blob: e019bda490036825511408edbde2d94ae4f7c4cb [file] [log] [blame]
/*
*
* Copyright (c) 2018, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <arm_neon.h>
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "aom_ports/mem.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/arm/convolve_neon.h"
static INLINE int16x4_t convolve8_4x4(const int16x4_t s0, const int16x4_t s1,
const int16x4_t s2, const int16x4_t s3,
const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7,
const int16x8_t filter) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x4_t sum;
sum = vmul_lane_s16(s0, filter_lo, 0);
sum = vmla_lane_s16(sum, s1, filter_lo, 1);
sum = vmla_lane_s16(sum, s2, filter_lo, 2);
sum = vmla_lane_s16(sum, s3, filter_lo, 3);
sum = vmla_lane_s16(sum, s4, filter_hi, 0);
sum = vmla_lane_s16(sum, s5, filter_hi, 1);
sum = vmla_lane_s16(sum, s6, filter_hi, 2);
sum = vmla_lane_s16(sum, s7, filter_hi, 3);
return sum;
}
#if !defined(__aarch64__)
static INLINE uint8x8_t convolve8_x_4x1(const int16x4_t s0, const int16x4_t s1,
const int16x4_t s2, const int16x4_t s3,
const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7,
const int16x8_t filter,
const int16x4_t horiz_const) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x4_t sum = horiz_const;
sum = vmla_lane_s16(sum, s0, filter_lo, 0);
sum = vmla_lane_s16(sum, s1, filter_lo, 1);
sum = vmla_lane_s16(sum, s2, filter_lo, 2);
sum = vmla_lane_s16(sum, s3, filter_lo, 3);
sum = vmla_lane_s16(sum, s4, filter_hi, 0);
sum = vmla_lane_s16(sum, s5, filter_hi, 1);
sum = vmla_lane_s16(sum, s6, filter_hi, 2);
sum = vmla_lane_s16(sum, s7, filter_hi, 3);
// We halved the convolution filter values so - 1 from the right shift.
return vqrshrun_n_s16(vcombine_s16(sum, vdup_n_s16(0)), FILTER_BITS - 1);
}
#endif // !defined(__arch64__)
#if defined(__aarch64__) && defined(__ARM_FEATURE_MATMUL_INT8)
static INLINE int32x4_t convolve12_4_usdot(uint8x16_t samples,
const int8x16_t filters,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
uint8x16_t permuted_samples[3];
int32x4_t sum;
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
/* First 4 output values. */
sum = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filters, 0);
sum = vusdotq_laneq_s32(sum, permuted_samples[1], filters, 1);
sum = vusdotq_laneq_s32(sum, permuted_samples[2], filters, 2);
return sum;
}
static INLINE int16x8_t convolve12_8_usdot(uint8x16_t samples0,
uint8x16_t samples1,
const int8x16_t filters,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
uint8x16_t permuted_samples[4];
int32x4_t sum[2];
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_u8(samples0, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_u8(samples0, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_u8(samples0, permute_tbl.val[2]);
/* {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 } */
permuted_samples[3] = vqtbl1q_u8(samples1, permute_tbl.val[2]);
/* First 4 output values. */
sum[0] = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filters, 0);
sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[1], filters, 1);
sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[2], filters, 2);
/* Second 4 output values. */
sum[1] = vusdotq_laneq_s32(horiz_const, permuted_samples[1], filters, 0);
sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[2], filters, 1);
sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[3], filters, 2);
/* Narrow and re-pack. */
return vcombine_s16(vqrshrn_n_s32(sum[0], FILTER_BITS),
vqrshrn_n_s32(sum[1], FILTER_BITS));
}
#elif defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD)
static INLINE int16x4_t convolve12_horiz_4_sdot(
uint8x16_t samples, const int8x16_t filters, const int32x4_t correction,
const uint8x16_t range_limit, const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum;
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
/* Accumulate dot product into 'correction' to account for range clamp. */
/* First 4 output values. */
sum = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0);
sum = vdotq_laneq_s32(sum, permuted_samples[1], filters, 1);
sum = vdotq_laneq_s32(sum, permuted_samples[2], filters, 2);
/* Narrow and re-pack. */
return vshrn_n_s32(sum, ROUND0_BITS);
}
static INLINE int16x8_t convolve12_horiz_8_sdot(
uint8x16_t samples0, uint8x16_t samples1, const int8x16_t filters,
const int32x4_t correction, const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples[2], permuted_samples[4];
int32x4_t sum[2];
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples[0] = vreinterpretq_s8_u8(vsubq_u8(samples0, range_limit));
clamped_samples[1] = vreinterpretq_s8_u8(vsubq_u8(samples1, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[2]);
/* {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 } */
permuted_samples[3] = vqtbl1q_s8(clamped_samples[1], permute_tbl.val[2]);
/* Accumulate dot product into 'correction' to account for range clamp. */
/* First 4 output values. */
sum[0] = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0);
sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[1], filters, 1);
sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[2], filters, 2);
/* Second 4 output values. */
sum[1] = vdotq_laneq_s32(correction, permuted_samples[1], filters, 0);
sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[2], filters, 1);
sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[3], filters, 2);
/* Narrow and re-pack. */
return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS),
vshrn_n_s32(sum[1], ROUND0_BITS));
}
static INLINE int32x4_t convolve12_4_sdot(uint8x16_t samples,
const int8x16_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples, permuted_samples[3];
int32x4_t sum;
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]);
/* Accumulate dot product into 'correction' to account for range clamp. */
/* First 4 output values. */
sum = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0);
sum = vdotq_laneq_s32(sum, permuted_samples[1], filters, 1);
sum = vdotq_laneq_s32(sum, permuted_samples[2], filters, 2);
return sum;
}
static INLINE int16x8_t convolve12_8_sdot(uint8x16_t samples0,
uint8x16_t samples1,
const int8x16_t filters,
const int32x4_t correction,
const uint8x16_t range_limit,
const uint8x16x3_t permute_tbl) {
int8x16_t clamped_samples[2], permuted_samples[4];
int32x4_t sum[2];
/* Clamp sample range to [-128, 127] for 8-bit signed dot product. */
clamped_samples[0] = vreinterpretq_s8_u8(vsubq_u8(samples0, range_limit));
clamped_samples[1] = vreinterpretq_s8_u8(vsubq_u8(samples1, range_limit));
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_s8(clamped_samples[0], permute_tbl.val[2]);
/* {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 } */
permuted_samples[3] = vqtbl1q_s8(clamped_samples[1], permute_tbl.val[2]);
/* Accumulate dot product into 'correction' to account for range clamp. */
/* First 4 output values. */
sum[0] = vdotq_laneq_s32(correction, permuted_samples[0], filters, 0);
sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[1], filters, 1);
sum[0] = vdotq_laneq_s32(sum[0], permuted_samples[2], filters, 2);
/* Second 4 output values. */
sum[1] = vdotq_laneq_s32(correction, permuted_samples[1], filters, 0);
sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[2], filters, 1);
sum[1] = vdotq_laneq_s32(sum[1], permuted_samples[3], filters, 2);
/* Narrow and re-pack. */
return vcombine_s16(vqrshrn_n_s32(sum[0], FILTER_BITS),
vqrshrn_n_s32(sum[1], FILTER_BITS));
}
#endif // defined(__aarch64__) && defined(__ARM_FEATURE_MATMUL_INT8)
static INLINE uint8x8_t convolve8_vert_8x4(
const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7, const int16x8_t filter) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x8_t sum;
sum = vmulq_lane_s16(s0, filter_lo, 0);
sum = vmlaq_lane_s16(sum, s1, filter_lo, 1);
sum = vmlaq_lane_s16(sum, s2, filter_lo, 2);
sum = vmlaq_lane_s16(sum, s3, filter_lo, 3);
sum = vmlaq_lane_s16(sum, s4, filter_hi, 0);
sum = vmlaq_lane_s16(sum, s5, filter_hi, 1);
sum = vmlaq_lane_s16(sum, s6, filter_hi, 2);
sum = vmlaq_lane_s16(sum, s7, filter_hi, 3);
return vqrshrun_n_s16(sum, FILTER_BITS - 1);
}
static INLINE int16x4_t convolve8_vert_4_s32(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7, const int16x8_t y_filter) {
const int16x4_t y_filter_lo = vget_low_s16(y_filter);
const int16x4_t y_filter_hi = vget_high_s16(y_filter);
int32x4_t sum;
sum = vmull_lane_s16(s0, y_filter_lo, 0);
sum = vmlal_lane_s16(sum, s1, y_filter_lo, 1);
sum = vmlal_lane_s16(sum, s2, y_filter_lo, 2);
sum = vmlal_lane_s16(sum, s3, y_filter_lo, 3);
sum = vmlal_lane_s16(sum, s4, y_filter_hi, 0);
sum = vmlal_lane_s16(sum, s5, y_filter_hi, 1);
sum = vmlal_lane_s16(sum, s6, y_filter_hi, 2);
sum = vmlal_lane_s16(sum, s7, y_filter_hi, 3);
return vqrshrn_n_s32(sum, 2 * FILTER_BITS - ROUND0_BITS);
}
static INLINE uint8x8_t
convolve8_vert_8_s32(const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7,
const int16x8_t y_filter, const int16x8_t sub_const) {
const int16x4_t y_filter_lo = vget_low_s16(y_filter);
const int16x4_t y_filter_hi = vget_high_s16(y_filter);
int32x4_t sum0, sum1;
int16x8_t res;
sum0 = vmull_lane_s16(vget_low_s16(s0), y_filter_lo, 0);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), y_filter_lo, 1);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), y_filter_lo, 2);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), y_filter_lo, 3);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s4), y_filter_hi, 0);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s5), y_filter_hi, 1);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s6), y_filter_hi, 2);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s7), y_filter_hi, 3);
sum1 = vmull_lane_s16(vget_high_s16(s0), y_filter_lo, 0);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), y_filter_lo, 1);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), y_filter_lo, 2);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), y_filter_lo, 3);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s4), y_filter_hi, 0);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s5), y_filter_hi, 1);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s6), y_filter_hi, 2);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s7), y_filter_hi, 3);
res = vcombine_s16(vqrshrn_n_s32(sum0, 2 * FILTER_BITS - ROUND0_BITS),
vqrshrn_n_s32(sum1, 2 * FILTER_BITS - ROUND0_BITS));
res = vsubq_s16(res, sub_const);
return vqmovun_s16(res);
}
#if defined(__aarch64__) && defined(__ARM_FEATURE_MATMUL_INT8)
void convolve_x_sr_12tap_neon(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const int16_t *x_filter_ptr) {
const int16x8_t filter_0_7 = vld1q_s16(x_filter_ptr);
const int16x4_t filter_8_11 = vld1_s16(x_filter_ptr + 8);
const int16x8_t filter_8_15 = vcombine_s16(filter_8_11, vdup_n_s16(0));
const int8x16_t filter =
vcombine_s8(vmovn_s16(filter_0_7), vmovn_s16(filter_8_15));
// Special case the following no-op filter as 128 won't fit into the
// 8-bit signed dot-product instruction:
// { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 }
if (vgetq_lane_s16(filter_0_7, 5) == 128) {
uint8x8_t d0;
// Undo the horizontal offset in the calling function.
src += 5;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j += 8) {
d0 = vld1_u8(src + i * src_stride + j);
if (w == 2) {
store_u8_2x1(dst + i * dst_stride, d0, 0);
} else if (w == 4) {
store_u8_4x1(dst + i * dst_stride, d0, 0);
} else {
vst1_u8(dst + i * dst_stride + j, d0);
}
}
}
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
// This shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
// right shift by FILTER_BITS - instead of a first rounding right shift by
// ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
// ROUND0_BITS.
const int32x4_t horiz_const = vdupq_n_s32(1 << (ROUND0_BITS - 1));
if (w <= 4) {
uint8x16_t s0, s1, s2, s3;
int32x4_t d0, d1, d2, d3;
int16x8_t t01, t23;
uint8x8_t d01, d23;
do {
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
d0 = convolve12_4_usdot(s0, filter, permute_tbl, horiz_const);
d1 = convolve12_4_usdot(s1, filter, permute_tbl, horiz_const);
d2 = convolve12_4_usdot(s2, filter, permute_tbl, horiz_const);
d3 = convolve12_4_usdot(s3, filter, permute_tbl, horiz_const);
t01 = vcombine_s16(vqrshrn_n_s32(d0, FILTER_BITS),
vqrshrn_n_s32(d1, FILTER_BITS));
t23 = vcombine_s16(vqrshrn_n_s32(d2, FILTER_BITS),
vqrshrn_n_s32(d3, FILTER_BITS));
d01 = vqmovun_s16(t01);
d23 = vqmovun_s16(t23);
if (w == 2) {
store_u8_2x1(dst + 0 * dst_stride, d01, 0);
store_u8_2x1(dst + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(dst + 2 * dst_stride, d23, 0);
store_u8_2x1(dst + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
}
}
dst += 4 * dst_stride;
src += 4 * src_stride;
h -= 4;
} while (h > 0);
} else {
uint8x16_t s0, s1, s2, s3, s4, s5, s6, s7;
int16x8_t d0, d1, d2, d3;
uint8x8_t dd0, dd1, dd2, dd3;
do {
const uint8_t *s = src;
uint8_t *d = dst;
int width = w;
do {
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
load_u8_16x4(s + 4, src_stride, &s4, &s5, &s6, &s7);
d0 = convolve12_8_usdot(s0, s4, filter, permute_tbl, horiz_const);
d1 = convolve12_8_usdot(s1, s5, filter, permute_tbl, horiz_const);
d2 = convolve12_8_usdot(s2, s6, filter, permute_tbl, horiz_const);
d3 = convolve12_8_usdot(s3, s7, filter, permute_tbl, horiz_const);
dd0 = vqmovun_s16(d0);
dd1 = vqmovun_s16(d1);
dd2 = vqmovun_s16(d2);
dd3 = vqmovun_s16(d3);
store_u8_8x2(d + 0 * dst_stride, dst_stride, dd0, dd1);
if (h != 2) {
store_u8_8x2(d + 2 * dst_stride, dst_stride, dd2, dd3);
}
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
}
}
}
void av1_convolve_x_sr_neon(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params) {
(void)conv_params;
const uint8_t horiz_offset = filter_params_x->taps / 2 - 1;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
src -= horiz_offset;
if (filter_params_x->taps > 8) {
convolve_x_sr_12tap_neon(src, src_stride, dst, dst_stride, w, h,
x_filter_ptr);
return;
}
// Filter values are even, so downshift by 1 to reduce intermediate precision
// requirements.
const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use a single
// rounding right shift by FILTER_BITS - instead of a first rounding right
// shift by ROUND0_BITS, followed by second rounding right shift by
// FILTER_BITS - ROUND0_BITS.
