| if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in)) |
| return INT64_MAX; |
| this_rate = tokenonly_rd_stats.rate + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead); |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| if (this_rd < *best_rd) { |
| *best_rd = this_rd; |
| *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; |
| *rate = this_rate; |
| rd_stats->rate = tokenonly_rd_stats.rate; |
| rd_stats->dist = tokenonly_rd_stats.dist; |
| rd_stats->skip = tokenonly_rd_stats.skip; |
| } |
| return this_rd; |
| } |
| |
| // With given chroma directional intra prediction mode, pick the best angle |
| // delta. Return true if a RD cost that is smaller than the input one is found. |
| static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int rate_overhead, |
| int64_t best_rd, int *rate, |
| RD_STATS *rd_stats) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| assert(!is_inter_block(mbmi)); |
| int i, angle_delta, best_angle_delta = 0; |
| int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; |
| |
| rd_stats->rate = INT_MAX; |
| rd_stats->skip = 0; |
| rd_stats->dist = INT64_MAX; |
| for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; |
| |
| for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| for (i = 0; i < 2; ++i) { |
| best_rd_in = (best_rd == INT64_MAX) |
| ? INT64_MAX |
| : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5))); |
| mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; |
| this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, |
| best_rd_in, rate, rd_stats, |
| &best_angle_delta, &best_rd); |
| rd_cost[2 * angle_delta + i] = this_rd; |
| if (angle_delta == 0) { |
| if (this_rd == INT64_MAX) return 0; |
| rd_cost[1] = this_rd; |
| break; |
| } |
| } |
| } |
| |
| assert(best_rd != INT64_MAX); |
| for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { |
| int64_t rd_thresh; |
| for (i = 0; i < 2; ++i) { |
| int skip_search = 0; |
| rd_thresh = best_rd + (best_rd >> 5); |
| if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && |
| rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) |
| skip_search = 1; |
| if (!skip_search) { |
| mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; |
| pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd, |
| rate, rd_stats, &best_angle_delta, |
| &best_rd); |
| } |
| } |
| } |
| |
| mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta; |
| return rd_stats->rate != INT_MAX; |
| } |
| |
| #if CONFIG_CFL |
| #define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \ |
| (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1) |
| static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi, |
| TX_SIZE tx_size, int64_t best_rd) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| #if CONFIG_DEBUG |
| assert(is_cfl_allowed(mbmi)); |
| const BLOCK_SIZE plane_bsize = |
| get_plane_block_size(mbmi->sb_type, &xd->plane[AOM_PLANE_U]); |
| (void)plane_bsize; |
| assert(plane_bsize < BLOCK_SIZES_ALL); |
| if (!xd->lossless[mbmi->segment_id]) { |
| assert(block_size_wide[plane_bsize] == tx_size_wide[tx_size]); |
| assert(block_size_high[plane_bsize] == tx_size_high[tx_size]); |
| } |
| #endif |
| |
| xd->cfl.use_dc_pred_cache = 1; |
| const int64_t mode_rd = |
| RDCOST(x->rdmult, |
| x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED], 0); |
| int64_t best_rd_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; |
| int best_c[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; |
| #if CONFIG_DEBUG |
| int best_rate_uv[CFL_JOINT_SIGNS][CFL_PRED_PLANES]; |
| #endif // CONFIG_DEBUG |
| |
| for (int plane = 0; plane < CFL_PRED_PLANES; plane++) { |
| RD_STATS rd_stats; |
| av1_init_rd_stats(&rd_stats); |
| for (int joint_sign = 0; joint_sign < CFL_JOINT_SIGNS; joint_sign++) { |
| best_rd_uv[joint_sign][plane] = INT64_MAX; |
| best_c[joint_sign][plane] = 0; |
| } |
| // Collect RD stats for an alpha value of zero in this plane. |
| // Skip i == CFL_SIGN_ZERO as (0, 0) is invalid. |
| for (int i = CFL_SIGN_NEG; i < CFL_SIGNS; i++) { |
| const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, CFL_SIGN_ZERO, i); |
| if (i == CFL_SIGN_NEG) { |
| mbmi->cfl_alpha_idx = 0; |
| mbmi->cfl_alpha_signs = joint_sign; |
| txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize, tx_size, |
| cpi->sf.use_fast_coef_costing); |
| if (rd_stats.rate == INT_MAX) break; |
| } |
| const int alpha_rate = x->cfl_cost[joint_sign][plane][0]; |
| best_rd_uv[joint_sign][plane] = |
| RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist); |
| #if CONFIG_DEBUG |
| best_rate_uv[joint_sign][plane] = rd_stats.rate; |
| #endif // CONFIG_DEBUG |
| } |
| } |
| |
| int best_joint_sign = -1; |
| |
| for (int plane = 0; plane < CFL_PRED_PLANES; plane++) { |
| for (int pn_sign = CFL_SIGN_NEG; pn_sign < CFL_SIGNS; pn_sign++) { |
| int progress = 0; |
| for (int c = 0; c < CFL_ALPHABET_SIZE; c++) { |
| int flag = 0; |
| RD_STATS rd_stats; |
| if (c > 2 && progress < c) break; |
| av1_init_rd_stats(&rd_stats); |
| for (int i = 0; i < CFL_SIGNS; i++) { |
| const int joint_sign = PLANE_SIGN_TO_JOINT_SIGN(plane, pn_sign, i); |
| if (i == 0) { |
| mbmi->cfl_alpha_idx = (c << CFL_ALPHABET_SIZE_LOG2) + c; |
| mbmi->cfl_alpha_signs = joint_sign; |
| txfm_rd_in_plane(x, cpi, &rd_stats, best_rd, plane + 1, bsize, |
| tx_size, cpi->sf.use_fast_coef_costing); |
| if (rd_stats.rate == INT_MAX) break; |
| } |
| const int alpha_rate = x->cfl_cost[joint_sign][plane][c]; |
| int64_t this_rd = |
| RDCOST(x->rdmult, rd_stats.rate + alpha_rate, rd_stats.dist); |
| if (this_rd >= best_rd_uv[joint_sign][plane]) continue; |
| best_rd_uv[joint_sign][plane] = this_rd; |
| best_c[joint_sign][plane] = c; |
| #if CONFIG_DEBUG |
| best_rate_uv[joint_sign][plane] = rd_stats.rate; |
| #endif // CONFIG_DEBUG |
| flag = 2; |
| if (best_rd_uv[joint_sign][!plane] == INT64_MAX) continue; |
| this_rd += mode_rd + best_rd_uv[joint_sign][!plane]; |
| if (this_rd >= best_rd) continue; |
| best_rd = this_rd; |
| best_joint_sign = joint_sign; |
| } |
| progress += flag; |
| } |
| } |
| } |
| |
| int best_rate_overhead = INT_MAX; |
| int ind = 0; |
| if (best_joint_sign >= 0) { |
| const int u = best_c[best_joint_sign][CFL_PRED_U]; |
| const int v = best_c[best_joint_sign][CFL_PRED_V]; |
| ind = (u << CFL_ALPHABET_SIZE_LOG2) + v; |
| best_rate_overhead = x->cfl_cost[best_joint_sign][CFL_PRED_U][u] + |
| x->cfl_cost[best_joint_sign][CFL_PRED_V][v]; |
| #if CONFIG_DEBUG |
| xd->cfl.rate = x->intra_uv_mode_cost[CFL_ALLOWED][mbmi->mode][UV_CFL_PRED] + |
| best_rate_overhead + |
| best_rate_uv[best_joint_sign][CFL_PRED_U] + |
| best_rate_uv[best_joint_sign][CFL_PRED_V]; |
| #endif // CONFIG_DEBUG |
| } else { |
| best_joint_sign = 0; |
| } |
| |
| mbmi->cfl_alpha_idx = ind; |
| mbmi->cfl_alpha_signs = best_joint_sign; |
| xd->cfl.use_dc_pred_cache = 0; |
| xd->cfl.dc_pred_is_cached[0] = 0; |
| xd->cfl.dc_pred_is_cached[1] = 0; |
| return best_rate_overhead; |
| } |
| #endif // CONFIG_CFL |
| |
| static void init_sbuv_mode(MB_MODE_INFO *const mbmi) { |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->palette_mode_info.palette_size[1] = 0; |
| } |
| |
| static int64_t rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x, |
| int *rate, int *rate_tokenonly, |
| int64_t *distortion, int *skippable, |
| BLOCK_SIZE bsize, TX_SIZE max_tx_size) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| assert(!is_inter_block(mbmi)); |
| MB_MODE_INFO best_mbmi = *mbmi; |
| int64_t best_rd = INT64_MAX, this_rd; |
| |
| for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) { |
| int this_rate; |
| RD_STATS tokenonly_rd_stats; |
| UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx]; |
| const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode)); |
| if (!(cpi->sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] & |
| (1 << mode))) |
| continue; |
| |
| mbmi->uv_mode = mode; |
| #if CONFIG_CFL |
| int cfl_alpha_rate = 0; |
| if (mode == UV_CFL_PRED) { |
| if (!is_cfl_allowed(mbmi)) continue; |
| assert(!is_directional_mode); |
| const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); |
| cfl_alpha_rate = cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd); |
| if (cfl_alpha_rate == INT_MAX) continue; |
| } |
| #endif |
| mbmi->angle_delta[PLANE_TYPE_UV] = 0; |
| if (is_directional_mode && av1_use_angle_delta(mbmi->sb_type)) { |
| #if CONFIG_CFL |
| const int rate_overhead = |
| x->intra_uv_mode_cost[is_cfl_allowed(mbmi)][mbmi->mode][mode] + |
| #else |
| const int rate_overhead = x->intra_uv_mode_cost[mbmi->mode][mode] + |
| #endif // CONFIG_CFL |
| #if CONFIG_EXT_INTRA_MOD |
| 0; |
| #else |
| write_uniform_cost(2 * MAX_ANGLE_DELTA + 1, 0); |
| #endif // CONFIG_EXT_INTRA_MOD |
| if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd, |
| &this_rate, &tokenonly_rd_stats)) |
| continue; |
| } else { |
| if (!super_block_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) { |
| continue; |
| } |
| } |
| const int mode_cost = |
| #if CONFIG_CFL |
| x->intra_uv_mode_cost[is_cfl_allowed(mbmi)][mbmi->mode][mode] + |
| cfl_alpha_rate; |
| #else |
| x->intra_uv_mode_cost[mbmi->mode][mode]; |
| #endif |
| this_rate = tokenonly_rd_stats.rate + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost); |
| #if CONFIG_CFL |
| if (mode == UV_CFL_PRED) { |
| assert(is_cfl_allowed(mbmi)); |
| #if CONFIG_DEBUG |
| if (!xd->lossless[mbmi->segment_id]) |
| assert(xd->cfl.rate == tokenonly_rd_stats.rate + mode_cost); |
| #endif // CONFIG_DEBUG |
| } |
| #endif |
| this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); |
| |
| if (this_rd < best_rd) { |
| best_mbmi = *mbmi; |
| best_rd = this_rd; |
| *rate = this_rate; |
| *rate_tokenonly = tokenonly_rd_stats.rate; |
| *distortion = tokenonly_rd_stats.dist; |
| *skippable = tokenonly_rd_stats.skip; |
| } |
| } |
| |
| const int try_palette = |
| av1_allow_palette(cpi->common.allow_screen_content_tools, mbmi->sb_type); |
| if (try_palette) { |
| uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map; |
| rd_pick_palette_intra_sbuv( |
| cpi, x, |
| #if CONFIG_CFL |
| x->intra_uv_mode_cost[is_cfl_allowed(mbmi)][mbmi->mode][UV_DC_PRED], |
| #else |
| x->intra_uv_mode_cost[mbmi->mode][UV_DC_PRED], |
| #endif |
| best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly, |
| distortion, skippable); |
| } |
| |
| *mbmi = best_mbmi; |
| // Make sure we actually chose a mode |
| assert(best_rd < INT64_MAX); |
| return best_rd; |
| } |
| |
| static void choose_intra_uv_mode(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, TX_SIZE max_tx_size, |
| int *rate_uv, int *rate_uv_tokenonly, |
| int64_t *dist_uv, int *skip_uv, |
| UV_PREDICTION_MODE *mode_uv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| // Use an estimated rd for uv_intra based on DC_PRED if the |
| // appropriate speed flag is set. |
| init_sbuv_mode(mbmi); |
| if (x->skip_chroma_rd) { |
| *rate_uv = 0; |
| *rate_uv_tokenonly = 0; |
| *dist_uv = 0; |
| *skip_uv = 1; |
| *mode_uv = UV_DC_PRED; |
| return; |
| } |
| bsize = scale_chroma_bsize(bsize, xd->plane[AOM_PLANE_U].subsampling_x, |
| xd->plane[AOM_PLANE_U].subsampling_y); |
| #if CONFIG_CFL |
| // Only store reconstructed luma when there's chroma RDO. When there's no |
| // chroma RDO, the reconstructed luma will be stored in encode_superblock(). |
| xd->cfl.store_y = !x->skip_chroma_rd; |
| if (xd->cfl.store_y) { |
| // Perform one extra call to txfm_rd_in_plane(), with the values chosen |
| // during luma RDO, so we can store reconstructed luma values |
| RD_STATS this_rd_stats; |
| txfm_rd_in_plane(x, cpi, &this_rd_stats, INT64_MAX, AOM_PLANE_Y, |
| mbmi->sb_type, mbmi->tx_size, |
| cpi->sf.use_fast_coef_costing); |
| xd->cfl.store_y = 0; |
| } |
| #endif // CONFIG_CFL |
| rd_pick_intra_sbuv_mode(cpi, x, rate_uv, rate_uv_tokenonly, dist_uv, skip_uv, |
| bsize, max_tx_size); |
| *mode_uv = mbmi->uv_mode; |
| } |
| |
| static int cost_mv_ref(const MACROBLOCK *const x, PREDICTION_MODE mode, |
| int16_t mode_context) { |
| if (is_inter_compound_mode(mode)) { |
| return x |
| ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; |
| } |
| |
| int mode_cost = 0; |
| int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; |
| |
| assert(is_inter_mode(mode)); |
| |
| if (mode == NEWMV) { |
| mode_cost = x->newmv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost = x->newmv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; |
| |
| if (mode == GLOBALMV) { |
| mode_cost += x->zeromv_mode_cost[mode_ctx][0]; |
| return mode_cost; |
| } else { |
| mode_cost += x->zeromv_mode_cost[mode_ctx][1]; |
| mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; |
| mode_cost += x->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; |
| return mode_cost; |
| } |
| } |
| } |
| |
| static int get_interinter_compound_type_bits(BLOCK_SIZE bsize, |
| COMPOUND_TYPE comp_type) { |
| (void)bsize; |
| switch (comp_type) { |
| case COMPOUND_AVERAGE: return 0; |
| case COMPOUND_WEDGE: return get_interinter_wedge_bits(bsize); |
| case COMPOUND_SEG: return 1; |
| default: assert(0); return 0; |
| } |
| } |
| |
| typedef struct { |
| int eobs; |
| int brate; |
| int byrate; |
| int64_t bdist; |
| int64_t bsse; |
| int64_t brdcost; |
| int_mv mvs[2]; |
| int_mv pred_mv[2]; |
| int_mv ref_mv[2]; |
| |
| ENTROPY_CONTEXT ta[2]; |
| ENTROPY_CONTEXT tl[2]; |
| } SEG_RDSTAT; |
| |
| typedef struct { |
| int_mv *ref_mv[2]; |
| int_mv mvp; |
| |
| int64_t segment_rd; |
| int r; |
| int64_t d; |
| int64_t sse; |
| int segment_yrate; |
| PREDICTION_MODE modes[4]; |
| SEG_RDSTAT rdstat[4][INTER_MODES + INTER_COMPOUND_MODES]; |
| int mvthresh; |
| } BEST_SEG_INFO; |
| |
| static INLINE int mv_check_bounds(const MvLimits *mv_limits, const MV *mv) { |
| return (mv->row >> 3) < mv_limits->row_min || |
| (mv->row >> 3) > mv_limits->row_max || |
| (mv->col >> 3) < mv_limits->col_min || |
| (mv->col >> 3) > mv_limits->col_max; |
| } |
| |
| // Check if NEARESTMV/NEARMV/GLOBALMV is the cheapest way encode zero motion. |
| // TODO(aconverse): Find out if this is still productive then clean up or remove |
| static int check_best_zero_mv( |
| const AV1_COMP *const cpi, const MACROBLOCK *const x, |
| const int16_t mode_context[TOTAL_REFS_PER_FRAME], |
| const int16_t compound_mode_context[TOTAL_REFS_PER_FRAME], |
| int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME], int this_mode, |
| const MV_REFERENCE_FRAME ref_frames[2], const BLOCK_SIZE bsize, int mi_row, |
| int mi_col) { |
| int_mv zeromv[2] = { { .as_int = 0 } }; |
| int comp_pred_mode = ref_frames[1] > INTRA_FRAME; |
| (void)mi_row; |
| (void)mi_col; |
| (void)cpi; |
| (void)compound_mode_context; |
| if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) { |
| for (int cur_frm = 0; cur_frm < 1 + comp_pred_mode; cur_frm++) { |
| zeromv[cur_frm].as_int = |
| gm_get_motion_vector(&cpi->common.global_motion[ref_frames[cur_frm]], |
| cpi->common.allow_high_precision_mv, bsize, |
| mi_col, mi_row |
| #if CONFIG_AMVR |
| , |
| cpi->common.cur_frame_force_integer_mv |
| #endif |
| ) |
| .as_int; |
| } |
| } |
| |
| if ((this_mode == NEARMV || this_mode == NEARESTMV || |
| this_mode == GLOBALMV) && |
| frame_mv[this_mode][ref_frames[0]].as_int == zeromv[0].as_int && |
| (ref_frames[1] <= INTRA_FRAME || |
| frame_mv[this_mode][ref_frames[1]].as_int == zeromv[1].as_int)) { |
| int16_t rfc = av1_mode_context_analyzer(mode_context, ref_frames); |
| int c1 = cost_mv_ref(x, NEARMV, rfc); |
| int c2 = cost_mv_ref(x, NEARESTMV, rfc); |
| int c3 = cost_mv_ref(x, GLOBALMV, rfc); |
| |
| if (this_mode == NEARMV) { |
| if (c1 > c3) return 0; |
| } else if (this_mode == NEARESTMV) { |
| if (c2 > c3) return 0; |
| } else { |
| assert(this_mode == GLOBALMV); |
| if (ref_frames[1] <= INTRA_FRAME) { |
| if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0) || |
| (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0)) |
| return 0; |
| } else { |
| if ((c3 >= c2 && frame_mv[NEARESTMV][ref_frames[0]].as_int == 0 && |
| frame_mv[NEARESTMV][ref_frames[1]].as_int == 0) || |
| (c3 >= c1 && frame_mv[NEARMV][ref_frames[0]].as_int == 0 && |
| frame_mv[NEARMV][ref_frames[1]].as_int == 0)) |
| return 0; |
| } |
| } |
| } else if ((this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV || |
| this_mode == GLOBAL_GLOBALMV) && |
| frame_mv[this_mode][ref_frames[0]].as_int == zeromv[0].as_int && |
| frame_mv[this_mode][ref_frames[1]].as_int == zeromv[1].as_int) { |
| #if CONFIG_OPT_REF_MV |
| int16_t rfc = av1_mode_context_analyzer(mode_context, ref_frames); |
| #else |
| int16_t rfc = compound_mode_context[ref_frames[0]]; |
| #endif |
| int c2 = cost_mv_ref(x, NEAREST_NEARESTMV, rfc); |
| int c3 = cost_mv_ref(x, GLOBAL_GLOBALMV, rfc); |
| int c5 = cost_mv_ref(x, NEAR_NEARMV, rfc); |
| |
| if (this_mode == NEAREST_NEARESTMV) { |
| if (c2 > c3) return 0; |
| } else if (this_mode == NEAR_NEARMV) { |
| if (c5 > c3) return 0; |
| } else { |
| assert(this_mode == GLOBAL_GLOBALMV); |
| if ((c3 >= c2 && frame_mv[NEAREST_NEARESTMV][ref_frames[0]].as_int == 0 && |
| frame_mv[NEAREST_NEARESTMV][ref_frames[1]].as_int == 0) || |
| (c3 >= c5 && frame_mv[NEAR_NEARMV][ref_frames[0]].as_int == 0 && |
| frame_mv[NEAR_NEARMV][ref_frames[1]].as_int == 0)) |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static void joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int_mv *frame_mv, int mi_row, |
| int mi_col, int_mv *ref_mv_sub8x8[2], |
| const uint8_t *mask, int mask_stride, |
| int *rate_mv, const int block) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int pw = block_size_wide[bsize]; |
| const int ph = block_size_high[bsize]; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| // This function should only ever be called for compound modes |
| assert(has_second_ref(mbmi)); |
| const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] }; |
| int_mv ref_mv[2]; |
| int ite, ref; |
| // ic and ir are the 4x4 coordinates of the sub8x8 at index "block" |
| const int ic = block & 1; |
| const int ir = (block - ic) >> 1; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; |
| const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; |
| int is_global[2]; |
| for (ref = 0; ref < 2; ++ref) { |
| const WarpedMotionParams *const wm = |
| &xd->global_motion[xd->mi[0]->mbmi.ref_frame[ref]]; |
| is_global[ref] = is_global_mv_block(xd->mi[0], wm->wmtype); |
| } |
| |
| // Do joint motion search in compound mode to get more accurate mv. |
| struct buf_2d backup_yv12[2][MAX_MB_PLANE]; |
| int last_besterr[2] = { INT_MAX, INT_MAX }; |
| const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { |
| av1_get_scaled_ref_frame(cpi, refs[0]), |
| av1_get_scaled_ref_frame(cpi, refs[1]) |
| }; |
| |
| // Prediction buffer from second frame. |
| DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]); |
| uint8_t *second_pred; |
| (void)ref_mv_sub8x8; |
| |
| for (ref = 0; ref < 2; ++ref) { |
| ref_mv[ref] = x->mbmi_ext->ref_mvs[refs[ref]][0]; |
| |
| if (scaled_ref_frame[ref]) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < num_planes; i++) |
| backup_yv12[ref][i] = xd->plane[i].pre[ref]; |
| av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, NULL, |
| num_planes); |
| } |
| } |
| |
| assert(IMPLIES(scaled_ref_frame[0] != NULL, |
| cm->width == scaled_ref_frame[0]->y_crop_width && |
| cm->height == scaled_ref_frame[0]->y_crop_height)); |
| assert(IMPLIES(scaled_ref_frame[1] != NULL, |
| cm->width == scaled_ref_frame[1]->y_crop_width && |
| cm->height == scaled_ref_frame[1]->y_crop_height)); |
| |
| // Allow joint search multiple times iteratively for each reference frame |
| // and break out of the search loop if it couldn't find a better mv. |
| for (ite = 0; ite < 4; ite++) { |
| struct buf_2d ref_yv12[2]; |
| int bestsme = INT_MAX; |
| int sadpb = x->sadperbit16; |
| MV *const best_mv = &x->best_mv.as_mv; |
| int search_range = 3; |
| |
| MvLimits tmp_mv_limits = x->mv_limits; |
| int id = ite % 2; // Even iterations search in the first reference frame, |
| // odd iterations search in the second. The predictor |
| // found for the 'other' reference frame is factored in. |
| const int plane = 0; |
| ConvolveParams conv_params = get_conv_params(!id, 0, plane, xd->bd); |
| #if CONFIG_JNT_COMP |
| conv_params.use_jnt_comp_avg = 0; |
| #endif |
| WarpTypesAllowed warp_types; |
| warp_types.global_warp_allowed = is_global[!id]; |
| warp_types.local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL; |
| |
| // Initialized here because of compiler problem in Visual Studio. |
| ref_yv12[0] = xd->plane[plane].pre[0]; |
| ref_yv12[1] = xd->plane[plane].pre[1]; |
| |
| // Get the prediction block from the 'other' reference frame. |
| #if CONFIG_JNT_COMP |
| InterpFilters interp_filters = EIGHTTAP_REGULAR; |
| #endif // CONFIG_JNT_COMP |
| |
| // Since we have scaled the reference frames to match the size of the |
| // current frame we must use a unit scaling factor during mode selection. |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); |
| av1_highbd_build_inter_predictor( |
| ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, |
| &frame_mv[refs[!id]].as_mv, |
| #if CONFIG_JNT_COMP |
| &cm->sf_identity, pw, ph, 0, interp_filters, |
| #else |
| &cm->sf_identity, pw, ph, 0, mbmi->interp_filters, |
| #endif // CONFIG_JNT_COMP |
| &warp_types, p_col, p_row, plane, MV_PRECISION_Q3, mi_col * MI_SIZE, |
| mi_row * MI_SIZE, xd); |
| } else { |
| second_pred = (uint8_t *)second_pred_alloc_16; |
| av1_build_inter_predictor( |
| ref_yv12[!id].buf, ref_yv12[!id].stride, second_pred, pw, |
| &frame_mv[refs[!id]].as_mv, |
| #if CONFIG_JNT_COMP |
| &cm->sf_identity, pw, ph, &conv_params, interp_filters, |
| #else |
| &cm->sf_identity, pw, ph, &conv_params, mbmi->interp_filters, |
| #endif // CONFIG_JNT_COMP |
| &warp_types, p_col, p_row, plane, !id, MV_PRECISION_Q3, |
| mi_col * MI_SIZE, mi_row * MI_SIZE, xd); |
| } |
| |
| #if CONFIG_JNT_COMP |
| const int order_idx = id != 0; |
| av1_jnt_comp_weight_assign(cm, mbmi, order_idx, &xd->jcp_param.fwd_offset, |
| &xd->jcp_param.bck_offset, |
| &xd->jcp_param.use_jnt_comp_avg, 1); |
| #endif // CONFIG_JNT_COMP |
| |
| // Do compound motion search on the current reference frame. |
| if (id) xd->plane[plane].pre[0] = ref_yv12[id]; |
| av1_set_mv_search_range(&x->mv_limits, &ref_mv[id].as_mv); |
| |
| // Use the mv result from the single mode as mv predictor. |
| // Use the mv result from the single mode as mv predictor. |
| *best_mv = frame_mv[refs[id]].as_mv; |
| |
| best_mv->col >>= 3; |
| best_mv->row >>= 3; |
| |
| av1_set_mvcost( |
| x, id, |
| mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); |
| |
| // Small-range full-pixel motion search. |
| bestsme = av1_refining_search_8p_c(x, sadpb, search_range, |
| &cpi->fn_ptr[bsize], mask, mask_stride, |
| id, &ref_mv[id].as_mv, second_pred); |
| if (bestsme < INT_MAX) { |
| if (mask) |
| bestsme = av1_get_mvpred_mask_var(x, best_mv, &ref_mv[id].as_mv, |
| second_pred, mask, mask_stride, id, |
| &cpi->fn_ptr[bsize], 1); |
| else |
| bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv[id].as_mv, |
| second_pred, &cpi->fn_ptr[bsize], 1); |
| } |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| #if CONFIG_AMVR |
| if (cpi->common.cur_frame_force_integer_mv) { |
| x->best_mv.as_mv.row *= 8; |
| x->best_mv.as_mv.col *= 8; |
| } |
| if (bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0) |
| #else |
| if (bestsme < INT_MAX) |
| #endif |
| { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| unsigned int sse; |
| bestsme = cpi->find_fractional_mv_step( |
| x, &ref_mv[id].as_mv, cpi->common.allow_high_precision_mv, |
| x->errorperbit, &cpi->fn_ptr[bsize], 0, |
| cpi->sf.mv.subpel_iters_per_step, NULL, x->nmvjointcost, x->mvcost, |
| &dis, &sse, second_pred, mask, mask_stride, id, pw, ph, |
| cpi->sf.use_accurate_subpel_search); |
| } |
| |
| // Restore the pointer to the first (possibly scaled) prediction buffer. |
| if (id) xd->plane[plane].pre[0] = ref_yv12[0]; |
| |
| if (bestsme < last_besterr[id]) { |
| frame_mv[refs[id]].as_mv = *best_mv; |
| last_besterr[id] = bestsme; |
| } else { |
| break; |
| } |
| } |
| |
| *rate_mv = 0; |
| |
| for (ref = 0; ref < 2; ++ref) { |
| if (scaled_ref_frame[ref]) { |
| // Restore the prediction frame pointers to their unscaled versions. |
| int i; |
| for (i = 0; i < num_planes; i++) |
| xd->plane[i].pre[ref] = backup_yv12[ref][i]; |
| } |
| |
| av1_set_mvcost( |
| x, ref, |
| mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); |
| |
| *rate_mv += av1_mv_bit_cost(&frame_mv[refs[ref]].as_mv, |
| &x->mbmi_ext->ref_mvs[refs[ref]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| } |
| } |
| |
| static void estimate_ref_frame_costs( |
| const AV1_COMMON *cm, const MACROBLOCKD *xd, const MACROBLOCK *x, |
| int segment_id, unsigned int *ref_costs_single, |
| #if CONFIG_EXT_COMP_REFS |
| unsigned int (*ref_costs_comp)[TOTAL_REFS_PER_FRAME] |
| #else |
| unsigned int *ref_costs_comp |
| #endif // CONFIG_EXT_COMP_REFS |
| ) { |
| int seg_ref_active = |
| segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); |
| if (seg_ref_active) { |
| memset(ref_costs_single, 0, |
| TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_single)); |
| #if CONFIG_EXT_COMP_REFS |
| int ref_frame; |
| for (ref_frame = 0; ref_frame < TOTAL_REFS_PER_FRAME; ++ref_frame) |
| memset(ref_costs_comp[ref_frame], 0, |
| TOTAL_REFS_PER_FRAME * sizeof((*ref_costs_comp)[0])); |
| #else |
| memset(ref_costs_comp, 0, TOTAL_REFS_PER_FRAME * sizeof(*ref_costs_comp)); |
| #endif // CONFIG_EXT_COMP_REFS |
