blob: 03afa303cf440445e01a593ca65243df16a317d2 [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "aom_dsp/arm/mem_neon.h"
#include "av1/encoder/reconinter_enc.h"
void aom_upsampled_pred_neon(MACROBLOCKD *xd, const AV1_COMMON *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred, int width, int height,
int subpel_x_q3, int subpel_y_q3,
const uint8_t *ref, int ref_stride,
int subpel_search) {
// expect xd == NULL only in tests
if (xd != NULL) {
const MB_MODE_INFO *mi = xd->mi[0];
const int ref_num = 0;
const int is_intrabc = is_intrabc_block(mi);
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref_num];
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int plane = 0;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const struct buf_2d *const dst_buf = &pd->dst;
const struct buf_2d *const pre_buf =
is_intrabc ? dst_buf : &pd->pre[ref_num];
InterPredParams inter_pred_params;
inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd);
const int_interpfilters filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
av1_init_inter_params(
&inter_pred_params, width, height, mi_y >> pd->subsampling_y,
mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y,
xd->bd, is_cur_buf_hbd(xd), is_intrabc, sf, pre_buf, filters);
av1_enc_build_one_inter_predictor(comp_pred, width, mv,
&inter_pred_params);
return;
}
}
const InterpFilterParams *filter_params = av1_get_filter(subpel_search);
if (!subpel_x_q3 && !subpel_y_q3) {
if (width > 8) {
assert(width % 16 == 0);
int i = height;
do {
int j = 0;
do {
uint8x16_t r = vld1q_u8(ref + j);
vst1q_u8(comp_pred + j, r);
j += 16;
} while (j < width);
ref += ref_stride;
comp_pred += width;
} while (--i != 0);
} else if (width == 8) {
int i = height;
do {
uint8x8_t r = vld1_u8(ref);
vst1_u8(comp_pred, r);
ref += ref_stride;
comp_pred += width;
} while (--i != 0);
} else {
assert(width == 4);
int i = height / 2;
do {
uint8x8_t r = load_unaligned_u8(ref, ref_stride);
vst1_u8(comp_pred, r);
ref += 2 * ref_stride;
comp_pred += 2 * width;
} while (--i != 0);
}
} else if (!subpel_y_q3) {
const int16_t *const filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q3 << 1);
aom_convolve8_horiz(ref, ref_stride, comp_pred, width, filter_x, 16, NULL,
-1, width, height);
} else if (!subpel_x_q3) {
const int16_t *const filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q3 << 1);
aom_convolve8_vert(ref, ref_stride, comp_pred, width, NULL, -1, filter_y,
16, width, height);
} else {
DECLARE_ALIGNED(16, uint8_t,
im_block[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]);
const int16_t *const filter_x =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_x_q3 << 1);
const int16_t *const filter_y =
av1_get_interp_filter_subpel_kernel(filter_params, subpel_y_q3 << 1);
const int im_stride = MAX_SB_SIZE;
const int im_height = (((height - 1) * 8 + subpel_y_q3) >> 3) + SUBPEL_TAPS;
const int ref_vert_offset = ref_stride * ((SUBPEL_TAPS >> 1) - 1);
const int im_vert_offset = im_stride * ((filter_params->taps >> 1) - 1);
assert(im_height <= (MAX_SB_SIZE * 2 + 16) + 16);
aom_convolve8_horiz(ref - ref_vert_offset, ref_stride, im_block,
MAX_SB_SIZE, filter_x, 16, NULL, -1, width, im_height);
aom_convolve8_vert(im_block + im_vert_offset, MAX_SB_SIZE, comp_pred, width,
NULL, -1, filter_y, 16, width, height);
}
}
void aom_comp_avg_upsampled_pred_neon(MACROBLOCKD *xd,
const AV1_COMMON *const cm, int mi_row,
int mi_col, const MV *const mv,
uint8_t *comp_pred, const uint8_t *pred,
int width, int height, int subpel_x_q3,
int subpel_y_q3, const uint8_t *ref,
int ref_stride, int subpel_search) {
aom_upsampled_pred_neon(xd, cm, mi_row, mi_col, mv, comp_pred, width, height,
subpel_x_q3, subpel_y_q3, ref, ref_stride,
subpel_search);
aom_comp_avg_pred_neon(comp_pred, pred, width, height, comp_pred, width);
}
void aom_dist_wtd_comp_avg_upsampled_pred_neon(
MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref,
int ref_stride, const DIST_WTD_COMP_PARAMS *jcp_param, int subpel_search) {
aom_upsampled_pred_neon(xd, cm, mi_row, mi_col, mv, comp_pred, width, height,
subpel_x_q3, subpel_y_q3, ref, ref_stride,
subpel_search);
aom_dist_wtd_comp_avg_pred_neon(comp_pred, pred, width, height, comp_pred,
width, jcp_param);
}
#if CONFIG_AV1_HIGHBITDEPTH
void aom_highbd_upsampled_pred_neon(MACROBLOCKD *xd,
const struct AV1Common *const cm,