// The outermost -1 is needed because we halved the filter values.
const int32x4_t horiz_const = vdupq_n_s32(1 << ((ROUND0_BITS - 1) - 1));
if (w <= 4) {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
uint8x16_t s0, s1, s2, s3;
int32x4_t t0, t1, t2, t3;
int16x8_t t01, t23;
uint8x8_t d01, d23;
do {
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
t0 = convolve8_4_usdot(s0, x_filter, permute_tbl, horiz_const);
t1 = convolve8_4_usdot(s1, x_filter, permute_tbl, horiz_const);
t2 = convolve8_4_usdot(s2, x_filter, permute_tbl, horiz_const);
t3 = convolve8_4_usdot(s3, x_filter, permute_tbl, horiz_const);
t01 = vcombine_s16(vmovn_s32(t0), vmovn_s32(t1));
t23 = vcombine_s16(vmovn_s32(t2), vmovn_s32(t3));
// We halved the convolution filter values so - 1 from the right shift.
d01 = vqrshrun_n_s16(t01, FILTER_BITS - 1);
d23 = vqrshrun_n_s16(t23, FILTER_BITS - 1);
if (w == 2) {
store_u8_2x1(dst + 0 * dst_stride, d01, 0);
store_u8_2x1(dst + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(dst + 2 * dst_stride, d23, 0);
store_u8_2x1(dst + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
}
}
h -= 4;
src += 4 * src_stride;
dst += 4 * dst_stride;
} while (h > 0);
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
uint8x16_t s0, s1, s2, s3;
int16x8_t t0, t1, t2, t3;
uint8x8_t d0, d1, d2, d3;
do {
int width = w;
const uint8_t *s = src;
uint8_t *d = dst;
do {
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
t0 = convolve8_x_8_usdot(s0, x_filter, permute_tbl, horiz_const);
t1 = convolve8_x_8_usdot(s1, x_filter, permute_tbl, horiz_const);
t2 = convolve8_x_8_usdot(s2, x_filter, permute_tbl, horiz_const);
t3 = convolve8_x_8_usdot(s3, x_filter, permute_tbl, horiz_const);
// We halved the convolution filter values so - 1 from the right shift.
d0 = vqrshrun_n_s16(t0, FILTER_BITS - 1);
d1 = vqrshrun_n_s16(t1, FILTER_BITS - 1);
d2 = vqrshrun_n_s16(t2, FILTER_BITS - 1);
d3 = vqrshrun_n_s16(t3, FILTER_BITS - 1);
vst1_u8(d + 0 * dst_stride, d0);
vst1_u8(d + 1 * dst_stride, d1);
if (h != 2) {
vst1_u8(d + 2 * dst_stride, d2);
vst1_u8(d + 3 * dst_stride, d3);
}
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
}
}
#elif defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD)
void convolve_x_sr_12tap_neon(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const int16_t *x_filter_ptr) {
const int16x8_t filter_0_7 = vld1q_s16(x_filter_ptr);
const int16x4_t filter_8_11 = vld1_s16(x_filter_ptr + 8);
const int16x8_t filter_8_15 = vcombine_s16(filter_8_11, vdup_n_s16(0));
const int8x16_t filter =
vcombine_s8(vmovn_s16(filter_0_7), vmovn_s16(filter_8_15));
const int32x4_t correct_tmp =
vaddq_s32(vpaddlq_s16(vshlq_n_s16(filter_0_7, 7)),
vpaddlq_s16(vshlq_n_s16(filter_8_15, 7)));
// This shim of 1 << (ROUND0_BITS - 1) enables us to use a single rounding
// right shift by FILTER_BITS - instead of a first rounding right shift by
// ROUND0_BITS, followed by second rounding right shift by FILTER_BITS -
// ROUND0_BITS.
int32x4_t correction =
vdupq_n_s32(vaddvq_s32(correct_tmp) + (1 << (ROUND0_BITS - 1)));
const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
// Special case the following no-op filter as 128 won't fit into the
// 8-bit signed dot-product instruction:
// { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 }
if (vgetq_lane_s16(filter_0_7, 5) == 128) {
uint8x8_t d0;
// Undo the horizontal offset in the calling function.
src += 5;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j += 8) {
d0 = vld1_u8(src + i * src_stride + j);
if (w == 2) {
store_u8_2x1(dst + i * dst_stride, d0, 0);
} else if (w == 4) {
store_u8_4x1(dst + i * dst_stride, d0, 0);
} else {
vst1_u8(dst + i * dst_stride + j, d0);
}
}
}
} else {
if (w <= 4) {
uint8x16_t s0, s1, s2, s3;
int32x4_t d0, d1, d2, d3;
int16x8_t t01, t23;
uint8x8_t d01, d23;
do {
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
d0 =
convolve12_4_sdot(s0, filter, correction, range_limit, permute_tbl);
d1 =
convolve12_4_sdot(s1, filter, correction, range_limit, permute_tbl);
d2 =
convolve12_4_sdot(s2, filter, correction, range_limit, permute_tbl);
d3 =
convolve12_4_sdot(s3, filter, correction, range_limit, permute_tbl);
t01 = vcombine_s16(vqrshrn_n_s32(d0, FILTER_BITS),
vqrshrn_n_s32(d1, FILTER_BITS));
t23 = vcombine_s16(vqrshrn_n_s32(d2, FILTER_BITS),
vqrshrn_n_s32(d3, FILTER_BITS));
d01 = vqmovun_s16(t01);
d23 = vqmovun_s16(t23);
if (w == 2) {
store_u8_2x1(dst + 0 * dst_stride, d01, 0);
store_u8_2x1(dst + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(dst + 2 * dst_stride, d23, 0);
store_u8_2x1(dst + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
}
}
dst += 4 * dst_stride;
src += 4 * src_stride;
h -= 4;
} while (h > 0);
} else {
uint8x16_t s0, s1, s2, s3, s4, s5, s6, s7;
int16x8_t d0, d1, d2, d3;
uint8x8_t dd0, dd1, dd2, dd3;
do {
const uint8_t *s = src;
uint8_t *d = dst;
int width = w;
do {
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
load_u8_16x4(s + 4, src_stride, &s4, &s5, &s6, &s7);
d0 = convolve12_8_sdot(s0, s4, filter, correction, range_limit,
permute_tbl);
d1 = convolve12_8_sdot(s1, s5, filter, correction, range_limit,
permute_tbl);
d2 = convolve12_8_sdot(s2, s6, filter, correction, range_limit,
permute_tbl);
d3 = convolve12_8_sdot(s3, s7, filter, correction, range_limit,
permute_tbl);
dd0 = vqmovun_s16(d0);
dd1 = vqmovun_s16(d1);
dd2 = vqmovun_s16(d2);
dd3 = vqmovun_s16(d3);
store_u8_8x2(d + 0 * dst_stride, dst_stride, dd0, dd1);
if (h != 2) {
store_u8_8x2(d + 2 * dst_stride, dst_stride, dd2, dd3);
}
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
}
}
}
void av1_convolve_x_sr_neon(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params) {
(void)conv_params;
const uint8_t horiz_offset = filter_params_x->taps / 2 - 1;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
src -= horiz_offset;
if (filter_params_x->taps > 8) {
convolve_x_sr_12tap_neon(src, src_stride, dst, dst_stride, w, h,
x_filter_ptr);
return;
}
// Filter values are even, so downshift by 1 to reduce intermediate precision
// requirements.
const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Dot product constants.
const int16x8_t correct_tmp = vshll_n_s8(x_filter, 7);
// This shim of (1 << ((ROUND0_BITS - 1) - 1) enables us to use a single
// rounding right shift by FILTER_BITS - instead of a first rounding right
// shift by ROUND0_BITS, followed by second rounding right shift by
// FILTER_BITS - ROUND0_BITS.
// The outermost -1 is needed because we halved the filter values.
const int32x4_t correction =
vdupq_n_s32(vaddlvq_s16(correct_tmp) + (1 << ((ROUND0_BITS - 1) - 1)));
const uint8x16_t range_limit = vdupq_n_u8(128);
if (w <= 4) {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
uint8x16_t s0, s1, s2, s3;
int32x4_t t0, t1, t2, t3;
int16x8_t t01, t23;
uint8x8_t d01, d23;
do {
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
t0 = convolve8_4_sdot(s0, x_filter, correction, range_limit, permute_tbl);
t1 = convolve8_4_sdot(s1, x_filter, correction, range_limit, permute_tbl);
t2 = convolve8_4_sdot(s2, x_filter, correction, range_limit, permute_tbl);
t3 = convolve8_4_sdot(s3, x_filter, correction, range_limit, permute_tbl);
t01 = vcombine_s16(vmovn_s32(t0), vmovn_s32(t1));
t23 = vcombine_s16(vmovn_s32(t2), vmovn_s32(t3));
// We halved the convolution filter values so - 1 from the right shift.
d01 = vqrshrun_n_s16(t01, FILTER_BITS - 1);
d23 = vqrshrun_n_s16(t23, FILTER_BITS - 1);
if (w == 2) {
store_u8_2x1(dst + 0 * dst_stride, d01, 0);
store_u8_2x1(dst + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(dst + 2 * dst_stride, d23, 0);
store_u8_2x1(dst + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
}
}
h -= 4;
src += 4 * src_stride;
dst += 4 * dst_stride;
} while (h > 0);
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
uint8x16_t s0, s1, s2, s3;
int16x8_t t0, t1, t2, t3;
uint8x8_t d0, d1, d2, d3;
do {
int width = w;
const uint8_t *s = src;
uint8_t *d = dst;
do {
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
t0 = convolve8_x_8_sdot(s0, x_filter, correction, range_limit,
permute_tbl);
t1 = convolve8_x_8_sdot(s1, x_filter, correction, range_limit,
permute_tbl);
t2 = convolve8_x_8_sdot(s2, x_filter, correction, range_limit,
permute_tbl);
t3 = convolve8_x_8_sdot(s3, x_filter, correction, range_limit,
permute_tbl);
// We halved the convolution filter values so - 1 from the right shift.
d0 = vqrshrun_n_s16(t0, FILTER_BITS - 1);
d1 = vqrshrun_n_s16(t1, FILTER_BITS - 1);
d2 = vqrshrun_n_s16(t2, FILTER_BITS - 1);
d3 = vqrshrun_n_s16(t3, FILTER_BITS - 1);
vst1_u8(d + 0 * dst_stride, d0);
vst1_u8(d + 1 * dst_stride, d1);
if (h != 2) {
vst1_u8(d + 2 * dst_stride, d2);
vst1_u8(d + 3 * dst_stride, d3);
}
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h > 0);
}
}
#else // !(defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD))
static INLINE uint8x8_t
convolve8_horiz_8x8(const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7,
const int16x8_t filter, const int16x8_t horiz_const) {
const int16x4_t filter_lo = vget_low_s16(filter);
const int16x4_t filter_hi = vget_high_s16(filter);
int16x8_t sum = horiz_const;
sum = vmlaq_lane_s16(sum, s0, filter_lo, 0);
sum = vmlaq_lane_s16(sum, s1, filter_lo, 1);
sum = vmlaq_lane_s16(sum, s2, filter_lo, 2);
sum = vmlaq_lane_s16(sum, s3, filter_lo, 3);
sum = vmlaq_lane_s16(sum, s4, filter_hi, 0);
sum = vmlaq_lane_s16(sum, s5, filter_hi, 1);
sum = vmlaq_lane_s16(sum, s6, filter_hi, 2);
sum = vmlaq_lane_s16(sum, s7, filter_hi, 3);
// We halved the convolution filter values so - 1 from the right shift.
return vqrshrun_n_s16(sum, FILTER_BITS - 1);
}
static INLINE int16x4_t convolve12_x_4x4_s16(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7, const int16x4_t s8,
const int16x4_t s9, const int16x4_t s10, const int16x4_t s11,
const int16x8_t x_filter_0_7, const int16x4_t x_filter_8_11,
const int32x4_t horiz_const) {
const int16x4_t x_filter_0_3 = vget_low_s16(x_filter_0_7);
const int16x4_t x_filter_4_7 = vget_high_s16(x_filter_0_7);
int32x4_t sum = horiz_const;
sum = vmlal_lane_s16(sum, s0, x_filter_0_3, 0);
sum = vmlal_lane_s16(sum, s1, x_filter_0_3, 1);
sum = vmlal_lane_s16(sum, s2, x_filter_0_3, 2);
sum = vmlal_lane_s16(sum, s3, x_filter_0_3, 3);
sum = vmlal_lane_s16(sum, s4, x_filter_4_7, 0);
sum = vmlal_lane_s16(sum, s5, x_filter_4_7, 1);
sum = vmlal_lane_s16(sum, s6, x_filter_4_7, 2);
sum = vmlal_lane_s16(sum, s7, x_filter_4_7, 3);
sum = vmlal_lane_s16(sum, s8, x_filter_8_11, 0);
sum = vmlal_lane_s16(sum, s9, x_filter_8_11, 1);
sum = vmlal_lane_s16(sum, s10, x_filter_8_11, 2);
sum = vmlal_lane_s16(sum, s11, x_filter_8_11, 3);
return vqrshrn_n_s32(sum, FILTER_BITS);
}
// 4 column per iteration filtering for 12-tap convolve_x_sr.
// Processes one row at a time.
static INLINE void x_filter_12tap_w4_single_row(
const uint8_t *src_ptr, int src_stride, uint8_t *dst_ptr,
const int dst_stride, int w, int h, const int16x8_t x_filter_0_7,
const int16x4_t x_filter_8_11) {
// This shim of 1 << (ROUND0_BITS - 1) enables us to use a single
// rounding right shift by FILTER_BITS - instead of a first rounding right
// shift by ROUND0_BITS, followed by second rounding right shift by
// FILTER_BITS - ROUND0_BITS.
const int32x4_t horiz_const = vdupq_n_s32(1 << (ROUND0_BITS - 1));
do {
const uint8_t *s = src_ptr;
uint8_t *d = dst_ptr;
int width = w;
do {
uint8x8_t dd0;
uint8x16_t t0;
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, d0;
int16x8_t tt0, tt1;
t0 = vld1q_u8(s);
tt0 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0)));
tt1 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0)));
s0 = vget_low_s16(tt0);
s4 = vget_high_s16(tt0);
s8 = vget_low_s16(tt1);
s12 = vget_high_s16(tt1);
s1 = vext_s16(s0, s4, 1); // a1 a2 a3 a4
s2 = vext_s16(s0, s4, 2); // a2 a3 a4 a5
s3 = vext_s16(s0, s4, 3); // a3 a4 a5 a6
s5 = vext_s16(s4, s8, 1); // a5 a6 a7 a8
s6 = vext_s16(s4, s8, 2); // a6 a7 a8 a9
s7 = vext_s16(s4, s8, 3); // a7 a8 a9 a10
s9 = vext_s16(s8, s12, 1); // a9 a10 a11 a12
s10 = vext_s16(s8, s12, 2); // a10 a11 a12 a13
s11 = vext_s16(s8, s12, 3); // a11 a12 a13 a14
d0 = convolve12_x_4x4_s16(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, x_filter_0_7, x_filter_8_11, horiz_const);
dd0 = vqmovun_s16(vcombine_s16(d0, vdup_n_s16(0)));
if (w == 2) {
store_u8_2x1(d, dd0, 0);
} else {
store_u8_4x1(d, dd0, 0);
}
s += 4;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--h != 0);
}
static INLINE void convolve_x_sr_12tap_neon(const uint8_t *src_ptr,
int src_stride, uint8_t *dst_ptr,
const int dst_stride, int w, int h,
const int16_t *x_filter_ptr) {
const int16x8_t x_filter_0_7 = vld1q_s16(x_filter_ptr);
const int16x4_t x_filter_8_11 = vld1_s16(x_filter_ptr + 8);
#if defined(__aarch64__)
// This shim of 1 << (ROUND0_BITS - 1) enables us to use a single
// rounding right shift by FILTER_BITS - instead of a first rounding right
// shift by ROUND0_BITS, followed by second rounding right shift by
// FILTER_BITS - ROUND0_BITS.
const int32x4_t horiz_const = vdupq_n_s32(1 << (ROUND0_BITS - 1));
do {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint8x8_t t0, t1, t2, t3;
const uint8_t *s = src_ptr;
uint8_t *d = dst_ptr;
int width = w;
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
load_u8_8x4(s + 8, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s += 11;
do {
int16x4_t s11, s12, s13, s14, d0, d1, d2, d3;
int16x8_t d01, d23;
uint8x8_t dd01, dd23;
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s11 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s12 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s13 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s14 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
d0 = convolve12_x_4x4_s16(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, x_filter_0_7, x_filter_8_11, horiz_const);
d1 = convolve12_x_4x4_s16(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, x_filter_0_7, x_filter_8_11, horiz_const);
d2 = convolve12_x_4x4_s16(s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
s13, x_filter_0_7, x_filter_8_11, horiz_const);
d3 = convolve12_x_4x4_s16(s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13,
s14, x_filter_0_7, x_filter_8_11, horiz_const);
transpose_s16_4x4d(&d0, &d1, &d2, &d3);
d01 = vcombine_s16(d0, d1);
d23 = vcombine_s16(d2, d3);
dd01 = vqmovun_s16(d01);
dd23 = vqmovun_s16(d23);
if (w == 2) {
store_u8_2x1(d + 0 * dst_stride, dd01, 0);
store_u8_2x1(d + 1 * dst_stride, dd01, 2);
if (h != 2) {
store_u8_2x1(d + 2 * dst_stride, dd23, 0);
store_u8_2x1(d + 3 * dst_stride, dd23, 2);
}
} else {
store_u8_4x1(d + 0 * dst_stride, dd01, 0);
store_u8_4x1(d + 1 * dst_stride, dd01, 1);
if (h != 2) {
store_u8_4x1(d + 2 * dst_stride, dd23, 0);
store_u8_4x1(d + 3 * dst_stride, dd23, 1);
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
s += 4;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h >= 4);
if (h > 0) {
x_filter_12tap_w4_single_row(src_ptr, src_stride, dst_ptr, dst_stride, w, h,
x_filter_0_7, x_filter_8_11);
}
#else // !defined(__aarch64__)
x_filter_12tap_w4_single_row(src_ptr, src_stride, dst_ptr, dst_stride, w, h,
x_filter_0_7, x_filter_8_11);
#endif // defined(__aarch64__)
}
void av1_convolve_x_sr_neon(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const int subpel_x_qn,
ConvolveParams *conv_params) {
(void)conv_params;
const uint8_t horiz_offset = filter_params_x->taps / 2 - 1;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
src -= horiz_offset;
if (filter_params_x->taps > 8) {
convolve_x_sr_12tap_neon(src, src_stride, dst, dst_stride, w, h,
x_filter_ptr);
return;
}
uint8x8_t t0;
#if defined(__aarch64__)
uint8x8_t t1, t2, t3;
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use a single
// rounding right shift by FILTER_BITS - instead of a first rounding right
// shift by ROUND0_BITS, followed by second rounding right shift by
// FILTER_BITS - ROUND0_BITS.