| } else { |
| int intra_inter_ctx = av1_get_intra_inter_context(xd); |
| ref_costs_single[INTRA_FRAME] = x->intra_inter_cost[intra_inter_ctx][0]; |
| unsigned int base_cost = x->intra_inter_cost[intra_inter_ctx][1]; |
| |
| ref_costs_single[LAST_FRAME] = ref_costs_single[LAST2_FRAME] = |
| ref_costs_single[LAST3_FRAME] = ref_costs_single[BWDREF_FRAME] = |
| ref_costs_single[ALTREF2_FRAME] = ref_costs_single[GOLDEN_FRAME] = |
| ref_costs_single[ALTREF_FRAME] = base_cost; |
| const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd); |
| const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd); |
| const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd); |
| const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd); |
| const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd); |
| const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd); |
| |
| ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p1][0][0]; |
| ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; |
| ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p1][0][1]; |
| ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p1][0][1]; |
| |
| ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p3][2][0]; |
| ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p3][2][0]; |
| ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p3][2][1]; |
| ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p3][2][1]; |
| |
| ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p2][1][0]; |
| ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p2][1][0]; |
| ref_costs_single[ALTREF_FRAME] += x->single_ref_cost[ctx_p2][1][1]; |
| |
| ref_costs_single[LAST_FRAME] += x->single_ref_cost[ctx_p4][3][0]; |
| ref_costs_single[LAST2_FRAME] += x->single_ref_cost[ctx_p4][3][1]; |
| |
| ref_costs_single[LAST3_FRAME] += x->single_ref_cost[ctx_p5][4][0]; |
| ref_costs_single[GOLDEN_FRAME] += x->single_ref_cost[ctx_p5][4][1]; |
| |
| ref_costs_single[BWDREF_FRAME] += x->single_ref_cost[ctx_p6][5][0]; |
| ref_costs_single[ALTREF2_FRAME] += x->single_ref_cost[ctx_p6][5][1]; |
| |
| if (cm->reference_mode != SINGLE_REFERENCE) { |
| const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd); |
| const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd); |
| const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd); |
| const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd); |
| const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd); |
| |
| #if CONFIG_EXT_COMP_REFS |
| const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); |
| unsigned int ref_bicomp_costs[TOTAL_REFS_PER_FRAME] = { 0 }; |
| |
| ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] = |
| ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][1]; |
| ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0; |
| ref_bicomp_costs[ALTREF_FRAME] = 0; |
| |
| ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| |
| ref_bicomp_costs[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0]; |
| ref_bicomp_costs[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1]; |
| |
| ref_bicomp_costs[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0]; |
| ref_bicomp_costs[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1]; |
| |
| ref_bicomp_costs[BWDREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[ALTREF2_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_bicomp_costs[ALTREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1]; |
| |
| ref_bicomp_costs[BWDREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0]; |
| ref_bicomp_costs[ALTREF2_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1]; |
| |
| int ref0, ref1; |
| for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { |
| for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) { |
| ref_costs_comp[ref0][ref1] = |
| ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1]; |
| } |
| } |
| |
| const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd); |
| const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd); |
| const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd); |
| ref_costs_comp[LAST_FRAME][LAST2_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0]; |
| ref_costs_comp[LAST_FRAME][LAST3_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0]; |
| ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1]; |
| ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = |
| base_cost + x->comp_ref_type_cost[comp_ref_type_ctx][0] + |
| x->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1]; |
| #else // !CONFIG_EXT_COMP_REFS |
| |
| ref_costs_comp[LAST_FRAME] = ref_costs_comp[LAST2_FRAME] = |
| ref_costs_comp[LAST3_FRAME] = ref_costs_comp[GOLDEN_FRAME] = |
| base_cost; |
| |
| ref_costs_comp[BWDREF_FRAME] = ref_costs_comp[ALTREF2_FRAME] = |
| ref_costs_comp[ALTREF_FRAME] = 0; |
| |
| ref_costs_comp[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_costs_comp[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][0]; |
| ref_costs_comp[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| ref_costs_comp[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p][0][1]; |
| |
| ref_costs_comp[LAST_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][0]; |
| ref_costs_comp[LAST2_FRAME] += x->comp_ref_cost[ref_comp_ctx_p1][1][1]; |
| |
| ref_costs_comp[LAST3_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][0]; |
| ref_costs_comp[GOLDEN_FRAME] += x->comp_ref_cost[ref_comp_ctx_p2][2][1]; |
| |
| // NOTE(zoeliu): BWDREF and ALTREF each add an extra cost by coding 1 |
| // more bit. |
| ref_costs_comp[BWDREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_costs_comp[ALTREF2_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; |
| ref_costs_comp[ALTREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p][0][1]; |
| |
| ref_costs_comp[BWDREF_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0]; |
| ref_costs_comp[ALTREF2_FRAME] += |
| x->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1]; |
| #endif // CONFIG_EXT_COMP_REFS |
| } else { |
| #if CONFIG_EXT_COMP_REFS |
| int ref0, ref1; |
| for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { |
| for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) |
| ref_costs_comp[ref0][ref1] = 512; |
| } |
| ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512; |
| ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512; |
| ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512; |
| ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512; |
| #else // !CONFIG_EXT_COMP_REFS |
| ref_costs_comp[LAST_FRAME] = 512; |
| ref_costs_comp[LAST2_FRAME] = 512; |
| ref_costs_comp[LAST3_FRAME] = 512; |
| ref_costs_comp[BWDREF_FRAME] = 512; |
| ref_costs_comp[ALTREF2_FRAME] = 512; |
| ref_costs_comp[ALTREF_FRAME] = 512; |
| ref_costs_comp[GOLDEN_FRAME] = 512; |
| #endif // CONFIG_EXT_COMP_REFS |
| } |
| } |
| } |
| |
| static void store_coding_context(MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, |
| int mode_index, |
| int64_t comp_pred_diff[REFERENCE_MODES], |
| int skippable) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| |
| // Take a snapshot of the coding context so it can be |
| // restored if we decide to encode this way |
| ctx->skip = x->skip; |
| ctx->skippable = skippable; |
| ctx->best_mode_index = mode_index; |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| ctx->single_pred_diff = (int)comp_pred_diff[SINGLE_REFERENCE]; |
| ctx->comp_pred_diff = (int)comp_pred_diff[COMPOUND_REFERENCE]; |
| ctx->hybrid_pred_diff = (int)comp_pred_diff[REFERENCE_MODE_SELECT]; |
| } |
| |
| static void setup_buffer_inter( |
| const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, |
| BLOCK_SIZE block_size, int mi_row, int mi_col, |
| int_mv frame_nearest_mv[TOTAL_REFS_PER_FRAME], |
| int_mv frame_near_mv[TOTAL_REFS_PER_FRAME], |
| struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE]) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_buffer(cpi, ref_frame); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MODE_INFO *const mi = xd->mi[0]; |
| int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; |
| const struct scale_factors *const sf = &cm->frame_refs[ref_frame - 1].sf; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| |
| assert(yv12 != NULL); |
| |
| // TODO(jkoleszar): Is the UV buffer ever used here? If so, need to make this |
| // use the UV scaling factors. |
| av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, mi_row, mi_col, sf, sf, |
| num_planes); |
| |
| // Gets an initial list of candidate vectors from neighbours and orders them |
| av1_find_mv_refs(cm, xd, mi, ref_frame, mbmi_ext->ref_mv_count, |
| mbmi_ext->ref_mv_stack, mbmi_ext->compound_mode_context, |
| mbmi_ext->ref_mvs, mi_row, mi_col, NULL, NULL, |
| mbmi_ext->mode_context, 0); |
| |
| // Candidate refinement carried out at encoder and decoder |
| #if CONFIG_AMVR |
| av1_find_best_ref_mvs(cm->allow_high_precision_mv, candidates, |
| &frame_nearest_mv[ref_frame], &frame_near_mv[ref_frame], |
| cm->cur_frame_force_integer_mv); |
| #else |
| av1_find_best_ref_mvs(cm->allow_high_precision_mv, candidates, |
| &frame_nearest_mv[ref_frame], |
| &frame_near_mv[ref_frame]); |
| #endif |
| // Further refinement that is encode side only to test the top few candidates |
| // in full and choose the best as the centre point for subsequent searches. |
| // The current implementation doesn't support scaling. |
| av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12->y_stride, ref_frame, |
| block_size); |
| } |
| |
| static void single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int ref_idx, int *rate_mv) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; |
| int bestsme = INT_MAX; |
| int step_param; |
| int sadpb = x->sadperbit16; |
| MV mvp_full; |
| int ref = mbmi->ref_frame[ref_idx]; |
| MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; |
| |
| MvLimits tmp_mv_limits = x->mv_limits; |
| int cost_list[5]; |
| |
| const YV12_BUFFER_CONFIG *scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, ref); |
| |
| MV pred_mv[3]; |
| pred_mv[0] = x->mbmi_ext->ref_mvs[ref][0].as_mv; |
| pred_mv[1] = x->mbmi_ext->ref_mvs[ref][1].as_mv; |
| pred_mv[2] = x->pred_mv[ref]; |
| |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < num_planes; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx]; |
| |
| av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, |
| num_planes); |
| } |
| |
| av1_set_mvcost( |
| x, ref_idx, |
| mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); |
| |
| // Work out the size of the first step in the mv step search. |
| // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc. |
| if (cpi->sf.mv.auto_mv_step_size && cm->show_frame) { |
| // Take the weighted average of the step_params based on the last frame's |
| // max mv magnitude and that based on the best ref mvs of the current |
| // block for the given reference. |
| step_param = |
| (av1_init_search_range(x->max_mv_context[ref]) + cpi->mv_step_param) / |
| 2; |
| } else { |
| step_param = cpi->mv_step_param; |
| } |
| |
| if (cpi->sf.adaptive_motion_search && bsize < cm->seq_params.sb_size) { |
| int boffset = |
| 2 * (b_width_log2_lookup[cm->seq_params.sb_size] - |
| AOMMIN(b_height_log2_lookup[bsize], b_width_log2_lookup[bsize])); |
| step_param = AOMMAX(step_param, boffset); |
| } |
| |
| if (cpi->sf.adaptive_motion_search) { |
| int bwl = b_width_log2_lookup[bsize]; |
| int bhl = b_height_log2_lookup[bsize]; |
| int tlevel = x->pred_mv_sad[ref] >> (bwl + bhl + 4); |
| |
| if (tlevel < 5) { |
| step_param += 2; |
| step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 1); |
| } |
| |
| // prev_mv_sad is not setup for dynamically scaled frames. |
| if (cpi->oxcf.resize_mode != RESIZE_RANDOM) { |
| int i; |
| for (i = LAST_FRAME; i <= ALTREF_FRAME && cm->show_frame; ++i) { |
| if ((x->pred_mv_sad[ref] >> 3) > x->pred_mv_sad[i]) { |
| x->pred_mv[ref].row = 0; |
| x->pred_mv[ref].col = 0; |
| x->best_mv.as_int = INVALID_MV; |
| |
| if (scaled_ref_frame) { |
| int j; |
| for (j = 0; j < num_planes; ++j) |
| xd->plane[j].pre[ref_idx] = backup_yv12[j]; |
| } |
| return; |
| } |
| } |
| } |
| } |
| |
| // Note: MV limits are modified here. Always restore the original values |
| // after full-pixel motion search. |
| av1_set_mv_search_range(&x->mv_limits, &ref_mv); |
| |
| if (mbmi->motion_mode != SIMPLE_TRANSLATION) |
| mvp_full = mbmi->mv[0].as_mv; |
| else |
| mvp_full = pred_mv[x->mv_best_ref_index[ref]]; |
| |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| |
| x->best_mv.as_int = x->second_best_mv.as_int = INVALID_MV; |
| |
| switch (mbmi->motion_mode) { |
| case SIMPLE_TRANSLATION: |
| #if CONFIG_HASH_ME |
| bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, |
| sadpb, cond_cost_list(cpi, cost_list), |
| &ref_mv, INT_MAX, 1, (MI_SIZE * mi_col), |
| (MI_SIZE * mi_row), 0); |
| #else |
| bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, |
| sadpb, cond_cost_list(cpi, cost_list), |
| &ref_mv, INT_MAX, 1); |
| #endif |
| break; |
| case OBMC_CAUSAL: |
| bestsme = av1_obmc_full_pixel_diamond( |
| cpi, x, &mvp_full, step_param, sadpb, |
| MAX_MVSEARCH_STEPS - 1 - step_param, 1, &cpi->fn_ptr[bsize], &ref_mv, |
| &(x->best_mv.as_mv), 0); |
| break; |
| default: assert(0 && "Invalid motion mode!\n"); |
| } |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| #if CONFIG_AMVR |
| if (cpi->common.cur_frame_force_integer_mv) { |
| x->best_mv.as_mv.row *= 8; |
| x->best_mv.as_mv.col *= 8; |
| } |
| const int use_fractional_mv = |
| bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0; |
| #else |
| const int use_fractional_mv = bestsme < INT_MAX; |
| #endif |
| if (use_fractional_mv) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| switch (mbmi->motion_mode) { |
| case SIMPLE_TRANSLATION: |
| if (cpi->sf.use_accurate_subpel_search) { |
| int best_mv_var; |
| const int try_second = x->second_best_mv.as_int != INVALID_MV && |
| x->second_best_mv.as_int != x->best_mv.as_int; |
| const int pw = block_size_wide[bsize]; |
| const int ph = block_size_high[bsize]; |
| |
| best_mv_var = cpi->find_fractional_mv_step( |
| x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL, |
| 0, 0, pw, ph, 1); |
| |
| if (try_second) { |
| const int minc = |
| AOMMAX(x->mv_limits.col_min * 8, ref_mv.col - MV_MAX); |
| const int maxc = |
| AOMMIN(x->mv_limits.col_max * 8, ref_mv.col + MV_MAX); |
| const int minr = |
| AOMMAX(x->mv_limits.row_min * 8, ref_mv.row - MV_MAX); |
| const int maxr = |
| AOMMIN(x->mv_limits.row_max * 8, ref_mv.row + MV_MAX); |
| int this_var; |
| MV best_mv = x->best_mv.as_mv; |
| |
| x->best_mv = x->second_best_mv; |
| if (x->best_mv.as_mv.row * 8 <= maxr && |
| x->best_mv.as_mv.row * 8 >= minr && |
| x->best_mv.as_mv.col * 8 <= maxc && |
| x->best_mv.as_mv.col * 8 >= minc) { |
| this_var = cpi->find_fractional_mv_step( |
| x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, |
| cond_cost_list(cpi, cost_list), x->nmvjointcost, x->mvcost, |
| &dis, &x->pred_sse[ref], NULL, NULL, 0, 0, pw, ph, 1); |
| if (this_var < best_mv_var) best_mv = x->best_mv.as_mv; |
| x->best_mv.as_mv = best_mv; |
| } |
| } |
| } else { |
| cpi->find_fractional_mv_step( |
| x, &ref_mv, cm->allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, cond_cost_list(cpi, cost_list), |
| x->nmvjointcost, x->mvcost, &dis, &x->pred_sse[ref], NULL, NULL, |
| 0, 0, 0, 0, 0); |
| } |
| break; |
| case OBMC_CAUSAL: |
| av1_find_best_obmc_sub_pixel_tree_up( |
| x, &x->best_mv.as_mv, &ref_mv, cm->allow_high_precision_mv, |
| x->errorperbit, &cpi->fn_ptr[bsize], cpi->sf.mv.subpel_force_stop, |
| cpi->sf.mv.subpel_iters_per_step, x->nmvjointcost, x->mvcost, &dis, |
| &x->pred_sse[ref], 0, cpi->sf.use_accurate_subpel_search); |
| break; |
| default: assert(0 && "Invalid motion mode!\n"); |
| } |
| } |
| *rate_mv = av1_mv_bit_cost(&x->best_mv.as_mv, &ref_mv, x->nmvjointcost, |
| x->mvcost, MV_COST_WEIGHT); |
| |
| if (cpi->sf.adaptive_motion_search && mbmi->motion_mode == SIMPLE_TRANSLATION) |
| x->pred_mv[ref] = x->best_mv.as_mv; |
| |
| if (scaled_ref_frame) { |
| int i; |
| for (i = 0; i < num_planes; i++) xd->plane[i].pre[ref_idx] = backup_yv12[i]; |
| } |
| } |
| |
| static INLINE void restore_dst_buf(MACROBLOCKD *xd, BUFFER_SET dst, |
| const int num_planes) { |
| int i; |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].dst.buf = dst.plane[i]; |
| xd->plane[i].dst.stride = dst.stride[i]; |
| } |
| } |
| |
| static void build_second_inter_pred(const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, const MV *other_mv, |
| int mi_row, int mi_col, const int block, |
| int ref_idx, uint8_t *second_pred) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int pw = block_size_wide[bsize]; |
| const int ph = block_size_high[bsize]; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| const int other_ref = mbmi->ref_frame[!ref_idx]; |
| struct scale_factors sf; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| // ic and ir are the 4x4 coordinates of the sub8x8 at index "block" |
| const int ic = block & 1; |
| const int ir = (block - ic) >> 1; |
| const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x) + 4 * ic; |
| const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y) + 4 * ir; |
| const WarpedMotionParams *const wm = &xd->global_motion[other_ref]; |
| int is_global = is_global_mv_block(xd->mi[0], wm->wmtype); |
| |
| // This function should only ever be called for compound modes |
| assert(has_second_ref(mbmi)); |
| |
| struct buf_2d backup_yv12[MAX_MB_PLANE]; |
| const YV12_BUFFER_CONFIG *const scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, other_ref); |
| |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < num_planes; i++) |
| backup_yv12[i] = xd->plane[i].pre[!ref_idx]; |
| av1_setup_pre_planes(xd, !ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, |
| num_planes); |
| } |
| |
| // Since we have scaled the reference frames to match the size of the current |
| // frame we must use a unit scaling factor during mode selection. |
| av1_setup_scale_factors_for_frame(&sf, cm->width, cm->height, cm->width, |
| cm->height, cm->use_highbitdepth); |
| |
| struct buf_2d ref_yv12; |
| |
| const int plane = 0; |
| ConvolveParams conv_params = get_conv_params(!ref_idx, 0, plane, xd->bd); |
| WarpTypesAllowed warp_types; |
| warp_types.global_warp_allowed = is_global; |
| warp_types.local_warp_allowed = mbmi->motion_mode == WARPED_CAUSAL; |
| |
| // Initialized here because of compiler problem in Visual Studio. |
| ref_yv12 = xd->plane[plane].pre[!ref_idx]; |
| |
| // Get the prediction block from the 'other' reference frame. |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| av1_highbd_build_inter_predictor( |
| ref_yv12.buf, ref_yv12.stride, second_pred, pw, other_mv, &sf, pw, ph, |
| 0, mbmi->interp_filters, &warp_types, p_col, p_row, plane, |
| MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd); |
| } else { |
| av1_build_inter_predictor( |
| ref_yv12.buf, ref_yv12.stride, second_pred, pw, other_mv, &sf, pw, ph, |
| &conv_params, mbmi->interp_filters, &warp_types, p_col, p_row, plane, |
| !ref_idx, MV_PRECISION_Q3, mi_col * MI_SIZE, mi_row * MI_SIZE, xd); |
| } |
| |
| #if CONFIG_JNT_COMP |
| av1_jnt_comp_weight_assign(cm, mbmi, 0, &xd->jcp_param.fwd_offset, |
| &xd->jcp_param.bck_offset, |
| &xd->jcp_param.use_jnt_comp_avg, 1); |
| #endif // CONFIG_JNT_COMP |
| |
| if (scaled_ref_frame) { |
| // Restore the prediction frame pointers to their unscaled versions. |
| int i; |
| for (i = 0; i < num_planes; i++) |
| xd->plane[i].pre[!ref_idx] = backup_yv12[i]; |
| } |
| } |
| |
| // Search for the best mv for one component of a compound, |
| // given that the other component is fixed. |
| static void compound_single_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, |
| BLOCK_SIZE bsize, MV *this_mv, |
| int mi_row, int mi_col, |
| const uint8_t *second_pred, |
| const uint8_t *mask, int mask_stride, |
| int *rate_mv, int ref_idx) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const int pw = block_size_wide[bsize]; |
| const int ph = block_size_high[bsize]; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| const int ref = mbmi->ref_frame[ref_idx]; |
| int_mv ref_mv = x->mbmi_ext->ref_mvs[ref][0]; |
| struct macroblockd_plane *const pd = &xd->plane[0]; |
| |
| struct buf_2d backup_yv12[MAX_MB_PLANE]; |
| const YV12_BUFFER_CONFIG *const scaled_ref_frame = |
| av1_get_scaled_ref_frame(cpi, ref); |
| |
| // Check that this is either an interinter or an interintra block |
| assert(has_second_ref(mbmi) || |
| (ref_idx == 0 && mbmi->ref_frame[1] == INTRA_FRAME)); |
| |
| if (scaled_ref_frame) { |
| int i; |
| // Swap out the reference frame for a version that's been scaled to |
| // match the resolution of the current frame, allowing the existing |
| // motion search code to be used without additional modifications. |
| for (i = 0; i < num_planes; i++) backup_yv12[i] = xd->plane[i].pre[ref_idx]; |
| av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, |
| num_planes); |
| } |
| |
| struct buf_2d orig_yv12; |
| int bestsme = INT_MAX; |
| int sadpb = x->sadperbit16; |
| MV *const best_mv = &x->best_mv.as_mv; |
| int search_range = 3; |
| |
| MvLimits tmp_mv_limits = x->mv_limits; |
| |
| // Initialized here because of compiler problem in Visual Studio. |
| if (ref_idx) { |
| orig_yv12 = pd->pre[0]; |
| pd->pre[0] = pd->pre[ref_idx]; |
| } |
| |
| // Do compound motion search on the current reference frame. |
| av1_set_mv_search_range(&x->mv_limits, &ref_mv.as_mv); |
| |
| // Use the mv result from the single mode as mv predictor. |
| *best_mv = *this_mv; |
| |
| best_mv->col >>= 3; |
| best_mv->row >>= 3; |
| |
| av1_set_mvcost( |
| x, ref_idx, |
| mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); |
| |
| // Small-range full-pixel motion search. |
| bestsme = av1_refining_search_8p_c(x, sadpb, search_range, |
| &cpi->fn_ptr[bsize], mask, mask_stride, |
| ref_idx, &ref_mv.as_mv, second_pred); |
| if (bestsme < INT_MAX) { |
| if (mask) |
| bestsme = |
| av1_get_mvpred_mask_var(x, best_mv, &ref_mv.as_mv, second_pred, mask, |
| mask_stride, ref_idx, &cpi->fn_ptr[bsize], 1); |
| else |
| bestsme = av1_get_mvpred_av_var(x, best_mv, &ref_mv.as_mv, second_pred, |
| &cpi->fn_ptr[bsize], 1); |
| } |
| |
| x->mv_limits = tmp_mv_limits; |
| |
| #if CONFIG_AMVR |
| if (cpi->common.cur_frame_force_integer_mv) { |
| x->best_mv.as_mv.row *= 8; |
| x->best_mv.as_mv.col *= 8; |
| } |
| const int use_fractional_mv = |
| bestsme < INT_MAX && cpi->common.cur_frame_force_integer_mv == 0; |
| #else |
| const int use_fractional_mv = bestsme < INT_MAX; |
| #endif |
| if (use_fractional_mv) { |
| int dis; /* TODO: use dis in distortion calculation later. */ |
| unsigned int sse; |
| bestsme = cpi->find_fractional_mv_step( |
| x, &ref_mv.as_mv, cpi->common.allow_high_precision_mv, x->errorperbit, |
| &cpi->fn_ptr[bsize], 0, cpi->sf.mv.subpel_iters_per_step, NULL, |
| x->nmvjointcost, x->mvcost, &dis, &sse, second_pred, mask, mask_stride, |
| ref_idx, pw, ph, cpi->sf.use_accurate_subpel_search); |
| } |
| |
| // Restore the pointer to the first (possibly scaled) prediction buffer. |
| if (ref_idx) pd->pre[0] = orig_yv12; |
| |
| if (bestsme < INT_MAX) *this_mv = *best_mv; |
| |
| *rate_mv = 0; |
| |
| if (scaled_ref_frame) { |
| // Restore the prediction frame pointers to their unscaled versions. |
| int i; |
| for (i = 0; i < num_planes; i++) xd->plane[i].pre[ref_idx] = backup_yv12[i]; |
| } |
| |
| av1_set_mvcost( |
| x, ref_idx, |
| mbmi->ref_mv_idx + (have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0)); |
| *rate_mv += av1_mv_bit_cost(this_mv, &ref_mv.as_mv, x->nmvjointcost, |
| x->mvcost, MV_COST_WEIGHT); |
| } |
| |
| // Wrapper for compound_single_motion_search, for the common case |
| // where the second prediction is also an inter mode. |
| static void compound_single_motion_search_interinter( |
| const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *frame_mv, |
| int mi_row, int mi_col, const uint8_t *mask, int mask_stride, int *rate_mv, |
| const int block, int ref_idx) { |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| |
| // This function should only ever be called for compound modes |
| assert(has_second_ref(mbmi)); |
| |
| // Prediction buffer from second frame. |
| DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]); |
| uint8_t *second_pred; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); |
| else |
| second_pred = (uint8_t *)second_pred_alloc_16; |
| |
| MV *this_mv = &frame_mv[mbmi->ref_frame[ref_idx]].as_mv; |
| const MV *other_mv = &frame_mv[mbmi->ref_frame[!ref_idx]].as_mv; |
| |
| build_second_inter_pred(cpi, x, bsize, other_mv, mi_row, mi_col, block, |
| ref_idx, second_pred); |
| |
| compound_single_motion_search(cpi, x, bsize, this_mv, mi_row, mi_col, |
| second_pred, mask, mask_stride, rate_mv, |
| ref_idx); |
| } |
| |
| static void do_masked_motion_search_indexed( |
| const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, |
| const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, int_mv *tmp_mv, int *rate_mv, int which) { |
| // NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *mbmi = &xd->mi[0]->mbmi; |
| BLOCK_SIZE sb_type = mbmi->sb_type; |
| const uint8_t *mask; |
| const int mask_stride = block_size_wide[bsize]; |
| |
| mask = av1_get_compound_type_mask(comp_data, sb_type); |
| |
| int_mv frame_mv[TOTAL_REFS_PER_FRAME]; |
| MV_REFERENCE_FRAME rf[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] }; |
| |
| frame_mv[rf[0]].as_int = cur_mv[0].as_int; |
