|  | /* | 
|  | * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <math.h> | 
|  |  | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/ssim.h" | 
|  | #include "aom_ports/mem.h" | 
|  |  | 
|  | void aom_ssim_parms_8x8_c(const uint8_t *s, int sp, const uint8_t *r, int rp, | 
|  | uint32_t *sum_s, uint32_t *sum_r, uint32_t *sum_sq_s, | 
|  | uint32_t *sum_sq_r, uint32_t *sum_sxr) { | 
|  | int i, j; | 
|  | for (i = 0; i < 8; i++, s += sp, r += rp) { | 
|  | for (j = 0; j < 8; j++) { | 
|  | *sum_s += s[j]; | 
|  | *sum_r += r[j]; | 
|  | *sum_sq_s += s[j] * s[j]; | 
|  | *sum_sq_r += r[j] * r[j]; | 
|  | *sum_sxr += s[j] * r[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static const int64_t cc1 = 26634;        // (64^2*(.01*255)^2 | 
|  | static const int64_t cc2 = 239708;       // (64^2*(.03*255)^2 | 
|  | static const int64_t cc1_10 = 428658;    // (64^2*(.01*1023)^2 | 
|  | static const int64_t cc2_10 = 3857925;   // (64^2*(.03*1023)^2 | 
|  | static const int64_t cc1_12 = 6868593;   // (64^2*(.01*4095)^2 | 
|  | static const int64_t cc2_12 = 61817334;  // (64^2*(.03*4095)^2 | 
|  |  | 
|  | static double similarity(uint32_t sum_s, uint32_t sum_r, uint32_t sum_sq_s, | 
|  | uint32_t sum_sq_r, uint32_t sum_sxr, int count, | 
|  | uint32_t bd) { | 
|  | double ssim_n, ssim_d; | 
|  | int64_t c1 = 0, c2 = 0; | 
|  | if (bd == 8) { | 
|  | // scale the constants by number of pixels | 
|  | c1 = (cc1 * count * count) >> 12; | 
|  | c2 = (cc2 * count * count) >> 12; | 
|  | } else if (bd == 10) { | 
|  | c1 = (cc1_10 * count * count) >> 12; | 
|  | c2 = (cc2_10 * count * count) >> 12; | 
|  | } else if (bd == 12) { | 
|  | c1 = (cc1_12 * count * count) >> 12; | 
|  | c2 = (cc2_12 * count * count) >> 12; | 
|  | } else { | 
|  | assert(0); | 
|  | // Return similarity as zero for unsupported bit-depth values. | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ssim_n = (2.0 * sum_s * sum_r + c1) * | 
|  | (2.0 * count * sum_sxr - 2.0 * sum_s * sum_r + c2); | 
|  |  | 
|  | ssim_d = ((double)sum_s * sum_s + (double)sum_r * sum_r + c1) * | 
|  | ((double)count * sum_sq_s - (double)sum_s * sum_s + | 
|  | (double)count * sum_sq_r - (double)sum_r * sum_r + c2); | 
|  |  | 
|  | return ssim_n / ssim_d; | 
|  | } | 
|  |  | 
|  | static double ssim_8x8(const uint8_t *s, int sp, const uint8_t *r, int rp) { | 
|  | uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; | 
|  | aom_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, | 
|  | &sum_sxr); | 
|  | return similarity(sum_s, sum_r, sum_sq_s, sum_sq_r, sum_sxr, 64, 8); | 
|  | } | 
|  |  | 
|  | // We are using a 8x8 moving window with starting location of each 8x8 window | 
|  | // on the 4x4 pixel grid. Such arrangement allows the windows to overlap | 
|  | // block boundaries to penalize blocking artifacts. | 
|  | double aom_ssim2(const uint8_t *img1, const uint8_t *img2, int stride_img1, | 
|  | int stride_img2, int width, int height) { | 
|  | int i, j; | 
|  | int samples = 0; | 
|  | double ssim_total = 0; | 
