| /* |
| * Copyright (c) 2016, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <math.h> |
| |
| #include "config/aom_config.h" |
| #include "config/aom_dsp_rtcd.h" |
| |
| #include "aom_dsp/aom_dsp_common.h" |
| #include "aom_mem/aom_mem.h" |
| #include "aom_ports/mem.h" |
| #include "av1/common/av1_loopfilter.h" |
| #include "av1/common/onyxc_int.h" |
| #include "av1/common/reconinter.h" |
| #include "av1/common/seg_common.h" |
| |
| static const SEG_LVL_FEATURES seg_lvl_lf_lut[MAX_MB_PLANE][2] = { |
| { SEG_LVL_ALT_LF_Y_V, SEG_LVL_ALT_LF_Y_H }, |
| { SEG_LVL_ALT_LF_U, SEG_LVL_ALT_LF_U }, |
| { SEG_LVL_ALT_LF_V, SEG_LVL_ALT_LF_V } |
| }; |
| |
| static const int delta_lf_id_lut[MAX_MB_PLANE][2] = { { 0, 1 }, |
| { 2, 2 }, |
| { 3, 3 } }; |
| |
| static const int mode_lf_lut[] = { |
| 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // INTRA_MODES |
| 1, 1, 0, 1, // INTER_MODES (GLOBALMV == 0) |
| 1, 1, 1, 1, 1, 1, 0, 1 // INTER_COMPOUND_MODES (GLOBAL_GLOBALMV == 0) |
| }; |
| |
| static void update_sharpness(loop_filter_info_n *lfi, int sharpness_lvl) { |
| int lvl; |
| |
| // For each possible value for the loop filter fill out limits |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) { |
| // Set loop filter parameters that control sharpness. |
| int block_inside_limit = lvl >> ((sharpness_lvl > 0) + (sharpness_lvl > 4)); |
| |
| if (sharpness_lvl > 0) { |
| if (block_inside_limit > (9 - sharpness_lvl)) |
| block_inside_limit = (9 - sharpness_lvl); |
| } |
| |
| if (block_inside_limit < 1) block_inside_limit = 1; |
| |
| memset(lfi->lfthr[lvl].lim, block_inside_limit, SIMD_WIDTH); |
| memset(lfi->lfthr[lvl].mblim, (2 * (lvl + 2) + block_inside_limit), |
| SIMD_WIDTH); |
| } |
| } |
| |
| uint8_t av1_get_filter_level(const AV1_COMMON *cm, |
| const loop_filter_info_n *lfi_n, const int dir_idx, |
| int plane, const MB_MODE_INFO *mbmi) { |
| const int segment_id = mbmi->segment_id; |
| if (cm->delta_q_info.delta_lf_present_flag) { |
| int8_t delta_lf; |
| if (cm->delta_q_info.delta_lf_multi) { |
| const int delta_lf_idx = delta_lf_id_lut[plane][dir_idx]; |
| delta_lf = mbmi->delta_lf[delta_lf_idx]; |
| } else { |
| delta_lf = mbmi->delta_lf_from_base; |
| } |
| int base_level; |
| if (plane == 0) |
| base_level = cm->lf.filter_level[dir_idx]; |
| else if (plane == 1) |
| base_level = cm->lf.filter_level_u; |
| else |
| base_level = cm->lf.filter_level_v; |
| int lvl_seg = clamp(delta_lf + base_level, 0, MAX_LOOP_FILTER); |
| assert(plane >= 0 && plane <= 2); |
| const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir_idx]; |
| if (segfeature_active(&cm->seg, segment_id, seg_lf_feature_id)) { |
| const int data = get_segdata(&cm->seg, segment_id, seg_lf_feature_id); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| |
| if (cm->lf.mode_ref_delta_enabled) { |
| const int scale = 1 << (lvl_seg >> 5); |
| lvl_seg += cm->lf.ref_deltas[mbmi->ref_frame[0]] * scale; |
| if (mbmi->ref_frame[0] > INTRA_FRAME) |
| lvl_seg += cm->lf.mode_deltas[mode_lf_lut[mbmi->mode]] * scale; |
| lvl_seg = clamp(lvl_seg, 0, MAX_LOOP_FILTER); |
| } |
| return lvl_seg; |
| } else { |
| return lfi_n->lvl[plane][segment_id][dir_idx][mbmi->ref_frame[0]] |
| [mode_lf_lut[mbmi->mode]]; |
| } |
| } |
| |
| void av1_loop_filter_init(AV1_COMMON *cm) { |
| assert(MB_MODE_COUNT == NELEMENTS(mode_lf_lut)); |
| loop_filter_info_n *lfi = &cm->lf_info; |
| struct loopfilter *lf = &cm->lf; |
| int lvl; |
| |
| lf->combine_vert_horz_lf = 1; |
