blob: 0b93d3ba7a033669963b37e004d50d49149ce645 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#ifndef AOM_AV1_COMMON_RECONINTER_H_
#define AOM_AV1_COMMON_RECONINTER_H_
#include "av1/common/av1_common_int.h"
#include "av1/common/convolve.h"
#include "av1/common/filter.h"
#include "av1/common/warped_motion.h"
#include "aom/aom_integer.h"
// Work out how many pixels off the edge of a reference frame we're allowed
// to go when forming an inter prediction.
// The outermost row/col of each referernce frame is extended by
// (AOM_BORDER_IN_PIXELS >> subsampling) pixels, but we need to keep
// at least AOM_INTERP_EXTEND pixels within that to account for filtering.
//
// We have to break this up into two macros to keep both clang-format and
// tools/lint-hunks.py happy.
#define AOM_LEFT_TOP_MARGIN_PX(subsampling) \
((AOM_BORDER_IN_PIXELS >> subsampling) - AOM_INTERP_EXTEND)
#define AOM_LEFT_TOP_MARGIN_SCALED(subsampling) \
(AOM_LEFT_TOP_MARGIN_PX(subsampling) << SCALE_SUBPEL_BITS)
#ifdef __cplusplus
extern "C" {
#endif
#define MAX_WEDGE_TYPES 16
#define MAX_WEDGE_SIZE_LOG2 5 // 32x32
#define MAX_WEDGE_SIZE (1 << MAX_WEDGE_SIZE_LOG2)
#define MAX_WEDGE_SQUARE (MAX_WEDGE_SIZE * MAX_WEDGE_SIZE)
#define WEDGE_WEIGHT_BITS 6
#define WEDGE_NONE -1
// Angles are with respect to horizontal anti-clockwise
enum {
WEDGE_HORIZONTAL = 0,
WEDGE_VERTICAL = 1,
WEDGE_OBLIQUE27 = 2,
WEDGE_OBLIQUE63 = 3,
WEDGE_OBLIQUE117 = 4,
WEDGE_OBLIQUE153 = 5,
WEDGE_DIRECTIONS
} UENUM1BYTE(WedgeDirectionType);
// 3-tuple: {direction, x_offset, y_offset}
typedef struct {
WedgeDirectionType direction;
int x_offset;
int y_offset;
} wedge_code_type;
typedef uint8_t *wedge_masks_type[MAX_WEDGE_TYPES];
typedef struct {
int wedge_types;
const wedge_code_type *codebook;
uint8_t *signflip;
wedge_masks_type *masks;
} wedge_params_type;
extern const wedge_params_type av1_wedge_params_lookup[BLOCK_SIZES_ALL];
typedef struct SubpelParams {
int xs;
int ys;
int subpel_x;
int subpel_y;
int pos_x;
int pos_y;
} SubpelParams;
struct build_prediction_ctxt {
const AV1_COMMON *cm;
uint8_t **tmp_buf;
int *tmp_width;
int *tmp_height;
int *tmp_stride;
int mb_to_far_edge;
void *dcb; // Decoder-only coding block.
};
typedef enum InterPredMode {
TRANSLATION_PRED,
WARP_PRED,
} InterPredMode;
typedef enum InterCompMode {
UNIFORM_SINGLE,
UNIFORM_COMP,
MASK_COMP,
} InterCompMode;
typedef struct InterPredParams {
InterPredMode mode;
InterCompMode comp_mode;
WarpedMotionParams warp_params;
ConvolveParams conv_params;
const InterpFilterParams *interp_filter_params[2];
int block_width;
int block_height;
int pix_row;
int pix_col;
struct buf_2d ref_frame_buf;
int subsampling_x;
int subsampling_y;
const struct scale_factors *scale_factors;
int bit_depth;
int use_hbd_buf;
INTERINTER_COMPOUND_DATA mask_comp;
BLOCK_SIZE sb_type;
int is_intrabc;
int top;
int left;
} InterPredParams;
// Initialize sub-pel params required for inter prediction.
