blob: 5a62fa89b1363f881bddd1db8011800657af39a4 [file] [log] [blame]
/*
* Copyright (c) 2017, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_TXB_COMMON_H_
#define AOM_AV1_COMMON_TXB_COMMON_H_
#include "av1/common/av1_common_int.h"
extern const int16_t av1_eob_group_start[12];
extern const int16_t av1_eob_offset_bits[12];
extern const int8_t av1_coeff_band_4x4[16];
extern const int8_t av1_coeff_band_8x8[64];
extern const int8_t av1_coeff_band_16x16[256];
extern const int8_t av1_coeff_band_32x32[1024];
extern const int8_t *av1_nz_map_ctx_offset[TX_SIZES_ALL];
typedef struct txb_ctx {
int txb_skip_ctx;
int dc_sign_ctx;
} TXB_CTX;
static const int base_level_count_to_index[13] = {
0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3,
};
static const TX_CLASS tx_type_to_class[TX_TYPES] = {
TX_CLASS_2D, // DCT_DCT
TX_CLASS_2D, // ADST_DCT
TX_CLASS_2D, // DCT_ADST
TX_CLASS_2D, // ADST_ADST
TX_CLASS_2D, // FLIPADST_DCT
TX_CLASS_2D, // DCT_FLIPADST
TX_CLASS_2D, // FLIPADST_FLIPADST
TX_CLASS_2D, // ADST_FLIPADST
TX_CLASS_2D, // FLIPADST_ADST
TX_CLASS_2D, // IDTX
TX_CLASS_VERT, // V_DCT
TX_CLASS_HORIZ, // H_DCT
TX_CLASS_VERT, // V_ADST
TX_CLASS_HORIZ, // H_ADST
TX_CLASS_VERT, // V_FLIPADST
TX_CLASS_HORIZ, // H_FLIPADST
};
static INLINE int get_txb_bwl(TX_SIZE tx_size) {
tx_size = av1_get_adjusted_tx_size(tx_size);
return tx_size_wide_log2[tx_size];
}
static INLINE int get_txb_wide(TX_SIZE tx_size) {
tx_size = av1_get_adjusted_tx_size(tx_size);
return tx_size_wide[tx_size];
}
static INLINE int get_txb_high(TX_SIZE tx_size) {
tx_size = av1_get_adjusted_tx_size(tx_size);
return tx_size_high[tx_size];
}
static INLINE uint8_t *set_levels(uint8_t *const levels_buf, const int width) {
return levels_buf + TX_PAD_TOP * (width + TX_PAD_HOR);
}
static INLINE int get_padded_idx(const int idx, const int bwl) {
return idx + ((idx >> bwl) << TX_PAD_HOR_LOG2);
}
static INLINE int get_base_ctx_from_count_mag(int row, int col, int count,
int sig_mag) {
const int ctx = base_level_count_to_index[count];
int ctx_idx = -1;
if (row == 0 && col == 0) {
if (sig_mag >= 2) return ctx_idx = 0;
if (sig_mag == 1) {
if (count >= 2)
ctx_idx = 1;
else
ctx_idx = 2;
return ctx_idx;
}
ctx_idx = 3 + ctx;
assert(ctx_idx <= 6);
return ctx_idx;
} else if (row == 0) {
if (sig_mag >= 2) return ctx_idx = 6;
if (sig_mag == 1) {
if (count >= 2)
ctx_idx = 7;
else
ctx_idx = 8;
return ctx_idx;
}
ctx_idx = 9 + ctx;
assert(ctx_idx <= 11);
return ctx_idx;
} else if (col == 0) {
if (sig_mag >= 2) return ctx_idx = 12;