| |
| // init limits for given sharpness |
| update_sharpness(lfi, lf->sharpness_level); |
| |
| // init hev threshold const vectors |
| for (lvl = 0; lvl <= MAX_LOOP_FILTER; lvl++) |
| memset(lfi->lfthr[lvl].hev_thr, (lvl >> 4), SIMD_WIDTH); |
| } |
| |
| // Update the loop filter for the current frame. |
| // This should be called before loop_filter_rows(), |
| // av1_loop_filter_frame() calls this function directly. |
| void av1_loop_filter_frame_init(AV1_COMMON *cm, int plane_start, |
| int plane_end) { |
| int filt_lvl[MAX_MB_PLANE], filt_lvl_r[MAX_MB_PLANE]; |
| int plane; |
| int seg_id; |
| // n_shift is the multiplier for lf_deltas |
| // the multiplier is 1 for when filter_lvl is between 0 and 31; |
| // 2 when filter_lvl is between 32 and 63 |
| loop_filter_info_n *const lfi = &cm->lf_info; |
| struct loopfilter *const lf = &cm->lf; |
| const struct segmentation *const seg = &cm->seg; |
| |
| // update sharpness limits |
| update_sharpness(lfi, lf->sharpness_level); |
| |
| filt_lvl[0] = cm->lf.filter_level[0]; |
| filt_lvl[1] = cm->lf.filter_level_u; |
| filt_lvl[2] = cm->lf.filter_level_v; |
| |
| filt_lvl_r[0] = cm->lf.filter_level[1]; |
| filt_lvl_r[1] = cm->lf.filter_level_u; |
| filt_lvl_r[2] = cm->lf.filter_level_v; |
| |
| assert(plane_start >= AOM_PLANE_Y); |
| assert(plane_end <= MAX_MB_PLANE); |
| |
| for (plane = plane_start; plane < plane_end; plane++) { |
| if (plane == 0 && !filt_lvl[0] && !filt_lvl_r[0]) |
| break; |
| else if (plane == 1 && !filt_lvl[1]) |
| continue; |
| else if (plane == 2 && !filt_lvl[2]) |
| continue; |
| |
| for (seg_id = 0; seg_id < MAX_SEGMENTS; seg_id++) { |
| for (int dir = 0; dir < 2; ++dir) { |
| int lvl_seg = (dir == 0) ? filt_lvl[plane] : filt_lvl_r[plane]; |
| const int seg_lf_feature_id = seg_lvl_lf_lut[plane][dir]; |
| if (segfeature_active(seg, seg_id, seg_lf_feature_id)) { |
| const int data = get_segdata(&cm->seg, seg_id, seg_lf_feature_id); |
| lvl_seg = clamp(lvl_seg + data, 0, MAX_LOOP_FILTER); |
| } |
| |
| if (!lf->mode_ref_delta_enabled) { |
| // we could get rid of this if we assume that deltas are set to |
| // zero when not in use; encoder always uses deltas |
| memset(lfi->lvl[plane][seg_id][dir], lvl_seg, |
| sizeof(lfi->lvl[plane][seg_id][dir])); |
| } else { |
| int ref, mode; |
| const int scale = 1 << (lvl_seg >> 5); |
| const int intra_lvl = lvl_seg + lf->ref_deltas[INTRA_FRAME] * scale; |
| lfi->lvl[plane][seg_id][dir][INTRA_FRAME][0] = |
| clamp(intra_lvl, 0, MAX_LOOP_FILTER); |
| |
| for (ref = LAST_FRAME; ref < REF_FRAMES; ++ref) { |
| for (mode = 0; mode < MAX_MODE_LF_DELTAS; ++mode) { |
| const int inter_lvl = lvl_seg + lf->ref_deltas[ref] * scale + |
| lf->mode_deltas[mode] * scale; |
| lfi->lvl[plane][seg_id][dir][ref][mode] = |
| clamp(inter_lvl, 0, MAX_LOOP_FILTER); |
| } |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| static TX_SIZE get_transform_size(const MACROBLOCKD *const xd, |
| const MB_MODE_INFO *const mbmi, |
| const EDGE_DIR edge_dir, const int mi_row, |
| const int mi_col, const int plane, |
| const struct macroblockd_plane *plane_ptr) { |
| assert(mbmi != NULL); |
| if (xd && xd->lossless[mbmi->segment_id]) return TX_4X4; |
| |
| TX_SIZE tx_size = |
| (plane == AOM_PLANE_Y) |
| ? mbmi->tx_size |
| : av1_get_max_uv_txsize(mbmi->sb_type, plane_ptr->subsampling_x, |
| plane_ptr->subsampling_y); |
| assert(tx_size < TX_SIZES_ALL); |
| if ((plane == AOM_PLANE_Y) && is_inter_block(mbmi) && !mbmi->skip) { |