| frame_mv[rf[1]].as_int = cur_mv[1].as_int; |
| if (which == 0 || which == 1) { |
| compound_single_motion_search_interinter(cpi, x, bsize, frame_mv, mi_row, |
| mi_col, mask, mask_stride, rate_mv, |
| 0, which); |
| } else if (which == 2) { |
| joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, NULL, mask, |
| mask_stride, rate_mv, 0); |
| } |
| tmp_mv[0].as_int = frame_mv[rf[0]].as_int; |
| tmp_mv[1].as_int = frame_mv[rf[1]].as_int; |
| } |
| |
| // In some situations we want to discount the apparent cost of a new motion |
| // vector. Where there is a subtle motion field and especially where there is |
| // low spatial complexity then it can be hard to cover the cost of a new motion |
| // vector in a single block, even if that motion vector reduces distortion. |
| // However, once established that vector may be usable through the nearest and |
| // near mv modes to reduce distortion in subsequent blocks and also improve |
| // visual quality. |
| static int discount_newmv_test(const AV1_COMP *const cpi, int this_mode, |
| int_mv this_mv, |
| int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], |
| int ref_frame) { |
| return (!cpi->rc.is_src_frame_alt_ref && (this_mode == NEWMV) && |
| (this_mv.as_int != 0) && |
| ((mode_mv[NEARESTMV][ref_frame].as_int == 0) || |
| (mode_mv[NEARESTMV][ref_frame].as_int == INVALID_MV)) && |
| ((mode_mv[NEARMV][ref_frame].as_int == 0) || |
| (mode_mv[NEARMV][ref_frame].as_int == INVALID_MV))); |
| } |
| |
| #define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) |
| #define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) |
| |
| // TODO(jingning): this mv clamping function should be block size dependent. |
| static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) { |
| clamp_mv(mv, xd->mb_to_left_edge - LEFT_TOP_MARGIN, |
| xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, |
| xd->mb_to_top_edge - LEFT_TOP_MARGIN, |
| xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN); |
| } |
| |
| static int estimate_wedge_sign(const AV1_COMP *cpi, const MACROBLOCK *x, |
| const BLOCK_SIZE bsize, const uint8_t *pred0, |
| int stride0, const uint8_t *pred1, int stride1) { |
| const struct macroblock_plane *const p = &x->plane[0]; |
| const uint8_t *src = p->src.buf; |
| int src_stride = p->src.stride; |
| const int f_index = bsize - BLOCK_8X8; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| uint32_t esq[2][4]; |
| int64_t tl, br; |
| |
| if (x->e_mbd.cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| pred0 = CONVERT_TO_BYTEPTR(pred0); |
| pred1 = CONVERT_TO_BYTEPTR(pred1); |
| } |
| |
| cpi->fn_ptr[f_index].vf(src, src_stride, pred0, stride0, &esq[0][0]); |
| cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred0 + bw / 2, stride0, |
| &esq[0][1]); |
| cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, |
| pred0 + bh / 2 * stride0, stride0, &esq[0][2]); |
| cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, |
| pred0 + bh / 2 * stride0 + bw / 2, stride0, |
| &esq[0][3]); |
| cpi->fn_ptr[f_index].vf(src, src_stride, pred1, stride1, &esq[1][0]); |
| cpi->fn_ptr[f_index].vf(src + bw / 2, src_stride, pred1 + bw / 2, stride1, |
| &esq[1][1]); |
| cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride, src_stride, |
| pred1 + bh / 2 * stride1, stride0, &esq[1][2]); |
| cpi->fn_ptr[f_index].vf(src + bh / 2 * src_stride + bw / 2, src_stride, |
| pred1 + bh / 2 * stride1 + bw / 2, stride0, |
| &esq[1][3]); |
| |
| tl = (int64_t)(esq[0][0] + esq[0][1] + esq[0][2]) - |
| (int64_t)(esq[1][0] + esq[1][1] + esq[1][2]); |
| br = (int64_t)(esq[1][3] + esq[1][1] + esq[1][2]) - |
| (int64_t)(esq[0][3] + esq[0][1] + esq[0][2]); |
| return (tl + br > 0); |
| } |
| |
| // Choose the best wedge index and sign |
| static int64_t pick_wedge(const AV1_COMP *const cpi, const MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, const uint8_t *const p0, |
| const uint8_t *const p1, int *const best_wedge_sign, |
| int *const best_wedge_index) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const struct buf_2d *const src = &x->plane[0].src; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const int N = bw * bh; |
| int rate; |
| int64_t dist; |
| int64_t rd, best_rd = INT64_MAX; |
| int wedge_index; |
| int wedge_sign; |
| int wedge_types = (1 << get_wedge_bits_lookup(bsize)); |
| const uint8_t *mask; |
| uint64_t sse; |
| const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; |
| const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; |
| |
| DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, ds[MAX_SB_SQUARE]); |
| |
| int64_t sign_limit; |
| |
| if (hbd) { |
| aom_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride, |
| CONVERT_TO_BYTEPTR(p0), bw, xd->bd); |
| aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride, |
| CONVERT_TO_BYTEPTR(p1), bw, xd->bd); |
| aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw, |
| CONVERT_TO_BYTEPTR(p0), bw, xd->bd); |
| } else { |
| aom_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw); |
| aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw); |
| aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw); |
| } |
| |
| sign_limit = ((int64_t)aom_sum_squares_i16(r0, N) - |
| (int64_t)aom_sum_squares_i16(r1, N)) * |
| (1 << WEDGE_WEIGHT_BITS) / 2; |
| |
| if (N < 64) |
| av1_wedge_compute_delta_squares_c(ds, r0, r1, N); |
| else |
| av1_wedge_compute_delta_squares(ds, r0, r1, N); |
| |
| for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { |
| mask = av1_get_contiguous_soft_mask(wedge_index, 0, bsize); |
| |
| // TODO(jingning): Make sse2 functions support N = 16 case |
| if (N < 64) |
| wedge_sign = av1_wedge_sign_from_residuals_c(ds, mask, N, sign_limit); |
| else |
| wedge_sign = av1_wedge_sign_from_residuals(ds, mask, N, sign_limit); |
| |
| mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| if (N < 64) |
| sse = av1_wedge_sse_from_residuals_c(r1, d10, mask, N); |
| else |
| sse = av1_wedge_sse_from_residuals(r1, d10, mask, N); |
| sse = ROUND_POWER_OF_TWO(sse, bd_round); |
| |
| model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist); |
| rd = RDCOST(x->rdmult, rate, dist); |
| |
| if (rd < best_rd) { |
| *best_wedge_index = wedge_index; |
| *best_wedge_sign = wedge_sign; |
| best_rd = rd; |
| } |
| } |
| |
| return best_rd; |
| } |
| |
| // Choose the best wedge index the specified sign |
| static int64_t pick_wedge_fixed_sign( |
| const AV1_COMP *const cpi, const MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, const uint8_t *const p0, const uint8_t *const p1, |
| const int wedge_sign, int *const best_wedge_index) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const struct buf_2d *const src = &x->plane[0].src; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const int N = bw * bh; |
| int rate; |
| int64_t dist; |
| int64_t rd, best_rd = INT64_MAX; |
| int wedge_index; |
| int wedge_types = (1 << get_wedge_bits_lookup(bsize)); |
| const uint8_t *mask; |
| uint64_t sse; |
| const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; |
| const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; |
| |
| DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]); |
| |
| if (hbd) { |
| aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride, |
| CONVERT_TO_BYTEPTR(p1), bw, xd->bd); |
| aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw, |
| CONVERT_TO_BYTEPTR(p0), bw, xd->bd); |
| } else { |
| aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw); |
| aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw); |
| } |
| |
| for (wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { |
| mask = av1_get_contiguous_soft_mask(wedge_index, wedge_sign, bsize); |
| if (N < 64) |
| sse = av1_wedge_sse_from_residuals_c(r1, d10, mask, N); |
| else |
| sse = av1_wedge_sse_from_residuals(r1, d10, mask, N); |
| sse = ROUND_POWER_OF_TWO(sse, bd_round); |
| |
| model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist); |
| rd = RDCOST(x->rdmult, rate, dist); |
| |
| if (rd < best_rd) { |
| *best_wedge_index = wedge_index; |
| best_rd = rd; |
| } |
| } |
| |
| return best_rd; |
| } |
| |
| static int64_t pick_interinter_wedge(const AV1_COMP *const cpi, |
| MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, |
| const uint8_t *const p0, |
| const uint8_t *const p1) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int bw = block_size_wide[bsize]; |
| |
| int64_t rd; |
| int wedge_index = -1; |
| int wedge_sign = 0; |
| |
| assert(is_interinter_compound_used(COMPOUND_WEDGE, bsize)); |
| assert(cpi->common.allow_masked_compound); |
| |
| if (cpi->sf.fast_wedge_sign_estimate) { |
| wedge_sign = estimate_wedge_sign(cpi, x, bsize, p0, bw, p1, bw); |
| rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, wedge_sign, &wedge_index); |
| } else { |
| rd = pick_wedge(cpi, x, bsize, p0, p1, &wedge_sign, &wedge_index); |
| } |
| |
| mbmi->wedge_sign = wedge_sign; |
| mbmi->wedge_index = wedge_index; |
| return rd; |
| } |
| |
| static int64_t pick_interinter_seg(const AV1_COMP *const cpi, |
| MACROBLOCK *const x, const BLOCK_SIZE bsize, |
| const uint8_t *const p0, |
| const uint8_t *const p1) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const struct buf_2d *const src = &x->plane[0].src; |
| const int bw = block_size_wide[bsize]; |
| const int bh = block_size_high[bsize]; |
| const int N = bw * bh; |
| int rate; |
| uint64_t sse; |
| int64_t dist; |
| int64_t rd0; |
| SEG_MASK_TYPE cur_mask_type; |
| int64_t best_rd = INT64_MAX; |
| SEG_MASK_TYPE best_mask_type = 0; |
| const int hbd = xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH; |
| const int bd_round = hbd ? (xd->bd - 8) * 2 : 0; |
| DECLARE_ALIGNED(32, int16_t, r0[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, r1[MAX_SB_SQUARE]); |
| DECLARE_ALIGNED(32, int16_t, d10[MAX_SB_SQUARE]); |
| |
| if (hbd) { |
| aom_highbd_subtract_block(bh, bw, r0, bw, src->buf, src->stride, |
| CONVERT_TO_BYTEPTR(p0), bw, xd->bd); |
| aom_highbd_subtract_block(bh, bw, r1, bw, src->buf, src->stride, |
| CONVERT_TO_BYTEPTR(p1), bw, xd->bd); |
| aom_highbd_subtract_block(bh, bw, d10, bw, CONVERT_TO_BYTEPTR(p1), bw, |
| CONVERT_TO_BYTEPTR(p0), bw, xd->bd); |
| } else { |
| aom_subtract_block(bh, bw, r0, bw, src->buf, src->stride, p0, bw); |
| aom_subtract_block(bh, bw, r1, bw, src->buf, src->stride, p1, bw); |
| aom_subtract_block(bh, bw, d10, bw, p1, bw, p0, bw); |
| } |
| |
| // try each mask type and its inverse |
| for (cur_mask_type = 0; cur_mask_type < SEG_MASK_TYPES; cur_mask_type++) { |
| // build mask and inverse |
| if (hbd) |
| build_compound_seg_mask_highbd( |
| xd->seg_mask, cur_mask_type, CONVERT_TO_BYTEPTR(p0), bw, |
| CONVERT_TO_BYTEPTR(p1), bw, bsize, bh, bw, xd->bd); |
| else |
| build_compound_seg_mask(xd->seg_mask, cur_mask_type, p0, bw, p1, bw, |
| bsize, bh, bw); |
| |
| // compute rd for mask |
| sse = av1_wedge_sse_from_residuals(r1, d10, xd->seg_mask, N); |
| sse = ROUND_POWER_OF_TWO(sse, bd_round); |
| |
| model_rd_from_sse(cpi, xd, bsize, 0, sse, &rate, &dist); |
| rd0 = RDCOST(x->rdmult, rate, dist); |
| |
| if (rd0 < best_rd) { |
| best_mask_type = cur_mask_type; |
| best_rd = rd0; |
| } |
| } |
| |
| // make final mask |
| mbmi->mask_type = best_mask_type; |
| if (hbd) |
| build_compound_seg_mask_highbd( |
| xd->seg_mask, mbmi->mask_type, CONVERT_TO_BYTEPTR(p0), bw, |
| CONVERT_TO_BYTEPTR(p1), bw, bsize, bh, bw, xd->bd); |
| else |
| build_compound_seg_mask(xd->seg_mask, mbmi->mask_type, p0, bw, p1, bw, |
| bsize, bh, bw); |
| |
| return best_rd; |
| } |
| |
| static int64_t pick_interintra_wedge(const AV1_COMP *const cpi, |
| const MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, |
| const uint8_t *const p0, |
| const uint8_t *const p1) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| |
| int64_t rd; |
| int wedge_index = -1; |
| |
| assert(is_interintra_wedge_used(bsize)); |
| assert(cpi->common.allow_interintra_compound); |
| |
| rd = pick_wedge_fixed_sign(cpi, x, bsize, p0, p1, 0, &wedge_index); |
| |
| mbmi->interintra_wedge_sign = 0; |
| mbmi->interintra_wedge_index = wedge_index; |
| return rd; |
| } |
| |
| static int64_t pick_interinter_mask(const AV1_COMP *const cpi, MACROBLOCK *x, |
| const BLOCK_SIZE bsize, |
| const uint8_t *const p0, |
| const uint8_t *const p1) { |
| const COMPOUND_TYPE compound_type = |
| x->e_mbd.mi[0]->mbmi.interinter_compound_type; |
| switch (compound_type) { |
| case COMPOUND_WEDGE: return pick_interinter_wedge(cpi, x, bsize, p0, p1); |
| case COMPOUND_SEG: return pick_interinter_seg(cpi, x, bsize, p0, p1); |
| default: assert(0); return 0; |
| } |
| } |
| |
| static int interinter_compound_motion_search( |
| const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, |
| const BLOCK_SIZE bsize, const int this_mode, int mi_row, int mi_col) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int_mv tmp_mv[2]; |
| int tmp_rate_mv = 0; |
| const INTERINTER_COMPOUND_DATA compound_data = { |
| mbmi->wedge_index, mbmi->wedge_sign, mbmi->mask_type, xd->seg_mask, |
| mbmi->interinter_compound_type |
| }; |
| |
| if (this_mode == NEW_NEWMV) { |
| do_masked_motion_search_indexed(cpi, x, cur_mv, &compound_data, bsize, |
| mi_row, mi_col, tmp_mv, &tmp_rate_mv, 2); |
| mbmi->mv[0].as_int = tmp_mv[0].as_int; |
| mbmi->mv[1].as_int = tmp_mv[1].as_int; |
| } else if (this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV) { |
| do_masked_motion_search_indexed(cpi, x, cur_mv, &compound_data, bsize, |
| mi_row, mi_col, tmp_mv, &tmp_rate_mv, 0); |
| mbmi->mv[0].as_int = tmp_mv[0].as_int; |
| } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { |
| do_masked_motion_search_indexed(cpi, x, cur_mv, &compound_data, bsize, |
| mi_row, mi_col, tmp_mv, &tmp_rate_mv, 1); |
| mbmi->mv[1].as_int = tmp_mv[1].as_int; |
| } |
| return tmp_rate_mv; |
| } |
| |
| static int64_t build_and_cost_compound_type( |
| const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, |
| const BLOCK_SIZE bsize, const int this_mode, int rs2, int rate_mv, |
| BUFFER_SET *ctx, int *out_rate_mv, uint8_t **preds0, uint8_t **preds1, |
| int *strides, int mi_row, int mi_col) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int rate_sum; |
| int64_t dist_sum; |
| int64_t best_rd_cur = INT64_MAX; |
| int64_t rd = INT64_MAX; |
| int tmp_skip_txfm_sb; |
| int64_t tmp_skip_sse_sb; |
| const COMPOUND_TYPE compound_type = mbmi->interinter_compound_type; |
| |
| best_rd_cur = pick_interinter_mask(cpi, x, bsize, *preds0, *preds1); |
| best_rd_cur += RDCOST(x->rdmult, rs2 + rate_mv, 0); |
| |
| if (have_newmv_in_inter_mode(this_mode) && |
| use_masked_motion_search(compound_type)) { |
| *out_rate_mv = interinter_compound_motion_search(cpi, x, cur_mv, bsize, |
| this_mode, mi_row, mi_col); |
| av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, ctx, bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb); |
| rd = RDCOST(x->rdmult, rs2 + *out_rate_mv + rate_sum, dist_sum); |
| if (rd >= best_rd_cur) { |
| mbmi->mv[0].as_int = cur_mv[0].as_int; |
| mbmi->mv[1].as_int = cur_mv[1].as_int; |
| *out_rate_mv = rate_mv; |
| av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides, |
| preds1, strides); |
| } |
| av1_subtract_plane(x, bsize, 0); |
| rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); |
| if (rd != INT64_MAX) |
| rd = RDCOST(x->rdmult, rs2 + *out_rate_mv + rate_sum, dist_sum); |
| best_rd_cur = rd; |
| |
| } else { |
| av1_build_wedge_inter_predictor_from_buf(xd, bsize, 0, 0, preds0, strides, |
| preds1, strides); |
| av1_subtract_plane(x, bsize, 0); |
| rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); |
| if (rd != INT64_MAX) |
| rd = RDCOST(x->rdmult, rs2 + rate_mv + rate_sum, dist_sum); |
| best_rd_cur = rd; |
| } |
| return best_rd_cur; |
| } |
| |
| typedef struct { |
| // OBMC secondary prediction buffers and respective strides |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| CONV_BUF_TYPE *above_pred_hp_buf[MAX_MB_PLANE]; |
| int above_pred_hp_stride[MAX_MB_PLANE]; |
| CONV_BUF_TYPE *left_pred_hp_buf[MAX_MB_PLANE]; |
| int left_pred_hp_stride[MAX_MB_PLANE]; |
| #else |
| uint8_t *above_pred_buf[MAX_MB_PLANE]; |
| int above_pred_stride[MAX_MB_PLANE]; |
| uint8_t *left_pred_buf[MAX_MB_PLANE]; |
| int left_pred_stride[MAX_MB_PLANE]; |
| #endif |
| int_mv *single_newmv; |
| // Pointer to array of motion vectors to use for each ref and their rates |
| // Should point to first of 2 arrays in 2D array |
| int *single_newmv_rate; |
| int *single_newmv_valid; |
| // Pointer to array of predicted rate-distortion |
| // Should point to first of 2 arrays in 2D array |
| int64_t (*modelled_rd)[TOTAL_REFS_PER_FRAME]; |
| InterpFilter single_filter[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; |
| } HandleInterModeArgs; |
| |
| static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| const BLOCK_SIZE bsize, |
| int_mv (*const mode_mv)[TOTAL_REFS_PER_FRAME], |
| const int mi_row, const int mi_col, |
| int *const rate_mv, int_mv *const single_newmv, |
| HandleInterModeArgs *const args) { |
| const MACROBLOCKD *const xd = &x->e_mbd; |
| const MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| int_mv *const frame_mv = mode_mv[this_mode]; |
| const int refs[2] = { mbmi->ref_frame[0], |
| mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] }; |
| int i; |
| |
| (void)args; |
| |
| if (is_comp_pred) { |
| for (i = 0; i < 2; ++i) { |
| single_newmv[refs[i]].as_int = args->single_newmv[refs[i]].as_int; |
| } |
| |
| if (this_mode == NEW_NEWMV) { |
| frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; |
| frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; |
| |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| joint_motion_search(cpi, x, bsize, frame_mv, mi_row, mi_col, NULL, NULL, |
| 0, rate_mv, 0); |
| } else { |
| *rate_mv = 0; |
| for (i = 0; i < 2; ++i) { |
| av1_set_mvcost(x, i, mbmi->ref_mv_idx); |
| *rate_mv += av1_mv_bit_cost( |
| &frame_mv[refs[i]].as_mv, &mbmi_ext->ref_mvs[refs[i]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| } |
| } |
| } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { |
| frame_mv[refs[1]].as_int = single_newmv[refs[1]].as_int; |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| frame_mv[refs[0]].as_int = |
| mode_mv[compound_ref0_mode(this_mode)][refs[0]].as_int; |
| compound_single_motion_search_interinter( |
| cpi, x, bsize, frame_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 1); |
| } else { |
| av1_set_mvcost(x, 1, |
| mbmi->ref_mv_idx + (this_mode == NEAR_NEWMV ? 1 : 0)); |
| *rate_mv = av1_mv_bit_cost(&frame_mv[refs[1]].as_mv, |
| &mbmi_ext->ref_mvs[refs[1]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| } |
| } else { |
| assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV); |
| frame_mv[refs[0]].as_int = single_newmv[refs[0]].as_int; |
| if (cpi->sf.comp_inter_joint_search_thresh <= bsize) { |
| frame_mv[refs[1]].as_int = |
| mode_mv[compound_ref1_mode(this_mode)][refs[1]].as_int; |
| compound_single_motion_search_interinter( |
| cpi, x, bsize, frame_mv, mi_row, mi_col, NULL, 0, rate_mv, 0, 0); |
| } else { |
| av1_set_mvcost(x, 0, |
| mbmi->ref_mv_idx + (this_mode == NEW_NEARMV ? 1 : 0)); |
| *rate_mv = av1_mv_bit_cost(&frame_mv[refs[0]].as_mv, |
| &mbmi_ext->ref_mvs[refs[0]][0].as_mv, |
| x->nmvjointcost, x->mvcost, MV_COST_WEIGHT); |
| } |
| } |
| } else { |
| single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, rate_mv); |
| if (x->best_mv.as_int == INVALID_MV) return INT64_MAX; |
| |
| args->single_newmv[refs[0]] = x->best_mv; |
| args->single_newmv_rate[refs[0]] = *rate_mv; |
| args->single_newmv_valid[refs[0]] = 1; |
| |
| frame_mv[refs[0]] = x->best_mv; |
| |
| // Estimate the rate implications of a new mv but discount this |
| // under certain circumstances where we want to help initiate a weak |
| // motion field, where the distortion gain for a single block may not |
| // be enough to overcome the cost of a new mv. |
| if (discount_newmv_test(cpi, this_mode, x->best_mv, mode_mv, refs[0])) { |
| *rate_mv = AOMMAX(*rate_mv / NEW_MV_DISCOUNT_FACTOR, 1); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int64_t interpolation_filter_search( |
| MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, |
| int mi_row, int mi_col, const BUFFER_SET *const tmp_dst, |
| BUFFER_SET *const orig_dst, |
| InterpFilter (*const single_filter)[TOTAL_REFS_PER_FRAME], |
| int64_t *const rd, int *const switchable_rate, int *const skip_txfm_sb, |
| int64_t *const skip_sse_sb) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| int i; |
| int tmp_rate; |
| int64_t tmp_dist; |
| |
| (void)single_filter; |
| |
| InterpFilter assign_filter = SWITCHABLE; |
| |
| if (cm->interp_filter != SWITCHABLE) assign_filter = cm->interp_filter; |
| |
| set_default_interp_filters(mbmi, assign_filter); |
| |
| *switchable_rate = av1_get_switchable_rate(cm, x, xd); |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, 0, num_planes - 1, &tmp_rate, &tmp_dist, |
| skip_txfm_sb, skip_sse_sb); |
| *rd = RDCOST(x->rdmult, *switchable_rate + tmp_rate, tmp_dist); |
| |
| if (assign_filter == SWITCHABLE) { |
| // do interp_filter search |
| if (av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd)) { |
| const int filter_set_size = DUAL_FILTER_SET_SIZE; |
| int best_in_temp = 0; |
| InterpFilters best_filters = mbmi->interp_filters; |
| restore_dst_buf(xd, *tmp_dst, num_planes); |
| |
| if (cpi->sf.use_fast_interpolation_filter_search && |
| cm->seq_params.enable_dual_filter) { |
| int tmp_skip_sb = 0; |
| int64_t tmp_skip_sse = INT64_MAX; |
| int tmp_rs; |
| int64_t tmp_rd; |
| |
| // default to (R,R): EIGHTTAP_REGULARxEIGHTTAP_REGULAR |
| int best_dual_mode = 0; |
| // Find best of {R}x{R,Sm,Sh} |
| // EIGHTTAP_REGULAR mode is calculated beforehand |
| for (i = 1; i < SWITCHABLE_FILTERS; ++i) { |
| tmp_skip_sb = 0; |
| tmp_skip_sse = INT64_MAX; |
| |
| mbmi->interp_filters = |
| av1_make_interp_filters(filter_sets[i][0], filter_sets[i][1]); |
| |
| tmp_rs = av1_get_switchable_rate(cm, x, xd); |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, |
| bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, 0, num_planes - 1, &tmp_rate, |
| &tmp_dist, &tmp_skip_sb, &tmp_skip_sse); |
| tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate, tmp_dist); |
| |
| if (tmp_rd < *rd) { |
| best_dual_mode = i; |
| |
| *rd = tmp_rd; |
| *switchable_rate = tmp_rs; |
| best_filters = mbmi->interp_filters; |
| *skip_txfm_sb = tmp_skip_sb; |
| *skip_sse_sb = tmp_skip_sse; |
| best_in_temp = !best_in_temp; |
| if (best_in_temp) { |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| } else { |
| restore_dst_buf(xd, *tmp_dst, num_planes); |
| } |
| } |
| } |
| |
| // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes |
| for (i = best_dual_mode + SWITCHABLE_FILTERS; i < filter_set_size; |
| i += SWITCHABLE_FILTERS) { |
| tmp_skip_sb = 0; |
| tmp_skip_sse = INT64_MAX; |
| |
| if (cm->seq_params.enable_dual_filter == 0) |
| if (filter_sets[i][0] != filter_sets[i][1]) continue; |
| |
| tmp_rs = av1_get_switchable_rate(cm, x, xd); |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, |
| bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, 0, num_planes - 1, &tmp_rate, |
| &tmp_dist, &tmp_skip_sb, &tmp_skip_sse); |
| tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate, tmp_dist); |
| |
| if (tmp_rd < *rd) { |
| *rd = tmp_rd; |
| *switchable_rate = tmp_rs; |
| best_filters = mbmi->interp_filters; |
| *skip_txfm_sb = tmp_skip_sb; |
| *skip_sse_sb = tmp_skip_sse; |
| best_in_temp = !best_in_temp; |
| if (best_in_temp) { |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| } else { |
| restore_dst_buf(xd, *tmp_dst, num_planes); |
| } |
| } |
| } |
| } else { |
| // EIGHTTAP_REGULAR mode is calculated beforehand |
| for (i = 1; i < filter_set_size; ++i) { |
| int tmp_skip_sb = 0; |
| int64_t tmp_skip_sse = INT64_MAX; |
| int tmp_rs; |
| int64_t tmp_rd; |
| |
| if (cm->seq_params.enable_dual_filter == 0) |
| if (filter_sets[i][0] != filter_sets[i][1]) continue; |
| |
| mbmi->interp_filters = |
| av1_make_interp_filters(filter_sets[i][0], filter_sets[i][1]); |
| tmp_rs = av1_get_switchable_rate(cm, x, xd); |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, |
| bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, 0, num_planes - 1, &tmp_rate, |
| &tmp_dist, &tmp_skip_sb, &tmp_skip_sse); |
| tmp_rd = RDCOST(x->rdmult, tmp_rs + tmp_rate, tmp_dist); |
| |
| if (tmp_rd < *rd) { |
| *rd = tmp_rd; |
| *switchable_rate = tmp_rs; |
| best_filters = mbmi->interp_filters; |
| *skip_txfm_sb = tmp_skip_sb; |
| *skip_sse_sb = tmp_skip_sse; |
| best_in_temp = !best_in_temp; |
| if (best_in_temp) { |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| } else { |
| restore_dst_buf(xd, *tmp_dst, num_planes); |
| } |
| } |
| } |
| } |
| |
| if (best_in_temp) { |
| restore_dst_buf(xd, *tmp_dst, num_planes); |
| } else { |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| } |
| mbmi->interp_filters = best_filters; |
| } else { |
| assert(mbmi->interp_filters == |
| av1_broadcast_interp_filter(EIGHTTAP_REGULAR)); |
| } |
| } |
| return 0; |
| } |
| |
| static InterpFilters condition_interp_filters_on_mv( |
| InterpFilters interp_filters, const MACROBLOCKD *xd) { |
| InterpFilter filters[2]; |
| for (int i = 0; i < 2; ++i) |
| filters[i] = (has_subpel_mv_component(xd->mi[0], xd, i)) |
| ? av1_extract_interp_filter(interp_filters, i) |
| : EIGHTTAP_REGULAR; |
| |
| return av1_make_interp_filters(filters[0], filters[1]); |
| } |
| |
| // TODO(afergs): Refactor the MBMI references in here - there's four |