static AOM_INLINE void init_subpel_params(
const MV *const src_mv, InterPredParams *const inter_pred_params,
SubpelParams *subpel_params, int width, int height) {
const struct scale_factors *sf = inter_pred_params->scale_factors;
int ssx = inter_pred_params->subsampling_x;
int ssy = inter_pred_params->subsampling_y;
int orig_pos_y = inter_pred_params->pix_row << SUBPEL_BITS;
orig_pos_y += src_mv->row * (1 << (1 - ssy));
int orig_pos_x = inter_pred_params->pix_col << SUBPEL_BITS;
orig_pos_x += src_mv->col * (1 << (1 - ssx));
const int is_scaled = av1_is_scaled(sf);
int pos_x, pos_y;
if (LIKELY(!is_scaled)) {
pos_y = av1_unscaled_value(orig_pos_y, sf);
pos_x = av1_unscaled_value(orig_pos_x, sf);
} else {
pos_y = av1_scaled_y(orig_pos_y, sf);
pos_x = av1_scaled_x(orig_pos_x, sf);
}
pos_x += SCALE_EXTRA_OFF;
pos_y += SCALE_EXTRA_OFF;
const int bottom = (height + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
const int right = (width + AOM_INTERP_EXTEND) << SCALE_SUBPEL_BITS;
pos_y = clamp(pos_y, inter_pred_params->top, bottom);
pos_x = clamp(pos_x, inter_pred_params->left, right);
subpel_params->pos_x = pos_x;
subpel_params->pos_y = pos_y;
subpel_params->subpel_x = pos_x & SCALE_SUBPEL_MASK;
subpel_params->subpel_y = pos_y & SCALE_SUBPEL_MASK;
subpel_params->xs = sf->x_step_q4;
subpel_params->ys = sf->y_step_q4;
}
// Initialize interp filter required for inter prediction.
static AOM_INLINE void init_interp_filter_params(
const InterpFilterParams *interp_filter_params[2],
const InterpFilters *filter, int block_width, int block_height,
int is_intrabc) {
if (UNLIKELY(is_intrabc)) {
interp_filter_params[0] = &av1_intrabc_filter_params;
interp_filter_params[1] = &av1_intrabc_filter_params;
} else {
interp_filter_params[0] = av1_get_interp_filter_params_with_block_size(
(InterpFilter)filter->x_filter, block_width);
interp_filter_params[1] = av1_get_interp_filter_params_with_block_size(
(InterpFilter)filter->y_filter, block_height);
}
}
// Initialize parameters required for inter prediction at mode level.
static AOM_INLINE void init_inter_mode_params(
const MV *const src_mv, InterPredParams *const inter_pred_params,
SubpelParams *subpel_params, const struct scale_factors *sf, int width,
int height) {
inter_pred_params->scale_factors = sf;
init_subpel_params(src_mv, inter_pred_params, subpel_params, width, height);
}
// Initialize parameters required for inter prediction at block level.
static AOM_INLINE void init_inter_block_params(
InterPredParams *inter_pred_params, int block_width, int block_height,
int pix_row, int pix_col, int subsampling_x, int subsampling_y,
int bit_depth, int use_hbd_buf, int is_intrabc) {
inter_pred_params->block_width = block_width;
inter_pred_params->block_height = block_height;
inter_pred_params->pix_row = pix_row;
inter_pred_params->pix_col = pix_col;
inter_pred_params->subsampling_x = subsampling_x;
inter_pred_params->subsampling_y = subsampling_y;
inter_pred_params->bit_depth = bit_depth;
inter_pred_params->use_hbd_buf = use_hbd_buf;
inter_pred_params->is_intrabc = is_intrabc;
inter_pred_params->mode = TRANSLATION_PRED;
inter_pred_params->comp_mode = UNIFORM_SINGLE;
inter_pred_params->top = -AOM_LEFT_TOP_MARGIN_SCALED(subsampling_y);
inter_pred_params->left = -AOM_LEFT_TOP_MARGIN_SCALED(subsampling_x);
}
// Initialize params required for inter prediction.
