|  | /* | 
|  | * Copyright (c) 2020, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include "av1/common/av1_common_int.h" | 
|  | #include "av1/common/reconintra.h" | 
|  |  | 
|  | #include "av1/encoder/intra_mode_search.h" | 
|  | #include "av1/encoder/intra_mode_search_utils.h" | 
|  | #include "av1/encoder/palette.h" | 
|  | #include "av1/encoder/speed_features.h" | 
|  | #include "av1/encoder/tx_search.h" | 
|  |  | 
|  | /*!\cond */ | 
|  | static const PREDICTION_MODE intra_rd_search_mode_order[INTRA_MODES] = { | 
|  | DC_PRED,       H_PRED,        V_PRED,    SMOOTH_PRED, PAETH_PRED, | 
|  | SMOOTH_V_PRED, SMOOTH_H_PRED, D135_PRED, D203_PRED,   D157_PRED, | 
|  | D67_PRED,      D113_PRED,     D45_PRED, | 
|  | }; | 
|  |  | 
|  | static const UV_PREDICTION_MODE uv_rd_search_mode_order[UV_INTRA_MODES] = { | 
|  | UV_DC_PRED,     UV_CFL_PRED,   UV_H_PRED,        UV_V_PRED, | 
|  | UV_SMOOTH_PRED, UV_PAETH_PRED, UV_SMOOTH_V_PRED, UV_SMOOTH_H_PRED, | 
|  | UV_D135_PRED,   UV_D203_PRED,  UV_D157_PRED,     UV_D67_PRED, | 
|  | UV_D113_PRED,   UV_D45_PRED, | 
|  | }; | 
|  |  | 
|  | // The bitmask corresponds to the filter intra modes as defined in enums.h | 
|  | // FILTER_INTRA_MODE enumeration type. Setting a bit to 0 in the mask means to | 
|  | // disable the evaluation of corresponding filter intra mode. The table | 
|  | // av1_derived_filter_intra_mode_used_flag is used when speed feature | 
|  | // prune_filter_intra_level is 1. The evaluated filter intra modes are union | 
|  | // of the following: | 
|  | // 1) FILTER_DC_PRED | 
|  | // 2) mode that corresponds to best mode so far of DC_PRED, V_PRED, H_PRED, | 
|  | // D157_PRED and PAETH_PRED. (Eg: FILTER_V_PRED if best mode so far is V_PRED). | 
|  | static const uint8_t av1_derived_filter_intra_mode_used_flag[INTRA_MODES] = { | 
|  | 0x01,  // DC_PRED:           0000 0001 | 
|  | 0x03,  // V_PRED:            0000 0011 | 
|  | 0x05,  // H_PRED:            0000 0101 | 
|  | 0x01,  // D45_PRED:          0000 0001 | 
|  | 0x01,  // D135_PRED:         0000 0001 | 
|  | 0x01,  // D113_PRED:         0000 0001 | 
|  | 0x09,  // D157_PRED:         0000 1001 | 
|  | 0x01,  // D203_PRED:         0000 0001 | 
|  | 0x01,  // D67_PRED:          0000 0001 | 
|  | 0x01,  // SMOOTH_PRED:       0000 0001 | 
|  | 0x01,  // SMOOTH_V_PRED:     0000 0001 | 
|  | 0x01,  // SMOOTH_H_PRED:     0000 0001 | 
|  | 0x11   // PAETH_PRED:        0001 0001 | 
|  | }; | 
|  |  | 
|  | // The bitmask corresponds to the chroma intra modes as defined in enums.h | 
|  | // UV_PREDICTION_MODE enumeration type. Setting a bit to 0 in the mask means to | 
|  | // disable the evaluation of corresponding chroma intra mode. The table | 
|  | // av1_derived_chroma_intra_mode_used_flag is used when speed feature | 
|  | // prune_chroma_modes_using_luma_winner is enabled. The evaluated chroma | 
|  | // intra modes are union of the following: | 
|  | // 1) UV_DC_PRED | 
|  | // 2) UV_SMOOTH_PRED | 
|  | // 3) UV_CFL_PRED | 
|  | // 4) mode that corresponds to luma intra mode winner (Eg : UV_V_PRED if luma | 
|  | // intra mode winner is V_PRED). | 
|  | static const uint16_t av1_derived_chroma_intra_mode_used_flag[INTRA_MODES] = { | 
|  | 0x2201,  // DC_PRED:           0010 0010 0000 0001 | 
|  | 0x2203,  // V_PRED:            0010 0010 0000 0011 | 
|  | 0x2205,  // H_PRED:            0010 0010 0000 0101 | 
|  | 0x2209,  // D45_PRED:          0010 0010 0000 1001 | 
|  | 0x2211,  // D135_PRED:         0010 0010 0001 0001 | 
|  | 0x2221,  // D113_PRED:         0010 0010 0010 0001 | 
|  | 0x2241,  // D157_PRED:         0010 0010 0100 0001 | 
|  | 0x2281,  // D203_PRED:         0010 0010 1000 0001 | 
|  | 0x2301,  // D67_PRED:          0010 0011 0000 0001 | 
|  | 0x2201,  // SMOOTH_PRED:       0010 0010 0000 0001 | 
|  | 0x2601,  // SMOOTH_V_PRED:     0010 0110 0000 0001 | 
|  | 0x2a01,  // SMOOTH_H_PRED:     0010 1010 0000 0001 | 
|  | 0x3201   // PAETH_PRED:        0011 0010 0000 0001 | 
|  | }; | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, all_zeros[MAX_SB_SIZE]) = { 0 }; | 
|  | DECLARE_ALIGNED(16, static const uint16_t, | 
|  | highbd_all_zeros[MAX_SB_SIZE]) = { 0 }; | 
|  |  | 
|  | int av1_calc_normalized_variance(aom_variance_fn_t vf, const uint8_t *const buf, | 
|  | const int stride, const int is_hbd) { | 
|  | unsigned int sse; | 
|  |  | 
|  | if (is_hbd) | 
|  | return vf(buf, stride, CONVERT_TO_BYTEPTR(highbd_all_zeros), 0, &sse); | 
|  | else | 
|  | return vf(buf, stride, all_zeros, 0, &sse); | 
|  | } | 
|  |  | 
|  | // Computes average of log(1 + variance) across 4x4 sub-blocks for source and | 
|  | // reconstructed blocks. | 
|  | static void compute_avg_log_variance(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | const BLOCK_SIZE bs, | 
|  | double *avg_log_src_variance, | 
|  | double *avg_log_recon_variance) { | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const BLOCK_SIZE sb_size = cpi->common.seq_params->sb_size; | 
|  | const int mi_row_in_sb = x->e_mbd.mi_row & (mi_size_high[sb_size] - 1); | 
|  | const int mi_col_in_sb = x->e_mbd.mi_col & (mi_size_wide[sb_size] - 1); | 
|  | const int right_overflow = | 
|  | (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; | 
|  | const int bottom_overflow = | 
|  | (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; | 
|  | const int bw = (MI_SIZE * mi_size_wide[bs] - right_overflow); | 
|  | const int bh = (MI_SIZE * mi_size_high[bs] - bottom_overflow); | 
|  | const int is_hbd = is_cur_buf_hbd(xd); | 
|  |  | 
|  | for (int i = 0; i < bh; i += MI_SIZE) { | 
|  | const int r = mi_row_in_sb + (i >> MI_SIZE_LOG2); | 
|  | for (int j = 0; j < bw; j += MI_SIZE) { | 
|  | const int c = mi_col_in_sb + (j >> MI_SIZE_LOG2); | 
|  | const int mi_offset = r * mi_size_wide[sb_size] + c; | 
|  | Block4x4VarInfo *block_4x4_var_info = | 
|  | &x->src_var_info_of_4x4_sub_blocks[mi_offset]; | 
|  | int src_var = block_4x4_var_info->var; | 
|  | double log_src_var = block_4x4_var_info->log_var; | 
|  | // Compute average of log(1 + variance) for the source block from 4x4 | 
|  | // sub-block variance values. Calculate and store 4x4 sub-block variance | 
|  | // and log(1 + variance), if the values present in | 
|  | // src_var_of_4x4_sub_blocks are invalid. Reuse the same if it is readily | 
|  | // available with valid values. | 
|  | if (src_var < 0) { | 
|  | src_var = av1_calc_normalized_variance( | 
|  | cpi->ppi->fn_ptr[BLOCK_4X4].vf, | 
|  | x->plane[0].src.buf + i * x->plane[0].src.stride + j, | 
|  | x->plane[0].src.stride, is_hbd); | 
|  | block_4x4_var_info->var = src_var; | 
|  | log_src_var = log(1.0 + src_var / 16.0); | 
|  | block_4x4_var_info->log_var = log_src_var; | 
|  | } else { | 
|  | // When source variance is already calculated and available for | 
|  | // retrieval, check if log(1 + variance) is also available. If it is | 
|  | // available, then retrieve from buffer. Else, calculate the same and | 
|  | // store to the buffer. | 
|  | if (log_src_var < 0) { | 
|  | log_src_var = log(1.0 + src_var / 16.0); | 
|  | block_4x4_var_info->log_var = log_src_var; | 
|  | } | 
|  | } | 
|  | *avg_log_src_variance += log_src_var; | 
|  |  | 
|  | const int recon_var = av1_calc_normalized_variance( | 
|  | cpi->ppi->fn_ptr[BLOCK_4X4].vf, | 
|  | xd->plane[0].dst.buf + i * xd->plane[0].dst.stride + j, | 
|  | xd->plane[0].dst.stride, is_hbd); | 
|  | *avg_log_recon_variance += log(1.0 + recon_var / 16.0); | 
|  | } | 
|  | } | 
|  |  | 
|  | const int blocks = (bw * bh) / 16; | 
|  | *avg_log_src_variance /= (double)blocks; | 
|  | *avg_log_recon_variance /= (double)blocks; | 
|  | } | 
|  |  | 
|  | // Returns a factor to be applied to the RD value based on how well the | 
|  | // reconstructed block variance matches the source variance. | 
|  | static double intra_rd_variance_factor(const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bs) { | 
|  | double threshold = INTRA_RD_VAR_THRESH(cpi->oxcf.speed); | 
|  | // For non-positive threshold values, the comparison of source and | 
|  | // reconstructed variances with threshold evaluates to false | 
|  | // (src_var < threshold/rec_var < threshold) as these metrics are greater than | 
|  | // than 0. Hence further calculations are skipped. | 
|  | if (threshold <= 0) return 1.0; | 
|  |  | 
|  | double variance_rd_factor = 1.0; | 
|  | double avg_log_src_variance = 0.0; | 
|  | double avg_log_recon_variance = 0.0; | 