| // TODO(afergs): Refactor optional args - add them to a struct or remove |
| static int64_t motion_mode_rd( |
| const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, |
| RD_STATS *rd_stats, RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, |
| int *disable_skip, int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], int mi_row, |
| int mi_col, HandleInterModeArgs *const args, const int64_t ref_best_rd, |
| const int *refs, int rate_mv, BUFFER_SET *orig_dst) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const PREDICTION_MODE this_mode = mbmi->mode; |
| int rate2_nocoeff = 0, best_xskip, best_disable_skip = 0; |
| RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; |
| MB_MODE_INFO base_mbmi, best_mbmi; |
| uint8_t best_blk_skip[MAX_MB_PLANE][MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| int interintra_allowed = |
| cm->allow_interintra_compound && is_interintra_allowed(mbmi); |
| #if CONFIG_EXT_WARPED_MOTION |
| int pts0[SAMPLES_ARRAY_SIZE], pts_inref0[SAMPLES_ARRAY_SIZE]; |
| int total_samples; |
| #else |
| int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; |
| #endif // CONFIG_EXT_WARPED_MOTION |
| |
| (void)rate_mv; |
| |
| av1_invalid_rd_stats(&best_rd_stats); |
| |
| aom_clear_system_state(); |
| #if CONFIG_EXT_WARPED_MOTION |
| mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts0, pts_inref0); |
| total_samples = mbmi->num_proj_ref[0]; |
| #else |
| mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref); |
| #endif // CONFIG_EXT_WARPED_MOTION |
| rate2_nocoeff = rd_stats->rate; |
| base_mbmi = *mbmi; |
| MOTION_MODE last_motion_mode_allowed = |
| cm->switchable_motion_mode |
| ? motion_mode_allowed(xd->global_motion, xd, mi) |
| : SIMPLE_TRANSLATION; |
| assert(mbmi->ref_frame[1] != INTRA_FRAME); |
| |
| int64_t best_rd = INT64_MAX; |
| for (int mode_index = (int)SIMPLE_TRANSLATION; |
| mode_index <= (int)last_motion_mode_allowed + interintra_allowed; |
| mode_index++) { |
| int64_t tmp_rd = INT64_MAX; |
| int tmp_rate2 = rate2_nocoeff; |
| int is_interintra_mode = mode_index > (int)last_motion_mode_allowed; |
| int skip_txfm_sb = 0; |
| |
| *mbmi = base_mbmi; |
| if (is_interintra_mode) { |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| } else { |
| mbmi->motion_mode = (MOTION_MODE)mode_index; |
| assert(mbmi->ref_frame[1] != INTRA_FRAME); |
| } |
| |
| // SIMPLE_TRANSLATION mode: no need to recalculate. |
| // The prediction is calculated before motion_mode_rd() is called in |
| // handle_inter_mode() |
| |
| // OBMC mode |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| mbmi->motion_mode = OBMC_CAUSAL; |
| if (!is_comp_pred && have_newmv_in_inter_mode(this_mode)) { |
| int tmp_rate_mv = 0; |
| |
| single_motion_search(cpi, x, bsize, mi_row, mi_col, 0, &tmp_rate_mv); |
| mbmi->mv[0].as_int = x->best_mv.as_int; |
| if (discount_newmv_test(cpi, this_mode, mbmi->mv[0], mode_mv, |
| refs[0])) { |
| tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); |
| } |
| tmp_rate2 = rate2_nocoeff - rate_mv + tmp_rate_mv; |
| mbmi->interp_filters = |
| condition_interp_filters_on_mv(mbmi->interp_filters, xd); |
| } |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| DECLARE_ALIGNED(16, CONV_BUF_TYPE, tmp_buf[MAX_MB_PLANE * MAX_SB_SQUARE]); |
| CONV_BUF_TYPE *dst_buf[MAX_MB_PLANE]; |
| int dst_stride[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| dst_buf[0] = tmp_buf; |
| dst_buf[1] = tmp_buf + MAX_SB_SQUARE; |
| dst_buf[2] = tmp_buf + MAX_SB_SQUARE * 2; |
| |
| for (int j = 0; j < num_planes; ++j) { |
| const struct macroblockd_plane *pd = &xd->plane[j]; |
| int bw = pd->width; |
| int bh = pd->height; |
| const int mi_x = mi_col * MI_SIZE; |
| const int mi_y = mi_row * MI_SIZE; |
| |
| av1_build_inter_predictor_hp_sr(xd, j, xd->mi[0], 0, bw, bh, 0, 0, bw, |
| bh, mi_x, mi_y, 0, dst_buf[j], |
| dst_stride[j]); |
| } |
| av1_build_obmc_inter_prediction( |
| cm, xd, mi_row, mi_col, dst_buf, dst_stride, args->above_pred_hp_buf, |
| args->above_pred_hp_stride, args->left_pred_hp_buf, |
| args->left_pred_hp_stride); |
| #else |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); |
| av1_build_obmc_inter_prediction( |
| cm, xd, mi_row, mi_col, args->above_pred_buf, args->above_pred_stride, |
| args->left_pred_buf, args->left_pred_stride); |
| #endif |
| } |
| |
| // Local warped motion mode |
| if (mbmi->motion_mode == WARPED_CAUSAL) { |
| #if CONFIG_EXT_WARPED_MOTION |
| int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; |
| #endif // CONFIG_EXT_WARPED_MOTION |
| mbmi->motion_mode = WARPED_CAUSAL; |
| mbmi->wm_params[0].wmtype = DEFAULT_WMTYPE; |
| mbmi->interp_filters = av1_broadcast_interp_filter( |
| av1_unswitchable_filter(cm->interp_filter)); |
| |
| #if CONFIG_EXT_WARPED_MOTION |
| memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); |
| memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); |
| // Select the samples according to motion vector difference |
| if (mbmi->num_proj_ref[0] > 1) { |
| mbmi->num_proj_ref[0] = selectSamples( |
| &mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref[0], bsize); |
| } |
| #endif // CONFIG_EXT_WARPED_MOTION |
| |
| if (!find_projection(mbmi->num_proj_ref[0], pts, pts_inref, bsize, |
| mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, |
| &mbmi->wm_params[0], mi_row, mi_col)) { |
| // Refine MV for NEWMV mode |
| if (!is_comp_pred && have_newmv_in_inter_mode(this_mode)) { |
| int tmp_rate_mv = 0; |
| const int_mv mv0 = mbmi->mv[0]; |
| const WarpedMotionParams wm_params0 = mbmi->wm_params[0]; |
| #if CONFIG_EXT_WARPED_MOTION |
| int num_proj_ref0 = mbmi->num_proj_ref[0]; |
| |
| // Refine MV in a small range. |
| av1_refine_warped_mv(cpi, x, bsize, mi_row, mi_col, pts0, pts_inref0, |
| total_samples); |
| #else |
| // Refine MV in a small range. |
| av1_refine_warped_mv(cpi, x, bsize, mi_row, mi_col, pts, pts_inref); |
| #endif // CONFIG_EXT_WARPED_MOTION |
| |
| // Keep the refined MV and WM parameters. |
| if (mv0.as_int != mbmi->mv[0].as_int) { |
| const int ref = refs[0]; |
| const MV ref_mv = x->mbmi_ext->ref_mvs[ref][0].as_mv; |
| |
| tmp_rate_mv = |
| av1_mv_bit_cost(&mbmi->mv[0].as_mv, &ref_mv, x->nmvjointcost, |
| x->mvcost, MV_COST_WEIGHT); |
| |
| if (cpi->sf.adaptive_motion_search) |
| x->pred_mv[ref] = mbmi->mv[0].as_mv; |
| |
| if (discount_newmv_test(cpi, this_mode, mbmi->mv[0], mode_mv, |
| refs[0])) { |
| tmp_rate_mv = AOMMAX((tmp_rate_mv / NEW_MV_DISCOUNT_FACTOR), 1); |
| } |
| tmp_rate2 = rate2_nocoeff - rate_mv + tmp_rate_mv; |
| mbmi->interp_filters = |
| condition_interp_filters_on_mv(mbmi->interp_filters, xd); |
| } else { |
| // Restore the old MV and WM parameters. |
| mbmi->mv[0] = mv0; |
| mbmi->wm_params[0] = wm_params0; |
| #if CONFIG_EXT_WARPED_MOTION |
| mbmi->num_proj_ref[0] = num_proj_ref0; |
| #endif // CONFIG_EXT_WARPED_MOTION |
| } |
| } |
| |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); |
| } else { |
| continue; |
| } |
| } |
| |
| // Interintra mode |
| if (is_interintra_mode) { |
| INTERINTRA_MODE best_interintra_mode = II_DC_PRED; |
| int64_t rd, best_interintra_rd = INT64_MAX; |
| int rmode, rate_sum; |
| int64_t dist_sum; |
| int j; |
| int tmp_rate_mv = 0; |
| int tmp_skip_txfm_sb; |
| int bw = block_size_wide[bsize]; |
| int64_t tmp_skip_sse_sb; |
| DECLARE_ALIGNED(16, uint8_t, intrapred_[2 * MAX_INTERINTRA_SB_SQUARE]); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_INTERINTRA_SB_SQUARE]); |
| uint8_t *tmp_buf, *intrapred; |
| const int *const interintra_mode_cost = |
| x->interintra_mode_cost[size_group_lookup[bsize]]; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf_); |
| intrapred = CONVERT_TO_BYTEPTR(intrapred_); |
| } else { |
| tmp_buf = tmp_buf_; |
| intrapred = intrapred_; |
| } |
| const int_mv mv0 = mbmi->mv[0]; |
| |
| mbmi->ref_frame[1] = NONE_FRAME; |
| xd->plane[0].dst.buf = tmp_buf; |
| xd->plane[0].dst.stride = bw; |
| av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, NULL, bsize); |
| |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| mbmi->ref_frame[1] = INTRA_FRAME; |
| mbmi->use_wedge_interintra = 0; |
| for (j = 0; j < INTERINTRA_MODES; ++j) { |
| mbmi->interintra_mode = (INTERINTRA_MODE)j; |
| rmode = interintra_mode_cost[mbmi->interintra_mode]; |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, |
| intrapred, bw); |
| av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); |
| model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb); |
| rd = RDCOST(x->rdmult, tmp_rate_mv + rate_sum + rmode, dist_sum); |
| if (rd < best_interintra_rd) { |
| best_interintra_rd = rd; |
| best_interintra_mode = mbmi->interintra_mode; |
| } |
| } |
| mbmi->interintra_mode = best_interintra_mode; |
| rmode = interintra_mode_cost[mbmi->interintra_mode]; |
| av1_build_intra_predictors_for_interintra(cm, xd, bsize, 0, orig_dst, |
| intrapred, bw); |
| av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); |
| av1_subtract_plane(x, bsize, 0); |
| rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, INT64_MAX); |
| if (rd != INT64_MAX) |
| rd = RDCOST(x->rdmult, rate_mv + rmode + rate_sum, dist_sum); |
| best_interintra_rd = rd; |
| |
| if (ref_best_rd < INT64_MAX && (best_interintra_rd >> 1) > ref_best_rd) |
| continue; |
| |
| if (is_interintra_wedge_used(bsize)) { |
| int64_t best_interintra_rd_nowedge = INT64_MAX; |
| int64_t best_interintra_rd_wedge = INT64_MAX; |
| int_mv tmp_mv; |
| InterpFilters backup_interp_filters = mbmi->interp_filters; |
| int rwedge = x->wedge_interintra_cost[bsize][0]; |
| if (rd != INT64_MAX) |
| rd = RDCOST(x->rdmult, rate_mv + rmode + rate_sum + rwedge, dist_sum); |
| best_interintra_rd_nowedge = rd; |
| |
| // Disable wedge search if source variance is small |
| if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh) { |
| mbmi->use_wedge_interintra = 1; |
| |
| rwedge = av1_cost_literal(get_interintra_wedge_bits(bsize)) + |
| x->wedge_interintra_cost[bsize][1]; |
| |
| best_interintra_rd_wedge = |
| pick_interintra_wedge(cpi, x, bsize, intrapred_, tmp_buf_); |
| |
| best_interintra_rd_wedge += |
| RDCOST(x->rdmult, rmode + rate_mv + rwedge, 0); |
| // Refine motion vector. |
| if (have_newmv_in_inter_mode(mbmi->mode)) { |
| // get negative of mask |
| const uint8_t *mask = av1_get_contiguous_soft_mask( |
| mbmi->interintra_wedge_index, 1, bsize); |
| tmp_mv.as_int = x->mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0].as_int; |
| compound_single_motion_search(cpi, x, bsize, &tmp_mv.as_mv, mi_row, |
| mi_col, intrapred, mask, bw, |
| &tmp_rate_mv, 0); |
| mbmi->interp_filters = |
| condition_interp_filters_on_mv(mbmi->interp_filters, xd); |
| mbmi->mv[0].as_int = tmp_mv.as_int; |
| av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, orig_dst, |
| bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, 0, 0, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb); |
| rd = RDCOST(x->rdmult, tmp_rate_mv + rmode + rate_sum + rwedge, |
| dist_sum); |
| if (rd >= best_interintra_rd_wedge) { |
| tmp_mv.as_int = mv0.as_int; |
| tmp_rate_mv = rate_mv; |
| mbmi->interp_filters = backup_interp_filters; |
| av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); |
| } |
| } else { |
| tmp_mv.as_int = mv0.as_int; |
| tmp_rate_mv = rate_mv; |
| av1_combine_interintra(xd, bsize, 0, tmp_buf, bw, intrapred, bw); |
| } |
| // Evaluate closer to true rd |
| av1_subtract_plane(x, bsize, 0); |
| rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, |
| INT64_MAX); |
| if (rd != INT64_MAX) |
| rd = RDCOST(x->rdmult, rmode + tmp_rate_mv + rwedge + rate_sum, |
| dist_sum); |
| best_interintra_rd_wedge = rd; |
| if (best_interintra_rd_wedge < best_interintra_rd_nowedge) { |
| mbmi->use_wedge_interintra = 1; |
| mbmi->mv[0].as_int = tmp_mv.as_int; |
| tmp_rate2 += tmp_rate_mv - rate_mv; |
| } else { |
| mbmi->use_wedge_interintra = 0; |
| mbmi->mv[0].as_int = mv0.as_int; |
| mbmi->interp_filters = backup_interp_filters; |
| } |
| } else { |
| mbmi->use_wedge_interintra = 0; |
| } |
| } // if (is_interintra_wedge_used(bsize)) |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); |
| } |
| |
| check_block_skip(cpi, bsize, x, xd, 0, num_planes - 1, &skip_txfm_sb); |
| |
| x->skip = 0; |
| |
| rd_stats->dist = 0; |
| rd_stats->sse = 0; |
| rd_stats->skip = 1; |
| rd_stats->rate = tmp_rate2; |
| if (av1_is_interp_needed(xd)) |
| rd_stats->rate += av1_get_switchable_rate(cm, x, xd); |
| if (interintra_allowed) { |
| rd_stats->rate += x->interintra_cost[size_group_lookup[bsize]] |
| [mbmi->ref_frame[1] == INTRA_FRAME]; |
| if (mbmi->ref_frame[1] == INTRA_FRAME) { |
| rd_stats->rate += x->interintra_mode_cost[size_group_lookup[bsize]] |
| [mbmi->interintra_mode]; |
| if (is_interintra_wedge_used(bsize)) { |
| rd_stats->rate += |
| x->wedge_interintra_cost[bsize][mbmi->use_wedge_interintra]; |
| if (mbmi->use_wedge_interintra) { |
| rd_stats->rate += |
| av1_cost_literal(get_interintra_wedge_bits(bsize)); |
| } |
| } |
| } |
| } |
| if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) && |
| (mbmi->ref_frame[1] != INTRA_FRAME)) { |
| if (last_motion_mode_allowed == WARPED_CAUSAL) { |
| rd_stats->rate += x->motion_mode_cost[bsize][mbmi->motion_mode]; |
| } else { |
| rd_stats->rate += x->motion_mode_cost1[bsize][mbmi->motion_mode]; |
| } |
| } |
| if (!skip_txfm_sb) { |
| int64_t rdcosty = INT64_MAX; |
| int is_cost_valid_uv = 0; |
| |
| // cost and distortion |
| av1_subtract_plane(x, bsize, 0); |
| if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { |
| // Motion mode |
| select_tx_type_yrd(cpi, x, rd_stats_y, bsize, mi_row, mi_col, |
| ref_best_rd); |
| } else { |
| super_block_yrd(cpi, x, rd_stats_y, bsize, ref_best_rd); |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| memset(x->blk_skip[0], rd_stats_y->skip, |
| sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); |
| } |
| |
| if (rd_stats_y->rate == INT_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| if (mbmi->motion_mode != SIMPLE_TRANSLATION || |
| mbmi->ref_frame[1] == INTRA_FRAME) { |
| continue; |
| } else { |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return INT64_MAX; |
| } |
| } |
| |
| av1_merge_rd_stats(rd_stats, rd_stats_y); |
| |
| rdcosty = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| rdcosty = AOMMIN(rdcosty, RDCOST(x->rdmult, 0, rd_stats->sse)); |
| if (num_planes > 1) { |
| /* clang-format off */ |
| is_cost_valid_uv = |
| inter_block_uvrd(cpi, x, rd_stats_uv, bsize, ref_best_rd - rdcosty, |
| 0); |
| if (!is_cost_valid_uv) { |
| continue; |
| } |
| /* clang-format on */ |
| av1_merge_rd_stats(rd_stats, rd_stats_uv); |
| } else { |
| av1_init_rd_stats(rd_stats_uv); |
| } |
| #if CONFIG_RD_DEBUG |
| // record transform block coefficient cost |
| // TODO(angiebird): So far rd_debug tool only detects discrepancy of |
| // coefficient cost. Therefore, it is fine to copy rd_stats into mbmi |
| // here because we already collect the coefficient cost. Move this part to |
| // other place when we need to compare non-coefficient cost. |
| mbmi->rd_stats = *rd_stats; |
| #endif // CONFIG_RD_DEBUG |
| const int skip_ctx = av1_get_skip_context(xd); |
| if (rd_stats->skip) { |
| rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; |
| rd_stats_y->rate = 0; |
| rd_stats_uv->rate = 0; |
| rd_stats->rate += x->skip_cost[skip_ctx][1]; |
| mbmi->skip = 0; |
| // here mbmi->skip temporarily plays a role as what this_skip2 does |
| } else if (!xd->lossless[mbmi->segment_id] && |
| (RDCOST(x->rdmult, |
| rd_stats_y->rate + rd_stats_uv->rate + |
| x->skip_cost[skip_ctx][0], |
| rd_stats->dist) >= RDCOST(x->rdmult, |
| x->skip_cost[skip_ctx][1], |
| rd_stats->sse))) { |
| rd_stats->rate -= rd_stats_uv->rate + rd_stats_y->rate; |
| rd_stats->rate += x->skip_cost[skip_ctx][1]; |
| rd_stats->dist = rd_stats->sse; |
| rd_stats_y->rate = 0; |
| rd_stats_uv->rate = 0; |
| mbmi->skip = 1; |
| } else { |
| rd_stats->rate += x->skip_cost[skip_ctx][0]; |
| mbmi->skip = 0; |
| } |
| *disable_skip = 0; |
| } else { |
| x->skip = 1; |
| *disable_skip = 1; |
| mbmi->tx_size = tx_size_from_tx_mode(bsize, cm->tx_mode); |
| |
| // The cost of skip bit needs to be added. |
| mbmi->skip = 0; |
| rd_stats->rate += x->skip_cost[av1_get_skip_context(xd)][1]; |
| |
| rd_stats->dist = 0; |
| rd_stats->sse = 0; |
| rd_stats_y->rate = 0; |
| rd_stats_uv->rate = 0; |
| rd_stats->skip = 1; |
| } |
| |
| if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) { |
| if (is_nontrans_global_motion(xd)) { |
| mbmi->interp_filters = av1_broadcast_interp_filter( |
| av1_unswitchable_filter(cm->interp_filter)); |
| } |
| } |
| |
| tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); |
| if ((mbmi->motion_mode == SIMPLE_TRANSLATION && |
| mbmi->ref_frame[1] != INTRA_FRAME) || |
| (tmp_rd < best_rd)) { |
| best_mbmi = *mbmi; |
| best_rd = tmp_rd; |
| best_rd_stats = *rd_stats; |
| best_rd_stats_y = *rd_stats_y; |
| if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv; |
| for (int i = 0; i < num_planes; ++i) |
| memcpy(best_blk_skip[i], x->blk_skip[i], |
| sizeof(best_blk_skip[i][0]) * xd->n8_h * xd->n8_w); |
| best_xskip = x->skip; |
| best_disable_skip = *disable_skip; |
| } |
| } |
| |
| if (best_rd == INT64_MAX) { |
| av1_invalid_rd_stats(rd_stats); |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return INT64_MAX; |
| } |
| *mbmi = best_mbmi; |
| *rd_stats = best_rd_stats; |
| *rd_stats_y = best_rd_stats_y; |
| if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv; |
| for (int i = 0; i < num_planes; ++i) |
| memcpy(x->blk_skip[i], best_blk_skip[i], |
| sizeof(x->blk_skip[i][0]) * xd->n8_h * xd->n8_w); |
| x->skip = best_xskip; |
| *disable_skip = best_disable_skip; |
| |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return 0; |
| } |
| |
| static int64_t skip_mode_rd(const AV1_COMP *const cpi, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| BUFFER_SET *const orig_dst) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, orig_dst, bsize); |
| |
| int64_t total_sse = 0; |
| for (int plane = 0; plane < num_planes; ++plane) { |
| const struct macroblock_plane *const p = &x->plane[plane]; |
| const struct macroblockd_plane *const pd = &xd->plane[plane]; |
| const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd); |
| const int bw = block_size_wide[plane_bsize]; |
| const int bh = block_size_high[plane_bsize]; |
| |
| av1_subtract_plane(x, bsize, plane); |
| int64_t sse = aom_sum_squares_2d_i16(p->src_diff, bw, bw, bh); |
| sse = sse << 4; |
| total_sse += sse; |
| } |
| x->skip_mode_dist = x->skip_mode_sse = total_sse; |
| x->skip_mode_rate = 0; |
| x->skip_mode_rdcost = RDCOST(x->rdmult, x->skip_mode_rate, x->skip_mode_dist); |
| |
| // Save the ref frames / motion vectors |
| x->skip_mode_ref_frame[0] = mbmi->ref_frame[0]; |
| x->skip_mode_ref_frame[1] = mbmi->ref_frame[1]; |
| x->skip_mode_mv[0].as_int = mbmi->mv[0].as_int; |
| x->skip_mode_mv[1].as_int = mbmi->mv[1].as_int; |
| |
| // Save the mode index |
| x->skip_mode_index = x->skip_mode_index_candidate; |
| |
| restore_dst_buf(xd, *orig_dst, num_planes); |
| return 0; |
| } |
| |
| static int64_t handle_inter_mode( |
| const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, |
| RD_STATS *rd_stats, RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, |
| int *disable_skip, int_mv (*mode_mv)[TOTAL_REFS_PER_FRAME], int mi_row, |
| int mi_col, HandleInterModeArgs *args, const int64_t ref_best_rd) { |
| const AV1_COMMON *cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *xd = &x->e_mbd; |
| MODE_INFO *mi = xd->mi[0]; |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const int is_comp_pred = has_second_ref(mbmi); |
| const int this_mode = mbmi->mode; |
| int_mv *frame_mv = mode_mv[this_mode]; |
| int i; |
| int refs[2] = { mbmi->ref_frame[0], |
| (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; |
| int_mv cur_mv[2]; |
| int rate_mv = 0; |
| int pred_exists = 1; |
| const int bw = block_size_wide[bsize]; |
| int_mv single_newmv[TOTAL_REFS_PER_FRAME]; |
| uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| DECLARE_ALIGNED(16, uint8_t, tmp_buf_[2 * MAX_MB_PLANE * MAX_SB_SQUARE]); |
| uint8_t *tmp_buf; |
| int64_t rd = INT64_MAX; |
| BUFFER_SET orig_dst, tmp_dst; |
| int rs = 0; |
| |
| int skip_txfm_sb = 0; |
| int64_t skip_sse_sb = INT64_MAX; |
| int16_t mode_ctx; |
| |
| int compmode_interinter_cost = 0; |
| mbmi->interinter_compound_type = COMPOUND_AVERAGE; |
| #if CONFIG_JNT_COMP |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 1; |
| #endif |
| if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME; |
| |
| #if CONFIG_OPT_REF_MV |
| mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| #else |
| if (is_comp_pred) |
| mode_ctx = mbmi_ext->compound_mode_context[refs[0]]; |
| else |
| mode_ctx = |
| av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); |
| #endif |
| |
| memset(tmp_buf_, 0, sizeof(tmp_buf_)); |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| tmp_buf = CONVERT_TO_BYTEPTR(tmp_buf_); |
| else |
| tmp_buf = tmp_buf_; |
| // Make sure that we didn't leave the plane destination buffers set |
| // to tmp_buf at the end of the last iteration |
| assert(xd->plane[0].dst.buf != tmp_buf); |
| |
| mbmi->num_proj_ref[0] = 0; |
| mbmi->num_proj_ref[1] = 0; |
| |
| if (is_comp_pred) { |
| if (frame_mv[refs[0]].as_int == INVALID_MV || |
| frame_mv[refs[1]].as_int == INVALID_MV) |
| return INT64_MAX; |
| } |
| |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| const int masked_compound_used = |
| is_any_masked_compound_used(bsize) && cm->allow_masked_compound; |
| int64_t ret_val = INT64_MAX; |
| #if CONFIG_JNT_COMP |
| const RD_STATS backup_rd_stats = *rd_stats; |
| const RD_STATS backup_rd_stats_y = *rd_stats_y; |
| const RD_STATS backup_rd_stats_uv = *rd_stats_uv; |
| RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; |
| int64_t best_rd = INT64_MAX; |
| int best_compound_idx = 1; |
| int64_t best_ret_val = INT64_MAX; |
| uint8_t best_blk_skip[MAX_MB_PLANE][MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| const MB_MODE_INFO backup_mbmi = *mbmi; |
| MB_MODE_INFO best_mbmi = *mbmi; |
| int64_t early_terminate = 0; |
| |
| int comp_idx; |
| const int search_jnt_comp = is_comp_pred & cm->seq_params.enable_jnt_comp; |
| // If !search_jnt_comp, we need to force mbmi->compound_idx = 1. |
| for (comp_idx = !search_jnt_comp; comp_idx < 2; ++comp_idx) { |
| compmode_interinter_cost = 0; |
| early_terminate = 0; |
| *rd_stats = backup_rd_stats; |
| *rd_stats_y = backup_rd_stats_y; |
| *rd_stats_uv = backup_rd_stats_uv; |
| *mbmi = backup_mbmi; |
| mbmi->compound_idx = comp_idx; |
| |
| if (is_comp_pred && comp_idx == 0) { |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 0; |
| |
| const int comp_group_idx_ctx = get_comp_group_idx_context(xd); |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| if (masked_compound_used) |
| rd_stats->rate += x->comp_group_idx_cost[comp_group_idx_ctx][0]; |
| rd_stats->rate += x->comp_idx_cost[comp_index_ctx][0]; |
| } |
| #endif // CONFIG_JNT_COMP |
| |
| if (have_newmv_in_inter_mode(this_mode)) { |
| ret_val = handle_newmv(cpi, x, bsize, mode_mv, mi_row, mi_col, &rate_mv, |
| single_newmv, args); |
| #if CONFIG_JNT_COMP |
| if (ret_val != 0) { |
| early_terminate = INT64_MAX; |
| continue; |
| } else { |
| rd_stats->rate += rate_mv; |
| } |
| #else |
| if (ret_val != 0) |
| return ret_val; |
| else |
| rd_stats->rate += rate_mv; |
| #endif // CONFIG_JNT_COMP |
| } |
| for (i = 0; i < is_comp_pred + 1; ++i) { |
| cur_mv[i] = frame_mv[refs[i]]; |
| // Clip "next_nearest" so that it does not extend to far out of image |
| if (this_mode != NEWMV) clamp_mv2(&cur_mv[i].as_mv, xd); |
| #if CONFIG_JNT_COMP |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) { |
| early_terminate = INT64_MAX; |
| continue; |
| } |
| #else |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| mbmi->mv[i].as_int = cur_mv[i].as_int; |
| } |
| |
| if (this_mode == NEAREST_NEARESTMV) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) { |
| cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; |
| cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; |
| |
| for (i = 0; i < 2; ++i) { |
| clamp_mv2(&cur_mv[i].as_mv, xd); |
| #if CONFIG_JNT_COMP |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) { |
| early_terminate = INT64_MAX; |
| continue; |
| } |
| #else |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[i].as_mv)) return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| mbmi->mv[i].as_int = cur_mv[i].as_int; |
| } |
| } |
| } |
| |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) { |
| if (this_mode == NEAREST_NEWMV) { |
| cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; |
| |
| #if CONFIG_AMVR |
| lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv, |
| cm->cur_frame_force_integer_mv); |
| #else |
| lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv); |
| #endif |
| clamp_mv2(&cur_mv[0].as_mv, xd); |
| #if CONFIG_JNT_COMP |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[0].as_mv)) { |
| early_terminate = INT64_MAX; |
| continue; |
| } |
| #else |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[0].as_mv)) return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| mbmi->mv[0].as_int = cur_mv[0].as_int; |
| } |
| |
| if (this_mode == NEW_NEARESTMV) { |
| cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; |
| |
| #if CONFIG_AMVR |
| lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv, |
| cm->cur_frame_force_integer_mv); |
| #else |
| lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv); |