static AOM_INLINE void av1_init_inter_params(
InterPredParams *inter_pred_params, int block_width, int block_height,
int pix_row, int pix_col, int subsampling_x, int subsampling_y,
int bit_depth, int use_hbd_buf, int is_intrabc,
const struct scale_factors *sf, const struct buf_2d *ref_buf,
int_interpfilters interp_filters) {
init_inter_block_params(inter_pred_params, block_width, block_height, pix_row,
pix_col, subsampling_x, subsampling_y, bit_depth,
use_hbd_buf, is_intrabc);
init_interp_filter_params(inter_pred_params->interp_filter_params,
&interp_filters.as_filters, block_width,
block_height, is_intrabc);
inter_pred_params->scale_factors = sf;
inter_pred_params->ref_frame_buf = *ref_buf;
}
static AOM_INLINE void av1_init_comp_mode(InterPredParams *inter_pred_params) {
inter_pred_params->comp_mode = UNIFORM_COMP;
}
void av1_init_warp_params(InterPredParams *inter_pred_params,
const WarpTypesAllowed *warp_types, int ref,
const MACROBLOCKD *xd, const MB_MODE_INFO *mi);
static INLINE int has_scale(int xs, int ys) {
return xs != SCALE_SUBPEL_SHIFTS || ys != SCALE_SUBPEL_SHIFTS;
}
static INLINE void revert_scale_extra_bits(SubpelParams *sp) {
sp->subpel_x >>= SCALE_EXTRA_BITS;
sp->subpel_y >>= SCALE_EXTRA_BITS;
sp->xs >>= SCALE_EXTRA_BITS;
sp->ys >>= SCALE_EXTRA_BITS;
assert(sp->subpel_x < SUBPEL_SHIFTS);
assert(sp->subpel_y < SUBPEL_SHIFTS);
assert(sp->xs <= SUBPEL_SHIFTS);
assert(sp->ys <= SUBPEL_SHIFTS);
}
static INLINE void inter_predictor(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
const SubpelParams *subpel_params, int w, int h,
ConvolveParams *conv_params, const InterpFilterParams *interp_filters[2]) {
assert(conv_params->do_average == 0 || conv_params->do_average == 1);
const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys);
if (is_scaled) {
av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
interp_filters, subpel_params->subpel_x,
subpel_params->xs, subpel_params->subpel_y,
subpel_params->ys, 1, conv_params);
} else {
SubpelParams sp = *subpel_params;
revert_scale_extra_bits(&sp);
av1_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
interp_filters, sp.subpel_x, sp.xs, sp.subpel_y,
sp.ys, 0, conv_params);
}
}
static INLINE void highbd_inter_predictor(
const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride,
const SubpelParams *subpel_params, int w, int h,
ConvolveParams *conv_params, const InterpFilterParams *interp_filters[2],
int bd) {
assert(conv_params->do_average == 0 || conv_params->do_average == 1);
const int is_scaled = has_scale(subpel_params->xs, subpel_params->ys);
if (is_scaled) {
av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
interp_filters, subpel_params->subpel_x,
subpel_params->xs, subpel_params->subpel_y,
subpel_params->ys, 1, conv_params, bd);
} else {
SubpelParams sp = *subpel_params;
revert_scale_extra_bits(&sp);
av1_highbd_convolve_2d_facade(src, src_stride, dst, dst_stride, w, h,
interp_filters, sp.subpel_x, sp.xs,
sp.subpel_y, sp.ys, 0, conv_params, bd);
}
}
void av1_modify_neighbor_predictor_for_obmc(MB_MODE_INFO *mbmi);
int av1_skip_u4x4_pred_in_obmc(BLOCK_SIZE bsize,
const struct macroblockd_plane *pd, int dir);