| const BLOCK_SIZE sb_type = mbmi->sb_type; |
| const int blk_row = mi_row & (mi_size_high[sb_type] - 1); |
| const int blk_col = mi_col & (mi_size_wide[sb_type] - 1); |
| const TX_SIZE mb_tx_size = |
| mbmi->inter_tx_size[av1_get_txb_size_index(sb_type, blk_row, blk_col)]; |
| assert(mb_tx_size < TX_SIZES_ALL); |
| tx_size = mb_tx_size; |
| } |
| |
| // since in case of chrominance or non-square transform need to convert |
| // transform size into transform size in particular direction. |
| // for vertical edge, filter direction is horizontal, for horizontal |
| // edge, filter direction is vertical. |
| tx_size = (VERT_EDGE == edge_dir) ? txsize_horz_map[tx_size] |
| : txsize_vert_map[tx_size]; |
| return tx_size; |
| } |
| |
| typedef struct AV1_DEBLOCKING_PARAMETERS { |
| // length of the filter applied to the outer edge |
| uint32_t filter_length; |
| // deblocking limits |
| const uint8_t *lim; |
| const uint8_t *mblim; |
| const uint8_t *hev_thr; |
| } AV1_DEBLOCKING_PARAMETERS; |
| |
| // Return TX_SIZE from get_transform_size(), so it is plane and direction |
| // aware |
| static TX_SIZE set_lpf_parameters( |
| AV1_DEBLOCKING_PARAMETERS *const params, const ptrdiff_t mode_step, |
| const AV1_COMMON *const cm, const MACROBLOCKD *const xd, |
| const EDGE_DIR edge_dir, const uint32_t x, const uint32_t y, |
| const int plane, const struct macroblockd_plane *const plane_ptr) { |
| // reset to initial values |
| params->filter_length = 0; |
| |
| // no deblocking is required |
| const uint32_t width = plane_ptr->dst.width; |
| const uint32_t height = plane_ptr->dst.height; |
| if ((width <= x) || (height <= y)) { |
| // just return the smallest transform unit size |
| return TX_4X4; |
| } |
| |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| // for sub8x8 block, chroma prediction mode is obtained from the bottom/right |
| // mi structure of the co-located 8x8 luma block. so for chroma plane, mi_row |
| // and mi_col should map to the bottom/right mi structure, i.e, both mi_row |
| // and mi_col should be odd number for chroma plane. |
| const int mi_row = scale_vert | ((y << scale_vert) >> MI_SIZE_LOG2); |
| const int mi_col = scale_horz | ((x << scale_horz) >> MI_SIZE_LOG2); |
| MB_MODE_INFO **mi = cm->mi_grid_base + mi_row * cm->mi_stride + mi_col; |
| const MB_MODE_INFO *mbmi = mi[0]; |
| // If current mbmi is not correctly setup, return an invalid value to stop |
| // filtering. One example is that if this tile is not coded, then its mbmi |
| // it not set up. |
| if (mbmi == NULL) return TX_INVALID; |
| |
| const TX_SIZE ts = |
| get_transform_size(xd, mi[0], edge_dir, mi_row, mi_col, plane, plane_ptr); |
| |
| { |
| const uint32_t coord = (VERT_EDGE == edge_dir) ? (x) : (y); |
| const uint32_t transform_masks = |
| edge_dir == VERT_EDGE ? tx_size_wide[ts] - 1 : tx_size_high[ts] - 1; |
| const int32_t tu_edge = (coord & transform_masks) ? (0) : (1); |
| |
| if (!tu_edge) return ts; |
| |
| // prepare outer edge parameters. deblock the edge if it's an edge of a TU |
| { |
| const uint32_t curr_level = |
| av1_get_filter_level(cm, &cm->lf_info, edge_dir, plane, mbmi); |
| const int curr_skipped = mbmi->skip && is_inter_block(mbmi); |
| uint32_t level = curr_level; |
| if (coord) { |
| { |
| const MB_MODE_INFO *const mi_prev = *(mi - mode_step); |
| if (mi_prev == NULL) return TX_INVALID; |
| const int pv_row = |
| (VERT_EDGE == edge_dir) ? (mi_row) : (mi_row - (1 << scale_vert)); |
| const int pv_col = |