|  | double var_diff = 0.0; | 
|  |  | 
|  | compute_avg_log_variance(cpi, x, bs, &avg_log_src_variance, | 
|  | &avg_log_recon_variance); | 
|  |  | 
|  | // Dont allow 0 to prevent / 0 below. | 
|  | avg_log_src_variance += 0.000001; | 
|  | avg_log_recon_variance += 0.000001; | 
|  |  | 
|  | if (avg_log_src_variance >= avg_log_recon_variance) { | 
|  | var_diff = (avg_log_src_variance - avg_log_recon_variance); | 
|  | if ((var_diff > 0.5) && (avg_log_recon_variance < threshold)) { | 
|  | variance_rd_factor = 1.0 + ((var_diff * 2) / avg_log_src_variance); | 
|  | } | 
|  | } else { | 
|  | var_diff = (avg_log_recon_variance - avg_log_src_variance); | 
|  | if ((var_diff > 0.5) && (avg_log_src_variance < threshold)) { | 
|  | variance_rd_factor = 1.0 + (var_diff / (2 * avg_log_src_variance)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Limit adjustment; | 
|  | variance_rd_factor = AOMMIN(3.0, variance_rd_factor); | 
|  |  | 
|  | return variance_rd_factor; | 
|  | } | 
|  | /*!\endcond */ | 
|  |  | 
|  | /*!\brief Search for the best filter_intra mode when coding intra frame. | 
|  | * | 
|  | * \ingroup intra_mode_search | 
|  | * \callergraph | 
|  | * This function loops through all filter_intra modes to find the best one. | 
|  | * | 
|  | * \return Returns 1 if a new filter_intra mode is selected; 0 otherwise. | 
|  | */ | 
|  | static int rd_pick_filter_intra_sby(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | int *rate, int *rate_tokenonly, | 
|  | int64_t *distortion, int *skippable, | 
|  | BLOCK_SIZE bsize, int mode_cost, | 
|  | PREDICTION_MODE best_mode_so_far, | 
|  | int64_t *best_rd, int64_t *best_model_rd, | 
|  | PICK_MODE_CONTEXT *ctx) { | 
|  | // Skip the evaluation of filter intra modes. | 
|  | if (cpi->sf.intra_sf.prune_filter_intra_level == 2) return 0; | 
|  |  | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | int filter_intra_selected_flag = 0; | 
|  | FILTER_INTRA_MODE mode; | 
|  | TX_SIZE best_tx_size = TX_8X8; | 
|  | FILTER_INTRA_MODE_INFO filter_intra_mode_info; | 
|  | uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
|  | av1_zero(filter_intra_mode_info); | 
|  | mbmi->filter_intra_mode_info.use_filter_intra = 1; | 
|  | mbmi->mode = DC_PRED; | 
|  | mbmi->palette_mode_info.palette_size[0] = 0; | 
|  |  | 
|  | // Skip the evaluation of filter-intra if cached MB_MODE_INFO does not have | 
|  | // filter-intra as winner. | 
|  | if (x->use_mb_mode_cache && | 
|  | !x->mb_mode_cache->filter_intra_mode_info.use_filter_intra) | 
|  | return 0; | 
|  |  | 
|  | for (mode = 0; mode < FILTER_INTRA_MODES; ++mode) { | 
|  | int64_t this_rd; | 
|  | RD_STATS tokenonly_rd_stats; | 
|  | mbmi->filter_intra_mode_info.filter_intra_mode = mode; | 
|  |  | 
|  | if ((cpi->sf.intra_sf.prune_filter_intra_level == 1) && | 
|  | !(av1_derived_filter_intra_mode_used_flag[best_mode_so_far] & | 
|  | (1 << mode))) | 
|  | continue; | 
|  |  | 
|  | // Skip the evaluation of modes that do not match with the winner mode in | 
|  | // x->mb_mode_cache. | 
|  | if (x->use_mb_mode_cache && | 
|  | mode != x->mb_mode_cache->filter_intra_mode_info.filter_intra_mode) | 
|  | continue; | 
|  |  | 
|  | if (model_intra_yrd_and_prune(cpi, x, bsize, best_model_rd)) { | 
|  | continue; | 
|  | } | 
|  | av1_pick_uniform_tx_size_type_yrd(cpi, x, &tokenonly_rd_stats, bsize, | 
|  | *best_rd); | 
|  | if (tokenonly_rd_stats.rate == INT_MAX) continue; | 
|  | const int this_rate = | 
|  | tokenonly_rd_stats.rate + | 
|  | intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); | 
|  | this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); | 
|  |  | 
|  | // Visual quality adjustment based on recon vs source variance. | 
|  | if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) { | 
|  | this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize)); | 
|  | } | 
|  |  | 
|  | // Collect mode stats for multiwinner mode processing | 
|  | const int txfm_search_done = 1; | 
|  | store_winner_mode_stats( | 
|  | &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd, | 
|  | cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); | 
|  | if (this_rd < *best_rd) { | 
|  | *best_rd = this_rd; | 
|  | best_tx_size = mbmi->tx_size; | 
|  | filter_intra_mode_info = mbmi->filter_intra_mode_info; | 
|  | av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
|  | memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, | 
|  | sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); | 
|  | *rate = this_rate; | 
|  | *rate_tokenonly = tokenonly_rd_stats.rate; | 
|  | *distortion = tokenonly_rd_stats.dist; | 
|  | *skippable = tokenonly_rd_stats.skip_txfm; | 
|  | filter_intra_selected_flag = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (filter_intra_selected_flag) { | 
|  | mbmi->mode = DC_PRED; | 
|  | mbmi->tx_size = best_tx_size; | 
|  | mbmi->filter_intra_mode_info = filter_intra_mode_info; | 
|  | av1_copy_array(ctx->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); | 
|  | return 1; | 
|  | } else { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_count_colors(const uint8_t *src, int stride, int rows, int cols, | 
|  | int *val_count, int *num_colors) { | 
|  | const int max_pix_val = 1 << 8; | 
|  | memset(val_count, 0, max_pix_val * sizeof(val_count[0])); | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | const int this_val = src[r * stride + c]; | 
|  | assert(this_val < max_pix_val); | 
|  | ++val_count[this_val]; | 
|  | } | 
|  | } | 
|  | int n = 0; | 
|  | for (int i = 0; i < max_pix_val; ++i) { | 
|  | if (val_count[i]) ++n; | 
|  | } | 
|  | *num_colors = n; | 
|  | } | 
|  |  | 
|  | void av1_count_colors_highbd(const uint8_t *src8, int stride, int rows, | 
|  | int cols, int bit_depth, int *val_count, | 
|  | int *bin_val_count, int *num_color_bins, | 
|  | int *num_colors) { | 
|  | assert(bit_depth <= 12); | 
|  | const int max_bin_val = 1 << 8; | 
|  | const int max_pix_val = 1 << bit_depth; | 
|  | const uint16_t *src = CONVERT_TO_SHORTPTR(src8); | 
|  | memset(bin_val_count, 0, max_bin_val * sizeof(val_count[0])); | 
|  | if (val_count != NULL) | 
|  | memset(val_count, 0, max_pix_val * sizeof(val_count[0])); | 
|  | for (int r = 0; r < rows; ++r) { | 
|  | for (int c = 0; c < cols; ++c) { | 
|  | /* | 
|  | * Down-convert the pixels to 8-bit domain before counting. | 
|  | * This provides consistency of behavior for palette search | 
|  | * between lbd and hbd encodes. This down-converted pixels | 
|  | * are only used for calculating the threshold (n). | 
|  | */ | 
|  | const int this_val = ((src[r * stride + c]) >> (bit_depth - 8)); | 
|  | assert(this_val < max_bin_val); | 
|  | if (this_val >= max_bin_val) continue; | 
|  | ++bin_val_count[this_val]; | 
|  | if (val_count != NULL) ++val_count[(src[r * stride + c])]; | 
|  | } | 
|  | } | 
|  | int n = 0; | 
|  | // Count the colors based on 8-bit domain used to gate the palette path | 
|  | for (int i = 0; i < max_bin_val; ++i) { | 
|  | if (bin_val_count[i]) ++n; | 
|  | } | 
|  | *num_color_bins = n; | 
|  |  | 
|  | // Count the actual hbd colors used to create top_colors | 
|  | n = 0; | 
|  | if (val_count != NULL) { | 
|  | for (int i = 0; i < max_pix_val; ++i) { | 
|  | if (val_count[i]) ++n; | 
|  | } | 
|  | *num_colors = n; | 
|  | } | 
|  | } | 
|  |  | 
|  | void set_y_mode_and_delta_angle(const int mode_idx, MB_MODE_INFO *const mbmi) { | 
|  | if (mode_idx < INTRA_MODE_END) { | 
|  | mbmi->mode = intra_rd_search_mode_order[mode_idx]; | 
|  | mbmi->angle_delta[PLANE_TYPE_Y] = 0; | 
|  | } else { | 
|  | mbmi->mode = (mode_idx - INTRA_MODE_END) / (MAX_ANGLE_DELTA * 2) + V_PRED; | 
|  | int angle_delta = (mode_idx - INTRA_MODE_END) % (MAX_ANGLE_DELTA * 2); | 
|  | mbmi->angle_delta[PLANE_TYPE_Y] = | 
|  | (angle_delta < 3 ? (angle_delta - 3) : (angle_delta - 2)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static AOM_INLINE int get_model_rd_index_for_pruning( | 
|  | const MACROBLOCK *const x, | 
|  | const INTRA_MODE_SPEED_FEATURES *const intra_sf) { | 
|  | const int top_intra_model_count_allowed = | 
|  | intra_sf->top_intra_model_count_allowed; | 
|  | if (!intra_sf->adapt_top_model_rd_count_using_neighbors) | 
|  | return top_intra_model_count_allowed - 1; | 
|  |  | 
|  | const MACROBLOCKD *const xd = &x->e_mbd; | 
|  | const PREDICTION_MODE mode = xd->mi[0]->mode; | 
|  | int model_rd_index_for_pruning = top_intra_model_count_allowed - 1; | 