|  |  | 
|  | // sample point start with each 4x4 location | 
|  | for (i = 0; i <= height - 8; | 
|  | i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { | 
|  | for (j = 0; j <= width - 8; j += 4) { | 
|  | double v = ssim_8x8(img1 + j, stride_img1, img2 + j, stride_img2); | 
|  | ssim_total += v; | 
|  | samples++; | 
|  | } | 
|  | } | 
|  | ssim_total /= samples; | 
|  | return ssim_total; | 
|  | } | 
|  |  | 
|  | #if CONFIG_INTERNAL_STATS | 
|  | void aom_lowbd_calc_ssim(const YV12_BUFFER_CONFIG *source, | 
|  | const YV12_BUFFER_CONFIG *dest, double *weight, | 
|  | double *fast_ssim) { | 
|  | double abc[3]; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | const int is_uv = i > 0; | 
|  | abc[i] = aom_ssim2(source->buffers[i], dest->buffers[i], | 
|  | source->strides[is_uv], dest->strides[is_uv], | 
|  | source->crop_widths[is_uv], source->crop_heights[is_uv]); | 
|  | } | 
|  |  | 
|  | *weight = 1; | 
|  | *fast_ssim = abc[0] * .8 + .1 * (abc[1] + abc[2]); | 
|  | } | 
|  |  | 
|  | // traditional ssim as per: http://en.wikipedia.org/wiki/Structural_similarity | 
|  | // | 
|  | // Re working out the math -> | 
|  | // | 
|  | // ssim(x,y) =  (2*mean(x)*mean(y) + c1)*(2*cov(x,y)+c2) / | 
|  | //   ((mean(x)^2+mean(y)^2+c1)*(var(x)+var(y)+c2)) | 
|  | // | 
|  | // mean(x) = sum(x) / n | 
|  | // | 
|  | // cov(x,y) = (n*sum(xi*yi)-sum(x)*sum(y))/(n*n) | 
|  | // | 
|  | // var(x) = (n*sum(xi*xi)-sum(xi)*sum(xi))/(n*n) | 
|  | // | 
|  | // ssim(x,y) = | 
|  | //   (2*sum(x)*sum(y)/(n*n) + c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))/(n*n)+c2) / | 
|  | //   (((sum(x)*sum(x)+sum(y)*sum(y))/(n*n) +c1) * | 
|  | //    ((n*sum(xi*xi) - sum(xi)*sum(xi))/(n*n)+ | 
|  | //     (n*sum(yi*yi) - sum(yi)*sum(yi))/(n*n)+c2))) | 
|  | // | 
|  | // factoring out n*n | 
|  | // | 
|  | // ssim(x,y) = | 
|  | //   (2*sum(x)*sum(y) + n*n*c1)*(2*(n*sum(xi*yi)-sum(x)*sum(y))+n*n*c2) / | 
|  | //   (((sum(x)*sum(x)+sum(y)*sum(y)) + n*n*c1) * | 
|  | //    (n*sum(xi*xi)-sum(xi)*sum(xi)+n*sum(yi*yi)-sum(yi)*sum(yi)+n*n*c2)) | 
|  | // | 
|  | // Replace c1 with n*n * c1 for the final step that leads to this code: | 
|  | // The final step scales by 12 bits so we don't lose precision in the constants. | 
|  |  | 
|  | static double ssimv_similarity(const Ssimv *sv, int64_t n) { | 
|  | // Scale the constants by number of pixels. | 
|  | const int64_t c1 = (cc1 * n * n) >> 12; | 
|  | const int64_t c2 = (cc2 * n * n) >> 12; | 
|  |  | 
|  | const double l = 1.0 * (2 * sv->sum_s * sv->sum_r + c1) / | 
|  | (sv->sum_s * sv->sum_s + sv->sum_r * sv->sum_r + c1); | 
|  |  | 
|  | // Since these variables are unsigned sums, convert to double so | 
|  | // math is done in double arithmetic. | 
|  | const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / | 
|  | (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + | 
|  | n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); | 
|  |  | 
|  | return l * v; | 
|  | } | 
|  |  | 
|  | // The first term of the ssim metric is a luminance factor. | 
