blob: 4370621e6219f25210ad854b2955697505413cad [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include <math.h>
#include <stdbool.h>
#include "config/aom_config.h"
#include "config/aom_dsp_rtcd.h"
#include "config/av1_rtcd.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/blend.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "av1/common/av1_common_int.h"
#include "av1/common/cfl.h"
#include "av1/common/blockd.h"
#include "av1/common/common.h"
#include "av1/common/common_data.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/obmc.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/scan.h"
#include "av1/common/seg_common.h"
#include "av1/common/txb_common.h"
#include "av1/common/warped_motion.h"
#include "av1/encoder/aq_variance.h"
#include "av1/encoder/av1_quantize.h"
#include "av1/encoder/cost.h"
#include "av1/encoder/compound_type.h"
#include "av1/encoder/encodemb.h"
#include "av1/encoder/encodemv.h"
#include "av1/encoder/encoder.h"
#include "av1/encoder/encodetxb.h"
#include "av1/encoder/hybrid_fwd_txfm.h"
#include "av1/encoder/interp_search.h"
#include "av1/encoder/intra_mode_search.h"
#include "av1/encoder/intra_mode_search_utils.h"
#include "av1/encoder/mcomp.h"
#include "av1/encoder/ml.h"
#include "av1/encoder/mode_prune_model_weights.h"
#include "av1/encoder/model_rd.h"
#include "av1/encoder/motion_search_facade.h"
#include "av1/encoder/palette.h"
#include "av1/encoder/pustats.h"
#include "av1/encoder/random.h"
#include "av1/encoder/ratectrl.h"
#include "av1/encoder/rd.h"
#include "av1/encoder/rdopt.h"
#include "av1/encoder/reconinter_enc.h"
#include "av1/encoder/tokenize.h"
#include "av1/encoder/tpl_model.h"
#include "av1/encoder/tx_search.h"
#include "av1/encoder/var_based_part.h"
#define LAST_NEW_MV_INDEX 6
// Mode_threshold multiplication factor table for prune_inter_modes_if_skippable
// The values are kept in Q12 format and equation used to derive is
// (2.5 - ((float)x->qindex / MAXQ) * 1.5)
#define MODE_THRESH_QBITS 12
static const int mode_threshold_mul_factor[QINDEX_RANGE] = {
10240, 10216, 10192, 10168, 10144, 10120, 10095, 10071, 10047, 10023, 9999,
9975, 9951, 9927, 9903, 9879, 9854, 9830, 9806, 9782, 9758, 9734,
9710, 9686, 9662, 9638, 9614, 9589, 9565, 9541, 9517, 9493, 9469,
9445, 9421, 9397, 9373, 9349, 9324, 9300, 9276, 9252, 9228, 9204,
9180, 9156, 9132, 9108, 9083, 9059, 9035, 9011, 8987, 8963, 8939,
8915, 8891, 8867, 8843, 8818, 8794, 8770, 8746, 8722, 8698, 8674,
8650, 8626, 8602, 8578, 8553, 8529, 8505, 8481, 8457, 8433, 8409,
8385, 8361, 8337, 8312, 8288, 8264, 8240, 8216, 8192, 8168, 8144,
8120, 8096, 8072, 8047, 8023, 7999, 7975, 7951, 7927, 7903, 7879,
7855, 7831, 7806, 7782, 7758, 7734, 7710, 7686, 7662, 7638, 7614,
7590, 7566, 7541, 7517, 7493, 7469, 7445, 7421, 7397, 7373, 7349,
7325, 7301, 7276, 7252, 7228, 7204, 7180, 7156, 7132, 7108, 7084,
7060, 7035, 7011, 6987, 6963, 6939, 6915, 6891, 6867, 6843, 6819,
6795, 6770, 6746, 6722, 6698, 6674, 6650, 6626, 6602, 6578, 6554,
6530, 6505, 6481, 6457, 6433, 6409, 6385, 6361, 6337, 6313, 6289,
6264, 6240, 6216, 6192, 6168, 6144, 6120, 6096, 6072, 6048, 6024,