|  | int is_left_mode_neq_cur_mode = 0, is_above_mode_neq_cur_mode = 0; | 
|  | if (xd->left_available) | 
|  | is_left_mode_neq_cur_mode = xd->left_mbmi->mode != mode; | 
|  | if (xd->up_available) | 
|  | is_above_mode_neq_cur_mode = xd->above_mbmi->mode != mode; | 
|  | // The pruning of luma intra modes is made more aggressive at lower quantizers | 
|  | // and vice versa. The value for model_rd_index_for_pruning is derived as | 
|  | // follows. | 
|  | // qidx 0 to 127: Reduce the index of a candidate used for comparison only if | 
|  | // the current mode does not match either of the available neighboring modes. | 
|  | // qidx 128 to 255: Reduce the index of a candidate used for comparison only | 
|  | // if the current mode does not match both the available neighboring modes. | 
|  | if (x->qindex <= 127) { | 
|  | if (is_left_mode_neq_cur_mode || is_above_mode_neq_cur_mode) | 
|  | model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0); | 
|  | } else { | 
|  | if (is_left_mode_neq_cur_mode && is_above_mode_neq_cur_mode) | 
|  | model_rd_index_for_pruning = AOMMAX(model_rd_index_for_pruning - 1, 0); | 
|  | } | 
|  | return model_rd_index_for_pruning; | 
|  | } | 
|  |  | 
|  | int prune_intra_y_mode(int64_t this_model_rd, int64_t *best_model_rd, | 
|  | int64_t top_intra_model_rd[], int max_model_cnt_allowed, | 
|  | int model_rd_index_for_pruning) { | 
|  | const double thresh_best = 1.50; | 
|  | const double thresh_top = 1.00; | 
|  | for (int i = 0; i < max_model_cnt_allowed; i++) { | 
|  | if (this_model_rd < top_intra_model_rd[i]) { | 
|  | for (int j = max_model_cnt_allowed - 1; j > i; j--) { | 
|  | top_intra_model_rd[j] = top_intra_model_rd[j - 1]; | 
|  | } | 
|  | top_intra_model_rd[i] = this_model_rd; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (top_intra_model_rd[model_rd_index_for_pruning] != INT64_MAX && | 
|  | this_model_rd > | 
|  | thresh_top * top_intra_model_rd[model_rd_index_for_pruning]) | 
|  | return 1; | 
|  |  | 
|  | if (this_model_rd != INT64_MAX && | 
|  | this_model_rd > thresh_best * (*best_model_rd)) | 
|  | return 1; | 
|  | if (this_model_rd < *best_model_rd) *best_model_rd = this_model_rd; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Run RD calculation with given chroma intra prediction angle., and return | 
|  | // the RD cost. Update the best mode info. if the RD cost is the best so far. | 
|  | static int64_t pick_intra_angle_routine_sbuv( | 
|  | const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, | 
|  | int rate_overhead, int64_t best_rd_in, int *rate, RD_STATS *rd_stats, | 
|  | int *best_angle_delta, int64_t *best_rd) { | 
|  | MB_MODE_INFO *mbmi = x->e_mbd.mi[0]; | 
|  | assert(!is_inter_block(mbmi)); | 
|  | int this_rate; | 
|  | int64_t this_rd; | 
|  | RD_STATS tokenonly_rd_stats; | 
|  |  | 
|  | if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd_in)) | 
|  | return INT64_MAX; | 
|  | this_rate = tokenonly_rd_stats.rate + | 
|  | intra_mode_info_cost_uv(cpi, x, mbmi, bsize, rate_overhead); | 
|  | this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); | 
|  | if (this_rd < *best_rd) { | 
|  | *best_rd = this_rd; | 
|  | *best_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; | 
|  | *rate = this_rate; | 
|  | rd_stats->rate = tokenonly_rd_stats.rate; | 
|  | rd_stats->dist = tokenonly_rd_stats.dist; | 
|  | rd_stats->skip_txfm = tokenonly_rd_stats.skip_txfm; | 
|  | } | 
|  | return this_rd; | 
|  | } | 
|  |  | 
|  | /*!\brief Search for the best angle delta for chroma prediction | 
|  | * | 
|  | * \ingroup intra_mode_search | 
|  | * \callergraph | 
|  | * Given a chroma directional intra prediction mode, this function will try to | 
|  | * estimate the best delta_angle. | 
|  | * | 
|  | * \returns Return if there is a new mode with smaller rdcost than best_rd. | 
|  | */ | 
|  | static int rd_pick_intra_angle_sbuv(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, int rate_overhead, | 
|  | int64_t best_rd, int *rate, | 
|  | RD_STATS *rd_stats) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | assert(!is_inter_block(mbmi)); | 
|  | int i, angle_delta, best_angle_delta = 0; | 
|  | int64_t this_rd, best_rd_in, rd_cost[2 * (MAX_ANGLE_DELTA + 2)]; | 
|  |  | 
|  | rd_stats->rate = INT_MAX; | 
|  | rd_stats->skip_txfm = 0; | 
|  | rd_stats->dist = INT64_MAX; | 
|  | for (i = 0; i < 2 * (MAX_ANGLE_DELTA + 2); ++i) rd_cost[i] = INT64_MAX; | 
|  |  | 
|  | for (angle_delta = 0; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { | 
|  | for (i = 0; i < 2; ++i) { | 
|  | best_rd_in = (best_rd == INT64_MAX) | 
|  | ? INT64_MAX | 
|  | : (best_rd + (best_rd >> ((angle_delta == 0) ? 3 : 5))); | 
|  | mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; | 
|  | this_rd = pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, | 
|  | best_rd_in, rate, rd_stats, | 
|  | &best_angle_delta, &best_rd); | 
|  | rd_cost[2 * angle_delta + i] = this_rd; | 
|  | if (angle_delta == 0) { | 
|  | if (this_rd == INT64_MAX) return 0; | 
|  | rd_cost[1] = this_rd; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(best_rd != INT64_MAX); | 
|  | for (angle_delta = 1; angle_delta <= MAX_ANGLE_DELTA; angle_delta += 2) { | 
|  | int64_t rd_thresh; | 
|  | for (i = 0; i < 2; ++i) { | 
|  | int skip_search = 0; | 
|  | rd_thresh = best_rd + (best_rd >> 5); | 
|  | if (rd_cost[2 * (angle_delta + 1) + i] > rd_thresh && | 
|  | rd_cost[2 * (angle_delta - 1) + i] > rd_thresh) | 
|  | skip_search = 1; | 
|  | if (!skip_search) { | 
|  | mbmi->angle_delta[PLANE_TYPE_UV] = (1 - 2 * i) * angle_delta; | 
|  | pick_intra_angle_routine_sbuv(cpi, x, bsize, rate_overhead, best_rd, | 
|  | rate, rd_stats, &best_angle_delta, | 
|  | &best_rd); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | mbmi->angle_delta[PLANE_TYPE_UV] = best_angle_delta; | 
|  | return rd_stats->rate != INT_MAX; | 
|  | } | 
|  |  | 
|  | #define PLANE_SIGN_TO_JOINT_SIGN(plane, a, b) \ | 
|  | (plane == CFL_PRED_U ? a * CFL_SIGNS + b - 1 : b * CFL_SIGNS + a - 1) | 
|  |  | 
|  | static void cfl_idx_to_sign_and_alpha(int cfl_idx, CFL_SIGN_TYPE *cfl_sign, | 
|  | int *cfl_alpha) { | 
|  | int cfl_linear_idx = cfl_idx - CFL_INDEX_ZERO; | 
|  | if (cfl_linear_idx == 0) { | 
|  | *cfl_sign = CFL_SIGN_ZERO; | 
|  | *cfl_alpha = 0; | 
|  | } else { | 
|  | *cfl_sign = cfl_linear_idx > 0 ? CFL_SIGN_POS : CFL_SIGN_NEG; | 
|  | *cfl_alpha = abs(cfl_linear_idx) - 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int64_t cfl_compute_rd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | int plane, TX_SIZE tx_size, | 
|  | BLOCK_SIZE plane_bsize, int cfl_idx, | 
|  | int fast_mode, RD_STATS *rd_stats) { | 
|  | assert(IMPLIES(fast_mode, rd_stats == NULL)); | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | int cfl_plane = get_cfl_pred_type(plane); | 
|  | CFL_SIGN_TYPE cfl_sign; | 
|  | int cfl_alpha; | 
|  | cfl_idx_to_sign_and_alpha(cfl_idx, &cfl_sign, &cfl_alpha); | 
|  | // We conly build CFL for a given plane, the other plane's sign is dummy | 
|  | int dummy_sign = CFL_SIGN_NEG; | 
|  | const int8_t orig_cfl_alpha_signs = mbmi->cfl_alpha_signs; | 
|  | const uint8_t orig_cfl_alpha_idx = mbmi->cfl_alpha_idx; | 
|  | mbmi->cfl_alpha_signs = | 
|  | PLANE_SIGN_TO_JOINT_SIGN(cfl_plane, cfl_sign, dummy_sign); | 
|  | mbmi->cfl_alpha_idx = (cfl_alpha << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha; | 
|  | int64_t cfl_cost; | 
|  | if (fast_mode) { | 
|  | cfl_cost = | 
|  | intra_model_rd(cm, x, plane, plane_bsize, tx_size, /*use_hadamard=*/0); | 
|  | } else { | 
|  | av1_init_rd_stats(rd_stats); | 
|  | av1_txfm_rd_in_plane(x, cpi, rd_stats, INT64_MAX, 0, plane, plane_bsize, | 
|  | tx_size, FTXS_NONE, 0); | 
|  | av1_rd_cost_update(x->rdmult, rd_stats); | 
|  | cfl_cost = rd_stats->rdcost; | 
|  | } | 
|  | mbmi->cfl_alpha_signs = orig_cfl_alpha_signs; | 
|  | mbmi->cfl_alpha_idx = orig_cfl_alpha_idx; | 
|  | return cfl_cost; | 
|  | } | 
|  |  | 
|  | static void cfl_pick_plane_parameter(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | int plane, TX_SIZE tx_size, | 
|  | int cfl_search_range, | 
|  | RD_STATS cfl_rd_arr[CFL_MAGS_SIZE]) { | 
|  | assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  |  | 
|  | xd->cfl.use_dc_pred_cache = 1; | 
|  |  | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | assert(mbmi->uv_mode == UV_CFL_PRED); | 
|  | const MACROBLOCKD_PLANE *pd = &xd->plane[plane]; | 
|  | const BLOCK_SIZE plane_bsize = | 