static INLINE int is_interinter_compound_used(COMPOUND_TYPE type,
BLOCK_SIZE sb_type) {
const int comp_allowed = is_comp_ref_allowed(sb_type);
switch (type) {
case COMPOUND_AVERAGE:
case COMPOUND_DISTWTD:
case COMPOUND_DIFFWTD: return comp_allowed;
case COMPOUND_WEDGE:
return comp_allowed && av1_wedge_params_lookup[sb_type].wedge_types > 0;
default: assert(0); return 0;
}
}
static INLINE int is_any_masked_compound_used(BLOCK_SIZE sb_type) {
COMPOUND_TYPE comp_type;
int i;
if (!is_comp_ref_allowed(sb_type)) return 0;
for (i = 0; i < COMPOUND_TYPES; i++) {
comp_type = (COMPOUND_TYPE)i;
if (is_masked_compound_type(comp_type) &&
is_interinter_compound_used(comp_type, sb_type))
return 1;
}
return 0;
}
static INLINE int get_wedge_types_lookup(BLOCK_SIZE sb_type) {
return av1_wedge_params_lookup[sb_type].wedge_types;
}
static INLINE int av1_is_wedge_used(BLOCK_SIZE sb_type) {
return av1_wedge_params_lookup[sb_type].wedge_types > 0;
}
void av1_make_inter_predictor(const uint8_t *src, int src_stride, uint8_t *dst,
int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params);
void av1_make_masked_inter_predictor(const uint8_t *pre, int pre_stride,
uint8_t *dst, int dst_stride,
InterPredParams *inter_pred_params,
const SubpelParams *subpel_params);
// TODO(jkoleszar): yet another mv clamping function :-(
static INLINE MV clamp_mv_to_umv_border_sb(const MACROBLOCKD *xd,
const MV *src_mv, int bw, int bh,
int ss_x, int ss_y) {
// If the MV points so far into the UMV border that no visible pixels
// are used for reconstruction, the subpel part of the MV can be
// discarded and the MV limited to 16 pixels with equivalent results.
const int spel_left = (AOM_INTERP_EXTEND + bw) << SUBPEL_BITS;
const int spel_right = spel_left - SUBPEL_SHIFTS;
const int spel_top = (AOM_INTERP_EXTEND + bh) << SUBPEL_BITS;
const int spel_bottom = spel_top - SUBPEL_SHIFTS;
MV clamped_mv = { (int16_t)(src_mv->row * (1 << (1 - ss_y))),
(int16_t)(src_mv->col * (1 << (1 - ss_x))) };
assert(ss_x <= 1);
assert(ss_y <= 1);
const SubpelMvLimits mv_limits = {
xd->mb_to_left_edge * (1 << (1 - ss_x)) - spel_left,
xd->mb_to_right_edge * (1 << (1 - ss_x)) + spel_right,
xd->mb_to_top_edge * (1 << (1 - ss_y)) - spel_top,
xd->mb_to_bottom_edge * (1 << (1 - ss_y)) + spel_bottom
};
clamp_mv(&clamped_mv, &mv_limits);
return clamped_mv;
}
static INLINE int64_t scaled_buffer_offset(int x_offset, int y_offset,
int stride,
const struct scale_factors *sf) {
int x, y;
if (!sf) {
x = x_offset;
y = y_offset;
} else if (av1_is_scaled(sf)) {
x = av1_scaled_x(x_offset, sf) >> SCALE_EXTRA_BITS;
y = av1_scaled_y(y_offset, sf) >> SCALE_EXTRA_BITS;
} else {
x = av1_unscaled_value(x_offset, sf) >> SCALE_EXTRA_BITS;
y = av1_unscaled_value(y_offset, sf) >> SCALE_EXTRA_BITS;
}
return (int64_t)y * stride + x;
}
static INLINE void setup_pred_plane(struct buf_2d *dst, BLOCK_SIZE bsize,
uint8_t *src, int width, int height,
int stride, int mi_row, int mi_col,
const struct scale_factors *scale,
int subsampling_x, int subsampling_y) {
// Offset the buffer pointer
if (subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
mi_row -= 1;
if (subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
mi_col -= 1;