| #endif |
| clamp_mv2(&cur_mv[1].as_mv, xd); |
| #if CONFIG_JNT_COMP |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[1].as_mv)) { |
| early_terminate = INT64_MAX; |
| continue; |
| } |
| #else |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[1].as_mv)) return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| mbmi->mv[1].as_int = cur_mv[1].as_int; |
| } |
| } |
| |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) { |
| int ref_mv_idx = mbmi->ref_mv_idx + 1; |
| if (this_mode == NEAR_NEWMV || this_mode == NEAR_NEARMV) { |
| cur_mv[0] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; |
| |
| #if CONFIG_AMVR |
| lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv, |
| cm->cur_frame_force_integer_mv); |
| #else |
| lower_mv_precision(&cur_mv[0].as_mv, cm->allow_high_precision_mv); |
| #endif |
| clamp_mv2(&cur_mv[0].as_mv, xd); |
| #if CONFIG_JNT_COMP |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[0].as_mv)) { |
| early_terminate = INT64_MAX; |
| continue; |
| } |
| #else |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[0].as_mv)) return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| mbmi->mv[0].as_int = cur_mv[0].as_int; |
| } |
| |
| if (this_mode == NEW_NEARMV || this_mode == NEAR_NEARMV) { |
| cur_mv[1] = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; |
| |
| #if CONFIG_AMVR |
| lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv, |
| cm->cur_frame_force_integer_mv); |
| #else |
| lower_mv_precision(&cur_mv[1].as_mv, cm->allow_high_precision_mv); |
| #endif |
| clamp_mv2(&cur_mv[1].as_mv, xd); |
| #if CONFIG_JNT_COMP |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[1].as_mv)) { |
| early_terminate = INT64_MAX; |
| continue; |
| } |
| #else |
| if (mv_check_bounds(&x->mv_limits, &cur_mv[1].as_mv)) return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| mbmi->mv[1].as_int = cur_mv[1].as_int; |
| } |
| } |
| |
| // Initialise tmp_dst and orig_dst buffers to prevent "may be used |
| // uninitialized" warnings in GCC when the stream is monochrome. |
| memset(tmp_dst.plane, 0, sizeof(tmp_dst.plane)); |
| memset(tmp_dst.stride, 0, sizeof(tmp_dst.stride)); |
| memset(orig_dst.plane, 0, sizeof(tmp_dst.plane)); |
| memset(orig_dst.stride, 0, sizeof(tmp_dst.stride)); |
| |
| // do first prediction into the destination buffer. Do the next |
| // prediction into a temporary buffer. Then keep track of which one |
| // of these currently holds the best predictor, and use the other |
| // one for future predictions. In the end, copy from tmp_buf to |
| // dst if necessary. |
| for (i = 0; i < num_planes; i++) { |
| tmp_dst.plane[i] = tmp_buf + i * MAX_SB_SQUARE; |
| tmp_dst.stride[i] = MAX_SB_SIZE; |
| } |
| for (i = 0; i < num_planes; i++) { |
| orig_dst.plane[i] = xd->plane[i].dst.buf; |
| orig_dst.stride[i] = xd->plane[i].dst.stride; |
| } |
| |
| // We don't include the cost of the second reference here, because there |
| // are only three options: Last/Golden, ARF/Last or Golden/ARF, or in other |
| // words if you present them in that order, the second one is always known |
| // if the first is known. |
| // |
| // Under some circumstances we discount the cost of new mv mode to encourage |
| // initiation of a motion field. |
| if (discount_newmv_test(cpi, this_mode, frame_mv[refs[0]], mode_mv, |
| refs[0])) { |
| rd_stats->rate += |
| AOMMIN(cost_mv_ref(x, this_mode, mode_ctx), |
| cost_mv_ref(x, is_comp_pred ? NEAREST_NEARESTMV : NEARESTMV, |
| mode_ctx)); |
| } else { |
| rd_stats->rate += cost_mv_ref(x, this_mode, mode_ctx); |
| } |
| |
| #if CONFIG_JNT_COMP |
| if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd && |
| mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { |
| early_terminate = INT64_MAX; |
| continue; |
| } |
| #else |
| if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd && |
| mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) |
| return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| |
| ret_val = interpolation_filter_search( |
| x, cpi, bsize, mi_row, mi_col, &tmp_dst, &orig_dst, args->single_filter, |
| &rd, &rs, &skip_txfm_sb, &skip_sse_sb); |
| #if CONFIG_JNT_COMP |
| if (ret_val != 0) { |
| early_terminate = INT64_MAX; |
| continue; |
| } |
| #else |
| if (ret_val != 0) return ret_val; |
| #endif // CONFIG_JNT_COMP |
| |
| #if CONFIG_JNT_COMP |
| if (is_comp_pred && comp_idx) |
| #else |
| if (is_comp_pred) |
| #endif |
| { |
| int rate_sum, rs2; |
| int64_t dist_sum; |
| int64_t best_rd_compound = INT64_MAX, best_rd_cur = INT64_MAX; |
| INTERINTER_COMPOUND_DATA best_compound_data; |
| int_mv best_mv[2]; |
| int best_tmp_rate_mv = rate_mv; |
| int tmp_skip_txfm_sb; |
| int64_t tmp_skip_sse_sb; |
| DECLARE_ALIGNED(16, uint8_t, pred0[2 * MAX_SB_SQUARE]) = { 0 }; |
| DECLARE_ALIGNED(16, uint8_t, pred1[2 * MAX_SB_SQUARE]) = { 0 }; |
| uint8_t *preds0[1] = { pred0 }; |
| uint8_t *preds1[1] = { pred1 }; |
| int strides[1] = { bw }; |
| int tmp_rate_mv; |
| COMPOUND_TYPE cur_type; |
| int best_compmode_interinter_cost = 0; |
| |
| best_mv[0].as_int = cur_mv[0].as_int; |
| best_mv[1].as_int = cur_mv[1].as_int; |
| memset(&best_compound_data, 0, sizeof(best_compound_data)); |
| uint8_t tmp_mask_buf[2 * MAX_SB_SQUARE]; |
| best_compound_data.seg_mask = tmp_mask_buf; |
| |
| if (masked_compound_used) { |
| // get inter predictors to use for masked compound modes |
| av1_build_inter_predictors_for_planes_single_buf( |
| xd, bsize, 0, 0, mi_row, mi_col, 0, preds0, strides); |
| av1_build_inter_predictors_for_planes_single_buf( |
| xd, bsize, 0, 0, mi_row, mi_col, 1, preds1, strides); |
| } |
| |
| for (cur_type = COMPOUND_AVERAGE; cur_type < COMPOUND_TYPES; cur_type++) { |
| if (cur_type != COMPOUND_AVERAGE && !masked_compound_used) break; |
| if (!is_interinter_compound_used(cur_type, bsize)) continue; |
| tmp_rate_mv = rate_mv; |
| best_rd_cur = INT64_MAX; |
| mbmi->interinter_compound_type = cur_type; |
| #if CONFIG_JNT_COMP |
| int masked_type_cost = 0; |
| |
| const int comp_group_idx_ctx = get_comp_group_idx_context(xd); |
| const int comp_index_ctx = get_comp_index_context(cm, xd); |
| if (masked_compound_used) { |
| if (cur_type == COMPOUND_AVERAGE) { |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 1; |
| |
| masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][0]; |
| masked_type_cost += x->comp_idx_cost[comp_index_ctx][1]; |
| } else { |
| mbmi->comp_group_idx = 1; |
| mbmi->compound_idx = 1; |
| |
| masked_type_cost += x->comp_group_idx_cost[comp_group_idx_ctx][1]; |
| masked_type_cost += |
| x->compound_type_cost[bsize] |
| [mbmi->interinter_compound_type - 1]; |
| } |
| } else { |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = 1; |
| |
| masked_type_cost += x->comp_idx_cost[comp_index_ctx][1]; |
| } |
| |
| rs2 = av1_cost_literal(get_interinter_compound_type_bits( |
| bsize, mbmi->interinter_compound_type)) + |
| masked_type_cost; |
| #else |
| int masked_type_cost = 0; |
| if (masked_compound_used) { |
| if (!is_interinter_compound_used(COMPOUND_WEDGE, bsize)) |
| masked_type_cost += av1_cost_literal(1); |
| else |
| masked_type_cost += |
| x->compound_type_cost[bsize][mbmi->interinter_compound_type]; |
| } |
| rs2 = av1_cost_literal(get_interinter_compound_type_bits( |
| bsize, mbmi->interinter_compound_type)) + |
| masked_type_cost; |
| #endif // CONFIG_JNT_COMP |
| |
| switch (cur_type) { |
| case COMPOUND_AVERAGE: |
| av1_build_inter_predictors_sby(cm, xd, mi_row, mi_col, &orig_dst, |
| bsize); |
| av1_subtract_plane(x, bsize, 0); |
| rd = estimate_yrd_for_sb(cpi, bsize, x, &rate_sum, &dist_sum, |
| &tmp_skip_txfm_sb, &tmp_skip_sse_sb, |
| INT64_MAX); |
| if (rd != INT64_MAX) |
| best_rd_cur = |
| RDCOST(x->rdmult, rs2 + rate_mv + rate_sum, dist_sum); |
| best_rd_compound = best_rd_cur; |
| break; |
| case COMPOUND_WEDGE: |
| if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh && |
| best_rd_compound / 3 < ref_best_rd) { |
| best_rd_cur = build_and_cost_compound_type( |
| cpi, x, cur_mv, bsize, this_mode, rs2, rate_mv, &orig_dst, |
| &tmp_rate_mv, preds0, preds1, strides, mi_row, mi_col); |
| } |
| break; |
| case COMPOUND_SEG: |
| if (x->source_variance > cpi->sf.disable_wedge_search_var_thresh && |
| best_rd_compound / 3 < ref_best_rd) { |
| best_rd_cur = build_and_cost_compound_type( |
| cpi, x, cur_mv, bsize, this_mode, rs2, rate_mv, &orig_dst, |
| &tmp_rate_mv, preds0, preds1, strides, mi_row, mi_col); |
| } |
| break; |
| default: assert(0); return 0; |
| } |
| |
| if (best_rd_cur < best_rd_compound) { |
| best_rd_compound = best_rd_cur; |
| best_compound_data.wedge_index = mbmi->wedge_index; |
| best_compound_data.wedge_sign = mbmi->wedge_sign; |
| best_compound_data.mask_type = mbmi->mask_type; |
| memcpy(best_compound_data.seg_mask, xd->seg_mask, |
| 2 * MAX_SB_SQUARE * sizeof(uint8_t)); |
| best_compound_data.interinter_compound_type = |
| mbmi->interinter_compound_type; |
| best_compmode_interinter_cost = rs2; |
| if (have_newmv_in_inter_mode(this_mode)) { |
| if (use_masked_motion_search(cur_type)) { |
| best_tmp_rate_mv = tmp_rate_mv; |
| best_mv[0].as_int = mbmi->mv[0].as_int; |
| best_mv[1].as_int = mbmi->mv[1].as_int; |
| } else { |
| best_mv[0].as_int = cur_mv[0].as_int; |
| best_mv[1].as_int = cur_mv[1].as_int; |
| } |
| } |
| } |
| // reset to original mvs for next iteration |
| mbmi->mv[0].as_int = cur_mv[0].as_int; |
| mbmi->mv[1].as_int = cur_mv[1].as_int; |
| } |
| mbmi->wedge_index = best_compound_data.wedge_index; |
| mbmi->wedge_sign = best_compound_data.wedge_sign; |
| mbmi->mask_type = best_compound_data.mask_type; |
| memcpy(xd->seg_mask, best_compound_data.seg_mask, |
| 2 * MAX_SB_SQUARE * sizeof(uint8_t)); |
| mbmi->interinter_compound_type = |
| best_compound_data.interinter_compound_type; |
| if (have_newmv_in_inter_mode(this_mode)) { |
| mbmi->mv[0].as_int = best_mv[0].as_int; |
| mbmi->mv[1].as_int = best_mv[1].as_int; |
| if (use_masked_motion_search(mbmi->interinter_compound_type)) { |
| rd_stats->rate += best_tmp_rate_mv - rate_mv; |
| rate_mv = best_tmp_rate_mv; |
| } |
| } |
| |
| if (ref_best_rd < INT64_MAX && best_rd_compound / 3 > ref_best_rd) { |
| restore_dst_buf(xd, orig_dst, num_planes); |
| #if CONFIG_JNT_COMP |
| early_terminate = INT64_MAX; |
| continue; |
| #else |
| return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| } |
| |
| pred_exists = 0; |
| |
| compmode_interinter_cost = best_compmode_interinter_cost; |
| } |
| |
| if (pred_exists == 0) { |
| int tmp_rate; |
| int64_t tmp_dist; |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, &orig_dst, bsize); |
| model_rd_for_sb(cpi, bsize, x, xd, 0, num_planes - 1, &tmp_rate, |
| &tmp_dist, &skip_txfm_sb, &skip_sse_sb); |
| rd = RDCOST(x->rdmult, rs + tmp_rate, tmp_dist); |
| } |
| |
| if (!is_comp_pred) |
| args->single_filter[this_mode][refs[0]] = |
| av1_extract_interp_filter(mbmi->interp_filters, 0); |
| |
| if (args->modelled_rd != NULL) { |
| if (is_comp_pred) { |
| const int mode0 = compound_ref0_mode(this_mode); |
| const int mode1 = compound_ref1_mode(this_mode); |
| const int64_t mrd = AOMMIN(args->modelled_rd[mode0][refs[0]], |
| args->modelled_rd[mode1][refs[1]]); |
| if (rd / 4 * 3 > mrd && ref_best_rd < INT64_MAX) { |
| restore_dst_buf(xd, orig_dst, num_planes); |
| #if CONFIG_JNT_COMP |
| early_terminate = INT64_MAX; |
| continue; |
| #else |
| return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| } |
| } else { |
| args->modelled_rd[this_mode][refs[0]] = rd; |
| } |
| } |
| |
| if (cpi->sf.use_rd_breakout && ref_best_rd < INT64_MAX) { |
| // if current pred_error modeled rd is substantially more than the best |
| // so far, do not bother doing full rd |
| if (rd / 2 > ref_best_rd) { |
| restore_dst_buf(xd, orig_dst, num_planes); |
| #if CONFIG_JNT_COMP |
| early_terminate = INT64_MAX; |
| continue; |
| #else |
| return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| } |
| } |
| |
| rd_stats->rate += compmode_interinter_cost; |
| |
| ret_val = motion_mode_rd(cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv, |
| disable_skip, mode_mv, mi_row, mi_col, args, |
| ref_best_rd, refs, rate_mv, &orig_dst); |
| #if CONFIG_JNT_COMP |
| if (is_comp_pred && ret_val != INT64_MAX) { |
| int64_t tmp_rd; |
| const int skip_ctx = av1_get_skip_context(xd); |
| if (RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist) < |
| RDCOST(x->rdmult, 0, rd_stats->sse)) |
| tmp_rd = RDCOST(x->rdmult, rd_stats->rate + x->skip_cost[skip_ctx][0], |
| rd_stats->dist); |
| else |
| tmp_rd = RDCOST(x->rdmult, |
| rd_stats->rate + x->skip_cost[skip_ctx][1] - |
| rd_stats_y->rate - rd_stats_uv->rate, |
| rd_stats->sse); |
| |
| if (tmp_rd < best_rd) { |
| best_rd_stats = *rd_stats; |
| best_rd_stats_y = *rd_stats_y; |
| best_rd_stats_uv = *rd_stats_uv; |
| best_compound_idx = mbmi->compound_idx; |
| best_ret_val = ret_val; |
| best_rd = tmp_rd; |
| best_mbmi = *mbmi; |
| for (i = 0; i < num_planes; ++i) |
| memcpy(best_blk_skip[i], x->blk_skip[i], |
| sizeof(uint8_t) * xd->n8_h * xd->n8_w); |
| } |
| } |
| } |
| // re-instate status of the best choice |
| if (is_comp_pred && best_ret_val != INT64_MAX) { |
| *rd_stats = best_rd_stats; |
| *rd_stats_y = best_rd_stats_y; |
| *rd_stats_uv = best_rd_stats_uv; |
| mbmi->compound_idx = best_compound_idx; |
| ret_val = best_ret_val; |
| *mbmi = best_mbmi; |
| for (i = 0; i < num_planes; ++i) |
| memcpy(x->blk_skip[i], best_blk_skip[i], |
| sizeof(uint8_t) * xd->n8_h * xd->n8_w); |
| } |
| if (early_terminate == INT64_MAX) return INT64_MAX; |
| #endif // CONFIG_JNT_COMP |
| if (ret_val != 0) return ret_val; |
| |
| return 0; // The rate-distortion cost will be re-calculated by caller. |
| } |
| |
| static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, |
| RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| int64_t best_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| if (!av1_allow_intrabc(cm)) return INT64_MAX; |
| const int num_planes = av1_num_planes(cm); |
| |
| MACROBLOCKD *const xd = &x->e_mbd; |
| const TileInfo *tile = &xd->tile; |
| MODE_INFO *const mi = xd->mi[0]; |
| const int mi_row = -xd->mb_to_top_edge / (8 * MI_SIZE); |
| const int mi_col = -xd->mb_to_left_edge / (8 * MI_SIZE); |
| const int w = block_size_wide[bsize]; |
| const int h = block_size_high[bsize]; |
| const int sb_row = mi_row >> cm->seq_params.mib_size_log2; |
| const int sb_col = mi_col >> cm->seq_params.mib_size_log2; |
| |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| MV_REFERENCE_FRAME ref_frame = INTRA_FRAME; |
| int_mv *const candidates = x->mbmi_ext->ref_mvs[ref_frame]; |
| av1_find_mv_refs(cm, xd, mi, ref_frame, mbmi_ext->ref_mv_count, |
| mbmi_ext->ref_mv_stack, mbmi_ext->compound_mode_context, |
| mbmi_ext->ref_mvs, mi_row, mi_col, NULL, NULL, |
| mbmi_ext->mode_context, 0); |
| |
| int_mv nearestmv, nearmv; |
| #if CONFIG_AMVR |
| av1_find_best_ref_mvs(0, candidates, &nearestmv, &nearmv, 0); |
| #else |
| av1_find_best_ref_mvs(0, candidates, &nearestmv, &nearmv); |
| #endif |
| |
| int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv; |
| if (dv_ref.as_int == 0) |
| av1_find_ref_dv(&dv_ref, tile, cm->seq_params.mib_size, mi_row, mi_col); |
| // Ref DV should not have sub-pel. |
| assert((dv_ref.as_mv.col & 7) == 0); |
| assert((dv_ref.as_mv.row & 7) == 0); |
| mbmi_ext->ref_mvs[INTRA_FRAME][0] = dv_ref; |
| |
| struct buf_2d yv12_mb[MAX_MB_PLANE]; |
| av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, mi_row, mi_col, NULL, NULL, |
| num_planes); |
| for (int i = 0; i < num_planes; ++i) { |
| xd->plane[i].pre[0] = yv12_mb[i]; |
| } |
| |
| enum IntrabcMotionDirection { |
| IBC_MOTION_ABOVE, |
| IBC_MOTION_LEFT, |
| IBC_MOTION_DIRECTIONS |
| }; |
| |
| MB_MODE_INFO *mbmi = &mi->mbmi; |
| MB_MODE_INFO best_mbmi = *mbmi; |
| RD_STATS best_rdcost = *rd_cost; |
| int best_skip = x->skip; |
| |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 }; |
| for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE; |
| dir < IBC_MOTION_DIRECTIONS; ++dir) { |
| const MvLimits tmp_mv_limits = x->mv_limits; |
| switch (dir) { |
| case IBC_MOTION_ABOVE: |
| x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; |
| x->mv_limits.col_max = (tile->mi_col_end - mi_col) * MI_SIZE - w; |
| x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; |
| x->mv_limits.row_max = |
| (sb_row * cm->seq_params.mib_size - mi_row) * MI_SIZE - h; |
| break; |
| case IBC_MOTION_LEFT: |
| x->mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; |
| x->mv_limits.col_max = |
| (sb_col * cm->seq_params.mib_size - mi_col) * MI_SIZE - w; |
| // TODO(aconverse@google.com): Minimize the overlap between above and |
| // left areas. |
| x->mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; |
| int bottom_coded_mi_edge = |
| AOMMIN((sb_row + 1) * cm->seq_params.mib_size, tile->mi_row_end); |
| x->mv_limits.row_max = (bottom_coded_mi_edge - mi_row) * MI_SIZE - h; |
| break; |
| default: assert(0); |
| } |
| assert(x->mv_limits.col_min >= tmp_mv_limits.col_min); |
| assert(x->mv_limits.col_max <= tmp_mv_limits.col_max); |
| assert(x->mv_limits.row_min >= tmp_mv_limits.row_min); |
| assert(x->mv_limits.row_max <= tmp_mv_limits.row_max); |
| av1_set_mv_search_range(&x->mv_limits, &dv_ref.as_mv); |
| |
| if (x->mv_limits.col_max < x->mv_limits.col_min || |
| x->mv_limits.row_max < x->mv_limits.row_min) { |
| x->mv_limits = tmp_mv_limits; |
| continue; |
| } |
| |
| int step_param = cpi->mv_step_param; |
| MV mvp_full = dv_ref.as_mv; |
| mvp_full.col >>= 3; |
| mvp_full.row >>= 3; |
| int sadpb = x->sadperbit16; |
| int cost_list[5]; |
| #if CONFIG_HASH_ME |
| int bestsme = av1_full_pixel_search( |
| cpi, x, bsize, &mvp_full, step_param, sadpb, |
| cond_cost_list(cpi, cost_list), &dv_ref.as_mv, INT_MAX, 1, |
| (MI_SIZE * mi_col), (MI_SIZE * mi_row), 1); |
| #else |
| int bestsme = av1_full_pixel_search(cpi, x, bsize, &mvp_full, step_param, |
| sadpb, cond_cost_list(cpi, cost_list), |
| &dv_ref.as_mv, INT_MAX, 1); |
| #endif |
| |
| x->mv_limits = tmp_mv_limits; |
| if (bestsme == INT_MAX) continue; |
| mvp_full = x->best_mv.as_mv; |
| MV dv = { .row = mvp_full.row * 8, .col = mvp_full.col * 8 }; |
| if (mv_check_bounds(&x->mv_limits, &dv)) continue; |
| if (!av1_is_dv_valid(dv, tile, mi_row, mi_col, bsize, |
| cm->seq_params.mib_size_log2)) |
| continue; |
| |
| // DV should not have sub-pel. |
| assert((dv.col & 7) == 0); |
| assert((dv.row & 7) == 0); |
| memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info)); |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->use_intrabc = 1; |
| mbmi->mode = DC_PRED; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->mv[0].as_mv = dv; |
| mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR); |
| mbmi->skip = 0; |
| x->skip = 0; |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); |
| |
| int *dvcost[2] = { (int *)&cpi->dv_cost[0][MV_MAX], |
| (int *)&cpi->dv_cost[1][MV_MAX] }; |
| // TODO(aconverse@google.com): The full motion field defining discount |
| // in MV_COST_WEIGHT is too large. Explore other values. |
| int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, cpi->dv_joint_cost, |
| dvcost, MV_COST_WEIGHT_SUB); |
| const int rate_mode = x->intrabc_cost[1]; |
| RD_STATS rd_stats, rd_stats_uv; |
| av1_subtract_plane(x, bsize, 0); |
| if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { |
| // Intrabc |
| select_tx_type_yrd(cpi, x, &rd_stats, bsize, mi_row, mi_col, INT64_MAX); |
| } else { |
| super_block_yrd(cpi, x, &rd_stats, bsize, INT64_MAX); |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| memset(x->blk_skip[0], rd_stats.skip, |
| sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); |
| } |
| |
| super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); |
| av1_merge_rd_stats(&rd_stats, &rd_stats_uv); |
| #if CONFIG_RD_DEBUG |
| mbmi->rd_stats = rd_stats; |
| #endif |
| |
| const int skip_ctx = av1_get_skip_context(xd); |
| |
| RD_STATS rdc_noskip; |
| av1_init_rd_stats(&rdc_noskip); |
| rdc_noskip.rate = |
| rate_mode + rate_mv + rd_stats.rate + x->skip_cost[skip_ctx][0]; |
| rdc_noskip.dist = rd_stats.dist; |
| rdc_noskip.rdcost = RDCOST(x->rdmult, rdc_noskip.rate, rdc_noskip.dist); |
| if (rdc_noskip.rdcost < best_rd) { |
| best_rd = rdc_noskip.rdcost; |
| best_mbmi = *mbmi; |
| best_skip = x->skip; |
| best_rdcost = rdc_noskip; |
| memcpy(best_blk_skip, x->blk_skip[0], |
| sizeof(x->blk_skip[0][0]) * xd->n8_h * xd->n8_w); |
| } |
| |
| if (!xd->lossless[mbmi->segment_id]) { |
| x->skip = 1; |
| mbmi->skip = 1; |
| RD_STATS rdc_skip; |
| av1_init_rd_stats(&rdc_skip); |
| rdc_skip.rate = rate_mode + rate_mv + x->skip_cost[skip_ctx][1]; |
| rdc_skip.dist = rd_stats.sse; |
| rdc_skip.rdcost = RDCOST(x->rdmult, rdc_skip.rate, rdc_skip.dist); |
| if (rdc_skip.rdcost < best_rd) { |
| best_rd = rdc_skip.rdcost; |
| best_mbmi = *mbmi; |
| best_skip = x->skip; |
| best_rdcost = rdc_skip; |
| memcpy(best_blk_skip, x->blk_skip[0], |
| sizeof(x->blk_skip[0][0]) * xd->n8_h * xd->n8_w); |
| } |
| } |
| } |
| *mbmi = best_mbmi; |
| *rd_cost = best_rdcost; |
| x->skip = best_skip; |
| memcpy(x->blk_skip[0], best_blk_skip, |
| sizeof(x->blk_skip[0][0]) * xd->n8_h * xd->n8_w); |
| return best_rd; |
| } |
| |
| void av1_rd_pick_intra_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, |
| int mi_col, RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int64_t best_rd) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int num_planes = av1_num_planes(cm); |
| int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; |
| int y_skip = 0, uv_skip = 0; |
| int64_t dist_y = 0, dist_uv = 0; |
| TX_SIZE max_uv_tx_size; |
| |
| (void)cm; |
| (void)mi_row; |
| (void)mi_col; |
| |
| ctx->skip = 0; |
| mbmi->ref_frame[0] = INTRA_FRAME; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| mbmi->use_intrabc = 0; |
| mbmi->mv[0].as_int = 0; |
| |
| const int64_t intra_yrd = |
| rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, |
| &y_skip, bsize, best_rd, ctx); |
| |
| if (intra_yrd < best_rd) { |
| #if CONFIG_CFL |
| // Only store reconstructed luma when there's chroma RDO. When there's no |
| // chroma RDO, the reconstructed luma will be stored in encode_superblock(). |
| xd->cfl.store_y = !x->skip_chroma_rd; |
| if (xd->cfl.store_y) { |
| // Perform one extra call to txfm_rd_in_plane(), with the values chosen |
| // during luma RDO, so we can store reconstructed luma values |
| memcpy(x->blk_skip[0], ctx->blk_skip[0], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| av1_encode_intra_block_plane(cpi, x, bsize, AOM_PLANE_Y, x->optimize, |
| mi_row, mi_col); |
| xd->cfl.store_y = 0; |
| } |
| #endif // CONFIG_CFL |
| if (num_planes > 1) { |
| max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); |
| init_sbuv_mode(mbmi); |
| if (!x->skip_chroma_rd) |
| rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, |
| &uv_skip, bsize, max_uv_tx_size); |
| } |
| |
| if (y_skip && (uv_skip || x->skip_chroma_rd)) { |
| rd_cost->rate = rate_y + rate_uv - rate_y_tokenonly - rate_uv_tokenonly + |
| x->skip_cost[av1_get_skip_context(xd)][1]; |
| rd_cost->dist = dist_y + dist_uv; |
| } else { |
| rd_cost->rate = |
| rate_y + rate_uv + x->skip_cost[av1_get_skip_context(xd)][0]; |
| rd_cost->dist = dist_y + dist_uv; |
| } |
| rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); |
| } else { |
| rd_cost->rate = INT_MAX; |
| } |
| |
| if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd) |
| best_rd = rd_cost->rdcost; |
| if (rd_pick_intrabc_mode_sb(cpi, x, rd_cost, bsize, best_rd) < best_rd) { |
| ctx->skip = x->skip; |
| memcpy(ctx->blk_skip[0], x->blk_skip[0], |
| sizeof(x->blk_skip[0][0]) * ctx->num_4x4_blk); |
| assert(rd_cost->rate != INT_MAX); |
| } |
| if (rd_cost->rate == INT_MAX) return; |
| |
| ctx->mic = *xd->mi[0]; |
| ctx->mbmi_ext = *x->mbmi_ext; |
| } |
| |
| // Do we have an internal image edge (e.g. formatting bars). |
| int av1_internal_image_edge(const AV1_COMP *cpi) { |
| return (cpi->oxcf.pass == 2) && |
| ((cpi->twopass.this_frame_stats.inactive_zone_rows > 0) || |
| (cpi->twopass.this_frame_stats.inactive_zone_cols > 0)); |
| } |
| |
| // Checks to see if a super block is on a horizontal image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int av1_active_h_edge(const AV1_COMP *cpi, int mi_row, int mi_step) { |
| int top_edge = 0; |
| int bottom_edge = cpi->common.mi_rows; |
| int is_active_h_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| const TWO_PASS *const twopass = &cpi->twopass; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| top_edge += (int)(twopass->this_frame_stats.inactive_zone_rows * 2); |
| |
| bottom_edge -= (int)(twopass->this_frame_stats.inactive_zone_rows * 2); |
| bottom_edge = AOMMAX(top_edge, bottom_edge); |
| } |
| |
| if (((top_edge >= mi_row) && (top_edge < (mi_row + mi_step))) || |
| ((bottom_edge >= mi_row) && (bottom_edge < (mi_row + mi_step)))) { |
| is_active_h_edge = 1; |
| } |
| return is_active_h_edge; |
| } |
| |
| // Checks to see if a super block is on a vertical image edge. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int av1_active_v_edge(const AV1_COMP *cpi, int mi_col, int mi_step) { |
| int left_edge = 0; |
| int right_edge = cpi->common.mi_cols; |
| int is_active_v_edge = 0; |
| |
| // For two pass account for any formatting bars detected. |
| if (cpi->oxcf.pass == 2) { |
| const TWO_PASS *const twopass = &cpi->twopass; |
| |
| // The inactive region is specified in MBs not mi units. |
| // The image edge is in the following MB row. |
| left_edge += (int)(twopass->this_frame_stats.inactive_zone_cols * 2); |