if (sig_mag == 1) {
if (count >= 2)
ctx_idx = 13;
else
ctx_idx = 14;
return ctx_idx;
}
ctx_idx = 15 + ctx;
assert(ctx_idx <= 17);
// TODO(angiebird): turn this on once the optimization is finalized
// assert(ctx_idx < 28);
} else {
if (sig_mag >= 2) return ctx_idx = 18;
if (sig_mag == 1) {
if (count >= 2)
ctx_idx = 19;
else
ctx_idx = 20;
return ctx_idx;
}
ctx_idx = 21 + ctx;
assert(ctx_idx <= 24);
}
return ctx_idx;
}
static INLINE int get_br_ctx_2d(const uint8_t *const levels,
const int c, // raster order
const int bwl) {
assert(c > 0);
const int row = c >> bwl;
const int col = c - (row << bwl);
const int stride = (1 << bwl) + TX_PAD_HOR;
const int pos = row * stride + col;
int mag = AOMMIN(levels[pos + 1], MAX_BASE_BR_RANGE) +
AOMMIN(levels[pos + stride], MAX_BASE_BR_RANGE) +
AOMMIN(levels[pos + 1 + stride], MAX_BASE_BR_RANGE);
mag = AOMMIN((mag + 1) >> 1, 6);
//((row | col) < 2) is equivalent to ((row < 2) && (col < 2))
if ((row | col) < 2) return mag + 7;
return mag + 14;
}
static AOM_FORCE_INLINE int get_br_ctx_eob(const int c, // raster order
const int bwl,
const TX_CLASS tx_class) {
const int row = c >> bwl;
const int col = c - (row << bwl);
if (c == 0) return 0;
if ((tx_class == TX_CLASS_2D && row < 2 && col < 2) ||
(tx_class == TX_CLASS_HORIZ && col == 0) ||
(tx_class == TX_CLASS_VERT && row == 0))
return 7;
return 14;
}
static AOM_FORCE_INLINE int get_br_ctx(const uint8_t *const levels,
const int c, // raster order
const int bwl, const TX_CLASS tx_class) {
const int row = c >> bwl;
const int col = c - (row << bwl);
const int stride = (1 << bwl) + TX_PAD_HOR;
const int pos = row * stride + col;
int mag = levels[pos + 1];
mag += levels[pos + stride];
switch (tx_class) {
case TX_CLASS_2D:
mag += levels[pos + stride + 1];
mag = AOMMIN((mag + 1) >> 1, 6);
if (c == 0) return mag;
if ((row < 2) && (col < 2)) return mag + 7;
break;
case TX_CLASS_HORIZ:
mag += levels[pos + 2];
mag = AOMMIN((mag + 1) >> 1, 6);
if (c == 0) return mag;
if (col == 0) return mag + 7;
break;
case TX_CLASS_VERT:
mag += levels[pos + (stride << 1)];
mag = AOMMIN((mag + 1) >> 1, 6);
if (c == 0) return mag;
if (row == 0) return mag + 7;
break;
default: break;
}
return mag + 14;
}
static const uint8_t clip_max3[256] = {
0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3
};
static AOM_FORCE_INLINE int get_nz_mag(const uint8_t *const levels,
const int bwl, const TX_CLASS tx_class) {
int mag;
// Note: AOMMIN(level, 3) is useless for decoder since level < 3.