// The outermost -1 is needed because we halved the filter values.
const int16x8_t horiz_const = vdupq_n_s16(1 << ((ROUND0_BITS - 1) - 1));
#endif
// Filter values are even so downshift by 1 to reduce precision requirements.
const int16x8_t x_filter = vshrq_n_s16(vld1q_s16(x_filter_ptr), 1);
#if defined(__aarch64__)
if (h == 4) {
uint8x8_t d01, d23;
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, d1, d2, d3;
int16x8_t d01_temp, d23_temp;
__builtin_prefetch(src + 0 * src_stride);
__builtin_prefetch(src + 1 * src_stride);
__builtin_prefetch(src + 2 * src_stride);
__builtin_prefetch(src + 3 * src_stride);
load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
__builtin_prefetch(dst + 0 * dst_stride);
__builtin_prefetch(dst + 1 * dst_stride);
__builtin_prefetch(dst + 2 * dst_stride);
__builtin_prefetch(dst + 3 * dst_stride);
src += 7;
do {
load_u8_8x4(src, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
d0 = convolve8_4x4(s0, s1, s2, s3, s4, s5, s6, s7, x_filter);
d1 = convolve8_4x4(s1, s2, s3, s4, s5, s6, s7, s8, x_filter);
d2 = convolve8_4x4(s2, s3, s4, s5, s6, s7, s8, s9, x_filter);
d3 = convolve8_4x4(s3, s4, s5, s6, s7, s8, s9, s10, x_filter);
d01_temp = vcombine_s16(d0, d1);
d23_temp = vcombine_s16(d2, d3);
d01_temp = vaddq_s16(d01_temp, horiz_const);
d23_temp = vaddq_s16(d23_temp, horiz_const);
// We halved the convolution filter values so - 1 from the right shift.
d01 = vqrshrun_n_s16(d01_temp, FILTER_BITS - 1);
d23 = vqrshrun_n_s16(d23_temp, FILTER_BITS - 1);
transpose_u8_4x4(&d01, &d23);
if (w == 2) {
store_u8_2x1(dst + 0 * dst_stride, d01, 0);
store_u8_2x1(dst + 1 * dst_stride, d23, 0);
store_u8_2x1(dst + 2 * dst_stride, d01, 2);
store_u8_2x1(dst + 3 * dst_stride, d23, 2);
} else {
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d23, 0);
store_u8_4x1(dst + 2 * dst_stride, d01, 1);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
src += 4;
dst += 4;
w -= 4;
} while (w > 0);
} else {
#endif
int width;
const uint8_t *s;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7;
#if defined(__aarch64__)
int16x8_t s8, s9, s10;
uint8x8_t t4, t5, t6, t7;
#endif
if (w <= 4) {
#if defined(__aarch64__)
do {
load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
load_u8_8x8(src + 7, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6,
&t7);
src += 8 * src_stride;
__builtin_prefetch(dst + 0 * dst_stride);
__builtin_prefetch(dst + 1 * dst_stride);
__builtin_prefetch(dst + 2 * dst_stride);
__builtin_prefetch(dst + 3 * dst_stride);
__builtin_prefetch(dst + 4 * dst_stride);
__builtin_prefetch(dst + 5 * dst_stride);
__builtin_prefetch(dst + 6 * dst_stride);
__builtin_prefetch(dst + 7 * dst_stride);
transpose_u8_4x8(&t0, &t1, &t2, &t3, t4, t5, t6, t7);
s7 = vreinterpretq_s16_u16(vmovl_u8(t0));
s8 = vreinterpretq_s16_u16(vmovl_u8(t1));
s9 = vreinterpretq_s16_u16(vmovl_u8(t2));
s10 = vreinterpretq_s16_u16(vmovl_u8(t3));
__builtin_prefetch(src + 0 * src_stride);
__builtin_prefetch(src + 1 * src_stride);
__builtin_prefetch(src + 2 * src_stride);
__builtin_prefetch(src + 3 * src_stride);
__builtin_prefetch(src + 4 * src_stride);
__builtin_prefetch(src + 5 * src_stride);
__builtin_prefetch(src + 6 * src_stride);
__builtin_prefetch(src + 7 * src_stride);
t0 = convolve8_horiz_8x8(s0, s1, s2, s3, s4, s5, s6, s7, x_filter,
horiz_const);
t1 = convolve8_horiz_8x8(s1, s2, s3, s4, s5, s6, s7, s8, x_filter,
horiz_const);
t2 = convolve8_horiz_8x8(s2, s3, s4, s5, s6, s7, s8, s9, x_filter,
horiz_const);
t3 = convolve8_horiz_8x8(s3, s4, s5, s6, s7, s8, s9, s10, x_filter,
horiz_const);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
if (w == 4) {
store_u8_4x1(dst + 0 * dst_stride, t0, 0);
store_u8_4x1(dst + 1 * dst_stride, t1, 0);
if (h > 4) {
store_u8_4x1(dst + 2 * dst_stride, t2, 0);
store_u8_4x1(dst + 3 * dst_stride, t3, 0);
store_u8_4x1(dst + 4 * dst_stride, t0, 1);
store_u8_4x1(dst + 5 * dst_stride, t1, 1);
store_u8_4x1(dst + 6 * dst_stride, t2, 1);
store_u8_4x1(dst + 7 * dst_stride, t3, 1);
}
} else if (w == 2) {
store_u8_2x1(dst + 0 * dst_stride, t0, 0);
store_u8_2x1(dst + 1 * dst_stride, t1, 0);
if (h > 4) {
store_u8_2x1(dst + 2 * dst_stride, t2, 0);
store_u8_2x1(dst + 3 * dst_stride, t3, 0);
store_u8_2x1(dst + 4 * dst_stride, t0, 2);
store_u8_2x1(dst + 5 * dst_stride, t1, 2);
store_u8_2x1(dst + 6 * dst_stride, t2, 2);
store_u8_2x1(dst + 7 * dst_stride, t3, 2);
}
}
dst += 8 * dst_stride;
h -= 8;
} while (h > 0);
#else
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use a single
// rounding right shift by FILTER_BITS - instead of a first rounding right
// shift by ROUND0_BITS, followed by second rounding right shift by
// FILTER_BITS - ROUND0_BITS.
// The outermost -1 is needed because we halved the filter values.
const int16x4_t horiz_const = vdup_n_s16(1 << ((ROUND0_BITS - 1) - 1));
int16x8_t tt0;
int16x4_t x0, x1, x2, x3, x4, x5, x6, x7;
do {
t0 = vld1_u8(src); // a0 a1 a2 a3 a4 a5 a6 a7
tt0 = vreinterpretq_s16_u16(vmovl_u8(t0));
x0 = vget_low_s16(tt0); // a0 a1 a2 a3
x4 = vget_high_s16(tt0); // a4 a5 a6 a7
t0 = vld1_u8(src + 8); // a8 a9 a10 a11 a12 a13 a14 a15
tt0 = vreinterpretq_s16_u16(vmovl_u8(t0));
x7 = vget_low_s16(tt0); // a8 a9 a10 a11
x1 = vext_s16(x0, x4, 1); // a1 a2 a3 a4
x2 = vext_s16(x0, x4, 2); // a2 a3 a4 a5
x3 = vext_s16(x0, x4, 3); // a3 a4 a5 a6
x5 = vext_s16(x4, x7, 1); // a5 a6 a7 a8
x6 = vext_s16(x4, x7, 2); // a6 a7 a8 a9
x7 = vext_s16(x4, x7, 3); // a7 a8 a9 a10
src += src_stride;
t0 = convolve8_x_4x1(x0, x1, x2, x3, x4, x5, x6, x7, x_filter,
horiz_const);
if (w == 4) {
store_u8_4x1(dst, t0, 0);
dst += dst_stride;
} else if (w == 2) {
store_u8_2x1(dst, t0, 0);
dst += dst_stride;
}
h -= 1;
} while (h > 0);
#endif
} else {
uint8_t *d;
int16x8_t s11;
#if defined(__aarch64__)
int16x8_t s12, s13, s14;
do {
__builtin_prefetch(src + 0 * src_stride);
__builtin_prefetch(src + 1 * src_stride);
__builtin_prefetch(src + 2 * src_stride);
__builtin_prefetch(src + 3 * src_stride);
__builtin_prefetch(src + 4 * src_stride);
__builtin_prefetch(src + 5 * src_stride);
__builtin_prefetch(src + 6 * src_stride);
__builtin_prefetch(src + 7 * src_stride);
load_u8_8x8(src, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
width = w;
s = src + 7;
d = dst;
__builtin_prefetch(dst + 0 * dst_stride);
__builtin_prefetch(dst + 1 * dst_stride);
__builtin_prefetch(dst + 2 * dst_stride);
__builtin_prefetch(dst + 3 * dst_stride);
__builtin_prefetch(dst + 4 * dst_stride);
__builtin_prefetch(dst + 5 * dst_stride);
__builtin_prefetch(dst + 6 * dst_stride);
__builtin_prefetch(dst + 7 * dst_stride);
do {
load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
s7 = vreinterpretq_s16_u16(vmovl_u8(t0));
s8 = vreinterpretq_s16_u16(vmovl_u8(t1));
s9 = vreinterpretq_s16_u16(vmovl_u8(t2));
s10 = vreinterpretq_s16_u16(vmovl_u8(t3));
s11 = vreinterpretq_s16_u16(vmovl_u8(t4));
s12 = vreinterpretq_s16_u16(vmovl_u8(t5));
s13 = vreinterpretq_s16_u16(vmovl_u8(t6));
s14 = vreinterpretq_s16_u16(vmovl_u8(t7));
t0 = convolve8_horiz_8x8(s0, s1, s2, s3, s4, s5, s6, s7, x_filter,
horiz_const);
t1 = convolve8_horiz_8x8(s1, s2, s3, s4, s5, s6, s7, s8, x_filter,
horiz_const);
t2 = convolve8_horiz_8x8(s2, s3, s4, s5, s6, s7, s8, s9, x_filter,
horiz_const);
t3 = convolve8_horiz_8x8(s3, s4, s5, s6, s7, s8, s9, s10, x_filter,
horiz_const);
t4 = convolve8_horiz_8x8(s4, s5, s6, s7, s8, s9, s10, s11, x_filter,
horiz_const);
t5 = convolve8_horiz_8x8(s5, s6, s7, s8, s9, s10, s11, s12, x_filter,
horiz_const);
t6 = convolve8_horiz_8x8(s6, s7, s8, s9, s10, s11, s12, s13, x_filter,
horiz_const);
t7 = convolve8_horiz_8x8(s7, s8, s9, s10, s11, s12, s13, s14,
x_filter, horiz_const);
transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
if (h != 2) {
store_u8_8x8(d, dst_stride, t0, t1, t2, t3, t4, t5, t6, t7);
} else {
store_u8_8x2(d, dst_stride, t0, t1);
}
s0 = s8;
s1 = s9;
s2 = s10;
s3 = s11;
s4 = s12;
s5 = s13;
s6 = s14;
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src += 8 * src_stride;
dst += 8 * dst_stride;
h -= 8;
} while (h > 0);
#else
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use a single
// rounding right shift by FILTER_BITS - instead of a first rounding right
// shift by ROUND0_BITS, followed by second rounding right shift by
// FILTER_BITS - ROUND0_BITS.
// The outermost -1 is needed because we halved the filter values.