| |
| right_edge -= (int)(twopass->this_frame_stats.inactive_zone_cols * 2); |
| right_edge = AOMMAX(left_edge, right_edge); |
| } |
| |
| if (((left_edge >= mi_col) && (left_edge < (mi_col + mi_step))) || |
| ((right_edge >= mi_col) && (right_edge < (mi_col + mi_step)))) { |
| is_active_v_edge = 1; |
| } |
| return is_active_v_edge; |
| } |
| |
| // Checks to see if a super block is at the edge of the active image. |
| // In most cases this is the "real" edge unless there are formatting |
| // bars embedded in the stream. |
| int av1_active_edge_sb(const AV1_COMP *cpi, int mi_row, int mi_col) { |
| return av1_active_h_edge(cpi, mi_row, cpi->common.seq_params.mib_size) || |
| av1_active_v_edge(cpi, mi_col, cpi->common.seq_params.mib_size); |
| } |
| |
| static void restore_uv_color_map(const AV1_COMP *const cpi, MACROBLOCK *x) { |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| const BLOCK_SIZE bsize = mbmi->sb_type; |
| int src_stride = x->plane[1].src.stride; |
| const uint8_t *const src_u = x->plane[1].src.buf; |
| const uint8_t *const src_v = x->plane[2].src.buf; |
| int *const data = x->palette_buffer->kmeans_data_buf; |
| int centroids[2 * PALETTE_MAX_SIZE]; |
| uint8_t *const color_map = xd->plane[1].color_index_map; |
| int r, c; |
| const uint16_t *const src_u16 = CONVERT_TO_SHORTPTR(src_u); |
| const uint16_t *const src_v16 = CONVERT_TO_SHORTPTR(src_v); |
| int plane_block_width, plane_block_height, rows, cols; |
| av1_get_block_dimensions(bsize, 1, xd, &plane_block_width, |
| &plane_block_height, &rows, &cols); |
| (void)cpi; |
| |
| for (r = 0; r < rows; ++r) { |
| for (c = 0; c < cols; ++c) { |
| if (cpi->common.use_highbitdepth) { |
| data[(r * cols + c) * 2] = src_u16[r * src_stride + c]; |
| data[(r * cols + c) * 2 + 1] = src_v16[r * src_stride + c]; |
| } else { |
| data[(r * cols + c) * 2] = src_u[r * src_stride + c]; |
| data[(r * cols + c) * 2 + 1] = src_v[r * src_stride + c]; |
| } |
| } |
| } |
| |
| for (r = 1; r < 3; ++r) { |
| for (c = 0; c < pmi->palette_size[1]; ++c) { |
| centroids[c * 2 + r - 1] = pmi->palette_colors[r * PALETTE_MAX_SIZE + c]; |
| } |
| } |
| |
| av1_calc_indices(data, centroids, color_map, rows * cols, |
| pmi->palette_size[1], 2); |
| extend_palette_color_map(color_map, cols, rows, plane_block_width, |
| plane_block_height); |
| } |
| |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, |
| const MACROBLOCKD *xd, int mi_row, |
| int mi_col, const CONV_BUF_TYPE *above, |
| int above_stride, |
| const CONV_BUF_TYPE *left, |
| int left_stride); |
| #else |
| static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, |
| const MACROBLOCKD *xd, int mi_row, |
| int mi_col, const uint8_t *above, |
| int above_stride, const uint8_t *left, |
| int left_stride); |
| #endif |
| |
| static void estimate_skip_mode_rdcost( |
| const AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x, |
| BLOCK_SIZE bsize, int mi_row, int mi_col, |
| int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME], |
| struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE]) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| |
| int *mode_map = tile_data->mode_map[bsize]; |
| static const int flag_list[TOTAL_REFS_PER_FRAME] = { 0, |
| AOM_LAST_FLAG, |
| AOM_LAST2_FLAG, |
| AOM_LAST3_FLAG, |
| AOM_GOLD_FLAG, |
| AOM_BWD_FLAG, |
| AOM_ALT2_FLAG, |
| AOM_ALT_FLAG }; |
| int i; |
| |
| for (int midx = 0; midx < MAX_MODES; ++midx) { |
| const int mode_index = mode_map[midx]; |
| x->skip_mode_index_candidate = mode_index; |
| |
| const MV_REFERENCE_FRAME ref_frame = |
| av1_mode_order[mode_index].ref_frame[0]; |
| const MV_REFERENCE_FRAME second_ref_frame = |
| av1_mode_order[mode_index].ref_frame[1]; |
| const int comp_pred = second_ref_frame > INTRA_FRAME; |
| |
| if (!comp_pred) continue; |
| |
| const PREDICTION_MODE this_mode = av1_mode_order[mode_index].mode; |
| |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame])) continue; |
| if (comp_pred && !(cpi->ref_frame_flags & flag_list[second_ref_frame])) |
| continue; |
| // Check whether current refs/mode align with skip_mode |
| if (!(ref_frame == (LAST_FRAME + cm->ref_frame_idx_0) && |
| second_ref_frame == (LAST_FRAME + cm->ref_frame_idx_1) && |
| this_mode == NEAREST_NEARESTMV)) { |
| continue; |
| } |
| |
| frame_mv[this_mode][ref_frame].as_int = |
| frame_mv[compound_ref0_mode(this_mode)][ref_frame].as_int; |
| frame_mv[this_mode][second_ref_frame].as_int = |
| frame_mv[compound_ref1_mode(this_mode)][second_ref_frame].as_int; |
| |
| if (frame_mv[this_mode][ref_frame].as_int == INVALID_MV || |
| frame_mv[this_mode][second_ref_frame].as_int == INVALID_MV) |
| break; |
| |
| mbmi->mode = this_mode; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = ref_frame; |
| mbmi->ref_frame[1] = second_ref_frame; |
| |
| // Obtain NEAREST_NEARESTMV. |
| { |
| for (i = 0; i < 2; ++i) { |
| int_mv cur_mv = frame_mv[mbmi->mode][mbmi->ref_frame[i]]; |
| clamp_mv2(&cur_mv.as_mv, xd); |
| if (mv_check_bounds(&x->mv_limits, &cur_mv.as_mv)) { |
| x->skip_mode_rdcost = INT64_MAX; |
| break; |
| } |
| mbmi->mv[i].as_int = cur_mv.as_int; |
| } |
| if (x->skip_mode_rdcost == INT64_MAX) break; |
| |
| const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > 0) { |
| for (i = 0; i < 2; ++i) { |
| int_mv cur_mv = |
| (i == 0) ? mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv |
| : mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; |
| clamp_mv2(&cur_mv.as_mv, xd); |
| if (mv_check_bounds(&x->mv_limits, &cur_mv.as_mv)) { |
| x->skip_mode_rdcost = INT64_MAX; |
| break; |
| } |
| mbmi->mv[i].as_int = cur_mv.as_int; |
| } |
| if (x->skip_mode_rdcost == INT64_MAX) break; |
| } |
| } |
| |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); |
| #if CONFIG_JNT_COMP |
| mbmi->comp_group_idx = 0; |
| mbmi->compound_idx = x->compound_idx; |
| #endif // CONFIG_JNT_COMP |
| mbmi->interinter_compound_type = COMPOUND_AVERAGE; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->ref_mv_idx = 0; |
| mbmi->skip_mode = mbmi->skip = 1; |
| |
| set_default_interp_filters(mbmi, cm->interp_filter); |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; |
| xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; |
| } |
| |
| BUFFER_SET orig_dst; |
| for (i = 0; i < num_planes; i++) { |
| orig_dst.plane[i] = xd->plane[i].dst.buf; |
| orig_dst.stride[i] = xd->plane[i].dst.stride; |
| } |
| |
| // Obtain the rdcost for skip_mode. |
| skip_mode_rd(cpi, x, bsize, mi_row, mi_col, &orig_dst); |
| break; |
| } |
| } |
| |
| void av1_rd_pick_inter_mode_sb(const AV1_COMP *cpi, TileDataEnc *tile_data, |
| MACROBLOCK *x, int mi_row, int mi_col, |
| RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { |
| const AV1_COMMON *const cm = &cpi->common; |
| const int num_planes = av1_num_planes(cm); |
| const RD_OPT *const rd_opt = &cpi->rd; |
| const SPEED_FEATURES *const sf = &cpi->sf; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| const int try_palette = |
| av1_allow_palette(cm->allow_screen_content_tools, mbmi->sb_type); |
| PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; |
| MB_MODE_INFO_EXT *const mbmi_ext = x->mbmi_ext; |
| const struct segmentation *const seg = &cm->seg; |
| PREDICTION_MODE this_mode; |
| MV_REFERENCE_FRAME ref_frame, second_ref_frame; |
| unsigned char segment_id = mbmi->segment_id; |
| int comp_pred, i, k; |
| int_mv frame_mv[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; |
| struct buf_2d yv12_mb[TOTAL_REFS_PER_FRAME][MAX_MB_PLANE]; |
| // Save a set of single_newmv for each checked ref_mv. |
| int_mv single_newmv[MAX_REF_MV_SERCH][TOTAL_REFS_PER_FRAME] = { { { 0 } } }; |
| int single_newmv_rate[MAX_REF_MV_SERCH][TOTAL_REFS_PER_FRAME] = { { 0 } }; |
| int single_newmv_valid[MAX_REF_MV_SERCH][TOTAL_REFS_PER_FRAME] = { { 0 } }; |
| int64_t modelled_rd[MB_MODE_COUNT][TOTAL_REFS_PER_FRAME]; |
| static const int flag_list[TOTAL_REFS_PER_FRAME] = { 0, |
| AOM_LAST_FLAG, |
| AOM_LAST2_FLAG, |
| AOM_LAST3_FLAG, |
| AOM_GOLD_FLAG, |
| AOM_BWD_FLAG, |
| AOM_ALT2_FLAG, |
| AOM_ALT_FLAG }; |
| int64_t best_rd = best_rd_so_far; |
| int best_rate_y = INT_MAX, best_rate_uv = INT_MAX; |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| int64_t best_pred_rd[REFERENCE_MODES]; |
| MB_MODE_INFO best_mbmode; |
| const int skip_ctx = av1_get_skip_context(xd); |
| int rate_skip0 = x->skip_cost[skip_ctx][0]; |
| int rate_skip1 = x->skip_cost[skip_ctx][1]; |
| int best_mode_skippable = 0; |
| int midx, best_mode_index = -1; |
| unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME]; |
| #if CONFIG_EXT_COMP_REFS |
| unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME][TOTAL_REFS_PER_FRAME]; |
| #else |
| unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME]; |
| #endif // CONFIG_EXT_COMP_REFS |
| int *comp_inter_cost = |
| x->comp_inter_cost[av1_get_reference_mode_context(cm, xd)]; |
| int64_t best_intra_rd = INT64_MAX; |
| unsigned int best_pred_sse = UINT_MAX; |
| PREDICTION_MODE best_intra_mode = DC_PRED; |
| int rate_uv_intra[TX_SIZES_ALL], rate_uv_tokenonly[TX_SIZES_ALL]; |
| int64_t dist_uvs[TX_SIZES_ALL]; |
| int skip_uvs[TX_SIZES_ALL]; |
| UV_PREDICTION_MODE mode_uv[TX_SIZES_ALL]; |
| PALETTE_MODE_INFO pmi_uv[TX_SIZES_ALL]; |
| int8_t uv_angle_delta[TX_SIZES_ALL]; |
| int is_directional_mode, angle_stats_ready = 0; |
| uint8_t directional_mode_skip_mask[INTRA_MODES]; |
| const int intra_cost_penalty = av1_get_intra_cost_penalty( |
| cm->base_qindex, cm->y_dc_delta_q, cm->bit_depth); |
| const int *const intra_mode_cost = x->mbmode_cost[size_group_lookup[bsize]]; |
| int best_skip2 = 0; |
| uint16_t ref_frame_skip_mask[2] = { 0 }; |
| uint32_t mode_skip_mask[TOTAL_REFS_PER_FRAME] = { 0 }; |
| int mode_skip_start = sf->mode_skip_start + 1; |
| const int *const rd_threshes = rd_opt->threshes[segment_id][bsize]; |
| const int *const rd_thresh_freq_fact = tile_data->thresh_freq_fact[bsize]; |
| int64_t mode_threshold[MAX_MODES]; |
| int *mode_map = tile_data->mode_map[bsize]; |
| const int mode_search_skip_flags = sf->mode_search_skip_flags; |
| int skip_intra_modes = 0; |
| const int rows = block_size_high[bsize]; |
| const int cols = block_size_wide[bsize]; |
| |
| HandleInterModeArgs args = { |
| { NULL }, { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }, |
| { NULL }, { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 }, |
| NULL, NULL, |
| NULL, NULL, |
| { { 0 } }, |
| }; |
| |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| args.above_pred_hp_buf[0] = x->above_pred_hp_buf; |
| args.above_pred_hp_buf[1] = x->above_pred_hp_buf + (MAX_SB_SQUARE >> 1); |
| args.above_pred_hp_buf[2] = x->above_pred_hp_buf + MAX_SB_SQUARE; |
| args.left_pred_hp_buf[0] = x->left_pred_hp_buf; |
| args.left_pred_hp_buf[1] = x->left_pred_hp_buf + (MAX_SB_SQUARE >> 1); |
| args.left_pred_hp_buf[2] = x->left_pred_hp_buf + MAX_SB_SQUARE; |
| #else |
| int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, |
| MAX_SB_SIZE >> 1 }; |
| int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, |
| MAX_SB_SIZE >> 1 }; |
| int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; |
| |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) { |
| int len = sizeof(uint16_t); |
| args.above_pred_buf[0] = CONVERT_TO_BYTEPTR(x->above_pred_buf); |
| args.above_pred_buf[1] = |
| CONVERT_TO_BYTEPTR(x->above_pred_buf + (MAX_SB_SQUARE >> 1) * len); |
| args.above_pred_buf[2] = |
| CONVERT_TO_BYTEPTR(x->above_pred_buf + MAX_SB_SQUARE * len); |
| args.left_pred_buf[0] = CONVERT_TO_BYTEPTR(x->left_pred_buf); |
| args.left_pred_buf[1] = |
| CONVERT_TO_BYTEPTR(x->left_pred_buf + (MAX_SB_SQUARE >> 1) * len); |
| args.left_pred_buf[2] = |
| CONVERT_TO_BYTEPTR(x->left_pred_buf + MAX_SB_SQUARE * len); |
| } else { |
| args.above_pred_buf[0] = x->above_pred_buf; |
| args.above_pred_buf[1] = x->above_pred_buf + (MAX_SB_SQUARE >> 1); |
| args.above_pred_buf[2] = x->above_pred_buf + MAX_SB_SQUARE; |
| args.left_pred_buf[0] = x->left_pred_buf; |
| args.left_pred_buf[1] = x->left_pred_buf + (MAX_SB_SQUARE >> 1); |
| args.left_pred_buf[2] = x->left_pred_buf + MAX_SB_SQUARE; |
| } |
| #endif |
| |
| int64_t dist_refs[TOTAL_REFS_PER_FRAME]; |
| int dist_order_refs[TOTAL_REFS_PER_FRAME]; |
| int num_available_refs = 0; |
| memset(dist_refs, -1, sizeof(dist_refs)); |
| memset(dist_order_refs, -1, sizeof(dist_order_refs)); |
| |
| av1_zero(best_mbmode); |
| av1_zero(pmi_uv); |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single, |
| ref_costs_comp); |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) best_pred_rd[i] = INT64_MAX; |
| for (i = 0; i < TX_SIZES_ALL; i++) rate_uv_intra[i] = INT_MAX; |
| for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX; |
| for (i = 0; i < MB_MODE_COUNT; ++i) { |
| for (k = 0; k < TOTAL_REFS_PER_FRAME; ++k) { |
| args.single_filter[i][k] = SWITCHABLE; |
| } |
| } |
| |
| av1_invalid_rd_stats(rd_cost); |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| x->pred_mv_sad[ref_frame] = INT_MAX; |
| x->mbmi_ext->mode_context[ref_frame] = 0; |
| x->mbmi_ext->compound_mode_context[ref_frame] = 0; |
| if (cpi->ref_frame_flags & flag_list[ref_frame]) { |
| assert(get_ref_frame_buffer(cpi, ref_frame) != NULL); |
| setup_buffer_inter(cpi, x, ref_frame, bsize, mi_row, mi_col, |
| frame_mv[NEARESTMV], frame_mv[NEARMV], yv12_mb); |
| } |
| frame_mv[NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[GLOBALMV][ref_frame].as_int = |
| gm_get_motion_vector(&cm->global_motion[ref_frame], |
| cm->allow_high_precision_mv, bsize, mi_col, mi_row |
| #if CONFIG_AMVR |
| , |
| cm->cur_frame_force_integer_mv |
| #endif |
| ) |
| .as_int; |
| frame_mv[NEW_NEWMV][ref_frame].as_int = INVALID_MV; |
| frame_mv[GLOBAL_GLOBALMV][ref_frame].as_int = |
| gm_get_motion_vector(&cm->global_motion[ref_frame], |
| cm->allow_high_precision_mv, bsize, mi_col, mi_row |
| #if CONFIG_AMVR |
| , |
| cm->cur_frame_force_integer_mv |
| #endif |
| ) |
| .as_int; |
| } |
| |
| // TODO(zoeliu@google.com): To further optimize the obtaining of motion vector |
| // references for compound prediction, as not every pair of reference frames |
| // woud be examined for the RD evaluation. |
| for (; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) { |
| MODE_INFO *const mi = xd->mi[0]; |
| x->mbmi_ext->mode_context[ref_frame] = 0; |
| av1_find_mv_refs(cm, xd, mi, ref_frame, mbmi_ext->ref_mv_count, |
| mbmi_ext->ref_mv_stack, mbmi_ext->compound_mode_context, |
| mbmi_ext->ref_mvs, mi_row, mi_col, NULL, NULL, |
| mbmi_ext->mode_context, 0); |
| } |
| |
| av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); |
| |
| if (check_num_overlappable_neighbors(mbmi) && |
| is_motion_variation_allowed_bsize(bsize)) { |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| av1_build_prediction_by_above_preds_hp(cm, xd, mi_row, mi_col, |
| args.above_pred_hp_buf, |
| args.above_pred_hp_stride); |
| av1_build_prediction_by_left_preds_hp(cm, xd, mi_row, mi_col, |
| args.left_pred_hp_buf, |
| args.left_pred_hp_stride); |
| av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, |
| mi_col, num_planes); |
| calc_target_weighted_pred( |
| cm, x, xd, mi_row, mi_col, args.above_pred_hp_buf[0], |
| args.above_pred_hp_stride[0], args.left_pred_hp_buf[0], |
| args.left_pred_hp_stride[0]); |
| #else |
| av1_build_prediction_by_above_preds(cm, xd, mi_row, mi_col, |
| args.above_pred_buf, dst_width1, |
| dst_height1, args.above_pred_stride); |
| av1_build_prediction_by_left_preds(cm, xd, mi_row, mi_col, |
| args.left_pred_buf, dst_width2, |
| dst_height2, args.left_pred_stride); |
| av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row, |
| mi_col, num_planes); |
| calc_target_weighted_pred(cm, x, xd, mi_row, mi_col, args.above_pred_buf[0], |
| args.above_pred_stride[0], args.left_pred_buf[0], |
| args.left_pred_stride[0]); |
| #endif |
| } |
| |
| for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { |
| if (!(cpi->ref_frame_flags & flag_list[ref_frame])) { |
| // Skip checking missing references in both single and compound reference |
| // modes. Note that a mode will be skipped iff both reference frames |
| // are masked out. |
| ref_frame_skip_mask[0] |= (1 << ref_frame); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| } else { |
| for (i = LAST_FRAME; i <= ALTREF_FRAME; ++i) { |
| // Skip fixed mv modes for poor references |
| if ((x->pred_mv_sad[ref_frame] >> 2) > x->pred_mv_sad[i]) { |
| mode_skip_mask[ref_frame] |= INTER_NEAREST_NEAR_ZERO; |
| break; |
| } |
| } |
| } |
| // If the segment reference frame feature is enabled.... |
| // then do nothing if the current ref frame is not allowed.. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { |
| ref_frame_skip_mask[0] |= (1 << ref_frame); |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| } |
| } |
| |
| // Disable this drop out case if the ref frame |
| // segment level feature is enabled for this segment. This is to |
| // prevent the possibility that we end up unable to pick any mode. |
| if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { |
| // Only consider GLOBALMV/ALTREF_FRAME for alt ref frame, |
| // unless ARNR filtering is enabled in which case we want |
| // an unfiltered alternative. We allow near/nearest as well |
| // because they may result in zero-zero MVs but be cheaper. |
| if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.arnr_max_frames == 0)) { |
| int_mv zeromv; |
| ref_frame_skip_mask[0] = (1 << LAST_FRAME) | (1 << LAST2_FRAME) | |
| (1 << LAST3_FRAME) | (1 << BWDREF_FRAME) | |
| (1 << ALTREF2_FRAME) | (1 << GOLDEN_FRAME); |
| ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; |
| // TODO(zoeliu): To further explore whether following needs to be done for |
| // BWDREF_FRAME as well. |
| mode_skip_mask[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; |
| zeromv.as_int = gm_get_motion_vector(&cm->global_motion[ALTREF_FRAME], |
| cm->allow_high_precision_mv, bsize, |
| mi_col, mi_row |
| #if CONFIG_AMVR |
| , |
| cm->cur_frame_force_integer_mv |
| #endif |
| ) |
| .as_int; |
| if (frame_mv[NEARMV][ALTREF_FRAME].as_int != zeromv.as_int) |
| mode_skip_mask[ALTREF_FRAME] |= (1 << NEARMV); |
| if (frame_mv[NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int) |
| mode_skip_mask[ALTREF_FRAME] |= (1 << NEARESTMV); |
| if (frame_mv[NEAREST_NEARESTMV][ALTREF_FRAME].as_int != zeromv.as_int) |
| mode_skip_mask[ALTREF_FRAME] |= (1 << NEAREST_NEARESTMV); |
| if (frame_mv[NEAR_NEARMV][ALTREF_FRAME].as_int != zeromv.as_int) |
| mode_skip_mask[ALTREF_FRAME] |= (1 << NEAR_NEARMV); |
| } |
| } |
| |
| if (cpi->rc.is_src_frame_alt_ref) { |
| if (sf->alt_ref_search_fp) { |
| assert(cpi->ref_frame_flags & flag_list[ALTREF_FRAME]); |
| mode_skip_mask[ALTREF_FRAME] = 0; |
| ref_frame_skip_mask[0] = ~(1 << ALTREF_FRAME); |
| ref_frame_skip_mask[1] = SECOND_REF_FRAME_MASK; |
| } |
| } |
| |
| if (sf->alt_ref_search_fp) |
| if (!cm->show_frame && x->pred_mv_sad[GOLDEN_FRAME] < INT_MAX) |
| if (x->pred_mv_sad[ALTREF_FRAME] > (x->pred_mv_sad[GOLDEN_FRAME] << 1)) |
| mode_skip_mask[ALTREF_FRAME] |= INTER_ALL; |
| |
| if (sf->adaptive_mode_search) { |
| if (cm->show_frame && !cpi->rc.is_src_frame_alt_ref && |
| cpi->rc.frames_since_golden >= 3) |
| if ((x->pred_mv_sad[GOLDEN_FRAME] >> 1) > x->pred_mv_sad[LAST_FRAME]) |
| mode_skip_mask[GOLDEN_FRAME] |= INTER_ALL; |
| } |
| |
| if (bsize > sf->max_intra_bsize) { |
| ref_frame_skip_mask[0] |= (1 << INTRA_FRAME); |
| ref_frame_skip_mask[1] |= (1 << INTRA_FRAME); |
| } |
| |
| mode_skip_mask[INTRA_FRAME] |= |
| ~(sf->intra_y_mode_mask[max_txsize_lookup[bsize]]); |
| |
| for (i = 0; i <= LAST_NEW_MV_INDEX; ++i) mode_threshold[i] = 0; |
| for (i = LAST_NEW_MV_INDEX + 1; i < MAX_MODES; ++i) |
| mode_threshold[i] = ((int64_t)rd_threshes[i] * rd_thresh_freq_fact[i]) >> 5; |
| |
| midx = sf->schedule_mode_search ? mode_skip_start : 0; |
| while (midx > 4) { |
| uint8_t end_pos = 0; |
| for (i = 5; i < midx; ++i) { |
| if (mode_threshold[mode_map[i - 1]] > mode_threshold[mode_map[i]]) { |
| uint8_t tmp = mode_map[i]; |
| mode_map[i] = mode_map[i - 1]; |
| mode_map[i - 1] = tmp; |
| end_pos = i; |
| } |
| } |
| midx = end_pos; |
| } |
| |
| if (cpi->sf.tx_type_search.fast_intra_tx_type_search) |
| x->use_default_intra_tx_type = 1; |
| else |
| x->use_default_intra_tx_type = 0; |
| |
| if (cpi->sf.tx_type_search.fast_inter_tx_type_search) |
| x->use_default_inter_tx_type = 1; |
| else |
| x->use_default_inter_tx_type = 0; |
| |
| for (i = 0; i < MB_MODE_COUNT; ++i) |
| for (ref_frame = 0; ref_frame < TOTAL_REFS_PER_FRAME; ++ref_frame) |
| modelled_rd[i][ref_frame] = INT64_MAX; |
| |
| x->skip_mode_rdcost = -1; |
| x->skip_mode_index = -1; |
| |
| for (midx = 0; midx < MAX_MODES; ++midx) { |
| int mode_index; |
| int mode_excluded = 0; |
| int64_t this_rd = INT64_MAX; |
| int disable_skip = 0; |
| int compmode_cost = 0; |
| int rate2 = 0, rate_y = 0, rate_uv = 0; |
| int64_t distortion2 = 0, distortion_y = 0, distortion_uv = 0; |
| int skippable = 0; |
| int this_skip2 = 0; |
| int64_t total_sse = INT64_MAX; |
| uint8_t ref_frame_type; |
| |
| mode_index = mode_map[midx]; |
| x->skip_mode_index_candidate = mode_index; |
| this_mode = av1_mode_order[mode_index].mode; |
| ref_frame = av1_mode_order[mode_index].ref_frame[0]; |
| second_ref_frame = av1_mode_order[mode_index].ref_frame[1]; |
| mbmi->ref_mv_idx = 0; |
| |
| if (ref_frame == INTRA_FRAME) { |
| if (sf->skip_intra_in_interframe && skip_intra_modes) continue; |
| } |
| |
| if (sf->drop_ref) { |
| if (ref_frame > INTRA_FRAME && second_ref_frame > INTRA_FRAME) { |
| if (num_available_refs > 2) { |
| if ((ref_frame == dist_order_refs[0] && |
| second_ref_frame == dist_order_refs[1]) || |
| (ref_frame == dist_order_refs[1] && |
| second_ref_frame == dist_order_refs[0])) |
| continue; |
| } |
| } |
| } |
| |
| if (ref_frame > INTRA_FRAME && second_ref_frame == INTRA_FRAME) { |
| // Mode must by compatible |
| if (!is_interintra_allowed_mode(this_mode)) continue; |
| if (!is_interintra_allowed_bsize(bsize)) continue; |
| } |
| |
| if (is_inter_compound_mode(this_mode)) { |
| frame_mv[this_mode][ref_frame].as_int = |
| frame_mv[compound_ref0_mode(this_mode)][ref_frame].as_int; |
| frame_mv[this_mode][second_ref_frame].as_int = |
| frame_mv[compound_ref1_mode(this_mode)][second_ref_frame].as_int; |
| } |
| |
| // Look at the reference frame of the best mode so far and set the |
| // skip mask to look at a subset of the remaining modes. |
| if (midx == mode_skip_start && best_mode_index >= 0) { |
| switch (best_mbmode.ref_frame[0]) { |
| case INTRA_FRAME: break; |
| case LAST_FRAME: |
| ref_frame_skip_mask[0] |= LAST_FRAME_MODE_MASK; |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case LAST2_FRAME: |
| ref_frame_skip_mask[0] |= LAST2_FRAME_MODE_MASK; |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case LAST3_FRAME: |
| ref_frame_skip_mask[0] |= LAST3_FRAME_MODE_MASK; |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case GOLDEN_FRAME: |
| ref_frame_skip_mask[0] |= GOLDEN_FRAME_MODE_MASK; |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case BWDREF_FRAME: |
| ref_frame_skip_mask[0] |= BWDREF_FRAME_MODE_MASK; |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case ALTREF2_FRAME: |
| ref_frame_skip_mask[0] |= ALTREF2_FRAME_MODE_MASK; |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case ALTREF_FRAME: |
| ref_frame_skip_mask[0] |= ALTREF_FRAME_MODE_MASK; |
| ref_frame_skip_mask[1] |= SECOND_REF_FRAME_MASK; |
| break; |
| case NONE_FRAME: |
| case TOTAL_REFS_PER_FRAME: |
| assert(0 && "Invalid Reference frame"); |
| break; |
| } |
| } |
| |
| if ((ref_frame_skip_mask[0] & (1 << ref_frame)) && |
| (ref_frame_skip_mask[1] & (1 << AOMMAX(0, second_ref_frame)))) |
| continue; |
| |
| if (mode_skip_mask[ref_frame] & (1 << this_mode)) continue; |
| |
| // Test best rd so far against threshold for trying this mode. |
| if (best_mode_skippable && sf->schedule_mode_search) |
| mode_threshold[mode_index] <<= 1; |
| |
| if (best_rd < mode_threshold[mode_index]) continue; |
| |
| // This is only used in motion vector unit test. |
| if (cpi->oxcf.motion_vector_unit_test && ref_frame == INTRA_FRAME) continue; |
| |
| #if !CONFIG_EXT_COMP_REFS // Changes LL bitstream |
| if (cpi->oxcf.pass == 0) { |
| // Complexity-compression trade-offs |
| // if (ref_frame == ALTREF_FRAME) continue; |
| // if (ref_frame == BWDREF_FRAME) continue; |
| if (second_ref_frame == ALTREF_FRAME) continue; |
| // if (second_ref_frame == BWDREF_FRAME) continue; |
| } |
| #endif // !CONFIG_EXT_COMP_REFS |
| comp_pred = second_ref_frame > INTRA_FRAME; |
| if (comp_pred) { |
| if (!cpi->allow_comp_inter_inter) continue; |
| |
| // Skip compound inter modes if ARF is not available. |
| if (!(cpi->ref_frame_flags & flag_list[second_ref_frame])) continue; |
| |
| // Do not allow compound prediction if the segment level reference frame |
| // feature is in use as in this case there can only be one reference. |
| if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) continue; |
| |
| if ((mode_search_skip_flags & FLAG_SKIP_COMP_BESTINTRA) && |
| best_mode_index >= 0 && best_mbmode.ref_frame[0] == INTRA_FRAME) |
| continue; |
| |
| mode_excluded = cm->reference_mode == SINGLE_REFERENCE; |
| } else { |
| if (ref_frame != INTRA_FRAME) mode_excluded = 0; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| if (sf->adaptive_mode_search) |
| if ((x->source_variance << num_pels_log2_lookup[bsize]) > best_pred_sse) |
| continue; |
| |
| if (this_mode != DC_PRED) { |
| // Disable intra modes other than DC_PRED for blocks with low variance |