const int x = (MI_SIZE * mi_col) >> subsampling_x;
const int y = (MI_SIZE * mi_row) >> subsampling_y;
dst->buf = src + scaled_buffer_offset(x, y, stride, scale);
dst->buf0 = src;
dst->width = width;
dst->height = height;
dst->stride = stride;
}
void av1_setup_dst_planes(struct macroblockd_plane *planes, BLOCK_SIZE bsize,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const int plane_start, const int plane_end);
void av1_setup_pre_planes(MACROBLOCKD *xd, int idx,
const YV12_BUFFER_CONFIG *src, int mi_row, int mi_col,
const struct scale_factors *sf, const int num_planes);
static INLINE void set_default_interp_filters(
MB_MODE_INFO *const mbmi, InterpFilter frame_interp_filter) {
mbmi->interp_filters =
av1_broadcast_interp_filter(av1_unswitchable_filter(frame_interp_filter));
}
static INLINE int av1_is_interp_needed(const MACROBLOCKD *const xd) {
const MB_MODE_INFO *const mbmi = xd->mi[0];
if (mbmi->skip_mode) return 0;
if (mbmi->motion_mode == WARPED_CAUSAL) return 0;
if (is_nontrans_global_motion(xd, xd->mi[0])) return 0;
return 1;
}
// Sets up buffers 'dst_buf1' and 'dst_buf2' from relevant buffers in 'xd' for
// subsequent use in OBMC prediction.
void av1_setup_obmc_dst_bufs(MACROBLOCKD *xd, uint8_t **dst_buf1,
uint8_t **dst_buf2);
void av1_setup_build_prediction_by_above_pred(
MACROBLOCKD *xd, int rel_mi_col, uint8_t above_mi_width,
MB_MODE_INFO *above_mbmi, struct build_prediction_ctxt *ctxt,
const int num_planes);
void av1_setup_build_prediction_by_left_pred(MACROBLOCKD *xd, int rel_mi_row,
uint8_t left_mi_height,
MB_MODE_INFO *left_mbmi,
struct build_prediction_ctxt *ctxt,
const int num_planes);
void av1_build_obmc_inter_prediction(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *above[MAX_MB_PLANE],
int above_stride[MAX_MB_PLANE],
uint8_t *left[MAX_MB_PLANE],
int left_stride[MAX_MB_PLANE]);
const uint8_t *av1_get_obmc_mask(int length);
void av1_count_overlappable_neighbors(const AV1_COMMON *cm, MACROBLOCKD *xd);
#define MASK_MASTER_SIZE ((MAX_WEDGE_SIZE) << 1)
#define MASK_MASTER_STRIDE (MASK_MASTER_SIZE)
void av1_init_wedge_masks();
static INLINE const uint8_t *av1_get_contiguous_soft_mask(int8_t wedge_index,
int8_t wedge_sign,
BLOCK_SIZE sb_type) {
return av1_wedge_params_lookup[sb_type].masks[wedge_sign][wedge_index];
}
void av1_dist_wtd_comp_weight_assign(const AV1_COMMON *cm,
const MB_MODE_INFO *mbmi, int *fwd_offset,
int *bck_offset,
int *use_dist_wtd_comp_avg,
int is_compound);
const uint8_t *av1_get_compound_type_mask(
const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type);
// build interintra_predictors for one plane
void av1_build_interintra_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd,
uint8_t *pred, int stride,
const BUFFER_SET *ctx, int plane,
BLOCK_SIZE bsize);
void av1_build_intra_predictors_for_interintra(const AV1_COMMON *cm,
MACROBLOCKD *xd,
BLOCK_SIZE bsize, int plane,
const BUFFER_SET *ctx,
uint8_t *dst, int dst_stride);
void av1_combine_interintra(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane,
const uint8_t *inter_pred, int inter_stride,
const uint8_t *intra_pred, int intra_stride);
#ifdef __cplusplus
} // extern "C"
#endif
#endif // AOM_AV1_COMMON_RECONINTER_H_