|  | get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); | 
|  |  | 
|  | const int dir_ls[2] = { 1, -1 }; | 
|  |  | 
|  | int est_best_cfl_idx = CFL_INDEX_ZERO; | 
|  | if (cfl_search_range < CFL_MAGS_SIZE) { | 
|  | int fast_mode = 1; | 
|  | int start_cfl_idx = CFL_INDEX_ZERO; | 
|  | int64_t best_cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, | 
|  | start_cfl_idx, fast_mode, NULL); | 
|  | for (int si = 0; si < 2; ++si) { | 
|  | const int dir = dir_ls[si]; | 
|  | for (int i = 1; i < CFL_MAGS_SIZE; ++i) { | 
|  | int cfl_idx = start_cfl_idx + dir * i; | 
|  | if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break; | 
|  | int64_t cfl_cost = cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, | 
|  | cfl_idx, fast_mode, NULL); | 
|  | if (cfl_cost < best_cfl_cost) { | 
|  | best_cfl_cost = cfl_cost; | 
|  | est_best_cfl_idx = cfl_idx; | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | for (int cfl_idx = 0; cfl_idx < CFL_MAGS_SIZE; ++cfl_idx) { | 
|  | av1_invalid_rd_stats(&cfl_rd_arr[cfl_idx]); | 
|  | } | 
|  |  | 
|  | int fast_mode = 0; | 
|  | int start_cfl_idx = est_best_cfl_idx; | 
|  | cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, start_cfl_idx, fast_mode, | 
|  | &cfl_rd_arr[start_cfl_idx]); | 
|  | for (int si = 0; si < 2; ++si) { | 
|  | const int dir = dir_ls[si]; | 
|  | for (int i = 1; i < cfl_search_range; ++i) { | 
|  | int cfl_idx = start_cfl_idx + dir * i; | 
|  | if (cfl_idx < 0 || cfl_idx >= CFL_MAGS_SIZE) break; | 
|  | cfl_compute_rd(cpi, x, plane, tx_size, plane_bsize, cfl_idx, fast_mode, | 
|  | &cfl_rd_arr[cfl_idx]); | 
|  | } | 
|  | } | 
|  | xd->cfl.use_dc_pred_cache = 0; | 
|  | xd->cfl.dc_pred_is_cached[0] = 0; | 
|  | xd->cfl.dc_pred_is_cached[1] = 0; | 
|  | } | 
|  |  | 
|  | /*!\brief Pick the optimal parameters for Chroma to Luma (CFL) component | 
|  | * | 
|  | * \ingroup intra_mode_search | 
|  | * \callergraph | 
|  | * | 
|  | * This function will use DCT_DCT followed by computing SATD (sum of absolute | 
|  | * transformed differences) to estimate the RD score and find the best possible | 
|  | * CFL parameter. | 
|  | * | 
|  | * Then the function will apply a full RD search near the best possible CFL | 
|  | * parameter to find the best actual CFL parameter. | 
|  | * | 
|  | * Side effect: | 
|  | * We use ths buffers in x->plane[] and xd->plane[] as throw-away buffers for RD | 
|  | * search. | 
|  | * | 
|  | * \param[in] x                Encoder prediction block structure. | 
|  | * \param[in] cpi              Top-level encoder instance structure. | 
|  | * \param[in] tx_size          Transform size. | 
|  | * \param[in] ref_best_rd      Reference best RD. | 
|  | * \param[in] cfl_search_range The search range of full RD search near the | 
|  | *                             estimated best CFL parameter. | 
|  | * | 
|  | * \param[out]   best_rd_stats          RD stats of the best CFL parameter | 
|  | * \param[out]   best_cfl_alpha_idx     Best CFL alpha index | 
|  | * \param[out]   best_cfl_alpha_signs   Best CFL joint signs | 
|  | * | 
|  | */ | 
|  | static int cfl_rd_pick_alpha(MACROBLOCK *const x, const AV1_COMP *const cpi, | 
|  | TX_SIZE tx_size, int64_t ref_best_rd, | 
|  | int cfl_search_range, RD_STATS *best_rd_stats, | 
|  | uint8_t *best_cfl_alpha_idx, | 
|  | int8_t *best_cfl_alpha_signs) { | 
|  | assert(cfl_search_range >= 1 && cfl_search_range <= CFL_MAGS_SIZE); | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | RD_STATS cfl_rd_arr_u[CFL_MAGS_SIZE]; | 
|  | RD_STATS cfl_rd_arr_v[CFL_MAGS_SIZE]; | 
|  |  | 
|  | av1_invalid_rd_stats(best_rd_stats); | 
|  |  | 
|  | cfl_pick_plane_parameter(cpi, x, 1, tx_size, cfl_search_range, cfl_rd_arr_u); | 
|  | cfl_pick_plane_parameter(cpi, x, 2, tx_size, cfl_search_range, cfl_rd_arr_v); | 
|  |  | 
|  | for (int ui = 0; ui < CFL_MAGS_SIZE; ++ui) { | 
|  | if (cfl_rd_arr_u[ui].rate == INT_MAX) continue; | 
|  | int cfl_alpha_u; | 
|  | CFL_SIGN_TYPE cfl_sign_u; | 
|  | cfl_idx_to_sign_and_alpha(ui, &cfl_sign_u, &cfl_alpha_u); | 
|  | for (int vi = 0; vi < CFL_MAGS_SIZE; ++vi) { | 
|  | if (cfl_rd_arr_v[vi].rate == INT_MAX) continue; | 
|  | int cfl_alpha_v; | 
|  | CFL_SIGN_TYPE cfl_sign_v; | 
|  | cfl_idx_to_sign_and_alpha(vi, &cfl_sign_v, &cfl_alpha_v); | 
|  | // cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO is not a | 
|  | // valid parameter for CFL | 
|  | if (cfl_sign_u == CFL_SIGN_ZERO && cfl_sign_v == CFL_SIGN_ZERO) continue; | 
|  | int joint_sign = cfl_sign_u * CFL_SIGNS + cfl_sign_v - 1; | 
|  | RD_STATS rd_stats = cfl_rd_arr_u[ui]; | 
|  | av1_merge_rd_stats(&rd_stats, &cfl_rd_arr_v[vi]); | 
|  | if (rd_stats.rate != INT_MAX) { | 
|  | rd_stats.rate += | 
|  | mode_costs->cfl_cost[joint_sign][CFL_PRED_U][cfl_alpha_u]; | 
|  | rd_stats.rate += | 
|  | mode_costs->cfl_cost[joint_sign][CFL_PRED_V][cfl_alpha_v]; | 
|  | } | 
|  | av1_rd_cost_update(x->rdmult, &rd_stats); | 
|  | if (rd_stats.rdcost < best_rd_stats->rdcost) { | 
|  | *best_rd_stats = rd_stats; | 
|  | *best_cfl_alpha_idx = | 
|  | (cfl_alpha_u << CFL_ALPHABET_SIZE_LOG2) + cfl_alpha_v; | 
|  | *best_cfl_alpha_signs = joint_sign; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (best_rd_stats->rdcost >= ref_best_rd) { | 
|  | av1_invalid_rd_stats(best_rd_stats); | 
|  | // Set invalid CFL parameters here since the rdcost is not better than | 
|  | // ref_best_rd. | 
|  | *best_cfl_alpha_idx = 0; | 
|  | *best_cfl_alpha_signs = 0; | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int64_t av1_rd_pick_intra_sbuv_mode(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | int *rate, int *rate_tokenonly, | 
|  | int64_t *distortion, int *skippable, | 
|  | BLOCK_SIZE bsize, TX_SIZE max_tx_size) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MACROBLOCKD *xd = &x->e_mbd; | 
|  | MB_MODE_INFO *mbmi = xd->mi[0]; | 
|  | assert(!is_inter_block(mbmi)); | 
|  | MB_MODE_INFO best_mbmi = *mbmi; | 
|  | int64_t best_rd = INT64_MAX, this_rd; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg; | 
|  |  | 
|  | init_sbuv_mode(mbmi); | 
|  |  | 
|  | // Return if the current block does not correspond to a chroma block. | 
|  | if (!xd->is_chroma_ref) { | 
|  | *rate = 0; | 
|  | *rate_tokenonly = 0; | 
|  | *distortion = 0; | 
|  | *skippable = 1; | 
|  | return INT64_MAX; | 
|  | } | 
|  |  | 
|  | // Only store reconstructed luma when there's chroma RDO. When there's no | 
|  | // chroma RDO, the reconstructed luma will be stored in encode_superblock(). | 
|  | xd->cfl.store_y = store_cfl_required_rdo(cm, x); | 
|  | if (xd->cfl.store_y) { | 
|  | // Restore reconstructed luma values. | 
|  | // TODO(chiyotsai@google.com): right now we are re-computing the txfm in | 
|  | // this function everytime we search through uv modes. There is some | 
|  | // potential speed up here if we cache the result to avoid redundant | 
|  | // computation. | 
|  | av1_encode_intra_block_plane(cpi, x, mbmi->bsize, AOM_PLANE_Y, | 
|  | DRY_RUN_NORMAL, | 
|  | cpi->optimize_seg_arr[mbmi->segment_id]); | 
|  | xd->cfl.store_y = 0; | 
|  | } | 
|  | IntraModeSearchState intra_search_state; | 
|  | init_intra_mode_search_state(&intra_search_state); | 
|  |  | 
|  | // Search through all non-palette modes. | 
|  | for (int mode_idx = 0; mode_idx < UV_INTRA_MODES; ++mode_idx) { | 
|  | int this_rate; | 
|  | RD_STATS tokenonly_rd_stats; | 
|  | UV_PREDICTION_MODE mode = uv_rd_search_mode_order[mode_idx]; | 
|  | const int is_diagonal_mode = av1_is_diagonal_mode(get_uv_mode(mode)); | 
|  | const int is_directional_mode = av1_is_directional_mode(get_uv_mode(mode)); | 
|  |  | 
|  | if (is_diagonal_mode && !cpi->oxcf.intra_mode_cfg.enable_diagonal_intra) | 
|  | continue; | 
|  | if (is_directional_mode && | 
|  | !cpi->oxcf.intra_mode_cfg.enable_directional_intra) | 
|  | continue; | 
|  |  | 
|  | if (!(cpi->sf.intra_sf.intra_uv_mode_mask[txsize_sqr_up_map[max_tx_size]] & | 
|  | (1 << mode))) | 
|  | continue; | 
|  | if (!intra_mode_cfg->enable_smooth_intra && mode >= UV_SMOOTH_PRED && | 
|  | mode <= UV_SMOOTH_H_PRED) | 
|  | continue; | 
|  |  | 
|  | if (!intra_mode_cfg->enable_paeth_intra && mode == UV_PAETH_PRED) continue; | 
|  |  | 
|  | assert(mbmi->mode < INTRA_MODES); | 
|  | if (cpi->sf.intra_sf.prune_chroma_modes_using_luma_winner && | 
|  | !(av1_derived_chroma_intra_mode_used_flag[mbmi->mode] & (1 << mode))) | 
|  | continue; | 
|  |  | 
|  | mbmi->uv_mode = mode; | 
|  |  | 