|  | // | 
|  | // (2*mean(x)*mean(y) + c1)/ (mean(x)^2+mean(y)^2+c1) | 
|  | // | 
|  | // This luminance factor is super sensitive to the dark side of luminance | 
|  | // values and completely insensitive on the white side.  check out 2 sets | 
|  | // (1,3) and (250,252) the term gives ( 2*1*3/(1+9) = .60 | 
|  | // 2*250*252/ (250^2+252^2) => .99999997 | 
|  | // | 
|  | // As a result in this tweaked version of the calculation in which the | 
|  | // luminance is taken as percentage off from peak possible. | 
|  | // | 
|  | // 255 * 255 - (sum_s - sum_r) / count * (sum_s - sum_r) / count | 
|  | // | 
|  | static double ssimv_similarity2(const Ssimv *sv, int64_t n) { | 
|  | // Scale the constants by number of pixels. | 
|  | const int64_t c1 = (cc1 * n * n) >> 12; | 
|  | const int64_t c2 = (cc2 * n * n) >> 12; | 
|  |  | 
|  | const double mean_diff = (1.0 * sv->sum_s - sv->sum_r) / n; | 
|  | const double l = (255 * 255 - mean_diff * mean_diff + c1) / (255 * 255 + c1); | 
|  |  | 
|  | // Since these variables are unsigned, sums convert to double so | 
|  | // math is done in double arithmetic. | 
|  | const double v = (2.0 * n * sv->sum_sxr - 2 * sv->sum_s * sv->sum_r + c2) / | 
|  | (n * sv->sum_sq_s - sv->sum_s * sv->sum_s + | 
|  | n * sv->sum_sq_r - sv->sum_r * sv->sum_r + c2); | 
|  |  | 
|  | return l * v; | 
|  | } | 
|  | static void ssimv_parms(uint8_t *img1, int img1_pitch, uint8_t *img2, | 
|  | int img2_pitch, Ssimv *sv) { | 
|  | aom_ssim_parms_8x8(img1, img1_pitch, img2, img2_pitch, &sv->sum_s, &sv->sum_r, | 
|  | &sv->sum_sq_s, &sv->sum_sq_r, &sv->sum_sxr); | 
|  | } | 
|  |  | 
|  | double aom_get_ssim_metrics(uint8_t *img1, int img1_pitch, uint8_t *img2, | 
|  | int img2_pitch, int width, int height, Ssimv *sv2, | 
|  | Metrics *m, int do_inconsistency) { | 
|  | double dssim_total = 0; | 
|  | double ssim_total = 0; | 
|  | double ssim2_total = 0; | 
|  | double inconsistency_total = 0; | 
|  | int i, j; | 
|  | int c = 0; | 
|  | double norm; | 
|  | double old_ssim_total = 0; | 
|  | // We can sample points as frequently as we like start with 1 per 4x4. | 
|  | for (i = 0; i < height; | 
|  | i += 4, img1 += img1_pitch * 4, img2 += img2_pitch * 4) { | 
|  | for (j = 0; j < width; j += 4, ++c) { | 
|  | Ssimv sv = { 0, 0, 0, 0, 0, 0 }; | 
|  | double ssim; | 
|  | double ssim2; | 
|  | double dssim; | 
|  | uint32_t var_new; | 
|  | uint32_t var_old; | 
|  | uint32_t mean_new; | 
|  | uint32_t mean_old; | 
|  | double ssim_new; | 
|  | double ssim_old; | 
|  |  | 
|  | // Not sure there's a great way to handle the edge pixels | 
|  | // in ssim when using a window. Seems biased against edge pixels | 
|  | // however you handle this. This uses only samples that are | 
|  | // fully in the frame. | 
|  | if (j + 8 <= width && i + 8 <= height) { | 
|  | ssimv_parms(img1 + j, img1_pitch, img2 + j, img2_pitch, &sv); | 
|  | } | 
|  |  | 
|  | ssim = ssimv_similarity(&sv, 64); | 
|  | ssim2 = ssimv_similarity2(&sv, 64); | 
|  |  | 