| // Threshold for intra skipping based on source variance |
| // TODO(debargha): Specialize the threshold for super block sizes |
| const unsigned int skip_intra_var_thresh = 64; |
| if ((mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && |
| x->source_variance < skip_intra_var_thresh) |
| continue; |
| // Only search the oblique modes if the best so far is |
| // one of the neighboring directional modes |
| if ((mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && |
| (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) { |
| if (best_mode_index >= 0 && best_mbmode.ref_frame[0] > INTRA_FRAME) |
| continue; |
| } |
| if (mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { |
| if (conditional_skipintra(this_mode, best_intra_mode)) continue; |
| } |
| } |
| } else if (cm->global_motion[ref_frame].wmtype == IDENTITY && |
| (!comp_pred || |
| cm->global_motion[second_ref_frame].wmtype == IDENTITY)) { |
| const MV_REFERENCE_FRAME ref_frames[2] = { ref_frame, second_ref_frame }; |
| if (!check_best_zero_mv(cpi, x, mbmi_ext->mode_context, |
| mbmi_ext->compound_mode_context, frame_mv, |
| this_mode, ref_frames, bsize, mi_row, mi_col)) |
| continue; |
| } |
| |
| mbmi->mode = this_mode; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = ref_frame; |
| mbmi->ref_frame[1] = second_ref_frame; |
| pmi->palette_size[0] = 0; |
| pmi->palette_size[1] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| // Evaluate all sub-pel filters irrespective of whether we can use them for |
| // this frame. |
| |
| set_default_interp_filters(mbmi, cm->interp_filter); |
| |
| mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| |
| x->skip = 0; |
| set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); |
| |
| // Select prediction reference frames. |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; |
| if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; |
| } |
| |
| mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); |
| |
| if (sf->selective_ref_frame) { |
| if (sf->selective_ref_frame == 2 || x->cb_partition_scan) { |
| if (mbmi->ref_frame[0] == ALTREF2_FRAME || |
| mbmi->ref_frame[1] == ALTREF2_FRAME) |
| if (cm->cur_frame->alt2_frame_offset < cm->frame_offset) continue; |
| if (mbmi->ref_frame[0] == BWDREF_FRAME || |
| mbmi->ref_frame[1] == BWDREF_FRAME) |
| if (cm->cur_frame->bwd_frame_offset < cm->frame_offset) continue; |
| } |
| if (mbmi->ref_frame[0] == LAST3_FRAME || |
| mbmi->ref_frame[1] == LAST3_FRAME) |
| if (cm->cur_frame->lst3_frame_offset <= cm->cur_frame->gld_frame_offset) |
| continue; |
| if (mbmi->ref_frame[0] == LAST2_FRAME || |
| mbmi->ref_frame[1] == LAST2_FRAME) |
| if (cm->cur_frame->lst2_frame_offset <= cm->cur_frame->gld_frame_offset) |
| continue; |
| } |
| |
| // One-sided compound is used only when all reference frames are one-sided. |
| if (sf->selective_ref_frame && comp_pred && !cpi->all_one_sided_refs) { |
| unsigned int ref_offsets[2]; |
| for (i = 0; i < 2; ++i) { |
| const int buf_idx = cm->frame_refs[mbmi->ref_frame[i] - LAST_FRAME].idx; |
| assert(buf_idx >= 0); |
| ref_offsets[i] = cm->buffer_pool->frame_bufs[buf_idx].cur_frame_offset; |
| } |
| if ((ref_offsets[0] <= cm->frame_offset && |
| ref_offsets[1] <= cm->frame_offset) || |
| (ref_offsets[0] > cm->frame_offset && |
| ref_offsets[1] > cm->frame_offset)) |
| continue; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| RD_STATS rd_stats_y; |
| TX_SIZE uv_tx; |
| is_directional_mode = av1_is_directional_mode(mbmi->mode); |
| if (is_directional_mode && av1_use_angle_delta(bsize)) { |
| int rate_dummy; |
| int64_t model_rd = INT64_MAX; |
| if (!angle_stats_ready) { |
| const int src_stride = x->plane[0].src.stride; |
| const uint8_t *src = x->plane[0].src.buf; |
| if (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) |
| highbd_angle_estimation(src, src_stride, rows, cols, bsize, |
| directional_mode_skip_mask); |
| else |
| angle_estimation(src, src_stride, rows, cols, bsize, |
| directional_mode_skip_mask); |
| angle_stats_ready = 1; |
| } |
| if (directional_mode_skip_mask[mbmi->mode]) continue; |
| rd_stats_y.rate = INT_MAX; |
| rd_pick_intra_angle_sby(cpi, x, &rate_dummy, &rd_stats_y, bsize, |
| intra_mode_cost[mbmi->mode], best_rd, |
| &model_rd); |
| } else { |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| super_block_yrd(cpi, x, &rd_stats_y, bsize, best_rd); |
| } |
| rate_y = rd_stats_y.rate; |
| distortion_y = rd_stats_y.dist; |
| skippable = rd_stats_y.skip; |
| |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| memcpy(best_blk_skip, x->blk_skip[0], |
| sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); |
| |
| if (mbmi->mode == DC_PRED && !xd->lossless[mbmi->segment_id]) { |
| RD_STATS rd_stats_y_fi; |
| int filter_intra_selected_flag = 0; |
| TX_SIZE best_tx_size = mbmi->tx_size; |
| TX_TYPE best_tx_type = mbmi->tx_type; |
| TX_TYPE best_txk_type[TXK_TYPE_BUF_LEN]; |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED; |
| int64_t best_rd_tmp = INT64_MAX; |
| if (rate_y != INT_MAX && |
| av1_filter_intra_allowed_txsize(best_tx_size)) { |
| best_rd_tmp = RDCOST(x->rdmult, |
| rate_y + x->filter_intra_cost[mbmi->tx_size][0] + |
| intra_mode_cost[mbmi->mode], |
| distortion_y); |
| } |
| |
| mbmi->filter_intra_mode_info.use_filter_intra = 1; |
| for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; |
| fi_mode < FILTER_INTRA_MODES; ++fi_mode) { |
| int64_t this_rd_tmp; |
| mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode; |
| |
| super_block_yrd(cpi, x, &rd_stats_y_fi, bsize, best_rd); |
| if (rd_stats_y_fi.rate == INT_MAX) continue; |
| const int this_rate_tmp = |
| rd_stats_y_fi.rate + |
| intra_mode_info_cost_y(cpi, x, mbmi, bsize, |
| intra_mode_cost[mbmi->mode]); |
| this_rd_tmp = RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist); |
| |
| if (this_rd_tmp < best_rd_tmp) { |
| best_tx_size = mbmi->tx_size; |
| best_tx_type = mbmi->tx_type; |
| memcpy(best_txk_type, mbmi->txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| memcpy(best_blk_skip, x->blk_skip[0], |
| sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); |
| best_fi_mode = fi_mode; |
| rd_stats_y = rd_stats_y_fi; |
| rate_y = rd_stats_y_fi.rate; |
| distortion_y = rd_stats_y_fi.dist; |
| skippable = rd_stats_y_fi.skip; |
| filter_intra_selected_flag = 1; |
| best_rd_tmp = this_rd_tmp; |
| } |
| } |
| |
| mbmi->tx_size = best_tx_size; |
| mbmi->tx_type = best_tx_type; |
| memcpy(mbmi->txk_type, best_txk_type, |
| sizeof(*best_txk_type) * TXK_TYPE_BUF_LEN); |
| memcpy(x->blk_skip[0], best_blk_skip, |
| sizeof(x->blk_skip[0][0]) * ctx->num_4x4_blk); |
| |
| if (filter_intra_selected_flag) { |
| mbmi->filter_intra_mode_info.use_filter_intra = 1; |
| mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode; |
| } else { |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| } |
| } |
| |
| if (rate_y == INT_MAX) continue; |
| |
| if (num_planes > 1) { |
| uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); |
| if (rate_uv_intra[uv_tx] == INT_MAX) { |
| choose_intra_uv_mode(cpi, x, bsize, uv_tx, &rate_uv_intra[uv_tx], |
| &rate_uv_tokenonly[uv_tx], &dist_uvs[uv_tx], |
| &skip_uvs[uv_tx], &mode_uv[uv_tx]); |
| if (try_palette) pmi_uv[uv_tx] = *pmi; |
| uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV]; |
| } |
| |
| rate_uv = rate_uv_tokenonly[uv_tx]; |
| distortion_uv = dist_uvs[uv_tx]; |
| skippable = skippable && skip_uvs[uv_tx]; |
| mbmi->uv_mode = mode_uv[uv_tx]; |
| if (try_palette) { |
| pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1]; |
| memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, |
| pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, |
| 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); |
| } |
| mbmi->angle_delta[PLANE_TYPE_UV] = uv_angle_delta[uv_tx]; |
| } |
| |
| rate2 = rate_y + intra_mode_info_cost_y(cpi, x, mbmi, bsize, |
| intra_mode_cost[mbmi->mode]); |
| if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) { |
| // super_block_yrd above includes the cost of the tx_size in the |
| // tokenonly rate, but for intra blocks, tx_size is always coded |
| // (prediction granularity), so we account for it in the full rate, |
| // not the tokenonly rate. |
| rate_y -= tx_size_cost(cm, x, bsize, mbmi->tx_size); |
| } |
| if (num_planes > 1 && !x->skip_chroma_rd) { |
| const int uv_mode_cost = |
| #if CONFIG_CFL |
| x->intra_uv_mode_cost[is_cfl_allowed(mbmi)][mbmi->mode] |
| [mbmi->uv_mode]; |
| #else |
| x->intra_uv_mode_cost[mbmi->mode][mbmi->uv_mode]; |
| #endif |
| rate2 += rate_uv + |
| intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost); |
| } |
| if (mbmi->mode != DC_PRED && mbmi->mode != PAETH_PRED) |
| rate2 += intra_cost_penalty; |
| distortion2 = distortion_y + distortion_uv; |
| } else { |
| int_mv backup_ref_mv[2]; |
| |
| if (!is_comp_ref_allowed(bsize) && mbmi->ref_frame[1] > INTRA_FRAME) |
| continue; |
| |
| backup_ref_mv[0] = mbmi_ext->ref_mvs[ref_frame][0]; |
| if (comp_pred) backup_ref_mv[1] = mbmi_ext->ref_mvs[second_ref_frame][0]; |
| mbmi->angle_delta[PLANE_TYPE_Y] = 0; |
| mbmi->angle_delta[PLANE_TYPE_UV] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->ref_mv_idx = 0; |
| ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); |
| |
| if (comp_pred) { |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > 1) { |
| int ref_mv_idx = 0; |
| // Special case: NEAR_NEWMV and NEW_NEARMV modes use |
| // 1 + mbmi->ref_mv_idx (like NEARMV) instead of |
| // mbmi->ref_mv_idx (like NEWMV) |
| if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) |
| ref_mv_idx = 1; |
| |
| if (compound_ref0_mode(mbmi->mode) == NEWMV) { |
| int_mv this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; |
| mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0] = this_mv; |
| } |
| if (compound_ref1_mode(mbmi->mode) == NEWMV) { |
| int_mv this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; |
| mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0] = this_mv; |
| } |
| } |
| } else { |
| if (mbmi->mode == NEWMV && mbmi_ext->ref_mv_count[ref_frame_type] > 1) { |
| int ref; |
| for (ref = 0; ref < 1 + comp_pred; ++ref) { |
| int_mv this_mv = |
| (ref == 0) ? mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv |
| : mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; |
| mbmi_ext->ref_mvs[mbmi->ref_frame[ref]][0] = this_mv; |
| } |
| } |
| } |
| { |
| RD_STATS rd_stats, rd_stats_y, rd_stats_uv; |
| av1_init_rd_stats(&rd_stats); |
| rd_stats.rate = rate2; |
| |
| // Point to variables that are maintained between loop iterations |
| args.single_newmv = single_newmv[0]; |
| args.single_newmv_rate = single_newmv_rate[0]; |
| args.single_newmv_valid = single_newmv_valid[0]; |
| args.modelled_rd = modelled_rd; |
| this_rd = handle_inter_mode(cpi, x, bsize, &rd_stats, &rd_stats_y, |
| &rd_stats_uv, &disable_skip, frame_mv, |
| mi_row, mi_col, &args, best_rd); |
| rate2 = rd_stats.rate; |
| skippable = rd_stats.skip; |
| distortion2 = rd_stats.dist; |
| total_sse = rd_stats.sse; |
| rate_y = rd_stats_y.rate; |
| rate_uv = rd_stats_uv.rate; |
| } |
| |
| // TODO(jingning): This needs some refactoring to improve code quality |
| // and reduce redundant steps. |
| if ((have_nearmv_in_inter_mode(mbmi->mode) && |
| mbmi_ext->ref_mv_count[ref_frame_type] > 2) || |
| ((mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) && |
| mbmi_ext->ref_mv_count[ref_frame_type] > 1)) { |
| int_mv backup_mv = frame_mv[NEARMV][ref_frame]; |
| MB_MODE_INFO backup_mbmi = *mbmi; |
| int backup_skip = x->skip; |
| int64_t tmp_ref_rd = this_rd; |
| int ref_idx; |
| |
| // TODO(jingning): This should be deprecated shortly. |
| int idx_offset = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0; |
| int ref_set = |
| AOMMIN(MAX_REF_MV_SERCH - 1, |
| mbmi_ext->ref_mv_count[ref_frame_type] - 1 - idx_offset); |
| |
| uint8_t drl_ctx = |
| av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], idx_offset); |
| // Dummy |
| int_mv backup_fmv[2]; |
| backup_fmv[0] = frame_mv[NEWMV][ref_frame]; |
| if (comp_pred) backup_fmv[1] = frame_mv[NEWMV][second_ref_frame]; |
| |
| rate2 += (rate2 < INT_MAX ? x->drl_mode_cost0[drl_ctx][0] : 0); |
| |
| if (this_rd < INT64_MAX) { |
| if (RDCOST(x->rdmult, rate_y + rate_uv, distortion2) < |
| RDCOST(x->rdmult, 0, total_sse)) |
| tmp_ref_rd = RDCOST( |
| x->rdmult, rate2 + x->skip_cost[av1_get_skip_context(xd)][0], |
| distortion2); |
| else |
| tmp_ref_rd = |
| RDCOST(x->rdmult, |
| rate2 + x->skip_cost[av1_get_skip_context(xd)][1] - |
| rate_y - rate_uv, |
| total_sse); |
| } |
| for (i = 0; i < num_planes; ++i) |
| memcpy(x->blk_skip_drl[i], x->blk_skip[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| |
| for (ref_idx = 0; ref_idx < ref_set; ++ref_idx) { |
| int64_t tmp_alt_rd = INT64_MAX; |
| int dummy_disable_skip = 0; |
| int_mv cur_mv; |
| RD_STATS tmp_rd_stats, tmp_rd_stats_y, tmp_rd_stats_uv; |
| |
| av1_invalid_rd_stats(&tmp_rd_stats); |
| |
| x->skip = 0; |
| |
| mbmi->ref_mv_idx = 1 + ref_idx; |
| |
| if (cpi->sf.reduce_inter_modes) { |
| if (mbmi->ref_frame[0] == LAST2_FRAME || |
| mbmi->ref_frame[0] == LAST3_FRAME || |
| mbmi->ref_frame[1] == LAST2_FRAME || |
| mbmi->ref_frame[1] == LAST3_FRAME) { |
| if (mbmi_ext |
| ->ref_mv_stack[ref_frame_type] |
| [mbmi->ref_mv_idx + idx_offset] |
| .weight < REF_CAT_LEVEL) { |
| *mbmi = backup_mbmi; |
| x->skip = backup_skip; |
| continue; |
| } |
| } |
| } |
| |
| if (comp_pred) { |
| int ref_mv_idx = mbmi->ref_mv_idx; |
| // Special case: NEAR_NEWMV and NEW_NEARMV modes use |
| // 1 + mbmi->ref_mv_idx (like NEARMV) instead of |
| // mbmi->ref_mv_idx (like NEWMV) |
| if (mbmi->mode == NEAR_NEWMV || mbmi->mode == NEW_NEARMV) |
| ref_mv_idx = 1 + mbmi->ref_mv_idx; |
| |
| if (compound_ref0_mode(mbmi->mode) == NEWMV) { |
| int_mv this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; |
| mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0] = this_mv; |
| } else if (compound_ref0_mode(mbmi->mode) == NEARESTMV) { |
| int_mv this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; |
| mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0] = this_mv; |
| } |
| |
| if (compound_ref1_mode(mbmi->mode) == NEWMV) { |
| int_mv this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; |
| mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0] = this_mv; |
| } else if (compound_ref1_mode(mbmi->mode) == NEARESTMV) { |
| int_mv this_mv = |
| mbmi_ext->ref_mv_stack[ref_frame_type][0].comp_mv; |
| mbmi_ext->ref_mvs[mbmi->ref_frame[1]][0] = this_mv; |
| } |
| } else { |
| int_mv this_mv = mbmi_ext |
| ->ref_mv_stack[ref_frame_type] |
| [mbmi->ref_mv_idx + idx_offset] |
| .this_mv; |
| mbmi_ext->ref_mvs[mbmi->ref_frame[0]][0] = this_mv; |
| } |
| |
| cur_mv = |
| mbmi_ext->ref_mv_stack[ref_frame][mbmi->ref_mv_idx + idx_offset] |
| .this_mv; |
| clamp_mv2(&cur_mv.as_mv, xd); |
| |
| if (!mv_check_bounds(&x->mv_limits, &cur_mv.as_mv)) { |
| frame_mv[NEARMV][ref_frame] = cur_mv; |
| av1_init_rd_stats(&tmp_rd_stats); |
| |
| args.modelled_rd = NULL; |
| args.single_newmv = single_newmv[mbmi->ref_mv_idx]; |
| args.single_newmv_rate = single_newmv_rate[mbmi->ref_mv_idx]; |
| args.single_newmv_valid = single_newmv_valid[mbmi->ref_mv_idx]; |
| |
| tmp_alt_rd = handle_inter_mode( |
| cpi, x, bsize, &tmp_rd_stats, &tmp_rd_stats_y, &tmp_rd_stats_uv, |
| &dummy_disable_skip, frame_mv, mi_row, mi_col, &args, best_rd); |
| // Prevent pointers from escaping local scope |
| args.single_newmv = single_newmv[0]; |
| args.single_newmv_rate = single_newmv_rate[0]; |
| args.single_newmv_valid = single_newmv_valid[0]; |
| } |
| |
| for (i = 0; i < mbmi->ref_mv_idx; ++i) { |
| uint8_t drl1_ctx = 0; |
| drl1_ctx = av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], |
| i + idx_offset); |
| tmp_rd_stats.rate += |
| (tmp_rd_stats.rate < INT_MAX ? x->drl_mode_cost0[drl1_ctx][1] |
| : 0); |
| } |
| |
| if (mbmi_ext->ref_mv_count[ref_frame_type] > |
| mbmi->ref_mv_idx + idx_offset + 1 && |
| ref_idx < ref_set - 1) { |
| uint8_t drl1_ctx = |
| av1_drl_ctx(mbmi_ext->ref_mv_stack[ref_frame_type], |
| mbmi->ref_mv_idx + idx_offset); |
| tmp_rd_stats.rate += |
| (tmp_rd_stats.rate < INT_MAX ? x->drl_mode_cost0[drl1_ctx][0] |
| : 0); |
| } |
| |
| if (tmp_alt_rd < INT64_MAX) { |
| tmp_alt_rd = |
| RDCOST(x->rdmult, tmp_rd_stats.rate, tmp_rd_stats.dist); |
| } |
| |
| if (tmp_ref_rd > tmp_alt_rd) { |
| rate2 = tmp_rd_stats.rate; |
| disable_skip = dummy_disable_skip; |
| distortion2 = tmp_rd_stats.dist; |
| skippable = tmp_rd_stats.skip; |
| rate_y = tmp_rd_stats_y.rate; |
| rate_uv = tmp_rd_stats_uv.rate; |
| total_sse = tmp_rd_stats.sse; |
| this_rd = tmp_alt_rd; |
| tmp_ref_rd = tmp_alt_rd; |
| backup_mbmi = *mbmi; |
| backup_skip = x->skip; |
| for (i = 0; i < num_planes; ++i) |
| memcpy(x->blk_skip_drl[i], x->blk_skip[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| } else { |
| *mbmi = backup_mbmi; |
| x->skip = backup_skip; |
| } |
| } |
| |
| frame_mv[NEARMV][ref_frame] = backup_mv; |
| frame_mv[NEWMV][ref_frame] = backup_fmv[0]; |
| if (comp_pred) frame_mv[NEWMV][second_ref_frame] = backup_fmv[1]; |
| for (i = 0; i < num_planes; ++i) |
| memcpy(x->blk_skip[i], x->blk_skip_drl[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| } |
| mbmi_ext->ref_mvs[ref_frame][0] = backup_ref_mv[0]; |
| if (comp_pred) mbmi_ext->ref_mvs[second_ref_frame][0] = backup_ref_mv[1]; |
| |
| if (this_rd == INT64_MAX) continue; |
| |
| if (is_comp_ref_allowed(mbmi->sb_type)) |
| compmode_cost = comp_inter_cost[comp_pred]; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) rate2 += compmode_cost; |
| } |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| if (comp_pred) { |
| #if CONFIG_EXT_COMP_REFS |
| rate2 += ref_costs_comp[ref_frame][second_ref_frame]; |
| #else // !CONFIG_EXT_COMP_REFS |
| rate2 += ref_costs_comp[ref_frame]; |
| rate2 += ref_costs_comp[second_ref_frame]; |
| #endif // CONFIG_EXT_COMP_REFS |
| } else { |
| rate2 += ref_costs_single[ref_frame]; |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| if (skippable) { |
| // Back out the coefficient coding costs |
| rate2 -= (rate_y + rate_uv); |
| rate_y = 0; |
| rate_uv = 0; |
| // Cost the skip mb case |
| rate2 += x->skip_cost[av1_get_skip_context(xd)][1]; |
| } else if (ref_frame != INTRA_FRAME && !xd->lossless[mbmi->segment_id]) { |
| if (RDCOST(x->rdmult, rate_y + rate_uv + rate_skip0, distortion2) < |
| RDCOST(x->rdmult, rate_skip1, total_sse)) { |
| // Add in the cost of the no skip flag. |
| rate2 += x->skip_cost[av1_get_skip_context(xd)][0]; |
| } else { |
| // FIXME(rbultje) make this work for splitmv also |
| rate2 += x->skip_cost[av1_get_skip_context(xd)][1]; |
| distortion2 = total_sse; |
| assert(total_sse >= 0); |
| rate2 -= (rate_y + rate_uv); |
| this_skip2 = 1; |
| rate_y = 0; |
| rate_uv = 0; |
| } |
| } else { |
| // Add in the cost of the no skip flag. |
| rate2 += x->skip_cost[av1_get_skip_context(xd)][0]; |
| } |
| |
| // Calculate the final RD estimate for this mode. |
| this_rd = RDCOST(x->rdmult, rate2, distortion2); |
| } else { |
| this_skip2 = mbmi->skip; |
| this_rd = RDCOST(x->rdmult, rate2, distortion2); |
| if (this_skip2) { |
| rate_y = 0; |
| rate_uv = 0; |
| } |
| } |
| |
| if (ref_frame == INTRA_FRAME) { |
| // Keep record of best intra rd |
| if (this_rd < best_intra_rd) { |
| best_intra_rd = this_rd; |
| best_intra_mode = mbmi->mode; |
| } |
| |
| if (sf->skip_intra_in_interframe) { |
| if (best_rd < (INT64_MAX / 2) && this_rd > (best_rd + (best_rd >> 1))) |
| skip_intra_modes = 1; |
| } |
| } |
| |
| if (!disable_skip && ref_frame == INTRA_FRAME) { |
| for (i = 0; i < REFERENCE_MODES; ++i) |
| best_pred_rd[i] = AOMMIN(best_pred_rd[i], this_rd); |
| } |
| |
| // Did this mode help.. i.e. is it the new best mode |
| if (this_rd < best_rd || x->skip) { |
| if (!mode_excluded) { |
| // Note index of best mode so far |
| best_mode_index = mode_index; |
| |
| if (ref_frame == INTRA_FRAME) { |
| /* required for left and above block mv */ |
| mbmi->mv[0].as_int = 0; |
| } else { |
| best_pred_sse = x->pred_sse[ref_frame]; |
| } |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| best_rd = this_rd; |
| best_mbmode = *mbmi; |
| best_skip2 = this_skip2; |
| best_mode_skippable = skippable; |
| best_rate_y = |
| rate_y + |
| x->skip_cost[av1_get_skip_context(xd)][this_skip2 || skippable]; |
| best_rate_uv = rate_uv; |
| for (i = 0; i < num_planes; ++i) |
| memcpy(ctx->blk_skip[i], x->blk_skip[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| } |
| } |
| |
| /* keep record of best compound/single-only prediction */ |
| if (!disable_skip && ref_frame != INTRA_FRAME) { |
| int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) { |
| single_rate = rate2 - compmode_cost; |
| hybrid_rate = rate2; |
| } else { |
| single_rate = rate2; |
| hybrid_rate = rate2 + compmode_cost; |
| } |
| |
| single_rd = RDCOST(x->rdmult, single_rate, distortion2); |
| hybrid_rd = RDCOST(x->rdmult, hybrid_rate, distortion2); |
| |
| if (!comp_pred) { |
| if (single_rd < best_pred_rd[SINGLE_REFERENCE]) |
| best_pred_rd[SINGLE_REFERENCE] = single_rd; |
| } else { |
| if (single_rd < best_pred_rd[COMPOUND_REFERENCE]) |
| best_pred_rd[COMPOUND_REFERENCE] = single_rd; |
| } |
| if (hybrid_rd < best_pred_rd[REFERENCE_MODE_SELECT]) |
| best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; |
| } |
| |
| if (sf->drop_ref) { |
| if (second_ref_frame == NONE_FRAME) { |
| const int idx = ref_frame - LAST_FRAME; |
| if (idx && distortion2 > dist_refs[idx]) { |
| dist_refs[idx] = distortion2; |
| dist_order_refs[idx] = ref_frame; |
| } |
| |
| // Reach the last single ref prediction mode |
| if (ref_frame == ALTREF_FRAME && this_mode == GLOBALMV) { |
| // bubble sort dist_refs and the order index |
| for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) { |
| for (k = i + 1; k < TOTAL_REFS_PER_FRAME; ++k) { |
| if (dist_refs[i] < dist_refs[k]) { |
| int64_t tmp_dist = dist_refs[i]; |
| dist_refs[i] = dist_refs[k]; |
| dist_refs[k] = tmp_dist; |
| |
| int tmp_idx = dist_order_refs[i]; |
| dist_order_refs[i] = dist_order_refs[k]; |
| dist_order_refs[k] = tmp_idx; |
| } |
| } |
| } |
| |
| for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) { |
| if (dist_refs[i] == -1) break; |
| num_available_refs = i; |
| } |
| num_available_refs++; |
| } |
| } |
| } |
| |
| if (x->skip && !comp_pred) break; |
| } |
| |
| if (xd->lossless[mbmi->segment_id] == 0 && best_mode_index >= 0 && |
| ((sf->tx_type_search.fast_inter_tx_type_search == 1 && |
| is_inter_mode(best_mbmode.mode)) || |
| (sf->tx_type_search.fast_intra_tx_type_search == 1 && |
| !is_inter_mode(best_mbmode.mode)))) { |
| int skip_blk = 0; |
| RD_STATS rd_stats_y, rd_stats_uv; |
| |
| x->use_default_inter_tx_type = 0; |
| x->use_default_intra_tx_type = 0; |
| |
| *mbmi = best_mbmode; |
| |
| set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); |
| |
| // Select prediction reference frames. |
| for (i = 0; i < num_planes; i++) { |
| xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; |
| if (has_second_ref(mbmi)) |
| xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; |
| } |
| |
| if (is_inter_mode(mbmi->mode)) { |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| if (mbmi->motion_mode == OBMC_CAUSAL) { |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| } else { |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); |
| } |
| #else |
| av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize); |
| if (mbmi->motion_mode == OBMC_CAUSAL) |
| av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col); |
| #endif |
| av1_subtract_plane(x, bsize, 0); |
| if (cm->tx_mode == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { |
| // av1_rd_pick_inter_mode_sb |
| select_tx_type_yrd(cpi, x, &rd_stats_y, bsize, mi_row, mi_col, |
| INT64_MAX); |
| assert(rd_stats_y.rate != INT_MAX); |
| } else { |
| super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); |
| memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); |
| memset(x->blk_skip[0], rd_stats_y.skip, |
| sizeof(uint8_t) * xd->n8_h * xd->n8_w * 4); |
| } |
| if (num_planes > 1) { |
| inter_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX, 0); |
| } else { |
| av1_init_rd_stats(&rd_stats_uv); |
| } |
| } else { |
| super_block_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); |
| if (num_planes > 1) { |
| super_block_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); |
| } else { |
| av1_init_rd_stats(&rd_stats_uv); |
| } |
| } |
| |
| if (RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate, |
| (rd_stats_y.dist + rd_stats_uv.dist)) > |
| RDCOST(x->rdmult, 0, (rd_stats_y.sse + rd_stats_uv.sse))) { |
| skip_blk = 1; |
| rd_stats_y.rate = x->skip_cost[av1_get_skip_context(xd)][1]; |
| rd_stats_uv.rate = 0; |
| rd_stats_y.dist = rd_stats_y.sse; |
| rd_stats_uv.dist = rd_stats_uv.sse; |
| } else { |
| skip_blk = 0; |
| rd_stats_y.rate += x->skip_cost[av1_get_skip_context(xd)][0]; |
| } |
| |
| if (RDCOST(x->rdmult, best_rate_y + best_rate_uv, rd_cost->dist) > |
| RDCOST(x->rdmult, rd_stats_y.rate + rd_stats_uv.rate, |
| (rd_stats_y.dist + rd_stats_uv.dist))) { |
| best_mbmode.tx_type = mbmi->tx_type; |
| best_mbmode.tx_size = mbmi->tx_size; |
| av1_copy(best_mbmode.inter_tx_size, mbmi->inter_tx_size); |
| for (i = 0; i < num_planes; ++i) |
| memcpy(ctx->blk_skip[i], x->blk_skip[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| best_mbmode.min_tx_size = mbmi->min_tx_size; |
| av1_copy(best_mbmode.txk_type, mbmi->txk_type); |
| rd_cost->rate += |