const int16x8_t horiz_const = vdupq_n_s16(1 << ((ROUND0_BITS - 1) - 1));
do {
t0 = vld1_u8(src); // a0 a1 a2 a3 a4 a5 a6 a7
s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
width = w;
s = src + 8;
d = dst;
__builtin_prefetch(dst);
do {
t0 = vld1_u8(s); // a8 a9 a10 a11 a12 a13 a14 a15
s7 = vreinterpretq_s16_u16(vmovl_u8(t0));
s11 = s0;
s0 = s7;
s1 = vextq_s16(s11, s7, 1); // a1 a2 a3 a4 a5 a6 a7 a8
s2 = vextq_s16(s11, s7, 2); // a2 a3 a4 a5 a6 a7 a8 a9
s3 = vextq_s16(s11, s7, 3); // a3 a4 a5 a6 a7 a8 a9 a10
s4 = vextq_s16(s11, s7, 4); // a4 a5 a6 a7 a8 a9 a10 a11
s5 = vextq_s16(s11, s7, 5); // a5 a6 a7 a8 a9 a10 a11 a12
s6 = vextq_s16(s11, s7, 6); // a6 a7 a8 a9 a10 a11 a12 a13
s7 = vextq_s16(s11, s7, 7); // a7 a8 a9 a10 a11 a12 a13 a14
t0 = convolve8_horiz_8x8(s11, s1, s2, s3, s4, s5, s6, s7, x_filter,
horiz_const);
vst1_u8(d, t0);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src += src_stride;
dst += dst_stride;
h -= 1;
} while (h > 0);
#endif
}
#if defined(__aarch64__)
}
#endif
}
#endif // defined(__aarch64__) && defined(__ARM_FEATURE_MATMUL_INT8)
static INLINE void convolve_y_sr_6tap_neon(const uint8_t *src_ptr,
int src_stride, uint8_t *dst_ptr,
const int dst_stride, int w, int h,
const int16x8_t y_filter_0_7) {
if (w <= 4) {
uint8x8_t t0, t1, t2, t3, t4, t5;
int16x4_t s0, s1, s2, s3, s4, s5, d0;
uint8x8_t d01;
#if defined(__aarch64__)
uint8x8_t t6, t7, t8;
int16x4_t s6, s7, s8, d1, d2, d3;
uint8x8_t d23;
#endif // defined(__aarch64__)
const uint8_t *s = src_ptr + src_stride;
uint8_t *d = dst_ptr;
load_u8_8x5(s, src_stride, &t0, &t1, &t2, &t3, &t4);
s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s4 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t4)));
s += 5 * src_stride;
do {
#if defined(__aarch64__)
load_u8_8x4(s, src_stride, &t5, &t6, &t7, &t8);
s5 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t5)));
s6 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t6)));
s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t7)));
s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t8)));
d0 = convolve6_4x4(s0, s1, s2, s3, s4, s5, y_filter_0_7);
d1 = convolve6_4x4(s1, s2, s3, s4, s5, s6, y_filter_0_7);
d2 = convolve6_4x4(s2, s3, s4, s5, s6, s7, y_filter_0_7);
d3 = convolve6_4x4(s3, s4, s5, s6, s7, s8, y_filter_0_7);
d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1);
d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1);
if (w == 2) {
store_u8_2x1(d + 0 * dst_stride, d01, 0);
store_u8_2x1(d + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(d + 2 * dst_stride, d23, 0);
store_u8_2x1(d + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(d + 0 * dst_stride, d01, 0);
store_u8_4x1(d + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(d + 2 * dst_stride, d23, 0);
store_u8_4x1(d + 3 * dst_stride, d23, 1);
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
#else // !defined(__aarch64__)
t5 = vld1_u8(s);
s5 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t5)));
d0 = convolve6_4x4(s0, s1, s2, s3, s4, s5, y_filter_0_7);
d01 = vqrshrun_n_s16(vcombine_s16(d0, vdup_n_s16(0)), FILTER_BITS - 1);
if (w == 2) {
store_u8_2x1(d, d01, 0);
} else {
store_u8_4x1(d, d01, 0);
}
s0 = s1;
s1 = s2;
s2 = s3;
s3 = s4;
s4 = s5;
s += src_stride;
d += dst_stride;
h--;
#endif // defined(__aarch64__)
} while (h > 0);
} else {
// if width is a multiple of 8 & height is a multiple of 4
uint8x8_t t0, t1, t2, t3, t4, t5;
int16x8_t s0, s1, s2, s3, s4, s5, dd0;
uint8x8_t d0;
#if defined(__aarch64__)
uint8x8_t t6, t7, t8;
int16x8_t s6, s7, s8, dd1, dd2, dd3;
uint8x8_t d1, d2, d3;
#endif // defined(__aarch64__)
do {
int height = h;
const uint8_t *s = src_ptr + src_stride;
uint8_t *d = dst_ptr;
load_u8_8x5(s, src_stride, &t0, &t1, &t2, &t3, &t4);
s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
s += 5 * src_stride;
do {
#if defined(__aarch64__)
load_u8_8x4(s, src_stride, &t5, &t6, &t7, &t8);
s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
s7 = vreinterpretq_s16_u16(vmovl_u8(t7));
s8 = vreinterpretq_s16_u16(vmovl_u8(t8));
dd0 = convolve6_8x4(s0, s1, s2, s3, s4, s5, y_filter_0_7);
dd1 = convolve6_8x4(s1, s2, s3, s4, s5, s6, y_filter_0_7);
dd2 = convolve6_8x4(s2, s3, s4, s5, s6, s7, y_filter_0_7);
dd3 = convolve6_8x4(s3, s4, s5, s6, s7, s8, y_filter_0_7);
d0 = vqrshrun_n_s16(dd0, FILTER_BITS - 1);
d1 = vqrshrun_n_s16(dd1, FILTER_BITS - 1);
d2 = vqrshrun_n_s16(dd2, FILTER_BITS - 1);
d3 = vqrshrun_n_s16(dd3, FILTER_BITS - 1);
if (h != 2) {
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
} else {
store_u8_8x2(d, dst_stride, d0, d1);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
#else // !defined(__aarch64__)
t5 = vld1_u8(s);
s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
dd0 = convolve6_8x4(s0, s1, s2, s3, s4, s5, y_filter_0_7);
d0 = vqrshrun_n_s16(dd0, FILTER_BITS - 1);
vst1_u8(d, d0);
s0 = s1;
s1 = s2;
s2 = s3;
s3 = s4;
s4 = s5;
s += src_stride;
d += dst_stride;
height--;
#endif // defined(__aarch64__)
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
static INLINE int16x4_t convolve12_y_4x4_s32(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7, const int16x4_t s8,
const int16x4_t s9, const int16x4_t s10, const int16x4_t s11,
const int16x8_t y_filter_0_7, const int16x4_t y_filter_8_11) {
const int16x4_t y_filter_0_3 = vget_low_s16(y_filter_0_7);
const int16x4_t y_filter_4_7 = vget_high_s16(y_filter_0_7);
int16x4_t sum;
sum = vmul_lane_s16(s0, y_filter_0_3, 0);
sum = vmla_lane_s16(sum, s1, y_filter_0_3, 1);
sum = vmla_lane_s16(sum, s2, y_filter_0_3, 2);
sum = vmla_lane_s16(sum, s3, y_filter_0_3, 3);
sum = vmla_lane_s16(sum, s4, y_filter_4_7, 0);
sum = vmla_lane_s16(sum, s7, y_filter_4_7, 3);
sum = vmla_lane_s16(sum, s8, y_filter_8_11, 0);
sum = vmla_lane_s16(sum, s9, y_filter_8_11, 1);
sum = vmla_lane_s16(sum, s10, y_filter_8_11, 2);
sum = vmla_lane_s16(sum, s11, y_filter_8_11, 3);
// Separate out the two filter values in the middle of the kernel that have
// the largest magnitude and use saturating addition to prevent overflow. This
// means we can stay at 16-bit elements, rather than having to widen
// everything to a 32-bit result, requiring twice the number of instructions.
sum = vqadd_s16(sum, vmul_lane_s16(s5, y_filter_4_7, 1));
sum = vqadd_s16(sum, vmul_lane_s16(s6, y_filter_4_7, 2));
return sum;
}
static INLINE uint8x8_t convolve12_y_8x4_s32(
const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7, const int16x8_t s8,
const int16x8_t s9, const int16x8_t s10, const int16x8_t s11,
const int16x8_t y_filter_0_7, const int16x4_t y_filter_8_11) {
const int16x4_t y_filter_0_3 = vget_low_s16(y_filter_0_7);
const int16x4_t y_filter_4_7 = vget_high_s16(y_filter_0_7);
int16x8_t sum;
sum = vmulq_lane_s16(s0, y_filter_0_3, 0);
sum = vmlaq_lane_s16(sum, s1, y_filter_0_3, 1);
sum = vmlaq_lane_s16(sum, s2, y_filter_0_3, 2);
sum = vmlaq_lane_s16(sum, s3, y_filter_0_3, 3);
sum = vmlaq_lane_s16(sum, s4, y_filter_4_7, 0);
sum = vmlaq_lane_s16(sum, s7, y_filter_4_7, 3);
sum = vmlaq_lane_s16(sum, s8, y_filter_8_11, 0);
sum = vmlaq_lane_s16(sum, s9, y_filter_8_11, 1);
sum = vmlaq_lane_s16(sum, s10, y_filter_8_11, 2);
sum = vmlaq_lane_s16(sum, s11, y_filter_8_11, 3);
// Separate out the two filter values in the middle of the kernel that have
// the largest magnitude and use saturating addition to prevent overflow. This
// means we can stay at 16-bit elements, rather than having to widen
// everything to a 32-bit result, requiring twice the number of instructions.
sum = vqaddq_s16(sum, vmulq_lane_s16(s5, y_filter_4_7, 1));
sum = vqaddq_s16(sum, vmulq_lane_s16(s6, y_filter_4_7, 2));
return vqrshrun_n_s16(sum, FILTER_BITS);
}
static INLINE void convolve_y_sr_12tap_neon(const uint8_t *src_ptr,
int src_stride, uint8_t *dst_ptr,
int dst_stride, int w, int h,
const int16_t *y_filter_ptr) {
// Special case the following no-op filter as 128 won't fit into the
// 8-bit signed dot-product instruction:
// { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 }
if (y_filter_ptr[5] == 128) {
// Undo the horizontal offset in the calling function
src_ptr += 5 * src_stride;
if (w <= 4) {
for (int i = 0; i < h; i += 2) {
uint8x8_t d0 = load_unaligned_u8(src_ptr + i * src_stride, src_stride);
if (w == 2) {
store_u8_2x1(dst_ptr + i * dst_stride, d0, 0);
store_u8_2x1(dst_ptr + (i + 1) * dst_stride, d0, 1);
} else if (w == 4) {
store_u8_4x1(dst_ptr + i * dst_stride, d0, 0);
store_u8_4x1(dst_ptr + (i + 1) * dst_stride, d0, 1);
}
}
} else {
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j += 8) {
uint8x8_t d0 = vld1_u8(src_ptr + i * src_stride + j);
vst1_u8(dst_ptr + i * dst_stride + j, d0);
}
}
}
return;
}
const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8);
if (w <= 4) {
uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14;
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14;
int16x4_t d0, d1, d2, d3;
int16x8_t dd01, dd23;
uint8x8_t d01, d23;
load_u8_8x11(src_ptr, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7,
&t8, &t9, &t10);
s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s4 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t4)));
s5 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t5)));
s6 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t6)));
s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t7)));
s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t8)));
s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t9)));
s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t10)));
src_ptr += 11 * src_stride;
do {
load_u8_8x4(src_ptr, src_stride, &t11, &t12, &t13, &t14);
s11 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t11)));
s12 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t12)));
s13 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t13)));
s14 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t14)));
d0 = convolve12_y_4x4_s32(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, y_filter_0_7, y_filter_8_11);
d1 = convolve12_y_4x4_s32(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, y_filter_0_7, y_filter_8_11);
d2 = convolve12_y_4x4_s32(s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
s13, y_filter_0_7, y_filter_8_11);
d3 = convolve12_y_4x4_s32(s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13,
s14, y_filter_0_7, y_filter_8_11);
dd01 = vcombine_s16(d0, d1);
dd23 = vcombine_s16(d2, d3);
d01 = vqrshrun_n_s16(dd01, FILTER_BITS);
d23 = vqrshrun_n_s16(dd23, FILTER_BITS);
if (w == 2) {
store_u8_2x1(dst_ptr + 0 * dst_stride, d01, 0);
store_u8_2x1(dst_ptr + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(dst_ptr + 2 * dst_stride, d23, 0);
store_u8_2x1(dst_ptr + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(dst_ptr + 0 * dst_stride, d01, 0);
store_u8_4x1(dst_ptr + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(dst_ptr + 2 * dst_stride, d23, 0);
store_u8_4x1(dst_ptr + 3 * dst_stride, d23, 1);
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14;
uint8x8_t d0, d1, d2, d3;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14;
do {
const uint8_t *s = src_ptr;
uint8_t *d = dst_ptr;
int height = h;
load_u8_8x11(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7, &t8,
&t9, &t10);
s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
s7 = vreinterpretq_s16_u16(vmovl_u8(t7));
s8 = vreinterpretq_s16_u16(vmovl_u8(t8));
s9 = vreinterpretq_s16_u16(vmovl_u8(t9));
s10 = vreinterpretq_s16_u16(vmovl_u8(t10));
s += 11 * src_stride;
do {
load_u8_8x4(s, src_stride, &t11, &t12, &t13, &t14);
s11 = vreinterpretq_s16_u16(vmovl_u8(t11));
s12 = vreinterpretq_s16_u16(vmovl_u8(t12));
s13 = vreinterpretq_s16_u16(vmovl_u8(t13));
s14 = vreinterpretq_s16_u16(vmovl_u8(t14));
d0 = convolve12_y_8x4_s32(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, y_filter_0_7, y_filter_8_11);
d1 = convolve12_y_8x4_s32(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, y_filter_0_7, y_filter_8_11);
d2 = convolve12_y_8x4_s32(s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
s13, y_filter_0_7, y_filter_8_11);
d3 = convolve12_y_8x4_s32(s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
s13, s14, y_filter_0_7, y_filter_8_11);
if (h != 2) {
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
} else {
store_u8_8x2(d, dst_stride, d0, d1);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
void av1_convolve_y_sr_neon(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_y,
const int subpel_y_qn) {
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
const int vert_offset = filter_params_y->taps / 2 - 1;
src -= vert_offset * src_stride;
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
if (y_filter_taps > 8) {
convolve_y_sr_12tap_neon(src, src_stride, dst, dst_stride, w, h,
y_filter_ptr);
return;
}
// Filter values are even so downshift by 1 to reduce precision requirements.
const int16x8_t y_filter = vshrq_n_s16(vld1q_s16(y_filter_ptr), 1);
if (y_filter_taps < 8) {
convolve_y_sr_6tap_neon(src, src_stride, dst, dst_stride, w, h, y_filter);
return;
}
if (w <= 4) {
uint8x8_t d01;
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, d0;
#if defined(__aarch64__)
uint8x8_t d23;
int16x4_t s8, s9, s10, d1, d2, d3;
#endif
s0 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
s1 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
s2 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
s3 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
s4 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
s5 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
s6 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
do {
s7 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
#if defined(__aarch64__)
s8 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
s9 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
s10 = vreinterpret_s16_u16(vget_low_u16(vmovl_u8(vld1_u8(src))));
src += src_stride;
__builtin_prefetch(dst + 0 * dst_stride);
__builtin_prefetch(dst + 1 * dst_stride);
__builtin_prefetch(dst + 2 * dst_stride);
__builtin_prefetch(dst + 3 * dst_stride);
__builtin_prefetch(src + 0 * src_stride);
__builtin_prefetch(src + 1 * src_stride);
__builtin_prefetch(src + 2 * src_stride);
__builtin_prefetch(src + 3 * src_stride);
d0 = convolve8_4x4(s0, s1, s2, s3, s4, s5, s6, s7, y_filter);
d1 = convolve8_4x4(s1, s2, s3, s4, s5, s6, s7, s8, y_filter);
d2 = convolve8_4x4(s2, s3, s4, s5, s6, s7, s8, s9, y_filter);
d3 = convolve8_4x4(s3, s4, s5, s6, s7, s8, s9, s10, y_filter);
d01 = vqrshrun_n_s16(vcombine_s16(d0, d1), FILTER_BITS - 1);
d23 = vqrshrun_n_s16(vcombine_s16(d2, d3), FILTER_BITS - 1);
if (w == 2) {
store_u8_2x1(dst + 0 * dst_stride, d01, 0);
store_u8_2x1(dst + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(dst + 2 * dst_stride, d23, 0);
store_u8_2x1(dst + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(dst + 0 * dst_stride, d01, 0);
store_u8_4x1(dst + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(dst + 2 * dst_stride, d23, 0);
store_u8_4x1(dst + 3 * dst_stride, d23, 1);
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
dst += 4 * dst_stride;
h -= 4;
#else
__builtin_prefetch(dst + 0 * dst_stride);
__builtin_prefetch(src + 0 * src_stride);
d0 = convolve8_4x4(s0, s1, s2, s3, s4, s5, s6, s7, y_filter);
d01 = vqrshrun_n_s16(vcombine_s16(d0, d0), FILTER_BITS - 1);
if (w == 4) {
store_u8_4x1(dst, d01, 0);
} else if (w == 2) {
store_u8_2x1(dst, d01, 0);
}
s0 = s1;
s1 = s2;
s2 = s3;
s3 = s4;
s4 = s5;
s5 = s6;
s6 = s7;
dst += dst_stride;
h -= 1;
#endif
} while (h > 0);
} else {
int height;
const uint8_t *s;
uint8_t *d;
uint8x8_t t0;
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7;
#if defined(__aarch64__)
uint8x8_t t1, t2, t3;
int16x8_t s8, s9, s10;
#endif
do {
__builtin_prefetch(src + 0 * src_stride);
__builtin_prefetch(src + 1 * src_stride);
__builtin_prefetch(src + 2 * src_stride);
__builtin_prefetch(src + 3 * src_stride);
__builtin_prefetch(src + 4 * src_stride);
__builtin_prefetch(src + 5 * src_stride);
__builtin_prefetch(src + 6 * src_stride);
s = src;
s0 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
s1 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
s2 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
s3 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
s4 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
s5 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
s6 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
d = dst;
height = h;
do {
s7 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
#if defined(__aarch64__)
s8 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
s9 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
s10 = vreinterpretq_s16_u16(vmovl_u8(vld1_u8(s)));
s += src_stride;
__builtin_prefetch(d + 0 * dst_stride);
__builtin_prefetch(d + 1 * dst_stride);
__builtin_prefetch(d + 2 * dst_stride);
__builtin_prefetch(d + 3 * dst_stride);
__builtin_prefetch(s + 0 * src_stride);
__builtin_prefetch(s + 1 * src_stride);
__builtin_prefetch(s + 2 * src_stride);
__builtin_prefetch(s + 3 * src_stride);
t0 = convolve8_vert_8x4(s0, s1, s2, s3, s4, s5, s6, s7, y_filter);
t1 = convolve8_vert_8x4(s1, s2, s3, s4, s5, s6, s7, s8, y_filter);
t2 = convolve8_vert_8x4(s2, s3, s4, s5, s6, s7, s8, s9, y_filter);
t3 = convolve8_vert_8x4(s3, s4, s5, s6, s7, s8, s9, s10, y_filter);
if (h != 2) {
store_u8_8x4(d, dst_stride, t0, t1, t2, t3);
} else {
store_u8_8x2(d, dst_stride, t0, t1);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
d += 4 * dst_stride;
height -= 4;
#else
__builtin_prefetch(d);
__builtin_prefetch(s);
t0 = convolve8_vert_8x4(s0, s1, s2, s3, s4, s5, s6, s7, y_filter);
vst1_u8(d, t0);
d += dst_stride;
s0 = s1;
s1 = s2;
s2 = s3;
s3 = s4;
s4 = s5;
s5 = s6;
s6 = s7;
height -= 1;
#endif
} while (height > 0);
src += 8;
dst += 8;
w -= 8;
} while (w > 0);
}
}
#if defined(__aarch64__) && defined(__ARM_FEATURE_MATMUL_INT8)
static INLINE int16x4_t convolve12_horiz_4_usdot(uint8x16_t samples,
const int8x16_t filters,
const uint8x16x3_t permute_tbl,
int32x4_t horiz_const) {
uint8x16_t permuted_samples[3];
int32x4_t sum;
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
/* First 4 output values. */
sum = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filters, 0);
sum = vusdotq_laneq_s32(sum, permuted_samples[1], filters, 1);
sum = vusdotq_laneq_s32(sum, permuted_samples[2], filters, 2);
/* Narrow and re-pack. */
return vshrn_n_s32(sum, ROUND0_BITS);
}
static INLINE int16x8_t convolve12_horiz_8_usdot(uint8x16_t samples0,
uint8x16_t samples1,
const int8x16_t filters,
const uint8x16x3_t permute_tbl,
const int32x4_t horiz_const) {
uint8x16_t permuted_samples[4];
int32x4_t sum[2];
/* Permute samples ready for dot product. */
/* { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } */
permuted_samples[0] = vqtbl1q_u8(samples0, permute_tbl.val[0]);
/* { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } */
permuted_samples[1] = vqtbl1q_u8(samples0, permute_tbl.val[1]);
/* { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } */
permuted_samples[2] = vqtbl1q_u8(samples0, permute_tbl.val[2]);
/* {12, 13, 14, 15, 13, 14, 15, 16, 14, 15, 16, 17, 15, 16, 17, 18 } */
permuted_samples[3] = vqtbl1q_u8(samples1, permute_tbl.val[2]);
/* First 4 output values. */
sum[0] = vusdotq_laneq_s32(horiz_const, permuted_samples[0], filters, 0);
sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[1], filters, 1);
sum[0] = vusdotq_laneq_s32(sum[0], permuted_samples[2], filters, 2);
/* Second 4 output values. */
sum[1] = vusdotq_laneq_s32(horiz_const, permuted_samples[1], filters, 0);
sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[2], filters, 1);
sum[1] = vusdotq_laneq_s32(sum[1], permuted_samples[3], filters, 2);
/* Narrow and re-pack. */
return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS),
vshrn_n_s32(sum[1], ROUND0_BITS));
}
static INLINE void convolve_2d_sr_horiz_12tap_neon(
const uint8_t *src_ptr, int src_stride, int16_t *dst_ptr,
const int dst_stride, int w, int h, const int16x8_t x_filter_0_7,
const int16x4_t x_filter_8_11) {
const int bd = 8;
// Special case the following no-op filter as 128 won't fit into the
// 8-bit signed dot-product instruction:
// { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 }
if (vgetq_lane_s16(x_filter_0_7, 5) == 128) {
const int16x8_t horiz_const = vdupq_n_s16((1 << (bd - 1)));
// Undo the horizontal offset in the calling function.