| (VERT_EDGE == edge_dir) ? (mi_col - (1 << scale_horz)) : (mi_col); |
| const TX_SIZE pv_ts = get_transform_size( |
| xd, mi_prev, edge_dir, pv_row, pv_col, plane, plane_ptr); |
| |
| const uint32_t pv_lvl = |
| av1_get_filter_level(cm, &cm->lf_info, edge_dir, plane, mi_prev); |
| |
| const int pv_skip = mi_prev->skip && is_inter_block(mi_prev); |
| const BLOCK_SIZE bsize = |
| get_plane_block_size(mbmi->sb_type, plane_ptr->subsampling_x, |
| plane_ptr->subsampling_y); |
| assert(bsize < BLOCK_SIZES_ALL); |
| const int prediction_masks = edge_dir == VERT_EDGE |
| ? block_size_wide[bsize] - 1 |
| : block_size_high[bsize] - 1; |
| const int32_t pu_edge = !(coord & prediction_masks); |
| // if the current and the previous blocks are skipped, |
| // deblock the edge if the edge belongs to a PU's edge only. |
| if ((curr_level || pv_lvl) && |
| (!pv_skip || !curr_skipped || pu_edge)) { |
| const TX_SIZE min_ts = AOMMIN(ts, pv_ts); |
| if (TX_4X4 >= min_ts) { |
| params->filter_length = 4; |
| } else if (TX_8X8 == min_ts) { |
| if (plane != 0) |
| params->filter_length = 6; |
| else |
| params->filter_length = 8; |
| } else { |
| params->filter_length = 14; |
| // No wide filtering for chroma plane |
| if (plane != 0) { |
| params->filter_length = 6; |
| } |
| } |
| |
| // update the level if the current block is skipped, |
| // but the previous one is not |
| level = (curr_level) ? (curr_level) : (pv_lvl); |
| } |
| } |
| } |
| // prepare common parameters |
| if (params->filter_length) { |
| const loop_filter_thresh *const limits = cm->lf_info.lfthr + level; |
| params->lim = limits->lim; |
| params->mblim = limits->mblim; |
| params->hev_thr = limits->hev_thr; |
| } |
| } |
| } |
| |
| return ts; |
| } |
| |
| void av1_filter_block_plane_vert(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, const uint32_t mi_col) { |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = (MAX_MIB_SIZE >> scale_vert); |
| const int x_range = (MAX_MIB_SIZE >> scale_horz); |
| for (int y = 0; y < y_range; y++) { |
| uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; |
| for (int x = 0; x < x_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will filter the vertical edge aligned with a 8x8 block. |
| // If 4x4 transform is used, it will then filter the internal edge |
| // aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, ((ptrdiff_t)1 << scale_horz), cm, xd, |
| VERT_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const int use_highbitdepth = cm->seq_params.use_highbitdepth; |
| const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth; |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| if (use_highbitdepth) |
| aom_highbd_lpf_vertical_4(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| bit_depth); |
| else |
| aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| case 6: // apply 6-tap filter for chroma plane only |
| assert(plane != 0); |
| if (use_highbitdepth) |
| aom_highbd_lpf_vertical_6(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| bit_depth); |
| else |
| aom_lpf_vertical_6(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 8-tap filtering |
| case 8: |
| if (use_highbitdepth) |
| aom_highbd_lpf_vertical_8(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| bit_depth); |
| else |
| aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 14-tap filtering |
| case 14: |
| if (use_highbitdepth) |
| aom_highbd_lpf_vertical_14(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, params.hev_thr, |