|  | sv.ssim = ssim2; | 
|  |  | 
|  | // dssim is calculated to use as an actual error metric and | 
|  | // is scaled up to the same range as sum square error. | 
|  | // Since we are subsampling every 16th point maybe this should be | 
|  | // *16 ? | 
|  | dssim = 255 * 255 * (1 - ssim2) / 2; | 
|  |  | 
|  | // Here I introduce a new error metric: consistency-weighted | 
|  | // SSIM-inconsistency.  This metric isolates frames where the | 
|  | // SSIM 'suddenly' changes, e.g. if one frame in every 8 is much | 
|  | // sharper or blurrier than the others. Higher values indicate a | 
|  | // temporally inconsistent SSIM. There are two ideas at work: | 
|  | // | 
|  | // 1) 'SSIM-inconsistency': the total inconsistency value | 
|  | // reflects how much SSIM values are changing between this | 
|  | // source / reference frame pair and the previous pair. | 
|  | // | 
|  | // 2) 'consistency-weighted': weights de-emphasize areas in the | 
|  | // frame where the scene content has changed. Changes in scene | 
|  | // content are detected via changes in local variance and local | 
|  | // mean. | 
|  | // | 
|  | // Thus the overall measure reflects how inconsistent the SSIM | 
|  | // values are, over consistent regions of the frame. | 
|  | // | 
|  | // The metric has three terms: | 
|  | // | 
|  | // term 1 -> uses change in scene Variance to weight error score | 
|  | //  2 * var(Fi)*var(Fi-1) / (var(Fi)^2+var(Fi-1)^2) | 
|  | //  larger changes from one frame to the next mean we care | 
|  | //  less about consistency. | 
|  | // | 
|  | // term 2 -> uses change in local scene luminance to weight error | 
|  | //  2 * avg(Fi)*avg(Fi-1) / (avg(Fi)^2+avg(Fi-1)^2) | 
|  | //  larger changes from one frame to the next mean we care | 
|  | //  less about consistency. | 
|  | // | 
|  | // term3 -> measures inconsistency in ssim scores between frames | 
|  | //   1 - ( 2 * ssim(Fi)*ssim(Fi-1)/(ssim(Fi)^2+sssim(Fi-1)^2). | 
|  | // | 
|  | // This term compares the ssim score for the same location in 2 | 
|  | // subsequent frames. | 
|  | var_new = sv.sum_sq_s - sv.sum_s * sv.sum_s / 64; | 
|  | var_old = sv2[c].sum_sq_s - sv2[c].sum_s * sv2[c].sum_s / 64; | 
|  | mean_new = sv.sum_s; | 
|  | mean_old = sv2[c].sum_s; | 
|  | ssim_new = sv.ssim; | 
|  | ssim_old = sv2[c].ssim; | 
|  |  | 
|  | if (do_inconsistency) { | 
|  | // We do the metric once for every 4x4 block in the image. Since | 
|  | // we are scaling the error to SSE for use in a psnr calculation | 
|  | // 1.0 = 4x4x255x255 the worst error we can possibly have. | 
|  | static const double kScaling = 4. * 4 * 255 * 255; | 
|  |  | 
|  | // The constants have to be non 0 to avoid potential divide by 0 | 
|  | // issues other than that they affect kind of a weighting between | 
|  | // the terms.  No testing of what the right terms should be has been | 
|  | // done. | 
|  | static const double c1 = 1, c2 = 1, c3 = 1; | 
|  |  | 
|  | // This measures how much consistent variance is in two consecutive | 