src_ptr += 5;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j += 8) {
uint8x8_t s0 = vld1_u8(src_ptr + i * src_stride + j);
uint16x8_t t0 = vaddw_u8(vreinterpretq_u16_s16(horiz_const), s0);
int16x8_t d0 =
vshlq_n_s16(vreinterpretq_s16_u16(t0), FILTER_BITS - ROUND0_BITS);
if (w == 2) {
store_s16_2x1(dst_ptr + i * dst_stride, vget_low_s16(d0), 0);
} else if (w == 4) {
vst1_s16(dst_ptr + i * dst_stride, vget_low_s16(d0));
} else {
vst1q_s16(dst_ptr + i * dst_stride + j, d0);
}
}
}
} else {
// Narrow filter values to 8-bit.
const int16x8x2_t x_filter_s16 = {
{ x_filter_0_7, vcombine_s16(x_filter_8_11, vdup_n_s16(0)) }
};
const int8x16_t x_filter = vcombine_s8(vmovn_s16(x_filter_s16.val[0]),
vmovn_s16(x_filter_s16.val[1]));
// This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts
// - which are generally faster than rounding shifts on modern CPUs.
const int32x4_t horiz_const =
vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)));
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
if (w <= 4) {
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
int16x4_t d0, d1, d2, d3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
d0 = convolve12_horiz_4_usdot(s0, x_filter, permute_tbl, horiz_const);
d1 = convolve12_horiz_4_usdot(s1, x_filter, permute_tbl, horiz_const);
d2 = convolve12_horiz_4_usdot(s2, x_filter, permute_tbl, horiz_const);
d3 = convolve12_horiz_4_usdot(s3, x_filter, permute_tbl, horiz_const);
if (w == 2) {
store_s16_2x1(d + 0 * dst_stride, d0, 0);
store_s16_2x1(d + 1 * dst_stride, d1, 0);
store_s16_2x1(d + 2 * dst_stride, d2, 0);
store_s16_2x1(d + 3 * dst_stride, d3, 0);
} else {
store_s16_4x4(d, dst_stride, d0, d1, d2, d3);
}
s += 4;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h >= 4);
for (; h > 0; h--) {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0;
int16x4_t d0;
s0 = vld1q_u8(s);
d0 = convolve12_horiz_4_usdot(s0, x_filter, permute_tbl, horiz_const);
if (w == 2) {
store_s16_2x1(d, d0, 0);
} else {
vst1_s16(d, d0);
}
s += 4;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
}
} else {
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0[2], s1[2], s2[2], s3[2];
int16x8_t d0, d1, d2, d3;
load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
d0 = convolve12_horiz_8_usdot(s0[0], s0[1], x_filter, permute_tbl,
horiz_const);
d1 = convolve12_horiz_8_usdot(s1[0], s1[1], x_filter, permute_tbl,
horiz_const);
d2 = convolve12_horiz_8_usdot(s2[0], s2[1], x_filter, permute_tbl,
horiz_const);
d3 = convolve12_horiz_8_usdot(s3[0], s3[1], x_filter, permute_tbl,
horiz_const);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h >= 4);
for (; h > 0; h--) {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0[2];
int16x8_t d0;
s0[0] = vld1q_u8(s);
s0[1] = vld1q_u8(s + 4);
d0 = convolve12_horiz_8_usdot(s0[0], s0[1], x_filter, permute_tbl,
horiz_const);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
}
}
}
}
#elif defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD)
static INLINE void convolve_2d_sr_horiz_12tap_neon(
const uint8_t *src_ptr, int src_stride, int16_t *dst_ptr,
const int dst_stride, int w, int h, const int16x8_t x_filter_0_7,
const int16x4_t x_filter_8_11) {
const int bd = 8;
// Special case the following no-op filter as 128 won't fit into the
// 8-bit signed dot-product instruction:
// { 0, 0, 0, 0, 0, 128, 0, 0, 0, 0, 0, 0 }
if (vgetq_lane_s16(x_filter_0_7, 5) == 128) {
const int16x8_t horiz_const = vdupq_n_s16((1 << (bd - 1)));
// Undo the horizontal offset in the calling function.
src_ptr += 5;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j += 8) {
uint8x8_t s0 = vld1_u8(src_ptr + i * src_stride + j);
uint16x8_t t0 = vaddw_u8(vreinterpretq_u16_s16(horiz_const), s0);
int16x8_t d0 =
vshlq_n_s16(vreinterpretq_s16_u16(t0), FILTER_BITS - ROUND0_BITS);
if (w == 2) {
store_s16_2x1(dst_ptr + i * dst_stride, vget_low_s16(d0), 0);
} else if (w == 4) {
vst1_s16(dst_ptr + i * dst_stride, vget_low_s16(d0));
} else {
vst1q_s16(dst_ptr + i * dst_stride + j, d0);
}
}
}
} else {
// Narrow filter values to 8-bit.
const int16x8x2_t x_filter_s16 = {
{ x_filter_0_7, vcombine_s16(x_filter_8_11, vdup_n_s16(0)) }
};
const int8x16_t x_filter = vcombine_s8(vmovn_s16(x_filter_s16.val[0]),
vmovn_s16(x_filter_s16.val[1]));
// This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts
// - which are generally faster than rounding shifts on modern CPUs.
const int32_t horiz_const =
((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)));
// Dot product constants.
const int32x4_t correct_tmp =
vaddq_s32(vpaddlq_s16(vshlq_n_s16(x_filter_s16.val[0], 7)),
vpaddlq_s16(vshlq_n_s16(x_filter_s16.val[1], 7)));
const int32x4_t correction =
vdupq_n_s32(vaddvq_s32(correct_tmp) + horiz_const);
const uint8x16_t range_limit = vdupq_n_u8(128);
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
if (w <= 4) {
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
int16x4_t d0, d1, d2, d3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
d0 = convolve12_horiz_4_sdot(s0, x_filter, correction, range_limit,
permute_tbl);
d1 = convolve12_horiz_4_sdot(s1, x_filter, correction, range_limit,
permute_tbl);
d2 = convolve12_horiz_4_sdot(s2, x_filter, correction, range_limit,
permute_tbl);
d3 = convolve12_horiz_4_sdot(s3, x_filter, correction, range_limit,
permute_tbl);
if (w == 2) {
store_s16_2x1(d + 0 * dst_stride, d0, 0);
store_s16_2x1(d + 1 * dst_stride, d1, 0);
store_s16_2x1(d + 2 * dst_stride, d2, 0);
store_s16_2x1(d + 3 * dst_stride, d3, 0);
} else {
store_s16_4x4(d, dst_stride, d0, d1, d2, d3);
}
s += 4;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h >= 4);
for (; h > 0; h--) {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0;
int16x4_t d0;
s0 = vld1q_u8(s);
d0 = convolve12_horiz_4_sdot(s0, x_filter, correction, range_limit,
permute_tbl);
if (w == 2) {
store_s16_2x1(d, d0, 0);
} else {
vst1_s16(d, d0);
}
s += 4;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
}
} else {
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0[2], s1[2], s2[2], s3[2];
int16x8_t d0, d1, d2, d3;
load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]);
load_u8_16x4(s + 4, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]);
d0 = convolve12_horiz_8_sdot(s0[0], s0[1], x_filter, correction,
range_limit, permute_tbl);
d1 = convolve12_horiz_8_sdot(s1[0], s1[1], x_filter, correction,
range_limit, permute_tbl);
d2 = convolve12_horiz_8_sdot(s2[0], s2[1], x_filter, correction,
range_limit, permute_tbl);
d3 = convolve12_horiz_8_sdot(s3[0], s3[1], x_filter, correction,
range_limit, permute_tbl);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h >= 4);
for (; h > 0; h--) {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0[2];
int16x8_t d0;
s0[0] = vld1q_u8(s);
s0[1] = vld1q_u8(s + 4);
d0 = convolve12_horiz_8_sdot(s0[0], s0[1], x_filter, correction,
range_limit, permute_tbl);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
}
}
}
}
#else // !(defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD))
static INLINE int16x4_t convolve12_horiz_4x4_s16(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7, const int16x4_t s8,
const int16x4_t s9, const int16x4_t s10, const int16x4_t s11,
const int16x8_t x_filter_0_7, const int16x4_t x_filter_8_11,
const int32x4_t horiz_const) {
const int16x4_t x_filter_0_3 = vget_low_s16(x_filter_0_7);
const int16x4_t x_filter_4_7 = vget_high_s16(x_filter_0_7);
int32x4_t sum;
sum = horiz_const;
sum = vmlal_lane_s16(sum, s0, x_filter_0_3, 0);
sum = vmlal_lane_s16(sum, s1, x_filter_0_3, 1);
sum = vmlal_lane_s16(sum, s2, x_filter_0_3, 2);
sum = vmlal_lane_s16(sum, s3, x_filter_0_3, 3);
sum = vmlal_lane_s16(sum, s4, x_filter_4_7, 0);
sum = vmlal_lane_s16(sum, s5, x_filter_4_7, 1);
sum = vmlal_lane_s16(sum, s6, x_filter_4_7, 2);
sum = vmlal_lane_s16(sum, s7, x_filter_4_7, 3);
sum = vmlal_lane_s16(sum, s8, x_filter_8_11, 0);
sum = vmlal_lane_s16(sum, s9, x_filter_8_11, 1);
sum = vmlal_lane_s16(sum, s10, x_filter_8_11, 2);
sum = vmlal_lane_s16(sum, s11, x_filter_8_11, 3);
return vshrn_n_s32(sum, ROUND0_BITS);
}
// 4 column per iteration horizontal filtering for 12-tap convolve_2d_sr.
// Processes one row at a time.
static INLINE void horiz_filter_12tap_w4_single_row(
const uint8_t *src_ptr, int src_stride, int16_t *dst_ptr,
const int dst_stride, int w, int h, const int16x8_t x_filter_0_7,
const int16x4_t x_filter_8_11, const int32x4_t horiz_const) {
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, d0;
uint8x16_t t0;
int16x8_t tt0, tt1;
t0 = vld1q_u8(s);
tt0 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0)));
tt1 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0)));
s0 = vget_low_s16(tt0);
s4 = vget_high_s16(tt0);
s8 = vget_low_s16(tt1);
s12 = vget_high_s16(tt1);
s1 = vext_s16(s0, s4, 1); // a1 a2 a3 a4
s2 = vext_s16(s0, s4, 2); // a2 a3 a4 a5
s3 = vext_s16(s0, s4, 3); // a3 a4 a5 a6
s5 = vext_s16(s4, s8, 1); // a5 a6 a7 a8
s6 = vext_s16(s4, s8, 2); // a6 a7 a8 a9
s7 = vext_s16(s4, s8, 3); // a7 a8 a9 a10
s9 = vext_s16(s8, s12, 1); // a9 a10 a11 a12
s10 = vext_s16(s8, s12, 2); // a10 a11 a12 a13
s11 = vext_s16(s8, s12, 3); // a11 a12 a13 a14
d0 = convolve12_horiz_4x4_s16(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, x_filter_0_7, x_filter_8_11,
horiz_const);
if (w == 2) {
store_s16_2x1(d, d0, 0);
} else {
vst1_s16(d, d0);
}
s += 4;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
h--;
} while (h > 0);
}
static INLINE void convolve_2d_sr_horiz_12tap_neon(
const uint8_t *src_ptr, int src_stride, int16_t *dst_ptr,
const int dst_stride, int w, int h, const int16x8_t x_filter_0_7,
const int16x4_t x_filter_8_11) {
const int bd = 8;
// This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts -
// which are generally faster than rounding shifts on modern CPUs.
const int32x4_t horiz_const =
vdupq_n_s32((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1)));
#if defined(__aarch64__)
do {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10;
uint8x8_t t0, t1, t2, t3;
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
load_u8_8x4(s + 8, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s += 11;
do {
int16x4_t s11, s12, s13, s14, d0, d1, d2, d3;
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s11 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s12 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s13 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s14 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
d0 = convolve12_horiz_4x4_s16(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, x_filter_0_7, x_filter_8_11,
horiz_const);
d1 = convolve12_horiz_4x4_s16(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, s12, x_filter_0_7, x_filter_8_11,
horiz_const);
d2 = convolve12_horiz_4x4_s16(s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, s13, x_filter_0_7, x_filter_8_11,
horiz_const);
d3 = convolve12_horiz_4x4_s16(s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
s13, s14, x_filter_0_7, x_filter_8_11,
horiz_const);
transpose_s16_4x4d(&d0, &d1, &d2, &d3);
if (w == 2) {
store_s16_2x1(d + 0 * dst_stride, d0, 0);
store_s16_2x1(d + 1 * dst_stride, d1, 0);
store_s16_2x1(d + 2 * dst_stride, d2, 0);
store_s16_2x1(d + 3 * dst_stride, d3, 0);
} else {
store_s16_4x4(d, dst_stride, d0, d1, d2, d3);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
s += 4;
d += 4;
width -= 4;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h >= 4);
if (h) {
horiz_filter_12tap_w4_single_row(src_ptr, src_stride, dst_ptr, dst_stride,
w, h, x_filter_0_7, x_filter_8_11,
horiz_const);
}
#else // !defined(__aarch64__)
horiz_filter_12tap_w4_single_row(src_ptr, src_stride, dst_ptr, dst_stride, w,
h, x_filter_0_7, x_filter_8_11, horiz_const);
#endif // defined(__aarch64__)
}
#endif // defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD)
#if defined(__aarch64__) && defined(__ARM_FEATURE_MATMUL_INT8)
static INLINE void convolve_2d_sr_horiz_8tap_neon(
const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w,
int im_h, const int16x8_t x_filter_s16) {
const int bd = 8;
const uint8_t *src_ptr = src;
int16_t *dst_ptr = im_block;
int dst_stride = im_stride;
int height = im_h;
// Filter values are even, so downshift by 1 to reduce intermediate precision
// requirements.