mag = clip_max3[levels[1]]; // { 0, 1 }
mag += clip_max3[levels[(1 << bwl) + TX_PAD_HOR]]; // { 1, 0 }
if (tx_class == TX_CLASS_2D) {
mag += clip_max3[levels[(1 << bwl) + TX_PAD_HOR + 1]]; // { 1, 1 }
mag += clip_max3[levels[2]]; // { 0, 2 }
mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 }
} else if (tx_class == TX_CLASS_VERT) {
mag += clip_max3[levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)]]; // { 2, 0 }
mag += clip_max3[levels[(3 << bwl) + (3 << TX_PAD_HOR_LOG2)]]; // { 3, 0 }
mag += clip_max3[levels[(4 << bwl) + (4 << TX_PAD_HOR_LOG2)]]; // { 4, 0 }
} else {
mag += clip_max3[levels[2]]; // { 0, 2 }
mag += clip_max3[levels[3]]; // { 0, 3 }
mag += clip_max3[levels[4]]; // { 0, 4 }
}
return mag;
}
#define NZ_MAP_CTX_0 SIG_COEF_CONTEXTS_2D
#define NZ_MAP_CTX_5 (NZ_MAP_CTX_0 + 5)
#define NZ_MAP_CTX_10 (NZ_MAP_CTX_0 + 10)
static const int nz_map_ctx_offset_1d[32] = {
NZ_MAP_CTX_0, NZ_MAP_CTX_5, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10, NZ_MAP_CTX_10,
NZ_MAP_CTX_10, NZ_MAP_CTX_10,
};
static AOM_FORCE_INLINE int get_nz_map_ctx_from_stats(
const int stats,
const int coeff_idx, // raster order
const int bwl, const TX_SIZE tx_size, const TX_CLASS tx_class) {
// tx_class == 0(TX_CLASS_2D)
if ((tx_class | coeff_idx) == 0) return 0;
int ctx = (stats + 1) >> 1;
ctx = AOMMIN(ctx, 4);
switch (tx_class) {
case TX_CLASS_2D: {
// This is the algorithm to generate av1_nz_map_ctx_offset[][]
// const int width = tx_size_wide[tx_size];
// const int height = tx_size_high[tx_size];
// if (width < height) {
// if (row < 2) return 11 + ctx;
// } else if (width > height) {
// if (col < 2) return 16 + ctx;
// }
// if (row + col < 2) return ctx + 1;
// if (row + col < 4) return 5 + ctx + 1;
// return 21 + ctx;
return ctx + av1_nz_map_ctx_offset[tx_size][coeff_idx];
}
case TX_CLASS_HORIZ: {
const int row = coeff_idx >> bwl;
const int col = coeff_idx - (row << bwl);
return ctx + nz_map_ctx_offset_1d[col];
}
case TX_CLASS_VERT: {
const int row = coeff_idx >> bwl;
return ctx + nz_map_ctx_offset_1d[row];
}
default: break;
}
return 0;
}
typedef aom_cdf_prob (*base_cdf_arr)[CDF_SIZE(4)];
typedef aom_cdf_prob (*br_cdf_arr)[CDF_SIZE(BR_CDF_SIZE)];
static INLINE int get_lower_levels_ctx_eob(int bwl, int height, int scan_idx) {
if (scan_idx == 0) return 0;
if (scan_idx <= (height << bwl) / 8) return 1;
if (scan_idx <= (height << bwl) / 4) return 2;
return 3;
}
static INLINE int get_lower_levels_ctx_2d(const uint8_t *levels, int coeff_idx,
int bwl, TX_SIZE tx_size) {
assert(coeff_idx > 0);
int mag;
// Note: AOMMIN(level, 3) is useless for decoder since level < 3.
levels = levels + get_padded_idx(coeff_idx, bwl);
mag = AOMMIN(levels[1], 3); // { 0, 1 }
mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR], 3); // { 1, 0 }
mag += AOMMIN(levels[(1 << bwl) + TX_PAD_HOR + 1], 3); // { 1, 1 }
mag += AOMMIN(levels[2], 3); // { 0, 2 }
mag += AOMMIN(levels[(2 << bwl) + (2 << TX_PAD_HOR_LOG2)], 3); // { 2, 0 }
const int ctx = AOMMIN((mag + 1) >> 1, 4);
return ctx + av1_nz_map_ctx_offset[tx_size][coeff_idx];
}
static AOM_FORCE_INLINE int get_lower_levels_ctx(const uint8_t *levels,
int coeff_idx, int bwl,
TX_SIZE tx_size,