|  | // source frames. 1.0 means they have exactly the same variance. | 
|  | const double variance_term = | 
|  | (2.0 * var_old * var_new + c1) / | 
|  | (1.0 * var_old * var_old + 1.0 * var_new * var_new + c1); | 
|  |  | 
|  | // This measures how consistent the local mean are between two | 
|  | // consecutive frames. 1.0 means they have exactly the same mean. | 
|  | const double mean_term = | 
|  | (2.0 * mean_old * mean_new + c2) / | 
|  | (1.0 * mean_old * mean_old + 1.0 * mean_new * mean_new + c2); | 
|  |  | 
|  | // This measures how consistent the ssims of two | 
|  | // consecutive frames is. 1.0 means they are exactly the same. | 
|  | double ssim_term = | 
|  | pow((2.0 * ssim_old * ssim_new + c3) / | 
|  | (ssim_old * ssim_old + ssim_new * ssim_new + c3), | 
|  | 5); | 
|  |  | 
|  | double this_inconsistency; | 
|  |  | 
|  | // Floating point math sometimes makes this > 1 by a tiny bit. | 
|  | // We want the metric to scale between 0 and 1.0 so we can convert | 
|  | // it to an snr scaled value. | 
|  | if (ssim_term > 1) ssim_term = 1; | 
|  |  | 
|  | // This converts the consistency metric to an inconsistency metric | 
|  | // ( so we can scale it like psnr to something like sum square error. | 
|  | // The reason for the variance and mean terms is the assumption that | 
|  | // if there are big changes in the source we shouldn't penalize | 
|  | // inconsistency in ssim scores a bit less as it will be less visible | 
|  | // to the user. | 
|  | this_inconsistency = (1 - ssim_term) * variance_term * mean_term; | 
|  |  | 
|  | this_inconsistency *= kScaling; | 
|  | inconsistency_total += this_inconsistency; | 
|  | } | 
|  | sv2[c] = sv; | 
|  | ssim_total += ssim; | 
|  | ssim2_total += ssim2; | 
|  | dssim_total += dssim; | 
|  |  | 
|  | old_ssim_total += ssim_old; | 
|  | } | 
|  | old_ssim_total += 0; | 
|  | } | 
|  |  | 
|  | norm = 1. / (width / 4) / (height / 4); | 
|  | ssim_total *= norm; | 
|  | ssim2_total *= norm; | 
|  | m->ssim2 = ssim2_total; | 
|  | m->ssim = ssim_total; | 
|  | if (old_ssim_total == 0) inconsistency_total = 0; | 
|  |  | 
|  | m->ssimc = inconsistency_total; | 
|  |  | 
|  | m->dssim = dssim_total; | 
|  | return inconsistency_total; | 
|  | } | 
|  | #endif  // CONFIG_INTERNAL_STATS | 
|  |  | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | void aom_highbd_ssim_parms_8x8_c(const uint16_t *s, int sp, const uint16_t *r, | 
|  | int rp, uint32_t *sum_s, uint32_t *sum_r, | 
|  | uint32_t *sum_sq_s, uint32_t *sum_sq_r, | 
|  | uint32_t *sum_sxr) { | 
|  | int i, j; | 
|  | for (i = 0; i < 8; i++, s += sp, r += rp) { | 
|  | for (j = 0; j < 8; j++) { | 
|  | *sum_s += s[j]; | 
|  | *sum_r += r[j]; | 
|  | *sum_sq_s += s[j] * s[j]; | 
|  | *sum_sq_r += r[j] * r[j]; | 
|  | *sum_sxr += s[j] * r[j]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static double highbd_ssim_8x8(const uint16_t *s, int sp, const uint16_t *r, | 
|  | int rp, uint32_t bd, uint32_t shift) { | 
|  | uint32_t sum_s = 0, sum_r = 0, sum_sq_s = 0, sum_sq_r = 0, sum_sxr = 0; | 