|  | // Init variables for cfl and angle delta | 
|  | const SPEED_FEATURES *sf = &cpi->sf; | 
|  | mbmi->angle_delta[PLANE_TYPE_UV] = 0; | 
|  | if (mode == UV_CFL_PRED) { | 
|  | if (!is_cfl_allowed(xd) || !intra_mode_cfg->enable_cfl_intra) continue; | 
|  | assert(!is_directional_mode); | 
|  | const TX_SIZE uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); | 
|  | if (!cfl_rd_pick_alpha(x, cpi, uv_tx_size, best_rd, | 
|  | sf->intra_sf.cfl_search_range, &tokenonly_rd_stats, | 
|  | &mbmi->cfl_alpha_idx, &mbmi->cfl_alpha_signs)) { | 
|  | continue; | 
|  | } | 
|  | } else if (is_directional_mode && av1_use_angle_delta(mbmi->bsize) && | 
|  | intra_mode_cfg->enable_angle_delta) { | 
|  | if (sf->intra_sf.chroma_intra_pruning_with_hog && | 
|  | !intra_search_state.dir_mode_skip_mask_ready) { | 
|  | static const float thresh[2][4] = { | 
|  | { -1.2f, 0.0f, 0.0f, 1.2f },    // Interframe | 
|  | { -1.2f, -1.2f, -0.6f, 0.4f },  // Intraframe | 
|  | }; | 
|  | const int is_chroma = 1; | 
|  | const int is_intra_frame = frame_is_intra_only(cm); | 
|  | prune_intra_mode_with_hog( | 
|  | x, bsize, cm->seq_params->sb_size, | 
|  | thresh[is_intra_frame] | 
|  | [sf->intra_sf.chroma_intra_pruning_with_hog - 1], | 
|  | intra_search_state.directional_mode_skip_mask, is_chroma); | 
|  | intra_search_state.dir_mode_skip_mask_ready = 1; | 
|  | } | 
|  | if (intra_search_state.directional_mode_skip_mask[mode]) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Search through angle delta | 
|  | const int rate_overhead = | 
|  | mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode]; | 
|  | if (!rd_pick_intra_angle_sbuv(cpi, x, bsize, rate_overhead, best_rd, | 
|  | &this_rate, &tokenonly_rd_stats)) | 
|  | continue; | 
|  | } else { | 
|  | // Predict directly if we don't need to search for angle delta. | 
|  | if (!av1_txfm_uvrd(cpi, x, &tokenonly_rd_stats, bsize, best_rd)) { | 
|  | continue; | 
|  | } | 
|  | } | 
|  | const int mode_cost = | 
|  | mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][mode]; | 
|  | this_rate = tokenonly_rd_stats.rate + | 
|  | intra_mode_info_cost_uv(cpi, x, mbmi, bsize, mode_cost); | 
|  | this_rd = RDCOST(x->rdmult, this_rate, tokenonly_rd_stats.dist); | 
|  |  | 
|  | if (this_rd < best_rd) { | 
|  | best_mbmi = *mbmi; | 
|  | best_rd = this_rd; | 
|  | *rate = this_rate; | 
|  | *rate_tokenonly = tokenonly_rd_stats.rate; | 
|  | *distortion = tokenonly_rd_stats.dist; | 
|  | *skippable = tokenonly_rd_stats.skip_txfm; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Search palette mode | 
|  | const int try_palette = | 
|  | cpi->oxcf.tool_cfg.enable_palette && | 
|  | av1_allow_palette(cpi->common.features.allow_screen_content_tools, | 
|  | mbmi->bsize); | 
|  | if (try_palette) { | 
|  | uint8_t *best_palette_color_map = x->palette_buffer->best_palette_color_map; | 
|  | av1_rd_pick_palette_intra_sbuv( | 
|  | cpi, x, | 
|  | mode_costs | 
|  | ->intra_uv_mode_cost[is_cfl_allowed(xd)][mbmi->mode][UV_DC_PRED], | 
|  | best_palette_color_map, &best_mbmi, &best_rd, rate, rate_tokenonly, | 
|  | distortion, skippable); | 
|  | } | 
|  |  | 
|  | *mbmi = best_mbmi; | 
|  | // Make sure we actually chose a mode | 
|  | assert(best_rd < INT64_MAX); | 
|  | return best_rd; | 
|  | } | 
|  |  | 
|  | // Searches palette mode for luma channel in inter frame. | 
|  | int av1_search_palette_mode(IntraModeSearchState *intra_search_state, | 
|  | const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, unsigned int ref_frame_cost, | 
|  | PICK_MODE_CONTEXT *ctx, RD_STATS *this_rd_cost, | 
|  | int64_t best_rd) { | 
|  | const AV1_COMMON *const cm = &cpi->common; | 
|  | MB_MODE_INFO *const mbmi = x->e_mbd.mi[0]; | 
|  | PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | const int num_planes = av1_num_planes(cm); | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | int rate2 = 0; | 
|  | int64_t distortion2 = 0, best_rd_palette = best_rd, this_rd; | 
|  | int skippable = 0; | 
|  | uint8_t *const best_palette_color_map = | 
|  | x->palette_buffer->best_palette_color_map; | 
|  | uint8_t *const color_map = xd->plane[0].color_index_map; | 
|  | MB_MODE_INFO best_mbmi_palette = *mbmi; | 
|  | uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
|  | uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | const int *const intra_mode_cost = | 
|  | mode_costs->mbmode_cost[size_group_lookup[bsize]]; | 
|  | const int rows = block_size_high[bsize]; | 
|  | const int cols = block_size_wide[bsize]; | 
|  |  | 
|  | mbmi->mode = DC_PRED; | 
|  | mbmi->uv_mode = UV_DC_PRED; | 
|  | mbmi->ref_frame[0] = INTRA_FRAME; | 
|  | mbmi->ref_frame[1] = NONE_FRAME; | 
|  | av1_zero(pmi->palette_size); | 
|  |  | 
|  | RD_STATS rd_stats_y; | 
|  | av1_invalid_rd_stats(&rd_stats_y); | 
|  | av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED], | 
|  | &best_mbmi_palette, best_palette_color_map, | 
|  | &best_rd_palette, &rd_stats_y.rate, NULL, | 
|  | &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL, | 
|  | ctx, best_blk_skip, best_tx_type_map); | 
|  | if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) { | 
|  | this_rd_cost->rdcost = INT64_MAX; | 
|  | return skippable; | 
|  | } | 
|  |  | 
|  | memcpy(x->txfm_search_info.blk_skip, best_blk_skip, | 
|  | sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); | 
|  | av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); | 
|  | memcpy(color_map, best_palette_color_map, | 
|  | rows * cols * sizeof(best_palette_color_map[0])); | 
|  |  | 
|  | skippable = rd_stats_y.skip_txfm; | 
|  | distortion2 = rd_stats_y.dist; | 
|  | rate2 = rd_stats_y.rate + ref_frame_cost; | 
|  | if (num_planes > 1) { | 
|  | if (intra_search_state->rate_uv_intra == INT_MAX) { | 
|  | // We have not found any good uv mode yet, so we need to search for it. | 
|  | TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); | 
|  | av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra, | 
|  | &intra_search_state->rate_uv_tokenonly, | 
|  | &intra_search_state->dist_uvs, | 
|  | &intra_search_state->skip_uvs, bsize, uv_tx); | 
|  | intra_search_state->mode_uv = mbmi->uv_mode; | 
|  | intra_search_state->pmi_uv = *pmi; | 
|  | intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; | 
|  | } | 
|  |  | 
|  | // We have found at least one good uv mode before, so copy and paste it | 
|  | // over. | 
|  | mbmi->uv_mode = intra_search_state->mode_uv; | 
|  | pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1]; | 
|  | if (pmi->palette_size[1] > 0) { | 
|  | memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, | 
|  | intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE, | 
|  | 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); | 
|  | } | 
|  | mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta; | 
|  | skippable = skippable && intra_search_state->skip_uvs; | 
|  | distortion2 += intra_search_state->dist_uvs; | 
|  | rate2 += intra_search_state->rate_uv_intra; | 
|  | } | 
|  |  | 
|  | if (skippable) { | 
|  | rate2 -= rd_stats_y.rate; | 
|  | if (num_planes > 1) rate2 -= intra_search_state->rate_uv_tokenonly; | 
|  | rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1]; | 
|  | } else { | 
|  | rate2 += mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0]; | 
|  | } | 
|  | this_rd = RDCOST(x->rdmult, rate2, distortion2); | 
|  | this_rd_cost->rate = rate2; | 
|  | this_rd_cost->dist = distortion2; | 
|  | this_rd_cost->rdcost = this_rd; | 
|  | return skippable; | 
|  | } | 
|  |  | 
|  | void av1_search_palette_mode_luma(const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, unsigned int ref_frame_cost, | 
|  | PICK_MODE_CONTEXT *ctx, | 
|  | RD_STATS *this_rd_cost, int64_t best_rd) { | 
|  | MB_MODE_INFO *const mbmi = x->e_mbd.mi[0]; | 
|  | PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | int64_t best_rd_palette = best_rd, this_rd; | 
|  | uint8_t *const best_palette_color_map = | 
|  | x->palette_buffer->best_palette_color_map; | 
|  | uint8_t *const color_map = xd->plane[0].color_index_map; | 
|  | MB_MODE_INFO best_mbmi_palette = *mbmi; | 
|  | uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
|  | uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | const int *const intra_mode_cost = | 
|  | mode_costs->mbmode_cost[size_group_lookup[bsize]]; | 
|  | const int rows = block_size_high[bsize]; | 
|  | const int cols = block_size_wide[bsize]; | 
|  |  | 
|  | mbmi->mode = DC_PRED; | 