const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// The outermost -1 is needed because we halved the filter values.
const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) +
(1 << ((ROUND0_BITS - 1) - 1)));
if (w <= 4) {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
uint8x16_t s0, s1, s2, s3;
int32x4_t t0, t1, t2, t3;
int16x4_t d0, d1, d2, d3;
do {
assert(height >= 4);
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
t0 = convolve8_4_usdot(s0, x_filter, permute_tbl, horiz_const);
t1 = convolve8_4_usdot(s1, x_filter, permute_tbl, horiz_const);
t2 = convolve8_4_usdot(s2, x_filter, permute_tbl, horiz_const);
t3 = convolve8_4_usdot(s3, x_filter, permute_tbl, horiz_const);
// We halved the convolution filter values so -1 from the right shift.
d0 = vshrn_n_s32(t0, ROUND0_BITS - 1);
d1 = vshrn_n_s32(t1, ROUND0_BITS - 1);
d2 = vshrn_n_s32(t2, ROUND0_BITS - 1);
d3 = vshrn_n_s32(t3, ROUND0_BITS - 1);
if (w == 2) {
store_s16_2x1(dst_ptr + 0 * dst_stride, d0, 0);
store_s16_2x1(dst_ptr + 1 * dst_stride, d1, 0);
store_s16_2x1(dst_ptr + 2 * dst_stride, d2, 0);
store_s16_2x1(dst_ptr + 3 * dst_stride, d3, 0);
} else {
store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3);
}
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height >= 4);
if (height) {
assert(height < 4);
do {
s0 = vld1q_u8(src_ptr);
t0 = convolve8_4_usdot(s0, x_filter, permute_tbl, horiz_const);
// We halved the convolution filter values so -1 from the right shift.
d0 = vshrn_n_s32(t0, ROUND0_BITS - 1);
if (w == 2) {
store_s16_2x1(dst_ptr, d0, 0);
} else {
vst1_s16(dst_ptr, d0);
}
src_ptr += src_stride;
dst_ptr += dst_stride;
height--;
} while (height > 0);
}
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
uint8x16_t s0, s1, s2, s3;
int16x8_t d0, d1, d2, d3;
do {
assert(height >= 4);
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
d0 = convolve8_horiz_8_usdot(s0, x_filter, permute_tbl, horiz_const);
d1 = convolve8_horiz_8_usdot(s1, x_filter, permute_tbl, horiz_const);
d2 = convolve8_horiz_8_usdot(s2, x_filter, permute_tbl, horiz_const);
d3 = convolve8_horiz_8_usdot(s3, x_filter, permute_tbl, horiz_const);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height >= 4);
if (height) {
assert(height < 4);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
s0 = vld1q_u8(s);
d0 = convolve8_horiz_8_usdot(s0, x_filter, permute_tbl, horiz_const);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
height--;
} while (height > 0);
}
}
}
#elif defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD)
static INLINE void convolve_2d_sr_horiz_8tap_neon(
const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w,
int im_h, const int16x8_t x_filter_s16) {
const int bd = 8;
const uint8_t *src_ptr = src;
int16_t *dst_ptr = im_block;
int dst_stride = im_stride;
int height = im_h;
// Filter values are even, so downshift by 1 to reduce intermediate precision
// requirements.
const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1);
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// The outermost -1 is needed because we halved the filter values.
const int32_t horiz_const =
((1 << (bd + FILTER_BITS - 2)) + (1 << ((ROUND0_BITS - 1) - 1)));
// Dot product constants.
const int16x8_t correct_tmp = vshlq_n_s16(x_filter_s16, 6);
int32x4_t correction = vdupq_n_s32(vaddlvq_s16(correct_tmp) + horiz_const);
const uint8x16_t range_limit = vdupq_n_u8(128);
if (w <= 4) {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(dot_prod_permute_tbl);
uint8x16_t s0, s1, s2, s3;
int32x4_t t0, t1, t2, t3;
int16x4_t d0, d1, d2, d3;
do {
assert(height >= 4);
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
t0 = convolve8_4_sdot(s0, x_filter, correction, range_limit, permute_tbl);
t1 = convolve8_4_sdot(s1, x_filter, correction, range_limit, permute_tbl);
t2 = convolve8_4_sdot(s2, x_filter, correction, range_limit, permute_tbl);
t3 = convolve8_4_sdot(s3, x_filter, correction, range_limit, permute_tbl);
// We halved the convolution filter values so -1 from the right shift.
d0 = vshrn_n_s32(t0, ROUND0_BITS - 1);
d1 = vshrn_n_s32(t1, ROUND0_BITS - 1);
d2 = vshrn_n_s32(t2, ROUND0_BITS - 1);
d3 = vshrn_n_s32(t3, ROUND0_BITS - 1);
if (w == 2) {
store_s16_2x1(dst_ptr + 0 * dst_stride, d0, 0);
store_s16_2x1(dst_ptr + 1 * dst_stride, d1, 0);
store_s16_2x1(dst_ptr + 2 * dst_stride, d2, 0);
store_s16_2x1(dst_ptr + 3 * dst_stride, d3, 0);
} else {
store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3);
}
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height >= 4);
if (height) {
assert(height < 4);
do {
s0 = vld1q_u8(src_ptr);
t0 = convolve8_4_sdot(s0, x_filter, correction, range_limit,
permute_tbl);
// We halved the convolution filter values so -1 from the right shift.
d0 = vshrn_n_s32(t0, ROUND0_BITS - 1);
if (w == 2) {
store_s16_2x1(dst_ptr, d0, 0);
} else {
vst1_s16(dst_ptr, d0);
}
src_ptr += src_stride;
dst_ptr += dst_stride;
height--;
} while (height > 0);
}
} else {
const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl);
uint8x16_t s0, s1, s2, s3;
int16x8_t d0, d1, d2, d3;
do {
assert(height >= 4);
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
d0 = convolve8_horiz_8_sdot(s0, x_filter, correction, range_limit,
permute_tbl);
d1 = convolve8_horiz_8_sdot(s1, x_filter, correction, range_limit,
permute_tbl);
d2 = convolve8_horiz_8_sdot(s2, x_filter, correction, range_limit,
permute_tbl);
d3 = convolve8_horiz_8_sdot(s3, x_filter, correction, range_limit,
permute_tbl);
// We halved the convolution filter values so -1 from the right shift.
d0 = vshrq_n_s16(d0, ROUND0_BITS - 1);
d1 = vshrq_n_s16(d1, ROUND0_BITS - 1);
d2 = vshrq_n_s16(d2, ROUND0_BITS - 1);
d3 = vshrq_n_s16(d3, ROUND0_BITS - 1);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height >= 4);
if (height) {
assert(height < 4);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
s0 = vld1q_u8(s);
d0 = convolve8_8_sdot(s0, x_filter, correction, range_limit,
permute_tbl, vdupq_n_s16(0));
// We halved the convolution filter values so -1 from the right shift.
d0 = vshrq_n_s16(d0, ROUND0_BITS - 1);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
height--;
} while (height > 0);
}
}
}
#else // !(defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD))
// Horizontal filtering for convolve_2d_sr for width multiple of 8
// Processes one row at a time
static INLINE void horiz_filter_w8_single_row(const uint8_t *src_ptr,
int src_stride, int16_t *dst_ptr,
const int dst_stride, int width,
int height,
const int16x8_t x_filter,
const int16x8_t horiz_const) {
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7;
do {
uint8x8_t t0 = vld1_u8(src_ptr);
s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); // a0 a1 a2 a3 a4 a5 a6 a7
int width_tmp = width;
const uint8_t *s = src_ptr + 8;
int16_t *dst_tmp = dst_ptr;
__builtin_prefetch(dst_ptr);
do {
t0 = vld1_u8(s); // a8 a9 a10 a11 a12 a13 a14 a15
s7 = vreinterpretq_s16_u16(vmovl_u8(t0));
int16x8_t sum = s0;
s0 = s7;
s1 = vextq_s16(sum, s7, 1); // a1 a2 a3 a4 a5 a6 a7 a8
s2 = vextq_s16(sum, s7, 2); // a2 a3 a4 a5 a6 a7 a8 a9
s3 = vextq_s16(sum, s7, 3); // a3 a4 a5 a6 a7 a8 a9 a10
s4 = vextq_s16(sum, s7, 4); // a4 a5 a6 a7 a8 a9 a10 a11
s5 = vextq_s16(sum, s7, 5); // a5 a6 a7 a8 a9 a10 a11 a12
s6 = vextq_s16(sum, s7, 6); // a6 a7 a8 a9 a10 a11 a12 a13
s7 = vextq_s16(sum, s7, 7); // a7 a8 a9 a10 a11 a12 a13 a14
int16x8_t res0 = convolve8_horiz_8x8_s16(sum, s1, s2, s3, s4, s5, s6, s7,
x_filter, horiz_const);
vst1q_s16(dst_tmp, res0);
s += 8;
dst_tmp += 8;
width_tmp -= 8;
} while (width_tmp > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
height--;
} while (height > 0);
}
// Horizontal filtering for convolve_2d_sr for width <= 4
// Processes one row at a time
static INLINE void horiz_filter_w4_single_row(const uint8_t *src_ptr,
int src_stride, int16_t *dst_ptr,
const int dst_stride, int width,
int height,
const int16x8_t x_filter,
const int16x4_t horiz_const) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7;
do {
const uint8_t *s = src_ptr;
__builtin_prefetch(s);
uint8x8_t t0 = vld1_u8(s); // a0 a1 a2 a3 a4 a5 a6 a7
int16x8_t tt0 = vreinterpretq_s16_u16(vmovl_u8(t0));
s0 = vget_low_s16(tt0);
s4 = vget_high_s16(tt0);
__builtin_prefetch(dst_ptr);
s += 8;
t0 = vld1_u8(s); // a8 a9 a10 a11 a12 a13 a14 a15
s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vext_s16(s0, s4, 1); // a1 a2 a3 a4
s2 = vext_s16(s0, s4, 2); // a2 a3 a4 a5
s3 = vext_s16(s0, s4, 3); // a3 a4 a5 a6
s5 = vext_s16(s4, s7, 1); // a5 a6 a7 a8
s6 = vext_s16(s4, s7, 2); // a6 a7 a8 a9
s7 = vext_s16(s4, s7, 3); // a7 a8 a9 a10
int16x4_t d0 = convolve8_horiz_4x4_s16(s0, s1, s2, s3, s4, s5, s6, s7,
x_filter, horiz_const);
if (width == 2) {
store_s16_2x1(dst_ptr, d0, 0);
} else {
vst1_s16(dst_ptr, d0);
}
dst_ptr += dst_stride;
src_ptr += src_stride;
height--;
} while (height > 0);
}
static INLINE void convolve_2d_sr_horiz_8tap_neon(
const uint8_t *src, int src_stride, int16_t *im_block, int im_stride, int w,
int im_h, const int16x8_t x_filter_s16) {
const int bd = 8;
const uint8_t *src_ptr = src;
int16_t *dst_ptr = im_block;
int dst_stride = im_stride;
int height = im_h;
// Filter values are even, so downshift by 1 to reduce intermediate precision
// requirements.
const int16x8_t x_filter = vshrq_n_s16(x_filter_s16, 1);
if (w <= 4) {
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// The outermost -1 is needed because we halved the filter values.
const int16x4_t horiz_const = vdup_n_s16((1 << (bd + FILTER_BITS - 2)) +
(1 << ((ROUND0_BITS - 1) - 1)));
#if defined(__aarch64__)
do {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, d0, d1, d2, d3;
uint8x8_t t0, t1, t2, t3;
const uint8_t *s = src_ptr;
assert(height >= 4);
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s += 7;
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
d0 = convolve8_horiz_4x4_s16(s0, s1, s2, s3, s4, s5, s6, s7, x_filter,
horiz_const);
d1 = convolve8_horiz_4x4_s16(s1, s2, s3, s4, s5, s6, s7, s8, x_filter,
horiz_const);
d2 = convolve8_horiz_4x4_s16(s2, s3, s4, s5, s6, s7, s8, s9, x_filter,
horiz_const);
d3 = convolve8_horiz_4x4_s16(s3, s4, s5, s6, s7, s8, s9, s10, x_filter,
horiz_const);
transpose_s16_4x4d(&d0, &d1, &d2, &d3);
if (w == 2) {
store_s16_2x1(dst_ptr + 0 * dst_stride, d0, 0);
store_s16_2x1(dst_ptr + 1 * dst_stride, d1, 0);
store_s16_2x1(dst_ptr + 2 * dst_stride, d2, 0);
store_s16_2x1(dst_ptr + 3 * dst_stride, d3, 0);
} else {
store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3);
}
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height >= 4);
if (height) {
assert(height < 4);
horiz_filter_w4_single_row(src_ptr, src_stride, dst_ptr, dst_stride, w,
height, x_filter, horiz_const);
}
#else // !defined(__aarch64__)
horiz_filter_w4_single_row(src_ptr, src_stride, dst_ptr, dst_stride, w,
height, x_filter, horiz_const);
#endif // defined(__aarch64__)
} else {
// This shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// The outermost -1 is needed because we halved the filter values.
const int16x8_t horiz_const = vdupq_n_s16((1 << (bd + FILTER_BITS - 2)) +
(1 << ((ROUND0_BITS - 1) - 1)));
#if defined(__aarch64__)
for (; height >= 8; height -= 8) {
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14,
d0, d1, d2, d3, d4, d5, d6, d7;
uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7;
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
s0 = vreinterpretq_s16_u16(vmovl_u8(t0));
s1 = vreinterpretq_s16_u16(vmovl_u8(t1));
s2 = vreinterpretq_s16_u16(vmovl_u8(t2));
s3 = vreinterpretq_s16_u16(vmovl_u8(t3));
s4 = vreinterpretq_s16_u16(vmovl_u8(t4));
s5 = vreinterpretq_s16_u16(vmovl_u8(t5));
s6 = vreinterpretq_s16_u16(vmovl_u8(t6));
s += 7;
do {
load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
transpose_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7);
s7 = vreinterpretq_s16_u16(vmovl_u8(t0));
s8 = vreinterpretq_s16_u16(vmovl_u8(t1));
s9 = vreinterpretq_s16_u16(vmovl_u8(t2));
s10 = vreinterpretq_s16_u16(vmovl_u8(t3));
s11 = vreinterpretq_s16_u16(vmovl_u8(t4));
s12 = vreinterpretq_s16_u16(vmovl_u8(t5));
s13 = vreinterpretq_s16_u16(vmovl_u8(t6));
s14 = vreinterpretq_s16_u16(vmovl_u8(t7));
d0 = convolve8_horiz_8x8_s16(s0, s1, s2, s3, s4, s5, s6, s7, x_filter,
horiz_const);
d1 = convolve8_horiz_8x8_s16(s1, s2, s3, s4, s5, s6, s7, s8, x_filter,
horiz_const);
d2 = convolve8_horiz_8x8_s16(s2, s3, s4, s5, s6, s7, s8, s9, x_filter,
horiz_const);
d3 = convolve8_horiz_8x8_s16(s3, s4, s5, s6, s7, s8, s9, s10, x_filter,
horiz_const);
d4 = convolve8_horiz_8x8_s16(s4, s5, s6, s7, s8, s9, s10, s11, x_filter,
horiz_const);
d5 = convolve8_horiz_8x8_s16(s5, s6, s7, s8, s9, s10, s11, s12,
x_filter, horiz_const);
d6 = convolve8_horiz_8x8_s16(s6, s7, s8, s9, s10, s11, s12, s13,
x_filter, horiz_const);
d7 = convolve8_horiz_8x8_s16(s7, s8, s9, s10, s11, s12, s13, s14,
x_filter, horiz_const);
transpose_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7);
store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7);
s0 = s8;
s1 = s9;
s2 = s10;
s3 = s11;
s4 = s12;
s5 = s13;
s6 = s14;
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 8 * src_stride;
dst_ptr += 8 * dst_stride;
}
for (; height >= 4; height -= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14,
dd0, dd1, dd2, dd3, dd4, dd5, dd6, dd7;
int16x8_t d0, d1, d2, d3;
uint8x8_t t0, t1, t2, t3;
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
load_u8_8x4(src_ptr, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s += 7;
do {
load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3);
transpose_u8_8x4(&t0, &t1, &t2, &t3);
s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s8 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s9 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s10 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
s11 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0)));
s12 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1)));
s13 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2)));
s14 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3)));
dd0 = convolve8_4x4(s0, s1, s2, s3, s4, s5, s6, s7, x_filter);
dd1 = convolve8_4x4(s1, s2, s3, s4, s5, s6, s7, s8, x_filter);
dd2 = convolve8_4x4(s2, s3, s4, s5, s6, s7, s8, s9, x_filter);
dd3 = convolve8_4x4(s3, s4, s5, s6, s7, s8, s9, s10, x_filter);
dd4 = convolve8_4x4(s4, s5, s6, s7, s8, s9, s10, s11, x_filter);
dd5 = convolve8_4x4(s5, s6, s7, s8, s9, s10, s11, s12, x_filter);
dd6 = convolve8_4x4(s6, s7, s8, s9, s10, s11, s12, s13, x_filter);
dd7 = convolve8_4x4(s7, s8, s9, s10, s11, s12, s13, s14, x_filter);
transpose_s16_4x8(&dd0, &dd1, &dd2, &dd3, &dd4, &dd5, &dd6, &dd7, &d0,
&d1, &d2, &d3);
d0 = vaddq_s16(d0, horiz_const);
d1 = vaddq_s16(d1, horiz_const);
d2 = vaddq_s16(d2, horiz_const);
d3 = vaddq_s16(d3, horiz_const);
// We halved the convolution filter values so -1 from the right shift.