|  | aom_highbd_ssim_parms_8x8(s, sp, r, rp, &sum_s, &sum_r, &sum_sq_s, &sum_sq_r, | 
|  | &sum_sxr); | 
|  | return similarity(sum_s >> shift, sum_r >> shift, sum_sq_s >> (2 * shift), | 
|  | sum_sq_r >> (2 * shift), sum_sxr >> (2 * shift), 64, bd); | 
|  | } | 
|  |  | 
|  | double aom_highbd_ssim2(const uint8_t *img1, const uint8_t *img2, | 
|  | int stride_img1, int stride_img2, int width, int height, | 
|  | uint32_t bd, uint32_t shift) { | 
|  | int i, j; | 
|  | int samples = 0; | 
|  | double ssim_total = 0; | 
|  |  | 
|  | // sample point start with each 4x4 location | 
|  | for (i = 0; i <= height - 8; | 
|  | i += 4, img1 += stride_img1 * 4, img2 += stride_img2 * 4) { | 
|  | for (j = 0; j <= width - 8; j += 4) { | 
|  | double v = highbd_ssim_8x8(CONVERT_TO_SHORTPTR(img1 + j), stride_img1, | 
|  | CONVERT_TO_SHORTPTR(img2 + j), stride_img2, bd, | 
|  | shift); | 
|  | ssim_total += v; | 
|  | samples++; | 
|  | } | 
|  | } | 
|  | ssim_total /= samples; | 
|  | return ssim_total; | 
|  | } | 
|  |  | 
|  | #if CONFIG_INTERNAL_STATS | 
|  | void aom_highbd_calc_ssim(const YV12_BUFFER_CONFIG *source, | 
|  | const YV12_BUFFER_CONFIG *dest, double *weight, | 
|  | uint32_t bd, uint32_t in_bd, double *fast_ssim) { | 
|  | assert(bd >= in_bd); | 
|  | uint32_t shift = bd - in_bd; | 
|  |  | 
|  | double abc[3]; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | const int is_uv = i > 0; | 
|  | abc[i] = aom_highbd_ssim2(source->buffers[i], dest->buffers[i], | 
|  | source->strides[is_uv], dest->strides[is_uv], | 
|  | source->crop_widths[is_uv], | 
|  | source->crop_heights[is_uv], in_bd, shift); | 
|  | } | 
|  |  | 
|  | weight[0] = 1; | 
|  | fast_ssim[0] = abc[0] * .8 + .1 * (abc[1] + abc[2]); | 
|  |  | 
|  | if (bd > in_bd) { | 
|  | // Compute SSIM based on stream bit depth | 
|  | shift = 0; | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | const int is_uv = i > 0; | 
|  | abc[i] = aom_highbd_ssim2(source->buffers[i], dest->buffers[i], | 
|  | source->strides[is_uv], dest->strides[is_uv], | 
|  | source->crop_widths[is_uv], | 
|  | source->crop_heights[is_uv], bd, shift); | 
|  | } | 
|  |  | 
|  | weight[1] = 1; | 
|  | fast_ssim[1] = abc[0] * .8 + .1 * (abc[1] + abc[2]); | 
|  | } | 
|  | } | 
|  | #endif  // CONFIG_INTERNAL_STATS | 
|  | #endif  // CONFIG_AV1_HIGHBITDEPTH | 
|  |  | 
|  | #if CONFIG_INTERNAL_STATS | 
|  | void aom_calc_ssim(const YV12_BUFFER_CONFIG *orig, | 
|  | const YV12_BUFFER_CONFIG *recon, const uint32_t bit_depth, | 
|  | const uint32_t in_bit_depth, int is_hbd, double *weight, | 
|  | double *frame_ssim2) { | 
|  | #if CONFIG_AV1_HIGHBITDEPTH | 
|  | if (is_hbd) { | 
|  | aom_highbd_calc_ssim(orig, recon, weight, bit_depth, in_bit_depth, | 
|  | frame_ssim2); | 
|  | return; | 
|  | } | 
|  | #else | 
|  | (void)bit_depth; | 
|  | (void)in_bit_depth; | 
|  | (void)is_hbd; | 
|  | #endif  // CONFIG_AV1_HIGHBITDEPTH | 
|  | aom_lowbd_calc_ssim(orig, recon, weight, frame_ssim2); | 
|  | } | 
|  | #endif  // CONFIG_INTERNAL_STATS |