|  | mbmi->uv_mode = UV_DC_PRED; | 
|  | mbmi->ref_frame[0] = INTRA_FRAME; | 
|  | mbmi->ref_frame[1] = NONE_FRAME; | 
|  | av1_zero(pmi->palette_size); | 
|  |  | 
|  | RD_STATS rd_stats_y; | 
|  | av1_invalid_rd_stats(&rd_stats_y); | 
|  | av1_rd_pick_palette_intra_sby(cpi, x, bsize, intra_mode_cost[DC_PRED], | 
|  | &best_mbmi_palette, best_palette_color_map, | 
|  | &best_rd_palette, &rd_stats_y.rate, NULL, | 
|  | &rd_stats_y.dist, &rd_stats_y.skip_txfm, NULL, | 
|  | ctx, best_blk_skip, best_tx_type_map); | 
|  | if (rd_stats_y.rate == INT_MAX || pmi->palette_size[0] == 0) { | 
|  | this_rd_cost->rdcost = INT64_MAX; | 
|  | return; | 
|  | } | 
|  |  | 
|  | memcpy(x->txfm_search_info.blk_skip, best_blk_skip, | 
|  | sizeof(best_blk_skip[0]) * bsize_to_num_blk(bsize)); | 
|  | av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); | 
|  | memcpy(color_map, best_palette_color_map, | 
|  | rows * cols * sizeof(best_palette_color_map[0])); | 
|  |  | 
|  | rd_stats_y.rate += ref_frame_cost; | 
|  |  | 
|  | if (rd_stats_y.skip_txfm) { | 
|  | rd_stats_y.rate = | 
|  | ref_frame_cost + | 
|  | mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][1]; | 
|  | } else { | 
|  | rd_stats_y.rate += | 
|  | mode_costs->skip_txfm_cost[av1_get_skip_txfm_context(xd)][0]; | 
|  | } | 
|  | this_rd = RDCOST(x->rdmult, rd_stats_y.rate, rd_stats_y.dist); | 
|  | this_rd_cost->rate = rd_stats_y.rate; | 
|  | this_rd_cost->dist = rd_stats_y.dist; | 
|  | this_rd_cost->rdcost = this_rd; | 
|  | this_rd_cost->skip_txfm = rd_stats_y.skip_txfm; | 
|  | } | 
|  |  | 
|  | /*!\brief Get the intra prediction by searching through tx_type and tx_size. | 
|  | * | 
|  | * \ingroup intra_mode_search | 
|  | * \callergraph | 
|  | * Currently this function is only used in the intra frame code path for | 
|  | * winner-mode processing. | 
|  | * | 
|  | * \return Returns whether the current mode is an improvement over best_rd. | 
|  | */ | 
|  | static AOM_INLINE int intra_block_yrd(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, const int *bmode_costs, | 
|  | int64_t *best_rd, int *rate, | 
|  | int *rate_tokenonly, int64_t *distortion, | 
|  | int *skippable, MB_MODE_INFO *best_mbmi, | 
|  | PICK_MODE_CONTEXT *ctx) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | RD_STATS rd_stats; | 
|  | // In order to improve txfm search avoid rd based breakouts during winner | 
|  | // mode evaluation. Hence passing ref_best_rd as a maximum value | 
|  | av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats, bsize, INT64_MAX); | 
|  | if (rd_stats.rate == INT_MAX) return 0; | 
|  | int this_rate_tokenonly = rd_stats.rate; | 
|  | if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) { | 
|  | // av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size | 
|  | // in the tokenonly rate, but for intra blocks, tx_size is always coded | 
|  | // (prediction granularity), so we account for it in the full rate, | 
|  | // not the tokenonly rate. | 
|  | this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size); | 
|  | } | 
|  | const int this_rate = | 
|  | rd_stats.rate + | 
|  | intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0); | 
|  | const int64_t this_rd = RDCOST(x->rdmult, this_rate, rd_stats.dist); | 
|  | if (this_rd < *best_rd) { | 
|  | *best_mbmi = *mbmi; | 
|  | *best_rd = this_rd; | 
|  | *rate = this_rate; | 
|  | *rate_tokenonly = this_rate_tokenonly; | 
|  | *distortion = rd_stats.dist; | 
|  | *skippable = rd_stats.skip_txfm; | 
|  | av1_copy_array(ctx->blk_skip, x->txfm_search_info.blk_skip, | 
|  | ctx->num_4x4_blk); | 
|  | av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /*!\brief Search for the best filter_intra mode when coding inter frame. | 
|  | * | 
|  | * \ingroup intra_mode_search | 
|  | * \callergraph | 
|  | * This function loops through all filter_intra modes to find the best one. | 
|  | * | 
|  | * \return Returns nothing, but updates the mbmi and rd_stats. | 
|  | */ | 
|  | static INLINE void handle_filter_intra_mode(const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, | 
|  | const PICK_MODE_CONTEXT *ctx, | 
|  | RD_STATS *rd_stats_y, int mode_cost, | 
|  | int64_t best_rd, | 
|  | int64_t best_rd_so_far) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | assert(mbmi->mode == DC_PRED && | 
|  | av1_filter_intra_allowed_bsize(&cpi->common, bsize)); | 
|  |  | 
|  | RD_STATS rd_stats_y_fi; | 
|  | int filter_intra_selected_flag = 0; | 
|  | TX_SIZE best_tx_size = mbmi->tx_size; | 
|  | FILTER_INTRA_MODE best_fi_mode = FILTER_DC_PRED; | 
|  | uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
|  | memcpy(best_blk_skip, x->txfm_search_info.blk_skip, | 
|  | sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); | 
|  | uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; | 
|  | av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
|  | mbmi->filter_intra_mode_info.use_filter_intra = 1; | 
|  | for (FILTER_INTRA_MODE fi_mode = FILTER_DC_PRED; fi_mode < FILTER_INTRA_MODES; | 
|  | ++fi_mode) { | 
|  | mbmi->filter_intra_mode_info.filter_intra_mode = fi_mode; | 
|  | av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y_fi, bsize, best_rd); | 
|  | if (rd_stats_y_fi.rate == INT_MAX) continue; | 
|  | const int this_rate_tmp = | 
|  | rd_stats_y_fi.rate + | 
|  | intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); | 
|  | const int64_t this_rd_tmp = | 
|  | RDCOST(x->rdmult, this_rate_tmp, rd_stats_y_fi.dist); | 
|  |  | 
|  | if (this_rd_tmp != INT64_MAX && this_rd_tmp / 2 > best_rd) { | 
|  | break; | 
|  | } | 
|  | if (this_rd_tmp < best_rd_so_far) { | 
|  | best_tx_size = mbmi->tx_size; | 
|  | av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
|  | memcpy(best_blk_skip, x->txfm_search_info.blk_skip, | 
|  | sizeof(best_blk_skip[0]) * ctx->num_4x4_blk); | 
|  | best_fi_mode = fi_mode; | 
|  | *rd_stats_y = rd_stats_y_fi; | 
|  | filter_intra_selected_flag = 1; | 
|  | best_rd_so_far = this_rd_tmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | mbmi->tx_size = best_tx_size; | 
|  | av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); | 
|  | memcpy(x->txfm_search_info.blk_skip, best_blk_skip, | 
|  | sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); | 
|  |  | 
|  | if (filter_intra_selected_flag) { | 
|  | mbmi->filter_intra_mode_info.use_filter_intra = 1; | 
|  | mbmi->filter_intra_mode_info.filter_intra_mode = best_fi_mode; | 
|  | } else { | 
|  | mbmi->filter_intra_mode_info.use_filter_intra = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Evaluate a given luma intra-mode in inter frames. | 
|  | int av1_handle_intra_y_mode(IntraModeSearchState *intra_search_state, | 
|  | const AV1_COMP *cpi, MACROBLOCK *x, | 
|  | BLOCK_SIZE bsize, unsigned int ref_frame_cost, | 
|  | const PICK_MODE_CONTEXT *ctx, RD_STATS *rd_stats_y, | 
|  | int64_t best_rd, int *mode_cost_y, int64_t *rd_y, | 
|  | int64_t *best_model_rd, | 
|  | int64_t top_intra_model_rd[]) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | assert(mbmi->ref_frame[0] == INTRA_FRAME); | 
|  | const PREDICTION_MODE mode = mbmi->mode; | 
|  | const ModeCosts *mode_costs = &x->mode_costs; | 
|  | const int mode_cost = | 
|  | mode_costs->mbmode_cost[size_group_lookup[bsize]][mode] + ref_frame_cost; | 
|  | const int skip_ctx = av1_get_skip_txfm_context(xd); | 
|  |  | 
|  | int known_rate = mode_cost; | 
|  | const int intra_cost_penalty = av1_get_intra_cost_penalty( | 
|  | cm->quant_params.base_qindex, cm->quant_params.y_dc_delta_q, | 
|  | cm->seq_params->bit_depth); | 
|  |  | 
|  | if (mode != DC_PRED && mode != PAETH_PRED) known_rate += intra_cost_penalty; | 
|  | known_rate += AOMMIN(mode_costs->skip_txfm_cost[skip_ctx][0], | 
|  | mode_costs->skip_txfm_cost[skip_ctx][1]); | 
|  | const int64_t known_rd = RDCOST(x->rdmult, known_rate, 0); | 
|  | if (known_rd > best_rd) { | 
|  | intra_search_state->skip_intra_modes = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const int is_directional_mode = av1_is_directional_mode(mode); | 
|  | if (is_directional_mode && av1_use_angle_delta(bsize) && | 
|  | cpi->oxcf.intra_mode_cfg.enable_angle_delta) { | 
|  | if (intra_sf->intra_pruning_with_hog && | 
|  | !intra_search_state->dir_mode_skip_mask_ready) { | 
|  | const float thresh[4] = { -1.2f, 0.0f, 0.0f, 1.2f }; | 
|  | const int is_chroma = 0; | 
|  | prune_intra_mode_with_hog(x, bsize, cm->seq_params->sb_size, | 
|  | thresh[intra_sf->intra_pruning_with_hog - 1], | 