d0 = vshrq_n_s16(d0, ROUND0_BITS - 1);
d1 = vshrq_n_s16(d1, ROUND0_BITS - 1);
d2 = vshrq_n_s16(d2, ROUND0_BITS - 1);
d3 = vshrq_n_s16(d3, ROUND0_BITS - 1);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s0 = s8;
s1 = s9;
s2 = s10;
s3 = s11;
s4 = s12;
s5 = s13;
s6 = s14;
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
}
if (height) {
assert(height < 4);
horiz_filter_w8_single_row(src_ptr, src_stride, dst_ptr, dst_stride, w,
height, x_filter, horiz_const);
}
#else // !defined(__aarch64__)
horiz_filter_w8_single_row(src_ptr, src_stride, dst_ptr, dst_stride, w,
height, x_filter, horiz_const);
#endif // defined(__aarch64__)
}
}
#endif // defined(__aarch64__) && defined(__ARM_FEATURE_DOTPROD)
static INLINE int32x4_t convolve12_vert_4_s32(
const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
const int16x4_t s6, const int16x4_t s7, const int16x4_t s8,
const int16x4_t s9, const int16x4_t s10, const int16x4_t s11,
const int16x8_t y_filter_0_7, const int16x4_t y_filter_8_11) {
const int16x4_t y_filter_0_3 = vget_low_s16(y_filter_0_7);
const int16x4_t y_filter_4_7 = vget_high_s16(y_filter_0_7);
int32x4_t sum;
sum = vmull_lane_s16(s0, y_filter_0_3, 0);
sum = vmlal_lane_s16(sum, s1, y_filter_0_3, 1);
sum = vmlal_lane_s16(sum, s2, y_filter_0_3, 2);
sum = vmlal_lane_s16(sum, s3, y_filter_0_3, 3);
sum = vmlal_lane_s16(sum, s4, y_filter_4_7, 0);
sum = vmlal_lane_s16(sum, s5, y_filter_4_7, 1);
sum = vmlal_lane_s16(sum, s6, y_filter_4_7, 2);
sum = vmlal_lane_s16(sum, s7, y_filter_4_7, 3);
sum = vmlal_lane_s16(sum, s8, y_filter_8_11, 0);
sum = vmlal_lane_s16(sum, s9, y_filter_8_11, 1);
sum = vmlal_lane_s16(sum, s10, y_filter_8_11, 2);
sum = vmlal_lane_s16(sum, s11, y_filter_8_11, 3);
return sum;
}
static INLINE uint8x8_t convolve12_vert_8_s32(
const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x8_t s4, const int16x8_t s5,
const int16x8_t s6, const int16x8_t s7, const int16x8_t s8,
const int16x8_t s9, const int16x8_t s10, const int16x8_t s11,
const int16x8_t y_filter_0_7, const int16x4_t y_filter_8_11,
const int16x8_t sub_const) {
const int16x4_t y_filter_0_3 = vget_low_s16(y_filter_0_7);
const int16x4_t y_filter_4_7 = vget_high_s16(y_filter_0_7);
int32x4_t sum0, sum1;
int16x8_t res;
sum0 = vmull_lane_s16(vget_low_s16(s0), y_filter_0_3, 0);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), y_filter_0_3, 1);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), y_filter_0_3, 2);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), y_filter_0_3, 3);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s4), y_filter_4_7, 0);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s5), y_filter_4_7, 1);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s6), y_filter_4_7, 2);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s7), y_filter_4_7, 3);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s8), y_filter_8_11, 0);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s9), y_filter_8_11, 1);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s10), y_filter_8_11, 2);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s11), y_filter_8_11, 3);
sum1 = vmull_lane_s16(vget_high_s16(s0), y_filter_0_3, 0);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), y_filter_0_3, 1);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), y_filter_0_3, 2);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), y_filter_0_3, 3);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s4), y_filter_4_7, 0);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s5), y_filter_4_7, 1);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s6), y_filter_4_7, 2);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s7), y_filter_4_7, 3);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s8), y_filter_8_11, 0);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s9), y_filter_8_11, 1);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s10), y_filter_8_11, 2);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s11), y_filter_8_11, 3);
res = vcombine_s16(vqrshrn_n_s32(sum0, 2 * FILTER_BITS - ROUND0_BITS),
vqrshrn_n_s32(sum1, 2 * FILTER_BITS - ROUND0_BITS));
res = vsubq_s16(res, sub_const);
return vqmovun_s16(res);
}
static INLINE void convolve_2d_sr_vert_12tap_neon(
int16_t *src_ptr, int src_stride, uint8_t *dst_ptr, int dst_stride, int w,
int h, const int16x8_t y_filter_0_7, const int16x4_t y_filter_8_11) {
const int bd = 8;
const int16x8_t sub_const = vdupq_n_s16(1 << (bd - 1));
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14;
int32x4_t d0, d1, d2, d3;
int16x8_t dd01, dd23;
uint8x8_t d01, d23;
load_s16_4x11(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7,
&s8, &s9, &s10);
src_ptr += 11 * src_stride;
do {
load_s16_4x4(src_ptr, src_stride, &s11, &s12, &s13, &s14);
d0 = convolve12_vert_4_s32(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, y_filter_0_7, y_filter_8_11);
d1 = convolve12_vert_4_s32(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, y_filter_0_7, y_filter_8_11);
d2 = convolve12_vert_4_s32(s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
s13, y_filter_0_7, y_filter_8_11);
d3 = convolve12_vert_4_s32(s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13,
s14, y_filter_0_7, y_filter_8_11);
dd01 = vcombine_s16(vqrshrn_n_s32(d0, 2 * FILTER_BITS - ROUND0_BITS),
vqrshrn_n_s32(d1, 2 * FILTER_BITS - ROUND0_BITS));
dd23 = vcombine_s16(vqrshrn_n_s32(d2, 2 * FILTER_BITS - ROUND0_BITS),
vqrshrn_n_s32(d3, 2 * FILTER_BITS - ROUND0_BITS));
dd01 = vsubq_s16(dd01, sub_const);
dd23 = vsubq_s16(dd23, sub_const);
d01 = vqmovun_s16(dd01);
d23 = vqmovun_s16(dd23);
if (w == 2) {
store_u8_2x1(dst_ptr + 0 * dst_stride, d01, 0);
store_u8_2x1(dst_ptr + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(dst_ptr + 2 * dst_stride, d23, 0);
store_u8_2x1(dst_ptr + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(dst_ptr + 0 * dst_stride, d01, 0);
store_u8_4x1(dst_ptr + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(dst_ptr + 2 * dst_stride, d23, 0);
store_u8_4x1(dst_ptr + 3 * dst_stride, d23, 1);
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h > 0);
} else {
do {
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14;
uint8x8_t d0, d1, d2, d3;
int16_t *s = src_ptr;
uint8_t *d = dst_ptr;
int height = h;
load_s16_8x11(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6, &s7, &s8,
&s9, &s10);
s += 11 * src_stride;
do {
load_s16_8x4(s, src_stride, &s11, &s12, &s13, &s14);
d0 = convolve12_vert_8_s32(s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10,
s11, y_filter_0_7, y_filter_8_11, sub_const);
d1 = convolve12_vert_8_s32(s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11,
s12, y_filter_0_7, y_filter_8_11, sub_const);
d2 =
convolve12_vert_8_s32(s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
s13, y_filter_0_7, y_filter_8_11, sub_const);
d3 = convolve12_vert_8_s32(s3, s4, s5, s6, s7, s8, s9, s10, s11, s12,
s13, s14, y_filter_0_7, y_filter_8_11,
sub_const);
if (h != 2) {
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
} else {
store_u8_8x2(d, dst_stride, d0, d1);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s7 = s11;
s8 = s12;
s9 = s13;
s10 = s14;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
static INLINE void convolve_2d_sr_vert_8tap_neon(int16_t *src_ptr,
int src_stride,
uint8_t *dst_ptr,
int dst_stride, int w, int h,
const int16x8_t y_filter) {
const int bd = 8;
const int16x8_t sub_const = vdupq_n_s16(1 << (bd - 1));
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, s6, s7, d0;
uint8x8_t d01;
#if defined(__aarch64__)
int16x4_t s8, s9, s10, d1, d2, d3;
uint8x8_t d23;
#endif // defined(__aarch64__)
int16_t *s = src_ptr;
uint8_t *d = dst_ptr;
load_s16_4x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
#if defined(__aarch64__)
load_s16_4x4(s, src_stride, &s7, &s8, &s9, &s10);
d0 = convolve8_vert_4_s32(s0, s1, s2, s3, s4, s5, s6, s7, y_filter);
d1 = convolve8_vert_4_s32(s1, s2, s3, s4, s5, s6, s7, s8, y_filter);
d2 = convolve8_vert_4_s32(s2, s3, s4, s5, s6, s7, s8, s9, y_filter);
d3 = convolve8_vert_4_s32(s3, s4, s5, s6, s7, s8, s9, s10, y_filter);
d01 = vqmovun_s16(vsubq_s16(vcombine_s16(d0, d1), sub_const));
d23 = vqmovun_s16(vsubq_s16(vcombine_s16(d2, d3), sub_const));
if (w == 2) {
store_u8_2x1(d + 0 * dst_stride, d01, 0);
store_u8_2x1(d + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(d + 2 * dst_stride, d23, 0);
store_u8_2x1(d + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(d + 0 * dst_stride, d01, 0);
store_u8_4x1(d + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(d + 2 * dst_stride, d23, 0);
store_u8_4x1(d + 3 * dst_stride, d23, 1);
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
#else // !defined(__aarch64__)
s7 = vld1_s16(s);
s += src_stride;
d0 = convolve8_vert_4_s32(s0, s1, s2, s3, s4, s5, s6, s7, y_filter);
d01 = vqmovun_s16(vsubq_s16(vcombine_s16(d0, vdup_n_s16(0)), sub_const));
if (w == 2) {
store_u8_2x1(d, d01, 0);
} else {
store_u8_4x1(d, d01, 0);
}
s0 = s1;
s1 = s2;
s2 = s3;
s3 = s4;
s4 = s5;
s5 = s6;
s6 = s7;
d += dst_stride;
h--;
#endif // defined(__aarch64__)
} while (h > 0);
} else {
// if width is a multiple of 8 & height is a multiple of 4
int16x8_t s0, s1, s2, s3, s4, s5, s6, s7;
uint8x8_t d0;
#if defined(__aarch64__)
int16x8_t s8, s9, s10;
uint8x8_t d1, d2, d3;
#endif // defined(__aarch64__)
do {
int height = h;
int16_t *s = src_ptr;
uint8_t *d = dst_ptr;
load_s16_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
do {
#if defined(__aarch64__)
load_s16_8x4(s, src_stride, &s7, &s8, &s9, &s10);
d0 = convolve8_vert_8_s32(s0, s1, s2, s3, s4, s5, s6, s7, y_filter,
sub_const);
d1 = convolve8_vert_8_s32(s1, s2, s3, s4, s5, s6, s7, s8, y_filter,
sub_const);
d2 = convolve8_vert_8_s32(s2, s3, s4, s5, s6, s7, s8, s9, y_filter,
sub_const);
d3 = convolve8_vert_8_s32(s3, s4, s5, s6, s7, s8, s9, s10, y_filter,
sub_const);
if (h != 2) {
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
} else {
store_u8_8x2(d, dst_stride, d0, d1);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s5 = s9;
s6 = s10;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
#else // !defined(__aarch64__)
s7 = vld1q_s16(s);
d0 = convolve8_vert_8_s32(s0, s1, s2, s3, s4, s5, s6, s7, y_filter,
sub_const);
vst1_u8(d, d0);
s0 = s1;
s1 = s2;
s2 = s3;
s3 = s4;
s4 = s5;
s5 = s6;
s6 = s7;
s += src_stride;
d += dst_stride;
height--;
#endif // defined(__aarch64__)
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
static INLINE int16x4_t
convolve6_vert_4_s32(const int16x4_t s0, const int16x4_t s1, const int16x4_t s2,
const int16x4_t s3, const int16x4_t s4, const int16x4_t s5,
const int16x8_t y_filter) {
const int16x4_t y_filter_lo = vget_low_s16(y_filter);
const int16x4_t y_filter_hi = vget_high_s16(y_filter);
int32x4_t sum;
sum = vmull_lane_s16(s0, y_filter_lo, 1);
sum = vmlal_lane_s16(sum, s1, y_filter_lo, 2);
sum = vmlal_lane_s16(sum, s2, y_filter_lo, 3);
sum = vmlal_lane_s16(sum, s3, y_filter_hi, 0);
sum = vmlal_lane_s16(sum, s4, y_filter_hi, 1);
sum = vmlal_lane_s16(sum, s5, y_filter_hi, 2);
return vqrshrn_n_s32(sum, 2 * FILTER_BITS - ROUND0_BITS);
}
static INLINE uint8x8_t
convolve6_vert_8_s32(const int16x8_t s0, const int16x8_t s1, const int16x8_t s2,
const int16x8_t s3, const int16x8_t s4, const int16x8_t s5,
const int16x8_t y_filter, const int16x8_t sub_const) {
const int16x4_t y_filter_lo = vget_low_s16(y_filter);
const int16x4_t y_filter_hi = vget_high_s16(y_filter);
int32x4_t sum0, sum1;
int16x8_t res;
sum0 = vmull_lane_s16(vget_low_s16(s0), y_filter_lo, 1);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s1), y_filter_lo, 2);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s2), y_filter_lo, 3);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s3), y_filter_hi, 0);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s4), y_filter_hi, 1);
sum0 = vmlal_lane_s16(sum0, vget_low_s16(s5), y_filter_hi, 2);
sum1 = vmull_lane_s16(vget_high_s16(s0), y_filter_lo, 1);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s1), y_filter_lo, 2);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s2), y_filter_lo, 3);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s3), y_filter_hi, 0);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s4), y_filter_hi, 1);
sum1 = vmlal_lane_s16(sum1, vget_high_s16(s5), y_filter_hi, 2);
res = vcombine_s16(vqrshrn_n_s32(sum0, 2 * FILTER_BITS - ROUND0_BITS),
vqrshrn_n_s32(sum1, 2 * FILTER_BITS - ROUND0_BITS));
res = vsubq_s16(res, sub_const);
return vqmovun_s16(res);
}
static INLINE void convolve_2d_sr_vert_6tap_neon(int16_t *src_ptr,
int src_stride,
uint8_t *dst_ptr,
int dst_stride, int w, int h,
const int16x8_t y_filter) {
const int bd = 8;
const int16x8_t sub_const = vdupq_n_s16(1 << (bd - 1));
if (w <= 4) {
int16x4_t s0, s1, s2, s3, s4, s5, d0;
uint8x8_t d01;
#if defined(__aarch64__)
int16x4_t s6, s7, s8, d1, d2, d3;
uint8x8_t d23;
#endif // defined(__aarch64__)
int16_t *s = src_ptr;
uint8_t *d = dst_ptr;