| (rd_stats_y.rate + rd_stats_uv.rate - best_rate_y - best_rate_uv); |
| rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist; |
| rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); |
| best_skip2 = skip_blk; |
| } |
| } |
| |
| // Only try palette mode when the best mode so far is an intra mode. |
| if (try_palette && !is_inter_mode(best_mbmode.mode)) { |
| int rate2 = 0; |
| int64_t distortion2 = 0, best_rd_palette = best_rd, this_rd, |
| best_model_rd_palette = INT64_MAX; |
| int skippable = 0, rate_overhead_palette = 0; |
| RD_STATS rd_stats_y; |
| TX_SIZE uv_tx; |
| uint8_t *const best_palette_color_map = |
| x->palette_buffer->best_palette_color_map; |
| uint8_t *const color_map = xd->plane[0].color_index_map; |
| MB_MODE_INFO best_mbmi_palette = *mbmi; |
| uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; |
| |
| mbmi->mode = DC_PRED; |
| mbmi->uv_mode = UV_DC_PRED; |
| mbmi->ref_frame[0] = INTRA_FRAME; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| rate_overhead_palette = rd_pick_palette_intra_sby( |
| cpi, x, bsize, intra_mode_cost[DC_PRED], &best_mbmi_palette, |
| best_palette_color_map, &best_rd_palette, &best_model_rd_palette, NULL, |
| NULL, NULL, NULL, ctx, best_blk_skip); |
| |
| memcpy(x->blk_skip[0], best_blk_skip, |
| sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); |
| |
| if (pmi->palette_size[0] == 0) goto PALETTE_EXIT; |
| memcpy(color_map, best_palette_color_map, |
| rows * cols * sizeof(best_palette_color_map[0])); |
| super_block_yrd(cpi, x, &rd_stats_y, bsize, best_rd); |
| if (rd_stats_y.rate == INT_MAX) goto PALETTE_EXIT; |
| uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); |
| if (rate_uv_intra[uv_tx] == INT_MAX) { |
| choose_intra_uv_mode(cpi, x, bsize, uv_tx, &rate_uv_intra[uv_tx], |
| &rate_uv_tokenonly[uv_tx], &dist_uvs[uv_tx], |
| &skip_uvs[uv_tx], &mode_uv[uv_tx]); |
| pmi_uv[uv_tx] = *pmi; |
| uv_angle_delta[uv_tx] = mbmi->angle_delta[PLANE_TYPE_UV]; |
| } |
| mbmi->uv_mode = mode_uv[uv_tx]; |
| pmi->palette_size[1] = pmi_uv[uv_tx].palette_size[1]; |
| if (pmi->palette_size[1] > 0) { |
| memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, |
| pmi_uv[uv_tx].palette_colors + PALETTE_MAX_SIZE, |
| 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); |
| } |
| mbmi->angle_delta[PLANE_TYPE_UV] = uv_angle_delta[uv_tx]; |
| skippable = rd_stats_y.skip && skip_uvs[uv_tx]; |
| distortion2 = rd_stats_y.dist + dist_uvs[uv_tx]; |
| rate2 = rd_stats_y.rate + rate_overhead_palette + rate_uv_intra[uv_tx]; |
| rate2 += ref_costs_single[INTRA_FRAME]; |
| |
| if (skippable) { |
| rate2 -= (rd_stats_y.rate + rate_uv_tokenonly[uv_tx]); |
| rate2 += x->skip_cost[av1_get_skip_context(xd)][1]; |
| } else { |
| rate2 += x->skip_cost[av1_get_skip_context(xd)][0]; |
| } |
| this_rd = RDCOST(x->rdmult, rate2, distortion2); |
| if (this_rd < best_rd) { |
| best_mode_index = 3; |
| mbmi->mv[0].as_int = 0; |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| best_rd = this_rd; |
| best_mbmode = *mbmi; |
| best_skip2 = 0; |
| best_mode_skippable = skippable; |
| for (i = 0; i < num_planes; ++i) |
| memcpy(ctx->blk_skip[i], x->blk_skip[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| } |
| } |
| PALETTE_EXIT: |
| |
| best_mbmode.skip_mode = 0; |
| if (cm->skip_mode_flag && |
| !segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && |
| is_comp_ref_allowed(bsize)) { |
| // Obtain the rdcost for skip_mode. |
| #if CONFIG_JNT_COMP |
| x->compound_idx = 1; // COMPOUND_AVERAGE |
| #endif // CONFIG_JNT_COMP |
| estimate_skip_mode_rdcost(cpi, tile_data, x, bsize, mi_row, mi_col, |
| frame_mv, yv12_mb); |
| |
| if (x->skip_mode_rdcost >= 0 && x->skip_mode_rdcost < INT64_MAX) { |
| // Update skip mode rdcost. |
| const int skip_mode_ctx = av1_get_skip_mode_context(xd); |
| x->skip_mode_rate += x->skip_mode_cost[skip_mode_ctx][1]; |
| x->skip_mode_rdcost = |
| RDCOST(x->rdmult, x->skip_mode_rate, x->skip_mode_dist); |
| |
| // Compare the use of skip_mode with the best intra/inter mode obtained. |
| const int64_t best_intra_inter_mode_cost = |
| (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX) |
| ? RDCOST(x->rdmult, |
| rd_cost->rate + x->skip_mode_cost[skip_mode_ctx][0], |
| rd_cost->dist) |
| : INT64_MAX; |
| |
| if (x->skip_mode_rdcost <= best_intra_inter_mode_cost) |
| best_mbmode.skip_mode = 1; |
| } |
| |
| if (best_mbmode.skip_mode) { |
| best_mbmode = *mbmi; |
| |
| best_mbmode.skip_mode = best_mbmode.skip = 1; |
| best_mbmode.mode = NEAREST_NEARESTMV; |
| best_mbmode.ref_frame[0] = x->skip_mode_ref_frame[0]; |
| best_mbmode.ref_frame[1] = x->skip_mode_ref_frame[1]; |
| best_mbmode.mv[0].as_int = x->skip_mode_mv[0].as_int; |
| best_mbmode.mv[1].as_int = x->skip_mode_mv[1].as_int; |
| best_mbmode.ref_mv_idx = 0; |
| |
| // Set up tx_size related variables for skip-specific loop filtering. |
| best_mbmode.tx_size = block_signals_txsize(bsize) |
| ? tx_size_from_tx_mode(bsize, cm->tx_mode) |
| : max_txsize_rect_lookup[bsize]; |
| memset(best_mbmode.inter_tx_size, best_mbmode.tx_size, |
| sizeof(best_mbmode.inter_tx_size)); |
| best_mbmode.min_tx_size = best_mbmode.tx_size; |
| set_txfm_ctxs(best_mbmode.tx_size, xd->n8_w, xd->n8_h, best_mbmode.skip, |
| xd); |
| |
| // Set up color-related variables for skip mode. |
| best_mbmode.uv_mode = UV_DC_PRED; |
| best_mbmode.palette_mode_info.palette_size[0] = 0; |
| best_mbmode.palette_mode_info.palette_size[1] = 0; |
| |
| #if CONFIG_JNT_COMP |
| best_mbmode.comp_group_idx = 0; |
| best_mbmode.compound_idx = x->compound_idx; |
| #endif // CONFIG_JNT_COMP |
| best_mbmode.interinter_compound_type = COMPOUND_AVERAGE; |
| best_mbmode.motion_mode = SIMPLE_TRANSLATION; |
| |
| best_mbmode.interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); |
| best_mbmode.filter_intra_mode_info.use_filter_intra = 0; |
| |
| set_default_interp_filters(&best_mbmode, cm->interp_filter); |
| |
| best_mode_index = x->skip_mode_index; |
| |
| // Update rd_cost |
| rd_cost->rate = x->skip_mode_rate; |
| rd_cost->dist = rd_cost->sse = x->skip_mode_dist; |
| rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); |
| |
| best_rd = rd_cost->rdcost; |
| best_skip2 = 1; |
| best_mode_skippable = (x->skip_mode_sse == 0); |
| |
| x->skip = 1; |
| #if 0 |
| // TODO(zoeliu): To investigate why following cause performance drop. |
| for (i = 0; i < num_planes; ++i) { |
| memset(x->blk_skip[i], x->skip, sizeof(uint8_t) * ctx->num_4x4_blk); |
| memcpy(ctx->blk_skip[i], x->blk_skip[i], |
| sizeof(uint8_t) * ctx->num_4x4_blk); |
| } |
| #endif // 0 |
| } |
| } |
| |
| // The inter modes' rate costs are not calculated precisely in some cases. |
| // Therefore, sometimes, NEWMV is chosen instead of NEARESTMV, NEARMV, and |
| // GLOBALMV. Here, checks are added for those cases, and the mode decisions |
| // are corrected. |
| if (best_mbmode.mode == NEWMV || best_mbmode.mode == NEW_NEWMV) { |
| const MV_REFERENCE_FRAME refs[2] = { best_mbmode.ref_frame[0], |
| best_mbmode.ref_frame[1] }; |
| int comp_pred_mode = refs[1] > INTRA_FRAME; |
| int_mv zeromv[2]; |
| const uint8_t rf_type = av1_ref_frame_type(best_mbmode.ref_frame); |
| zeromv[0].as_int = |
| gm_get_motion_vector(&cm->global_motion[refs[0]], |
| cm->allow_high_precision_mv, bsize, mi_col, mi_row |
| #if CONFIG_AMVR |
| , |
| cm->cur_frame_force_integer_mv |
| #endif |
| ) |
| .as_int; |
| zeromv[1].as_int = comp_pred_mode |
| ? gm_get_motion_vector(&cm->global_motion[refs[1]], |
| cm->allow_high_precision_mv, |
| bsize, mi_col, mi_row |
| #if CONFIG_AMVR |
| , |
| cm->cur_frame_force_integer_mv |
| #endif |
| ) |
| .as_int |
| : 0; |
| |
| // Check if the global motion mode is non-translational. |
| int is_nontran_gm = cm->global_motion[refs[0]].wmtype <= TRANSLATION; |
| if (comp_pred_mode) |
| is_nontran_gm &= cm->global_motion[refs[1]].wmtype <= TRANSLATION; |
| if (AOMMIN(block_size_wide[bsize], block_size_high[bsize]) < 8) |
| is_nontran_gm = 1; |
| |
| if (!comp_pred_mode) { |
| int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2) |
| ? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2) |
| : INT_MAX; |
| |
| for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) { |
| int_mv cur_mv = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv; |
| if (cur_mv.as_int == best_mbmode.mv[0].as_int) { |
| best_mbmode.mode = NEARMV; |
| best_mbmode.ref_mv_idx = i; |
| } |
| } |
| |
| if (frame_mv[NEARESTMV][refs[0]].as_int == best_mbmode.mv[0].as_int) |
| best_mbmode.mode = NEARESTMV; |
| else if (best_mbmode.mv[0].as_int == zeromv[0].as_int && is_nontran_gm) |
| best_mbmode.mode = GLOBALMV; |
| } else { |
| int_mv nearestmv[2]; |
| int_mv nearmv[2]; |
| |
| if (mbmi_ext->ref_mv_count[rf_type] > 1) { |
| nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][1].this_mv; |
| nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][1].comp_mv; |
| } else { |
| nearmv[0] = frame_mv[NEARMV][refs[0]]; |
| nearmv[1] = frame_mv[NEARMV][refs[1]]; |
| } |
| if (mbmi_ext->ref_mv_count[rf_type] >= 1) { |
| nearestmv[0] = mbmi_ext->ref_mv_stack[rf_type][0].this_mv; |
| nearestmv[1] = mbmi_ext->ref_mv_stack[rf_type][0].comp_mv; |
| } else { |
| nearestmv[0] = frame_mv[NEARESTMV][refs[0]]; |
| nearestmv[1] = frame_mv[NEARESTMV][refs[1]]; |
| } |
| |
| if (nearestmv[0].as_int == best_mbmode.mv[0].as_int && |
| nearestmv[1].as_int == best_mbmode.mv[1].as_int) { |
| best_mbmode.mode = NEAREST_NEARESTMV; |
| } else { |
| int ref_set = (mbmi_ext->ref_mv_count[rf_type] >= 2) |
| ? AOMMIN(2, mbmi_ext->ref_mv_count[rf_type] - 2) |
| : INT_MAX; |
| |
| for (i = 0; i <= ref_set && ref_set != INT_MAX; ++i) { |
| nearmv[0] = mbmi_ext->ref_mv_stack[rf_type][i + 1].this_mv; |
| nearmv[1] = mbmi_ext->ref_mv_stack[rf_type][i + 1].comp_mv; |
| |
| // Try switching to the NEAR_NEARMV mode |
| if (nearmv[0].as_int == best_mbmode.mv[0].as_int && |
| nearmv[1].as_int == best_mbmode.mv[1].as_int) { |
| best_mbmode.mode = NEAR_NEARMV; |
| best_mbmode.ref_mv_idx = i; |
| } |
| } |
| |
| if (best_mbmode.mode == NEW_NEWMV && |
| best_mbmode.mv[0].as_int == zeromv[0].as_int && |
| best_mbmode.mv[1].as_int == zeromv[1].as_int && is_nontran_gm) |
| best_mbmode.mode = GLOBAL_GLOBALMV; |
| } |
| } |
| } |
| |
| // Make sure that the ref_mv_idx is only nonzero when we're |
| // using a mode which can support ref_mv_idx |
| if (best_mbmode.ref_mv_idx != 0 && |
| !(best_mbmode.mode == NEWMV || best_mbmode.mode == NEW_NEWMV || |
| have_nearmv_in_inter_mode(best_mbmode.mode))) { |
| best_mbmode.ref_mv_idx = 0; |
| } |
| |
| if (best_mode_index < 0 || best_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == |
| av1_extract_interp_filter(best_mbmode.interp_filters, 0)) || |
| !is_inter_block(&best_mbmode)); |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == |
| av1_extract_interp_filter(best_mbmode.interp_filters, 1)) || |
| !is_inter_block(&best_mbmode)); |
| |
| if (!cpi->rc.is_src_frame_alt_ref) |
| av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, |
| sf->adaptive_rd_thresh, bsize, best_mode_index); |
| |
| // macroblock modes |
| *mbmi = best_mbmode; |
| x->skip |= best_skip2; |
| |
| // Note: this section is needed since the mode may have been forced to |
| // GLOBALMV by the all-zero mode handling of ref-mv. |
| if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) { |
| // Correct the interp filters for GLOBALMV |
| if (is_nontrans_global_motion(xd)) { |
| assert(mbmi->interp_filters == |
| av1_broadcast_interp_filter( |
| av1_unswitchable_filter(cm->interp_filter))); |
| } |
| } |
| |
| for (i = 0; i < 1 + has_second_ref(mbmi); ++i) { |
| if (mbmi->mode != NEWMV) |
| mbmi->pred_mv[i].as_int = mbmi->mv[i].as_int; |
| else |
| mbmi->pred_mv[i].as_int = mbmi_ext->ref_mvs[mbmi->ref_frame[i]][0].as_int; |
| } |
| |
| for (i = 0; i < REFERENCE_MODES; ++i) { |
| if (best_pred_rd[i] == INT64_MAX) |
| best_pred_diff[i] = INT_MIN; |
| else |
| best_pred_diff[i] = best_rd - best_pred_rd[i]; |
| } |
| |
| x->skip |= best_mode_skippable; |
| |
| assert(best_mode_index >= 0); |
| |
| store_coding_context(x, ctx, best_mode_index, best_pred_diff, |
| best_mode_skippable); |
| |
| if (pmi->palette_size[1] > 0) { |
| assert(try_palette); |
| restore_uv_color_map(cpi, x); |
| } |
| } |
| |
| void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi, |
| TileDataEnc *tile_data, MACROBLOCK *x, |
| int mi_row, int mi_col, |
| RD_STATS *rd_cost, BLOCK_SIZE bsize, |
| PICK_MODE_CONTEXT *ctx, |
| int64_t best_rd_so_far) { |
| const AV1_COMMON *const cm = &cpi->common; |
| MACROBLOCKD *const xd = &x->e_mbd; |
| MB_MODE_INFO *const mbmi = &xd->mi[0]->mbmi; |
| unsigned char segment_id = mbmi->segment_id; |
| const int comp_pred = 0; |
| int i; |
| int64_t best_pred_diff[REFERENCE_MODES]; |
| unsigned int ref_costs_single[TOTAL_REFS_PER_FRAME]; |
| #if CONFIG_EXT_COMP_REFS |
| unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME][TOTAL_REFS_PER_FRAME]; |
| #else |
| unsigned int ref_costs_comp[TOTAL_REFS_PER_FRAME]; |
| #endif // CONFIG_EXT_COMP_REFS |
| int *comp_inter_cost = |
| x->comp_inter_cost[av1_get_reference_mode_context(cm, xd)]; |
| InterpFilter best_filter = SWITCHABLE; |
| int64_t this_rd = INT64_MAX; |
| int rate2 = 0; |
| const int64_t distortion2 = 0; |
| (void)mi_row; |
| (void)mi_col; |
| |
| av1_collect_neighbors_ref_counts(xd); |
| |
| estimate_ref_frame_costs(cm, xd, x, segment_id, ref_costs_single, |
| ref_costs_comp); |
| |
| for (i = 0; i < TOTAL_REFS_PER_FRAME; ++i) x->pred_sse[i] = INT_MAX; |
| for (i = LAST_FRAME; i < TOTAL_REFS_PER_FRAME; ++i) |
| x->pred_mv_sad[i] = INT_MAX; |
| |
| rd_cost->rate = INT_MAX; |
| |
| assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); |
| |
| mbmi->palette_mode_info.palette_size[0] = 0; |
| mbmi->palette_mode_info.palette_size[1] = 0; |
| mbmi->filter_intra_mode_info.use_filter_intra = 0; |
| mbmi->mode = GLOBALMV; |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| mbmi->uv_mode = UV_DC_PRED; |
| if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) |
| mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); |
| else |
| mbmi->ref_frame[0] = LAST_FRAME; |
| mbmi->ref_frame[1] = NONE_FRAME; |
| mbmi->mv[0].as_int = |
| gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]], |
| cm->allow_high_precision_mv, bsize, mi_col, mi_row |
| #if CONFIG_AMVR |
| , |
| cm->cur_frame_force_integer_mv |
| #endif |
| ) |
| .as_int; |
| mbmi->tx_size = max_txsize_lookup[bsize]; |
| x->skip = 1; |
| |
| mbmi->ref_mv_idx = 0; |
| mbmi->pred_mv[0].as_int = 0; |
| |
| mbmi->motion_mode = SIMPLE_TRANSLATION; |
| av1_count_overlappable_neighbors(cm, xd, mi_row, mi_col); |
| if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) { |
| int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; |
| mbmi->num_proj_ref[0] = findSamples(cm, xd, mi_row, mi_col, pts, pts_inref); |
| #if CONFIG_EXT_WARPED_MOTION |
| // Select the samples according to motion vector difference |
| if (mbmi->num_proj_ref[0] > 1) |
| mbmi->num_proj_ref[0] = selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref, |
| mbmi->num_proj_ref[0], bsize); |
| #endif // CONFIG_EXT_WARPED_MOTION |
| } |
| |
| set_default_interp_filters(mbmi, cm->interp_filter); |
| |
| if (cm->interp_filter != SWITCHABLE) { |
| best_filter = cm->interp_filter; |
| } else { |
| best_filter = EIGHTTAP_REGULAR; |
| if (av1_is_interp_needed(xd) && av1_is_interp_search_needed(xd) && |
| x->source_variance >= cpi->sf.disable_filter_search_var_thresh) { |
| int rs; |
| int best_rs = INT_MAX; |
| for (i = 0; i < SWITCHABLE_FILTERS; ++i) { |
| mbmi->interp_filters = av1_broadcast_interp_filter(i); |
| rs = av1_get_switchable_rate(cm, x, xd); |
| if (rs < best_rs) { |
| best_rs = rs; |
| best_filter = av1_extract_interp_filter(mbmi->interp_filters, 0); |
| } |
| } |
| } |
| } |
| // Set the appropriate filter |
| mbmi->interp_filters = av1_broadcast_interp_filter(best_filter); |
| rate2 += av1_get_switchable_rate(cm, x, xd); |
| |
| if (cm->reference_mode == REFERENCE_MODE_SELECT) |
| rate2 += comp_inter_cost[comp_pred]; |
| |
| // Estimate the reference frame signaling cost and add it |
| // to the rolling cost variable. |
| rate2 += ref_costs_single[LAST_FRAME]; |
| this_rd = RDCOST(x->rdmult, rate2, distortion2); |
| |
| rd_cost->rate = rate2; |
| rd_cost->dist = distortion2; |
| rd_cost->rdcost = this_rd; |
| |
| if (this_rd >= best_rd_so_far) { |
| rd_cost->rate = INT_MAX; |
| rd_cost->rdcost = INT64_MAX; |
| return; |
| } |
| |
| assert((cm->interp_filter == SWITCHABLE) || |
| (cm->interp_filter == |
| av1_extract_interp_filter(mbmi->interp_filters, 0))); |
| |
| av1_update_rd_thresh_fact(cm, tile_data->thresh_freq_fact, |
| cpi->sf.adaptive_rd_thresh, bsize, THR_GLOBALMV); |
| |
| av1_zero(best_pred_diff); |
| |
| store_coding_context(x, ctx, THR_GLOBALMV, best_pred_diff, 0); |
| } |
| |
| struct calc_target_weighted_pred_ctxt { |
| const MACROBLOCK *x; |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| const CONV_BUF_TYPE *tmp; |
| #else |
| const uint8_t *tmp; |
| #endif |
| int tmp_stride; |
| int overlap; |
| }; |
| |
| static INLINE void calc_target_weighted_pred_above( |
| MACROBLOCKD *xd, int rel_mi_col, uint8_t nb_mi_width, MODE_INFO *nb_mi, |
| void *fun_ctxt, const int num_planes) { |
| (void)nb_mi; |
| (void)num_planes; |
| |
| struct calc_target_weighted_pred_ctxt *ctxt = |
| (struct calc_target_weighted_pred_ctxt *)fun_ctxt; |
| |
| const int bw = xd->n8_w << MI_SIZE_LOG2; |
| const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); |
| |
| int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_col * MI_SIZE); |
| int32_t *mask = ctxt->x->mask_buf + (rel_mi_col * MI_SIZE); |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| const CONV_BUF_TYPE *tmp = ctxt->tmp + rel_mi_col * MI_SIZE; |
| #else |
| const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE; |
| const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; |
| #endif |
| |
| #if !CONFIG_OBMC_HIGH_PREC_BLENDING |
| if (!is_hbd) { |
| #endif |
| for (int row = 0; row < ctxt->overlap; ++row) { |
| const uint8_t m0 = mask1d[row]; |
| const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; |
| for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) { |
| wsrc[col] = m1 * tmp[col]; |
| mask[col] = m0; |
| } |
| wsrc += bw; |
| mask += bw; |
| tmp += ctxt->tmp_stride; |
| } |
| #if !CONFIG_OBMC_HIGH_PREC_BLENDING |
| } else { |
| const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); |
| |
| for (int row = 0; row < ctxt->overlap; ++row) { |
| const uint8_t m0 = mask1d[row]; |
| const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; |
| for (int col = 0; col < nb_mi_width * MI_SIZE; ++col) { |
| wsrc[col] = m1 * tmp16[col]; |
| mask[col] = m0; |
| } |
| wsrc += bw; |
| mask += bw; |
| tmp16 += ctxt->tmp_stride; |
| } |
| } |
| #endif |
| } |
| |
| static INLINE void calc_target_weighted_pred_left( |
| MACROBLOCKD *xd, int rel_mi_row, uint8_t nb_mi_height, MODE_INFO *nb_mi, |
| void *fun_ctxt, const int num_planes) { |
| (void)nb_mi; |
| (void)num_planes; |
| |
| struct calc_target_weighted_pred_ctxt *ctxt = |
| (struct calc_target_weighted_pred_ctxt *)fun_ctxt; |
| |
| const int bw = xd->n8_w << MI_SIZE_LOG2; |
| const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); |
| |
| int32_t *wsrc = ctxt->x->wsrc_buf + (rel_mi_row * MI_SIZE * bw); |
| int32_t *mask = ctxt->x->mask_buf + (rel_mi_row * MI_SIZE * bw); |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| const CONV_BUF_TYPE *tmp = |
| ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride); |
| #else |
| const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride); |
| const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; |
| #endif |
| |
| #if !CONFIG_OBMC_HIGH_PREC_BLENDING |
| if (!is_hbd) { |
| #endif |
| for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) { |
| for (int col = 0; col < ctxt->overlap; ++col) { |
| const uint8_t m0 = mask1d[col]; |
| const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; |
| wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + |
| (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1; |
| mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; |
| } |
| wsrc += bw; |
| mask += bw; |
| tmp += ctxt->tmp_stride; |
| } |
| #if !CONFIG_OBMC_HIGH_PREC_BLENDING |
| } else { |
| const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); |
| |
| for (int row = 0; row < nb_mi_height * MI_SIZE; ++row) { |
| for (int col = 0; col < ctxt->overlap; ++col) { |
| const uint8_t m0 = mask1d[col]; |
| const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; |
| wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + |
| (tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1; |
| mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; |
| } |
| wsrc += bw; |
| mask += bw; |
| tmp16 += ctxt->tmp_stride; |
| } |
| } |
| #endif |
| } |
| |
| // This function has a structure similar to av1_build_obmc_inter_prediction |
| // |
| // The OBMC predictor is computed as: |
| // |
| // PObmc(x,y) = |
| // AOM_BLEND_A64(Mh(x), |
| // AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)), |
| // PLeft(x, y)) |
| // |
| // Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate |
| // rounding, this can be written as: |
| // |
| // AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) = |
| // Mh(x) * Mv(y) * P(x,y) + |
| // Mh(x) * Cv(y) * Pabove(x,y) + |
| // AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) |
| // |
| // Where : |
| // |
| // Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y) |
| // Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y) |
| // |
| // This function computes 'wsrc' and 'mask' as: |
| // |
| // wsrc(x, y) = |
| // AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) - |
| // Mh(x) * Cv(y) * Pabove(x,y) + |
| // AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) |
| // |
| // mask(x, y) = Mh(x) * Mv(y) |
| // |
| // These can then be used to efficiently approximate the error for any |
| // predictor P in the context of the provided neighbouring predictors by |
| // computing: |
| // |
| // error(x, y) = |
| // wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2) |
| // |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, |
| const MACROBLOCKD *xd, int mi_row, |
| int mi_col, const CONV_BUF_TYPE *above, |
| int above_stride, |
| const CONV_BUF_TYPE *left, |
| int left_stride) { |
| #else |
| static void calc_target_weighted_pred(const AV1_COMMON *cm, const MACROBLOCK *x, |
| const MACROBLOCKD *xd, int mi_row, |
| int mi_col, const uint8_t *above, |
| int above_stride, const uint8_t *left, |
| int left_stride) { |
| #endif |
| const BLOCK_SIZE bsize = xd->mi[0]->mbmi.sb_type; |
| const int bw = xd->n8_w << MI_SIZE_LOG2; |
| const int bh = xd->n8_h << MI_SIZE_LOG2; |
| int32_t *mask_buf = x->mask_buf; |
| int32_t *wsrc_buf = x->wsrc_buf; |
| |
| const int is_hbd = (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH) ? 1 : 0; |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| ConvolveParams conv_params = |
| get_conv_params_no_round(0, 0, 0, NULL, MAX_SB_SIZE, 1, xd->bd); |
| const int convolve_rounding_bits = |
| FILTER_BITS * 2 - conv_params.round_0 - conv_params.round_1; |
| const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * |
| (1 << convolve_rounding_bits); |
| #else |
| const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA; |
| #endif |
| |
| // plane 0 should not be subsampled |
| assert(xd->plane[0].subsampling_x == 0); |
| assert(xd->plane[0].subsampling_y == 0); |
| |
| av1_zero_array(wsrc_buf, bw * bh); |
| for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA; |
| |
| // handle above row |
| if (xd->up_available) { |
| const int overlap = |
| AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; |
| struct calc_target_weighted_pred_ctxt ctxt = { x, above, above_stride, |
| overlap }; |
| foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd, mi_col, |
| max_neighbor_obmc[b_width_log2_lookup[bsize]], |
| calc_target_weighted_pred_above, &ctxt); |
| } |
| |
| for (int i = 0; i < bw * bh; ++i) { |
| wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; |
| mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; |
| } |
| |
| // handle left column |
| if (xd->left_available) { |
| const int overlap = |
| AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; |
| struct calc_target_weighted_pred_ctxt ctxt = { x, left, left_stride, |
| overlap }; |
| foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd, mi_row, |
| max_neighbor_obmc[b_height_log2_lookup[bsize]], |
| calc_target_weighted_pred_left, &ctxt); |
| } |
| |
| if (!is_hbd) { |
| const uint8_t *src = x->plane[0].src.buf; |
| |
| for (int row = 0; row < bh; ++row) { |
| for (int col = 0; col < bw; ++col) { |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| wsrc_buf[col] = ROUND_POWER_OF_TWO_SIGNED( |
| src[col] * src_scale - wsrc_buf[col], convolve_rounding_bits); |
| #else |
| wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; |
| #endif |
| } |
| wsrc_buf += bw; |
| src += x->plane[0].src.stride; |
| } |
| } else { |
| const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf); |
| |
| for (int row = 0; row < bh; ++row) { |
| for (int col = 0; col < bw; ++col) { |
| #if CONFIG_OBMC_HIGH_PREC_BLENDING |
| wsrc_buf[col] = ROUND_POWER_OF_TWO_SIGNED( |
| src[col] * src_scale - wsrc_buf[col], convolve_rounding_bits); |
| #else |
| wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; |
| #endif |
| } |
| wsrc_buf += bw; |
| src += x->plane[0].src.stride; |
| } |
| } |
| } |