| bit_depth); |
| else |
| aom_lpf_vertical_14(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // no filtering |
| default: break; |
| } |
| #else |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| aom_lpf_vertical_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| case 6: // apply 6-tap filter for chroma plane only |
| assert(plane != 0); |
| aom_lpf_vertical_6(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 8-tap filtering |
| case 8: |
| aom_lpf_vertical_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 14-tap filtering |
| case 14: |
| aom_lpf_vertical_14(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // no filtering |
| default: break; |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| // advance the destination pointer |
| advance_units = tx_size_wide_unit[tx_size]; |
| x += advance_units; |
| p += advance_units * MI_SIZE; |
| } |
| } |
| } |
| |
| void av1_filter_block_plane_horz(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, const uint32_t mi_col) { |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = (MAX_MIB_SIZE >> scale_vert); |
| const int x_range = (MAX_MIB_SIZE >> scale_horz); |
| for (int x = 0; x < x_range; x++) { |
| uint8_t *p = dst_ptr + x * MI_SIZE; |
| for (int y = 0; y < y_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will first filter the vertical edge aligned with a 8x8 |
| // block. If 4x4 transform is used, it will then filter the internal |
| // edge aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, (cm->mi_stride << scale_vert), cm, xd, |
| HORZ_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| #if CONFIG_AV1_HIGHBITDEPTH |
| const int use_highbitdepth = cm->seq_params.use_highbitdepth; |
| const aom_bit_depth_t bit_depth = cm->seq_params.bit_depth; |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| if (use_highbitdepth) |
| aom_highbd_lpf_horizontal_4(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, bit_depth); |
| else |
| aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 6-tap filtering |
| case 6: |
| assert(plane != 0); |
| if (use_highbitdepth) |
| aom_highbd_lpf_horizontal_6(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, bit_depth); |
| else |
| aom_lpf_horizontal_6(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 8-tap filtering |
| case 8: |
| if (use_highbitdepth) |
| aom_highbd_lpf_horizontal_8(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, bit_depth); |
| else |
| aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 14-tap filtering |
| case 14: |
| if (use_highbitdepth) |
| aom_highbd_lpf_horizontal_14(CONVERT_TO_SHORTPTR(p), dst_stride, |
| params.mblim, params.lim, |
| params.hev_thr, bit_depth); |
| else |
| aom_lpf_horizontal_14(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // no filtering |
| default: break; |
| } |
| #else |
| switch (params.filter_length) { |
| // apply 4-tap filtering |
| case 4: |
| aom_lpf_horizontal_4(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 6-tap filtering |
| case 6: |
| assert(plane != 0); |
| aom_lpf_horizontal_6(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 8-tap filtering |
| case 8: |
| aom_lpf_horizontal_8(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // apply 14-tap filtering |
| case 14: |
| aom_lpf_horizontal_14(p, dst_stride, params.mblim, params.lim, |
| params.hev_thr); |
| break; |
| // no filtering |
| default: break; |
| } |
| #endif // CONFIG_AV1_HIGHBITDEPTH |
| |
| // advance the destination pointer |