|  | intra_search_state->directional_mode_skip_mask, | 
|  | is_chroma); | 
|  | intra_search_state->dir_mode_skip_mask_ready = 1; | 
|  | } | 
|  | if (intra_search_state->directional_mode_skip_mask[mode]) return 0; | 
|  | } | 
|  | const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]); | 
|  | const int64_t this_model_rd = | 
|  | intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1); | 
|  |  | 
|  | const int model_rd_index_for_pruning = | 
|  | get_model_rd_index_for_pruning(x, intra_sf); | 
|  |  | 
|  | if (prune_intra_y_mode(this_model_rd, best_model_rd, top_intra_model_rd, | 
|  | intra_sf->top_intra_model_count_allowed, | 
|  | model_rd_index_for_pruning)) | 
|  | return 0; | 
|  | av1_init_rd_stats(rd_stats_y); | 
|  | av1_pick_uniform_tx_size_type_yrd(cpi, x, rd_stats_y, bsize, best_rd); | 
|  |  | 
|  | // Pick filter intra modes. | 
|  | if (mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { | 
|  | int try_filter_intra = 1; | 
|  | int64_t best_rd_so_far = INT64_MAX; | 
|  | if (rd_stats_y->rate != INT_MAX) { | 
|  | // best_rd_so_far is the rdcost of DC_PRED without using filter_intra. | 
|  | // Later, in filter intra search, best_rd_so_far is used for comparison. | 
|  | mbmi->filter_intra_mode_info.use_filter_intra = 0; | 
|  | const int tmp_rate = | 
|  | rd_stats_y->rate + | 
|  | intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); | 
|  | best_rd_so_far = RDCOST(x->rdmult, tmp_rate, rd_stats_y->dist); | 
|  | try_filter_intra = (best_rd_so_far / 2) <= best_rd; | 
|  | } else if (intra_sf->skip_filter_intra_in_inter_frames >= 1) { | 
|  | // As rd cost of luma intra dc mode is more than best_rd (i.e., | 
|  | // rd_stats_y->rate = INT_MAX), skip the evaluation of filter intra modes. | 
|  | try_filter_intra = 0; | 
|  | } | 
|  |  | 
|  | if (try_filter_intra) { | 
|  | handle_filter_intra_mode(cpi, x, bsize, ctx, rd_stats_y, mode_cost, | 
|  | best_rd, best_rd_so_far); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rd_stats_y->rate == INT_MAX) return 0; | 
|  |  | 
|  | *mode_cost_y = intra_mode_info_cost_y(cpi, x, mbmi, bsize, mode_cost, 0); | 
|  | const int rate_y = rd_stats_y->skip_txfm | 
|  | ? mode_costs->skip_txfm_cost[skip_ctx][1] | 
|  | : rd_stats_y->rate; | 
|  | *rd_y = RDCOST(x->rdmult, rate_y + *mode_cost_y, rd_stats_y->dist); | 
|  | if (best_rd < (INT64_MAX / 2) && *rd_y > (best_rd + (best_rd >> 2))) { | 
|  | intra_search_state->skip_intra_modes = 1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | int av1_search_intra_uv_modes_in_interframe( | 
|  | IntraModeSearchState *intra_search_state, const AV1_COMP *cpi, | 
|  | MACROBLOCK *x, BLOCK_SIZE bsize, RD_STATS *rd_stats, | 
|  | const RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, int64_t best_rd) { | 
|  | const AV1_COMMON *cm = &cpi->common; | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | assert(mbmi->ref_frame[0] == INTRA_FRAME); | 
|  |  | 
|  | // TODO(chiyotsai@google.com): Consolidate the chroma search code here with | 
|  | // the one in av1_search_palette_mode. | 
|  | PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | const int try_palette = | 
|  | cpi->oxcf.tool_cfg.enable_palette && | 
|  | av1_allow_palette(cm->features.allow_screen_content_tools, mbmi->bsize); | 
|  |  | 
|  | assert(intra_search_state->rate_uv_intra == INT_MAX); | 
|  | if (intra_search_state->rate_uv_intra == INT_MAX) { | 
|  | // If no good uv-predictor had been found, search for it. | 
|  | const TX_SIZE uv_tx = av1_get_tx_size(AOM_PLANE_U, xd); | 
|  | av1_rd_pick_intra_sbuv_mode(cpi, x, &intra_search_state->rate_uv_intra, | 
|  | &intra_search_state->rate_uv_tokenonly, | 
|  | &intra_search_state->dist_uvs, | 
|  | &intra_search_state->skip_uvs, bsize, uv_tx); | 
|  | intra_search_state->mode_uv = mbmi->uv_mode; | 
|  | if (try_palette) intra_search_state->pmi_uv = *pmi; | 
|  | intra_search_state->uv_angle_delta = mbmi->angle_delta[PLANE_TYPE_UV]; | 
|  |  | 
|  | const int uv_rate = intra_search_state->rate_uv_tokenonly; | 
|  | const int64_t uv_dist = intra_search_state->dist_uvs; | 
|  | const int64_t uv_rd = RDCOST(x->rdmult, uv_rate, uv_dist); | 
|  | if (uv_rd > best_rd) { | 
|  | // If there is no good intra uv-mode available, we can skip all intra | 
|  | // modes. | 
|  | intra_search_state->skip_intra_modes = 1; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we are here, then the encoder has found at least one good intra uv | 
|  | // predictor, so we can directly copy its statistics over. | 
|  | // TODO(any): the stats here is not right if the best uv mode is CFL but the | 
|  | // best y mode is palette. | 
|  | rd_stats_uv->rate = intra_search_state->rate_uv_tokenonly; | 
|  | rd_stats_uv->dist = intra_search_state->dist_uvs; | 
|  | rd_stats_uv->skip_txfm = intra_search_state->skip_uvs; | 
|  | rd_stats->skip_txfm = rd_stats_y->skip_txfm && rd_stats_uv->skip_txfm; | 
|  | mbmi->uv_mode = intra_search_state->mode_uv; | 
|  | if (try_palette) { | 
|  | pmi->palette_size[1] = intra_search_state->pmi_uv.palette_size[1]; | 
|  | memcpy(pmi->palette_colors + PALETTE_MAX_SIZE, | 
|  | intra_search_state->pmi_uv.palette_colors + PALETTE_MAX_SIZE, | 
|  | 2 * PALETTE_MAX_SIZE * sizeof(pmi->palette_colors[0])); | 
|  | } | 
|  | mbmi->angle_delta[PLANE_TYPE_UV] = intra_search_state->uv_angle_delta; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | // Finds the best non-intrabc mode on an intra frame. | 
|  | int64_t av1_rd_pick_intra_sby_mode(const AV1_COMP *const cpi, MACROBLOCK *x, | 
|  | int *rate, int *rate_tokenonly, | 
|  | int64_t *distortion, int *skippable, | 
|  | BLOCK_SIZE bsize, int64_t best_rd, | 
|  | PICK_MODE_CONTEXT *ctx) { | 
|  | MACROBLOCKD *const xd = &x->e_mbd; | 
|  | MB_MODE_INFO *const mbmi = xd->mi[0]; | 
|  | assert(!is_inter_block(mbmi)); | 
|  | int64_t best_model_rd = INT64_MAX; | 
|  | int is_directional_mode; | 
|  | uint8_t directional_mode_skip_mask[INTRA_MODES] = { 0 }; | 
|  | // Flag to check rd of any intra mode is better than best_rd passed to this | 
|  | // function | 
|  | int beat_best_rd = 0; | 
|  | const int *bmode_costs; | 
|  | const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg; | 
|  | PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; | 
|  | const int try_palette = | 
|  | cpi->oxcf.tool_cfg.enable_palette && | 
|  | av1_allow_palette(cpi->common.features.allow_screen_content_tools, | 
|  | mbmi->bsize); | 
|  | uint8_t *best_palette_color_map = | 
|  | try_palette ? x->palette_buffer->best_palette_color_map : NULL; | 
|  | const MB_MODE_INFO *above_mi = xd->above_mbmi; | 
|  | const MB_MODE_INFO *left_mi = xd->left_mbmi; | 
|  | const PREDICTION_MODE A = av1_above_block_mode(above_mi); | 
|  | const PREDICTION_MODE L = av1_left_block_mode(left_mi); | 
|  | const int above_ctx = intra_mode_context[A]; | 
|  | const int left_ctx = intra_mode_context[L]; | 
|  | bmode_costs = x->mode_costs.y_mode_costs[above_ctx][left_ctx]; | 
|  |  | 
|  | mbmi->angle_delta[PLANE_TYPE_Y] = 0; | 
|  | const INTRA_MODE_SPEED_FEATURES *const intra_sf = &cpi->sf.intra_sf; | 
|  | if (intra_sf->intra_pruning_with_hog) { | 
|  | // Less aggressive thresholds are used here than those used in inter frame | 
|  | // encoding in av1_handle_intra_y_mode() because we want key frames/intra | 
|  | // frames to have higher quality. | 
|  | const float thresh[4] = { -1.2f, -1.2f, -0.6f, 0.4f }; | 
|  | const int is_chroma = 0; | 
|  | prune_intra_mode_with_hog(x, bsize, cpi->common.seq_params->sb_size, | 
|  | thresh[intra_sf->intra_pruning_with_hog - 1], | 
|  | directional_mode_skip_mask, is_chroma); | 
|  | } | 
|  | mbmi->filter_intra_mode_info.use_filter_intra = 0; | 
|  | pmi->palette_size[0] = 0; | 
|  |  | 
|  | // Set params for mode evaluation | 
|  | set_mode_eval_params(cpi, x, MODE_EVAL); | 
|  |  | 
|  | MB_MODE_INFO best_mbmi = *mbmi; | 
|  | zero_winner_mode_stats(bsize, MAX_WINNER_MODE_COUNT_INTRA, | 
|  | x->winner_mode_stats); | 
|  | x->winner_mode_count = 0; | 
|  |  | 
|  | // Searches the intra-modes except for intrabc, palette, and filter_intra. | 
|  | int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT]; | 
|  | for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) { | 
|  | top_intra_model_rd[i] = INT64_MAX; | 
|  | } | 
|  | for (int mode_idx = INTRA_MODE_START; mode_idx < LUMA_MODE_COUNT; | 
|  | ++mode_idx) { | 
|  | set_y_mode_and_delta_angle(mode_idx, mbmi); | 