int mi_row, int mi_col, const MV *const mv,
uint8_t *comp_pred8, int width, int height,
int subpel_x_q3, int subpel_y_q3,
const uint8_t *ref8, int ref_stride, int bd,
int subpel_search) {
// expect xd == NULL only in tests
if (xd != NULL) {
const MB_MODE_INFO *mi = xd->mi[0];
const int ref_num = 0;
const int is_intrabc = is_intrabc_block(mi);
const struct scale_factors *const sf =
is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref_num];
const int is_scaled = av1_is_scaled(sf);
if (is_scaled) {
int plane = 0;
const int mi_x = mi_col * MI_SIZE;
const int mi_y = mi_row * MI_SIZE;
const struct macroblockd_plane *const pd = &xd->plane[plane];
const struct buf_2d *const dst_buf = &pd->dst;
const struct buf_2d *const pre_buf =
is_intrabc ? dst_buf : &pd->pre[ref_num];
InterPredParams inter_pred_params;
inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd);
const int_interpfilters filters =
av1_broadcast_interp_filter(EIGHTTAP_REGULAR);
av1_init_inter_params(
&inter_pred_params, width, height, mi_y >> pd->subsampling_y,
mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y,
xd->bd, is_cur_buf_hbd(xd), is_intrabc, sf, pre_buf, filters);
av1_enc_build_one_inter_predictor(comp_pred8, width, mv,
&inter_pred_params);
return;
}
}
const InterpFilterParams *filter = av1_get_filter(subpel_search);
if (!subpel_x_q3 && !subpel_y_q3) {
const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8);
uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8);
if (width > 4) {
assert(width % 8 == 0);
int i = height;
do {
int j = 0;
do {
uint16x8_t r = vld1q_u16(ref + j);
vst1q_u16(comp_pred + j, r);
j += 8;
} while (j < width);
ref += ref_stride;
comp_pred += width;
} while (--i != 0);
} else if (width == 4) {
int i = height;
do {
uint16x4_t r = vld1_u16(ref);
vst1_u16(comp_pred, r);
ref += ref_stride;
comp_pred += width;
} while (--i != 0);
} else {
assert(width == 2);
int i = height / 2;
do {
uint16x4_t r = load_u16_2x2(ref, ref_stride);
store_u16_2x1(comp_pred + 0 * width, r, 0);
store_u16_2x1(comp_pred + 1 * width, r, 1);
ref += 2 * ref_stride;
comp_pred += 2 * width;
} while (--i != 0);
}
} else if (!subpel_y_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
aom_highbd_convolve8_horiz_neon(ref8, ref_stride, comp_pred8, width, kernel,
16, NULL, -1, width, height, bd);
} else if (!subpel_x_q3) {
const int16_t *const kernel =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
aom_highbd_convolve8_vert_neon(ref8, ref_stride, comp_pred8, width, NULL,
-1, kernel, 16, width, height, bd);
} else {
DECLARE_ALIGNED(16, uint16_t,
temp[((MAX_SB_SIZE + 16) + 16) * MAX_SB_SIZE]);
const int16_t *const kernel_x =
av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1);
const int16_t *const kernel_y =
av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1);
const int intermediate_height =
(((height - 1) * 8 + subpel_y_q3) >> 3) + filter->taps;
assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16);
aom_highbd_convolve8_horiz_neon(
ref8 - ref_stride * ((filter->taps >> 1) - 1), ref_stride,
CONVERT_TO_BYTEPTR(temp), MAX_SB_SIZE, kernel_x, 16, NULL, -1, width,
intermediate_height, bd);
aom_highbd_convolve8_vert_neon(
CONVERT_TO_BYTEPTR(temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1)),
MAX_SB_SIZE, comp_pred8, width, NULL, -1, kernel_y, 16, width, height,
bd);
}
}
void aom_highbd_comp_avg_upsampled_pred_neon(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8,
int ref_stride, int bd, int subpel_search) {
aom_highbd_upsampled_pred_neon(xd, cm, mi_row, mi_col, mv, comp_pred8, width,
height, subpel_x_q3, subpel_y_q3, ref8,
ref_stride, bd, subpel_search);
aom_highbd_comp_avg_pred_neon(comp_pred8, pred8, width, height, comp_pred8,
width);
}
void aom_highbd_dist_wtd_comp_avg_upsampled_pred_neon(
MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col,
const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width,
int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8,
int ref_stride, int bd, const DIST_WTD_COMP_PARAMS *jcp_param,
int subpel_search) {
aom_highbd_upsampled_pred_neon(xd, cm, mi_row, mi_col, mv, comp_pred8, width,
height, subpel_x_q3, subpel_y_q3, ref8,
ref_stride, bd, subpel_search);
aom_highbd_dist_wtd_comp_avg_pred_neon(comp_pred8, pred8, width, height,
comp_pred8, width, jcp_param);
}
#endif // CONFIG_AV1_HIGHBITDEPTH