| advance_units = tx_size_high_unit[tx_size]; |
| y += advance_units; |
| p += advance_units * dst_stride * MI_SIZE; |
| } |
| } |
| } |
| |
| void av1_filter_block_plane_vert_test(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, |
| const uint32_t mi_col) { |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = cm->mi_rows >> scale_vert; |
| const int x_range = cm->mi_cols >> scale_horz; |
| for (int y = 0; y < y_range; y++) { |
| uint8_t *p = dst_ptr + y * MI_SIZE * dst_stride; |
| for (int x = 0; x < x_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will filter the vertical edge aligned with a 8x8 block. |
| // If 4x4 transform is used, it will then filter the internal edge |
| // aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, ((ptrdiff_t)1 << scale_horz), cm, xd, |
| VERT_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| // advance the destination pointer |
| advance_units = tx_size_wide_unit[tx_size]; |
| x += advance_units; |
| p += advance_units * MI_SIZE; |
| } |
| } |
| } |
| |
| void av1_filter_block_plane_horz_test(const AV1_COMMON *const cm, |
| const MACROBLOCKD *const xd, |
| const int plane, |
| const MACROBLOCKD_PLANE *const plane_ptr, |
| const uint32_t mi_row, |
| const uint32_t mi_col) { |
| const uint32_t scale_horz = plane_ptr->subsampling_x; |
| const uint32_t scale_vert = plane_ptr->subsampling_y; |
| uint8_t *const dst_ptr = plane_ptr->dst.buf; |
| const int dst_stride = plane_ptr->dst.stride; |
| const int y_range = cm->mi_rows >> scale_vert; |
| const int x_range = cm->mi_cols >> scale_horz; |
| for (int x = 0; x < x_range; x++) { |
| uint8_t *p = dst_ptr + x * MI_SIZE; |
| for (int y = 0; y < y_range;) { |
| // inner loop always filter vertical edges in a MI block. If MI size |
| // is 8x8, it will first filter the vertical edge aligned with a 8x8 |
| // block. If 4x4 transform is used, it will then filter the internal |
| // edge aligned with a 4x4 block |
| const uint32_t curr_x = ((mi_col * MI_SIZE) >> scale_horz) + x * MI_SIZE; |
| const uint32_t curr_y = ((mi_row * MI_SIZE) >> scale_vert) + y * MI_SIZE; |
| uint32_t advance_units; |
| TX_SIZE tx_size; |
| AV1_DEBLOCKING_PARAMETERS params; |
| memset(¶ms, 0, sizeof(params)); |
| |
| tx_size = |
| set_lpf_parameters(¶ms, (cm->mi_stride << scale_vert), cm, xd, |
| HORZ_EDGE, curr_x, curr_y, plane, plane_ptr); |
| if (tx_size == TX_INVALID) { |
| params.filter_length = 0; |
| tx_size = TX_4X4; |
| } |
| |
| // advance the destination pointer |
| advance_units = tx_size_high_unit[tx_size]; |
| y += advance_units; |
| p += advance_units * dst_stride * MI_SIZE; |
| } |
| } |
| } |
| |
| static void loop_filter_rows(YV12_BUFFER_CONFIG *frame_buffer, AV1_COMMON *cm, |
| MACROBLOCKD *xd, int start, int stop, |
| #if CONFIG_LPF_MASK |
| int is_decoding, |
| #endif |
| int plane_start, int plane_end) { |
| struct macroblockd_plane *pd = xd->plane; |
| const int col_start = 0; |
| const int col_end = cm->mi_cols; |
| int mi_row, mi_col; |
| int plane; |
| |
| #if CONFIG_LPF_MASK |
| if (is_decoding) { |
| cm->is_decoding = is_decoding; |
| for (plane = plane_start; plane < plane_end; plane++) { |
| if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) |
| break; |
| else if (plane == 1 && !(cm->lf.filter_level_u)) |
| continue; |
| else if (plane == 2 && !(cm->lf.filter_level_v)) |
| continue; |
| |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, 0, 0, |
| plane, plane + 1); |
| |
| av1_build_bitmask_vert_info(cm, &pd[plane], plane); |