TX_CLASS tx_class) {
const int stats =
get_nz_mag(levels + get_padded_idx(coeff_idx, bwl), bwl, tx_class);
return get_nz_map_ctx_from_stats(stats, coeff_idx, bwl, tx_size, tx_class);
}
static INLINE int get_lower_levels_ctx_general(int is_last, int scan_idx,
int bwl, int height,
const uint8_t *levels,
int coeff_idx, TX_SIZE tx_size,
TX_CLASS tx_class) {
if (is_last) {
if (scan_idx == 0) return 0;
if (scan_idx <= (height << bwl) >> 3) return 1;
if (scan_idx <= (height << bwl) >> 2) return 2;
return 3;
}
return get_lower_levels_ctx(levels, coeff_idx, bwl, tx_size, tx_class);
}
static INLINE void set_dc_sign(int *cul_level, int dc_val) {
if (dc_val < 0)
*cul_level |= 1 << COEFF_CONTEXT_BITS;
else if (dc_val > 0)
*cul_level += 2 << COEFF_CONTEXT_BITS;
}
static INLINE void get_txb_ctx(const BLOCK_SIZE plane_bsize,
const TX_SIZE tx_size, const int plane,
const ENTROPY_CONTEXT *const a,
const ENTROPY_CONTEXT *const l,
TXB_CTX *const txb_ctx) {
#define MAX_TX_SIZE_UNIT 16
static const int8_t signs[3] = { 0, -1, 1 };
static const int8_t dc_sign_contexts[4 * MAX_TX_SIZE_UNIT + 1] = {
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
};
const int txb_w_unit = tx_size_wide_unit[tx_size];
const int txb_h_unit = tx_size_high_unit[tx_size];
int dc_sign = 0;
int k = 0;
do {
const unsigned int sign = ((uint8_t)a[k]) >> COEFF_CONTEXT_BITS;
assert(sign <= 2);
dc_sign += signs[sign];
} while (++k < txb_w_unit);
k = 0;
do {
const unsigned int sign = ((uint8_t)l[k]) >> COEFF_CONTEXT_BITS;
assert(sign <= 2);
dc_sign += signs[sign];
} while (++k < txb_h_unit);
txb_ctx->dc_sign_ctx = dc_sign_contexts[dc_sign + 2 * MAX_TX_SIZE_UNIT];
if (plane == 0) {
if (plane_bsize == txsize_to_bsize[tx_size]) {
txb_ctx->txb_skip_ctx = 0;
} else {
// This is the algorithm to generate table skip_contexts[top][left].
// const int max = AOMMIN(top | left, 4);
// const int min = AOMMIN(AOMMIN(top, left), 4);
// if (!max)
// txb_skip_ctx = 1;
// else if (!min)
// txb_skip_ctx = 2 + (max > 3);
// else if (max <= 3)
// txb_skip_ctx = 4;
// else if (min <= 3)
// txb_skip_ctx = 5;
// else
// txb_skip_ctx = 6;
static const uint8_t skip_contexts[5][5] = { { 1, 2, 2, 2, 3 },
{ 2, 4, 4, 4, 5 },
{ 2, 4, 4, 4, 5 },
{ 2, 4, 4, 4, 5 },
{ 3, 5, 5, 5, 6 } };
// For top and left, we only care about which of the following three
// categories they belong to: { 0 }, { 1, 2, 3 }, or { 4, 5, ... }. The
// spec calculates top and left with the Max() function. We can calculate
// an approximate max with bitwise OR because the real max and the
// approximate max belong to the same category.
int top = 0;
int left = 0;
k = 0;
do {
top |= a[k];
} while (++k < txb_w_unit);
top &= COEFF_CONTEXT_MASK;
top = AOMMIN(top, 4);
k = 0;
do {
left |= l[k];
} while (++k < txb_h_unit);
left &= COEFF_CONTEXT_MASK;
left = AOMMIN(left, 4);
txb_ctx->txb_skip_ctx = skip_contexts[top][left];
}
} else {
const int ctx_base = get_entropy_context(tx_size, a, l);
const int ctx_offset = (num_pels_log2_lookup[plane_bsize] >
num_pels_log2_lookup[txsize_to_bsize[tx_size]])
? 10
: 7;
txb_ctx->txb_skip_ctx = ctx_base + ctx_offset;
}
#undef MAX_TX_SIZE_UNIT
}
#endif // AOM_AV1_COMMON_TXB_COMMON_H_