load_s16_4x5(s, src_stride, &s0, &s1, &s2, &s3, &s4);
s += 5 * src_stride;
do {
#if defined(__aarch64__)
load_s16_4x4(s, src_stride, &s5, &s6, &s7, &s8);
d0 = convolve6_vert_4_s32(s0, s1, s2, s3, s4, s5, y_filter);
d1 = convolve6_vert_4_s32(s1, s2, s3, s4, s5, s6, y_filter);
d2 = convolve6_vert_4_s32(s2, s3, s4, s5, s6, s7, y_filter);
d3 = convolve6_vert_4_s32(s3, s4, s5, s6, s7, s8, y_filter);
d01 = vqmovun_s16(vsubq_s16(vcombine_s16(d0, d1), sub_const));
d23 = vqmovun_s16(vsubq_s16(vcombine_s16(d2, d3), sub_const));
if (w == 2) {
store_u8_2x1(d + 0 * dst_stride, d01, 0);
store_u8_2x1(d + 1 * dst_stride, d01, 2);
if (h != 2) {
store_u8_2x1(d + 2 * dst_stride, d23, 0);
store_u8_2x1(d + 3 * dst_stride, d23, 2);
}
} else {
store_u8_4x1(d + 0 * dst_stride, d01, 0);
store_u8_4x1(d + 1 * dst_stride, d01, 1);
if (h != 2) {
store_u8_4x1(d + 2 * dst_stride, d23, 0);
store_u8_4x1(d + 3 * dst_stride, d23, 1);
}
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s += 4 * src_stride;
d += 4 * dst_stride;
h -= 4;
#else // !defined(__aarch64__)
s5 = vld1_s16(s);
d0 = convolve6_vert_4_s32(s0, s1, s2, s3, s4, s5, y_filter);
d01 = vqmovun_s16(vsubq_s16(vcombine_s16(d0, vdup_n_s16(0)), sub_const));
if (w == 2) {
store_u8_2x1(d, d01, 0);
} else {
store_u8_4x1(d, d01, 0);
}
s0 = s1;
s1 = s2;
s2 = s3;
s3 = s4;
s4 = s5;
s += src_stride;
d += dst_stride;
h--;
#endif // defined(__aarch64__)
} while (h > 0);
} else {
// if width is a multiple of 8 & height is a multiple of 4
int16x8_t s0, s1, s2, s3, s4, s5;
uint8x8_t d0;
#if defined(__aarch64__)
int16x8_t s6, s7, s8;
uint8x8_t d1, d2, d3;
#endif // defined(__aarch64__)
do {
int height = h;
int16_t *s = src_ptr;
uint8_t *d = dst_ptr;
load_s16_8x5(s, src_stride, &s0, &s1, &s2, &s3, &s4);
s += 5 * src_stride;
do {
#if defined(__aarch64__)
load_s16_8x4(s, src_stride, &s5, &s6, &s7, &s8);
d0 = convolve6_vert_8_s32(s0, s1, s2, s3, s4, s5, y_filter, sub_const);
d1 = convolve6_vert_8_s32(s1, s2, s3, s4, s5, s6, y_filter, sub_const);
d2 = convolve6_vert_8_s32(s2, s3, s4, s5, s6, s7, y_filter, sub_const);
d3 = convolve6_vert_8_s32(s3, s4, s5, s6, s7, s8, y_filter, sub_const);
if (h != 2) {
store_u8_8x4(d, dst_stride, d0, d1, d2, d3);
} else {
store_u8_8x2(d, dst_stride, d0, d1);
}
s0 = s4;
s1 = s5;
s2 = s6;
s3 = s7;
s4 = s8;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
#else // !defined(__aarch64__)
s5 = vld1q_s16(s);
d0 = convolve6_vert_8_s32(s0, s1, s2, s3, s4, s5, y_filter, sub_const);
vst1_u8(d, d0);
s0 = s1;
s1 = s2;
s2 = s3;
s3 = s4;
s4 = s5;
s += src_stride;
d += dst_stride;
height--;
#endif // defined(__aarch64__)
} while (height > 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w > 0);
}
}
void av1_convolve_2d_sr_neon(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride, int w, int h,
const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y,
const int subpel_x_qn, const int subpel_y_qn,
ConvolveParams *conv_params) {
(void)conv_params;
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
const int clamped_y_taps = y_filter_taps < 6 ? 6 : y_filter_taps;
const int im_h = h + clamped_y_taps - 1;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = clamped_y_taps / 2 - 1;
const int horiz_offset = filter_params_x->taps / 2 - 1;
const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
if (filter_params_x->taps > 8) {
DECLARE_ALIGNED(16, int16_t,
im_block[(MAX_SB_SIZE + MAX_FILTER_TAP - 1) * MAX_SB_SIZE]);
const int16x8_t x_filter_0_7 = vld1q_s16(x_filter_ptr);
const int16x4_t x_filter_8_11 = vld1_s16(x_filter_ptr + 8);
const int16x8_t y_filter_0_7 = vld1q_s16(y_filter_ptr);
const int16x4_t y_filter_8_11 = vld1_s16(y_filter_ptr + 8);
convolve_2d_sr_horiz_12tap_neon(src_ptr, src_stride, im_block, im_stride, w,
im_h, x_filter_0_7, x_filter_8_11);
convolve_2d_sr_vert_12tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter_0_7, y_filter_8_11);
} else {
DECLARE_ALIGNED(16, int16_t,
im_block[(MAX_SB_SIZE + HORIZ_EXTRA_ROWS) * MAX_SB_SIZE]);
const int16x8_t x_filter = vld1q_s16(x_filter_ptr);
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
convolve_2d_sr_horiz_8tap_neon(src_ptr, src_stride, im_block, im_stride, w,
im_h, x_filter);
if (clamped_y_taps <= 6) {
convolve_2d_sr_vert_6tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter);
} else {
convolve_2d_sr_vert_8tap_neon(im_block, im_stride, dst, dst_stride, w, h,
y_filter);
}
}
}
static INLINE void scaledconvolve_horiz_w4(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride, const InterpKernel *const x_filters,
const int x0_q4, const int x_step_q4, const int w, const int h) {
DECLARE_ALIGNED(16, uint8_t, temp[4 * 4]);
int x, y, z;
src -= SUBPEL_TAPS / 2 - 1;
y = h;
do {
int x_q4 = x0_q4;
x = 0;
do {
// process 4 src_x steps
for (z = 0; z < 4; ++z) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
if (x_q4 & SUBPEL_MASK) {
const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]);
uint8x8_t s[8], d;
int16x8_t ss[4];
int16x4_t t[8], tt;
load_u8_8x4(src_x, src_stride, &s[0], &s[1], &s[2], &s[3]);
transpose_u8_8x4(&s[0], &s[1], &s[2], &s[3]);
ss[0] = vreinterpretq_s16_u16(vmovl_u8(s[0]));
ss[1] = vreinterpretq_s16_u16(vmovl_u8(s[1]));
ss[2] = vreinterpretq_s16_u16(vmovl_u8(s[2]));
ss[3] = vreinterpretq_s16_u16(vmovl_u8(s[3]));
t[0] = vget_low_s16(ss[0]);
t[1] = vget_low_s16(ss[1]);
t[2] = vget_low_s16(ss[2]);
t[3] = vget_low_s16(ss[3]);
t[4] = vget_high_s16(ss[0]);
t[5] = vget_high_s16(ss[1]);
t[6] = vget_high_s16(ss[2]);
t[7] = vget_high_s16(ss[3]);
tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7],
filters);
d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7);
store_u8_4x1(&temp[4 * z], d, 0);
} else {
int i;
for (i = 0; i < 4; ++i) {
temp[z * 4 + i] = src_x[i * src_stride + 3];
}
}
x_q4 += x_step_q4;
}
// transpose the 4x4 filters values back to dst
{
const uint8x8x4_t d4 = vld4_u8(temp);
store_u8_4x1(&dst[x + 0 * dst_stride], d4.val[0], 0);
store_u8_4x1(&dst[x + 1 * dst_stride], d4.val[1], 0);
store_u8_4x1(&dst[x + 2 * dst_stride], d4.val[2], 0);
store_u8_4x1(&dst[x + 3 * dst_stride], d4.val[3], 0);
}
x += 4;
} while (x < w);
src += src_stride * 4;
dst += dst_stride * 4;
y -= 4;
} while (y > 0);
}
static INLINE void scaledconvolve_horiz_w8(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride, const InterpKernel *const x_filters,
const int x0_q4, const int x_step_q4, const int w, const int h) {
DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]);
int x, y, z;
src -= SUBPEL_TAPS / 2 - 1;
// This function processes 8x8 areas. The intermediate height is not always
// a multiple of 8, so force it to be a multiple of 8 here.
y = (h + 7) & ~7;
do {
int x_q4 = x0_q4;
x = 0;
do {
uint8x8_t d[8];
// process 8 src_x steps
for (z = 0; z < 8; ++z) {
const uint8_t *const src_x = &src[x_q4 >> SUBPEL_BITS];
if (x_q4 & SUBPEL_MASK) {
const int16x8_t filters = vld1q_s16(x_filters[x_q4 & SUBPEL_MASK]);
uint8x8_t s[8];
load_u8_8x8(src_x, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4],
&s[5], &s[6], &s[7]);
transpose_u8_8x8(&s[0], &s[1], &s[2], &s[3], &s[4], &s[5], &s[6],
&s[7]);
d[0] = scale_filter_8(s, filters);
vst1_u8(&temp[8 * z], d[0]);
} else {
int i;
for (i = 0; i < 8; ++i) {
temp[z * 8 + i] = src_x[i * src_stride + 3];
}
}
x_q4 += x_step_q4;
}
// transpose the 8x8 filters values back to dst
load_u8_8x8(temp, 8, &d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6],
&d[7]);
transpose_u8_8x8(&d[0], &d[1], &d[2], &d[3], &d[4], &d[5], &d[6], &d[7]);
store_u8_8x8(dst + x, dst_stride, d[0], d[1], d[2], d[3], d[4], d[5],
d[6], d[7]);
x += 8;
} while (x < w);
src += src_stride * 8;
dst += dst_stride * 8;
} while (y -= 8);
}
static INLINE void scaledconvolve_vert_w4(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
const int y0_q4, const int y_step_q4, const int w, const int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
y = h;
do {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
if (y_q4 & SUBPEL_MASK) {
const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
uint8x8_t s[8], d;
int16x4_t t[8], tt;
load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
&s[6], &s[7]);
t[0] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[0])));
t[1] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[1])));
t[2] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[2])));
t[3] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[3])));
t[4] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[4])));
t[5] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[5])));
t[6] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[6])));
t[7] = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(s[7])));
tt = convolve8_4(t[0], t[1], t[2], t[3], t[4], t[5], t[6], t[7], filters);
d = vqrshrun_n_s16(vcombine_s16(tt, tt), 7);
store_u8_4x1(dst, d, 0);
} else {
memcpy(dst, &src_y[3 * src_stride], w);
}
dst += dst_stride;
y_q4 += y_step_q4;
} while (--y);
}
static INLINE void scaledconvolve_vert_w8(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
const int y0_q4, const int y_step_q4, const int w, const int h) {
int y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
y = h;
do {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
if (y_q4 & SUBPEL_MASK) {
const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
uint8x8_t s[8], d;
load_u8_8x8(src_y, src_stride, &s[0], &s[1], &s[2], &s[3], &s[4], &s[5],
&s[6], &s[7]);
d = scale_filter_8(s, filters);
vst1_u8(dst, d);
} else {
memcpy(dst, &src_y[3 * src_stride], w);
}
dst += dst_stride;
y_q4 += y_step_q4;
} while (--y);
}
static INLINE void scaledconvolve_vert_w16(
const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst,
const ptrdiff_t dst_stride, const InterpKernel *const y_filters,
const int y0_q4, const int y_step_q4, const int w, const int h) {
int x, y;
int y_q4 = y0_q4;
src -= src_stride * (SUBPEL_TAPS / 2 - 1);
y = h;
do {
const unsigned char *src_y = &src[(y_q4 >> SUBPEL_BITS) * src_stride];
if (y_q4 & SUBPEL_MASK) {
x = 0;
do {
const int16x8_t filters = vld1q_s16(y_filters[y_q4 & SUBPEL_MASK]);
uint8x16_t ss[8];
uint8x8_t s[8], d[2];
load_u8_16x8(src_y, src_stride, &ss[0], &ss[1], &ss[2], &ss[3], &ss[4],
&ss[5], &ss[6], &ss[7]);
s[0] = vget_low_u8(ss[0]);
s[1] = vget_low_u8(ss[1]);
s[2] = vget_low_u8(ss[2]);
s[3] = vget_low_u8(ss[3]);
s[4] = vget_low_u8(ss[4]);
s[5] = vget_low_u8(ss[5]);
s[6] = vget_low_u8(ss[6]);
s[7] = vget_low_u8(ss[7]);
d[0] = scale_filter_8(s, filters);
s[0] = vget_high_u8(ss[0]);
s[1] = vget_high_u8(ss[1]);
s[2] = vget_high_u8(ss[2]);
s[3] = vget_high_u8(ss[3]);
s[4] = vget_high_u8(ss[4]);
s[5] = vget_high_u8(ss[5]);
s[6] = vget_high_u8(ss[6]);
s[7] = vget_high_u8(ss[7]);
d[1] = scale_filter_8(s, filters);
vst1q_u8(&dst[x], vcombine_u8(d[0], d[1]));
src_y += 16;
x += 16;
} while (x < w);
} else {
memcpy(dst, &src_y[3 * src_stride], w);
}
dst += dst_stride;
y_q4 += y_step_q4;
} while (--y);
}
void aom_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst,
ptrdiff_t dst_stride, const InterpKernel *filter,
int x0_q4, int x_step_q4, int y0_q4, int y_step_q4,
int w, int h) {
// Note: Fixed size intermediate buffer, temp, places limits on parameters.
// 2d filtering proceeds in 2 steps:
// (1) Interpolate horizontally into an intermediate buffer, temp.
// (2) Interpolate temp vertically to derive the sub-pixel result.
// Deriving the maximum number of rows in the temp buffer (135):
// --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative).
// --Largest block size is 64x64 pixels.
// --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the
// original frame (in 1/16th pixel units).
// --Must round-up because block may be located at sub-pixel position.
// --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails.
// --((64 - 1) * 32 + 15) >> 4 + 8 = 135.
// --Require an additional 8 rows for the horiz_w8 transpose tail.
// When calling in frame scaling function, the smallest scaling factor is x1/4
// ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still
// big enough.
DECLARE_ALIGNED(16, uint8_t, temp[(135 + 8) * 64]);
const int intermediate_height =
(((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS;
assert(w <= 64);
assert(h <= 64);
assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32));
assert(x_step_q4 <= 64);
if (w >= 8) {
scaledconvolve_horiz_w8(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
intermediate_height);
} else {
scaledconvolve_horiz_w4(src - src_stride * (SUBPEL_TAPS / 2 - 1),
src_stride, temp, 64, filter, x0_q4, x_step_q4, w,
intermediate_height);
}
if (w >= 16) {
scaledconvolve_vert_w16(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
dst_stride, filter, y0_q4, y_step_q4, w, h);
} else if (w == 8) {
scaledconvolve_vert_w8(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
dst_stride, filter, y0_q4, y_step_q4, w, h);
} else {
scaledconvolve_vert_w4(temp + 64 * (SUBPEL_TAPS / 2 - 1), 64, dst,
dst_stride, filter, y0_q4, y_step_q4, w, h);
}
}