| av1_build_bitmask_horz_info(cm, &pd[plane], plane); |
| |
| // apply loop filtering which only goes through buffer once |
| for (mi_row = start; mi_row < stop; mi_row += MI_SIZE_64X64) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MI_SIZE_64X64) { |
| av1_setup_dst_planes(pd, BLOCK_64X64, frame_buffer, mi_row, mi_col, |
| plane, plane + 1); |
| av1_filter_block_plane_bitmask_vert(cm, &pd[plane], plane, mi_row, |
| mi_col); |
| if (mi_col - MI_SIZE_64X64 >= 0) { |
| av1_setup_dst_planes(pd, BLOCK_64X64, frame_buffer, mi_row, |
| mi_col - MI_SIZE_64X64, plane, plane + 1); |
| av1_filter_block_plane_bitmask_horz(cm, &pd[plane], plane, mi_row, |
| mi_col - MI_SIZE_64X64); |
| } |
| } |
| av1_setup_dst_planes(pd, BLOCK_64X64, frame_buffer, mi_row, |
| mi_col - MI_SIZE_64X64, plane, plane + 1); |
| av1_filter_block_plane_bitmask_horz(cm, &pd[plane], plane, mi_row, |
| mi_col - MI_SIZE_64X64); |
| } |
| } |
| return; |
| } |
| #endif |
| |
| for (plane = plane_start; plane < plane_end; plane++) { |
| if (plane == 0 && !(cm->lf.filter_level[0]) && !(cm->lf.filter_level[1])) |
| break; |
| else if (plane == 1 && !(cm->lf.filter_level_u)) |
| continue; |
| else if (plane == 2 && !(cm->lf.filter_level_v)) |
| continue; |
| |
| if (cm->lf.combine_vert_horz_lf) { |
| // filter all vertical and horizontal edges in every 128x128 super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| // filter vertical edges |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| av1_filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row, |
| mi_col); |
| // filter horizontal edges |
| if (mi_col - MAX_MIB_SIZE >= 0) { |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, |
| mi_row, mi_col - MAX_MIB_SIZE, plane, |
| plane + 1); |
| av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, |
| mi_col - MAX_MIB_SIZE); |
| } |
| } |
| // filter horizontal edges |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col - MAX_MIB_SIZE, plane, plane + 1); |
| av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, |
| mi_col - MAX_MIB_SIZE); |
| } |
| } else { |
| // filter all vertical edges in every 128x128 super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| av1_filter_block_plane_vert(cm, xd, plane, &pd[plane], mi_row, |
| mi_col); |
| } |
| } |
| |
| // filter all horizontal edges in every 128x128 super block |
| for (mi_row = start; mi_row < stop; mi_row += MAX_MIB_SIZE) { |
| for (mi_col = col_start; mi_col < col_end; mi_col += MAX_MIB_SIZE) { |
| av1_setup_dst_planes(pd, cm->seq_params.sb_size, frame_buffer, mi_row, |
| mi_col, plane, plane + 1); |
| av1_filter_block_plane_horz(cm, xd, plane, &pd[plane], mi_row, |
| mi_col); |
| } |
| } |
| } |
| } |
| } |
| |
| void av1_loop_filter_frame(YV12_BUFFER_CONFIG *frame, AV1_COMMON *cm, |
| MACROBLOCKD *xd, |
| #if CONFIG_LPF_MASK |
| int is_decoding, |
| #endif |
| int plane_start, int plane_end, int partial_frame) { |
| int start_mi_row, end_mi_row, mi_rows_to_filter; |
| |
| start_mi_row = 0; |
| mi_rows_to_filter = cm->mi_rows; |
| if (partial_frame && cm->mi_rows > 8) { |
| start_mi_row = cm->mi_rows >> 1; |
| start_mi_row &= 0xfffffff8; |
| mi_rows_to_filter = AOMMAX(cm->mi_rows / 8, 8); |
| } |
| end_mi_row = start_mi_row + mi_rows_to_filter; |
| av1_loop_filter_frame_init(cm, plane_start, plane_end); |
| loop_filter_rows(frame, cm, xd, start_mi_row, end_mi_row, |
| #if CONFIG_LPF_MASK |
| is_decoding, |
| #endif |
| plane_start, plane_end); |
| } |