|  | RD_STATS this_rd_stats; | 
|  | int this_rate, this_rate_tokenonly, s; | 
|  | int is_diagonal_mode; | 
|  | int64_t this_distortion, this_rd; | 
|  |  | 
|  | is_diagonal_mode = av1_is_diagonal_mode(mbmi->mode); | 
|  | if (is_diagonal_mode && !intra_mode_cfg->enable_diagonal_intra) continue; | 
|  | if (av1_is_directional_mode(mbmi->mode) && | 
|  | !intra_mode_cfg->enable_directional_intra) | 
|  | continue; | 
|  |  | 
|  | // The smooth prediction mode appears to be more frequently picked | 
|  | // than horizontal / vertical smooth prediction modes. Hence treat | 
|  | // them differently in speed features. | 
|  | if ((!intra_mode_cfg->enable_smooth_intra || | 
|  | intra_sf->disable_smooth_intra) && | 
|  | (mbmi->mode == SMOOTH_H_PRED || mbmi->mode == SMOOTH_V_PRED)) | 
|  | continue; | 
|  | if (!intra_mode_cfg->enable_smooth_intra && mbmi->mode == SMOOTH_PRED) | 
|  | continue; | 
|  |  | 
|  | // The functionality of filter intra modes and smooth prediction | 
|  | // overlap. Hence smooth prediction is pruned only if all the | 
|  | // filter intra modes are enabled. | 
|  | if (intra_sf->disable_smooth_intra && | 
|  | intra_sf->prune_filter_intra_level == 0 && mbmi->mode == SMOOTH_PRED) | 
|  | continue; | 
|  | if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED) | 
|  | continue; | 
|  |  | 
|  | // Skip the evaluation of modes that do not match with the winner mode in | 
|  | // x->mb_mode_cache. | 
|  | if (x->use_mb_mode_cache && mbmi->mode != x->mb_mode_cache->mode) continue; | 
|  |  | 
|  | is_directional_mode = av1_is_directional_mode(mbmi->mode); | 
|  | if (is_directional_mode && directional_mode_skip_mask[mbmi->mode]) continue; | 
|  | if (is_directional_mode && | 
|  | !(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) && | 
|  | mbmi->angle_delta[PLANE_TYPE_Y] != 0) | 
|  | continue; | 
|  |  | 
|  | // Use intra_y_mode_mask speed feature to skip intra mode evaluation. | 
|  | if (!(intra_sf->intra_y_mode_mask[max_txsize_lookup[bsize]] & | 
|  | (1 << mbmi->mode))) | 
|  | continue; | 
|  |  | 
|  | const TX_SIZE tx_size = AOMMIN(TX_32X32, max_txsize_lookup[bsize]); | 
|  | const int64_t this_model_rd = | 
|  | intra_model_rd(&cpi->common, x, 0, bsize, tx_size, /*use_hadamard=*/1); | 
|  |  | 
|  | const int model_rd_index_for_pruning = | 
|  | get_model_rd_index_for_pruning(x, intra_sf); | 
|  |  | 
|  | if (prune_intra_y_mode(this_model_rd, &best_model_rd, top_intra_model_rd, | 
|  | intra_sf->top_intra_model_count_allowed, | 
|  | model_rd_index_for_pruning)) | 
|  | continue; | 
|  |  | 
|  | // Builds the actual prediction. The prediction from | 
|  | // model_intra_yrd_and_prune was just an estimation that did not take into | 
|  | // account the effect of txfm pipeline, so we need to redo it for real | 
|  | // here. | 
|  | av1_pick_uniform_tx_size_type_yrd(cpi, x, &this_rd_stats, bsize, best_rd); | 
|  | this_rate_tokenonly = this_rd_stats.rate; | 
|  | this_distortion = this_rd_stats.dist; | 
|  | s = this_rd_stats.skip_txfm; | 
|  |  | 
|  | if (this_rate_tokenonly == INT_MAX) continue; | 
|  |  | 
|  | if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(mbmi->bsize)) { | 
|  | // av1_pick_uniform_tx_size_type_yrd above includes the cost of the | 
|  | // tx_size in the tokenonly rate, but for intra blocks, tx_size is always | 
|  | // coded (prediction granularity), so we account for it in the full rate, | 
|  | // not the tokenonly rate. | 
|  | this_rate_tokenonly -= tx_size_cost(x, bsize, mbmi->tx_size); | 
|  | } | 
|  | this_rate = | 
|  | this_rd_stats.rate + | 
|  | intra_mode_info_cost_y(cpi, x, mbmi, bsize, bmode_costs[mbmi->mode], 0); | 
|  | this_rd = RDCOST(x->rdmult, this_rate, this_distortion); | 
|  |  | 
|  | // Visual quality adjustment based on recon vs source variance. | 
|  | if ((cpi->oxcf.mode == ALLINTRA) && (this_rd != INT64_MAX)) { | 
|  | this_rd = (int64_t)(this_rd * intra_rd_variance_factor(cpi, x, bsize)); | 
|  | } | 
|  |  | 
|  | // Collect mode stats for multiwinner mode processing | 
|  | const int txfm_search_done = 1; | 
|  | store_winner_mode_stats( | 
|  | &cpi->common, x, mbmi, NULL, NULL, NULL, 0, NULL, bsize, this_rd, | 
|  | cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); | 
|  | if (this_rd < best_rd) { | 
|  | best_mbmi = *mbmi; | 
|  | best_rd = this_rd; | 
|  | // Setting beat_best_rd flag because current mode rd is better than | 
|  | // best_rd passed to this function | 
|  | beat_best_rd = 1; | 
|  | *rate = this_rate; | 
|  | *rate_tokenonly = this_rate_tokenonly; | 
|  | *distortion = this_distortion; | 
|  | *skippable = s; | 
|  | memcpy(ctx->blk_skip, x->txfm_search_info.blk_skip, | 
|  | sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); | 
|  | av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Searches palette | 
|  | if (try_palette) { | 
|  | av1_rd_pick_palette_intra_sby( | 
|  | cpi, x, bsize, bmode_costs[DC_PRED], &best_mbmi, best_palette_color_map, | 
|  | &best_rd, rate, rate_tokenonly, distortion, skippable, &beat_best_rd, | 
|  | ctx, ctx->blk_skip, ctx->tx_type_map); | 
|  | } | 
|  |  | 
|  | // Searches filter_intra | 
|  | if (beat_best_rd && av1_filter_intra_allowed_bsize(&cpi->common, bsize)) { | 
|  | if (rd_pick_filter_intra_sby(cpi, x, rate, rate_tokenonly, distortion, | 
|  | skippable, bsize, bmode_costs[DC_PRED], | 
|  | best_mbmi.mode, &best_rd, &best_model_rd, | 
|  | ctx)) { | 
|  | best_mbmi = *mbmi; | 
|  | } | 
|  | } | 
|  |  | 
|  | // No mode is identified with less rd value than best_rd passed to this | 
|  | // function. In such cases winner mode processing is not necessary and return | 
|  | // best_rd as INT64_MAX to indicate best mode is not identified | 
|  | if (!beat_best_rd) return INT64_MAX; | 
|  |  | 
|  | // In multi-winner mode processing, perform tx search for few best modes | 
|  | // identified during mode evaluation. Winner mode processing uses best tx | 
|  | // configuration for tx search. | 
|  | if (cpi->sf.winner_mode_sf.multi_winner_mode_type) { | 
|  | int best_mode_idx = 0; | 
|  | int block_width, block_height; | 
|  | uint8_t *color_map_dst = xd->plane[PLANE_TYPE_Y].color_index_map; | 
|  | av1_get_block_dimensions(bsize, AOM_PLANE_Y, xd, &block_width, | 
|  | &block_height, NULL, NULL); | 
|  |  | 
|  | for (int mode_idx = 0; mode_idx < x->winner_mode_count; mode_idx++) { | 
|  | *mbmi = x->winner_mode_stats[mode_idx].mbmi; | 
|  | if (is_winner_mode_processing_enabled(cpi, x, mbmi, mbmi->mode)) { | 
|  | // Restore color_map of palette mode before winner mode processing | 
|  | if (mbmi->palette_mode_info.palette_size[0] > 0) { | 
|  | uint8_t *color_map_src = | 
|  | x->winner_mode_stats[mode_idx].color_index_map; | 
|  | memcpy(color_map_dst, color_map_src, | 
|  | block_width * block_height * sizeof(*color_map_src)); | 
|  | } | 
|  | // Set params for winner mode evaluation | 
|  | set_mode_eval_params(cpi, x, WINNER_MODE_EVAL); | 
|  |  | 
|  | // Winner mode processing | 
|  | // If previous searches use only the default tx type/no R-D optimization | 
|  | // of quantized coeffs, do an extra search for the best tx type/better | 
|  | // R-D optimization of quantized coeffs | 
|  | if (intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, | 
|  | rate_tokenonly, distortion, skippable, &best_mbmi, | 
|  | ctx)) | 
|  | best_mode_idx = mode_idx; | 
|  | } | 
|  | } | 
|  | // Copy color_map of palette mode for final winner mode | 
|  | if (best_mbmi.palette_mode_info.palette_size[0] > 0) { | 
|  | uint8_t *color_map_src = | 
|  | x->winner_mode_stats[best_mode_idx].color_index_map; | 
|  | memcpy(color_map_dst, color_map_src, | 
|  | block_width * block_height * sizeof(*color_map_src)); | 
|  | } | 
|  | } else { | 
|  | // If previous searches use only the default tx type/no R-D optimization of | 
|  | // quantized coeffs, do an extra search for the best tx type/better R-D | 
|  | // optimization of quantized coeffs | 
|  | if (is_winner_mode_processing_enabled(cpi, x, mbmi, best_mbmi.mode)) { | 
|  | // Set params for winner mode evaluation | 
|  | set_mode_eval_params(cpi, x, WINNER_MODE_EVAL); | 
|  | *mbmi = best_mbmi; | 
|  | intra_block_yrd(cpi, x, bsize, bmode_costs, &best_rd, rate, | 
|  | rate_tokenonly, distortion, skippable, &best_mbmi, ctx); | 
|  | } | 
|  | } | 
|  | *mbmi = best_mbmi; | 
|  | av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk); | 
|  | return best_rd; | 
|  | } |