5999, 5975, 5951, 5927, 5903, 5879, 5855, 5831, 5807, 5783, 5758,
5734, 5710, 5686, 5662, 5638, 5614, 5590, 5566, 5542, 5518, 5493,
5469, 5445, 5421, 5397, 5373, 5349, 5325, 5301, 5277, 5253, 5228,
5204, 5180, 5156, 5132, 5108, 5084, 5060, 5036, 5012, 4987, 4963,
4939, 4915, 4891, 4867, 4843, 4819, 4795, 4771, 4747, 4722, 4698,
4674, 4650, 4626, 4602, 4578, 4554, 4530, 4506, 4482, 4457, 4433,
4409, 4385, 4361, 4337, 4313, 4289, 4265, 4241, 4216, 4192, 4168,
4144, 4120, 4096
};
static const THR_MODES av1_default_mode_order[MAX_MODES] = {
THR_NEARESTMV,
THR_NEARESTL2,
THR_NEARESTL3,
THR_NEARESTB,
THR_NEARESTA2,
THR_NEARESTA,
THR_NEARESTG,
THR_NEWMV,
THR_NEWL2,
THR_NEWL3,
THR_NEWB,
THR_NEWA2,
THR_NEWA,
THR_NEWG,
THR_NEARMV,
THR_NEARL2,
THR_NEARL3,
THR_NEARB,
THR_NEARA2,
THR_NEARA,
THR_NEARG,
THR_GLOBALMV,
THR_GLOBALL2,
THR_GLOBALL3,
THR_GLOBALB,
THR_GLOBALA2,
THR_GLOBALA,
THR_GLOBALG,
THR_COMP_NEAREST_NEARESTLA,
THR_COMP_NEAREST_NEARESTL2A,
THR_COMP_NEAREST_NEARESTL3A,
THR_COMP_NEAREST_NEARESTGA,
THR_COMP_NEAREST_NEARESTLB,
THR_COMP_NEAREST_NEARESTL2B,
THR_COMP_NEAREST_NEARESTL3B,
THR_COMP_NEAREST_NEARESTGB,
THR_COMP_NEAREST_NEARESTLA2,
THR_COMP_NEAREST_NEARESTL2A2,
THR_COMP_NEAREST_NEARESTL3A2,
THR_COMP_NEAREST_NEARESTGA2,
THR_COMP_NEAREST_NEARESTLL2,
THR_COMP_NEAREST_NEARESTLL3,
THR_COMP_NEAREST_NEARESTLG,
THR_COMP_NEAREST_NEARESTBA,
THR_COMP_NEAR_NEARLB,
THR_COMP_NEW_NEWLB,
THR_COMP_NEW_NEARESTLB,
THR_COMP_NEAREST_NEWLB,
THR_COMP_NEW_NEARLB,
THR_COMP_NEAR_NEWLB,
THR_COMP_GLOBAL_GLOBALLB,
THR_COMP_NEAR_NEARLA,
THR_COMP_NEW_NEWLA,
THR_COMP_NEW_NEARESTLA,
THR_COMP_NEAREST_NEWLA,
THR_COMP_NEW_NEARLA,
THR_COMP_NEAR_NEWLA,
THR_COMP_GLOBAL_GLOBALLA,
THR_COMP_NEAR_NEARL2A,
THR_COMP_NEW_NEWL2A,
THR_COMP_NEW_NEARESTL2A,
THR_COMP_NEAREST_NEWL2A,
THR_COMP_NEW_NEARL2A,
THR_COMP_NEAR_NEWL2A,
THR_COMP_GLOBAL_GLOBALL2A,
THR_COMP_NEAR_NEARL3A,
THR_COMP_NEW_NEWL3A,
THR_COMP_NEW_NEARESTL3A,
THR_COMP_NEAREST_NEWL3A,
THR_COMP_NEW_NEARL3A,
THR_COMP_NEAR_NEWL3A,
THR_COMP_GLOBAL_GLOBALL3A,
THR_COMP_NEAR_NEARGA,
THR_COMP_NEW_NEWGA,
THR_COMP_NEW_NEARESTGA,
THR_COMP_NEAREST_NEWGA,
THR_COMP_NEW_NEARGA,
THR_COMP_NEAR_NEWGA,
THR_COMP_GLOBAL_GLOBALGA,
THR_COMP_NEAR_NEARL2B,
THR_COMP_NEW_NEWL2B,
THR_COMP_NEW_NEARESTL2B,
THR_COMP_NEAREST_NEWL2B,
THR_COMP_NEW_NEARL2B,
THR_COMP_NEAR_NEWL2B,
THR_COMP_GLOBAL_GLOBALL2B,
THR_COMP_NEAR_NEARL3B,
THR_COMP_NEW_NEWL3B,
THR_COMP_NEW_NEARESTL3B,
THR_COMP_NEAREST_NEWL3B,
THR_COMP_NEW_NEARL3B,
THR_COMP_NEAR_NEWL3B,
THR_COMP_GLOBAL_GLOBALL3B,
THR_COMP_NEAR_NEARGB,
THR_COMP_NEW_NEWGB,
THR_COMP_NEW_NEARESTGB,
THR_COMP_NEAREST_NEWGB,
THR_COMP_NEW_NEARGB,
THR_COMP_NEAR_NEWGB,
THR_COMP_GLOBAL_GLOBALGB,
THR_COMP_NEAR_NEARLA2,
THR_COMP_NEW_NEWLA2,
THR_COMP_NEW_NEARESTLA2,
THR_COMP_NEAREST_NEWLA2,
THR_COMP_NEW_NEARLA2,
THR_COMP_NEAR_NEWLA2,
THR_COMP_GLOBAL_GLOBALLA2,
THR_COMP_NEAR_NEARL2A2,
THR_COMP_NEW_NEWL2A2,
THR_COMP_NEW_NEARESTL2A2,
THR_COMP_NEAREST_NEWL2A2,
THR_COMP_NEW_NEARL2A2,
THR_COMP_NEAR_NEWL2A2,
THR_COMP_GLOBAL_GLOBALL2A2,
THR_COMP_NEAR_NEARL3A2,
THR_COMP_NEW_NEWL3A2,
THR_COMP_NEW_NEARESTL3A2,
THR_COMP_NEAREST_NEWL3A2,
THR_COMP_NEW_NEARL3A2,
THR_COMP_NEAR_NEWL3A2,
THR_COMP_GLOBAL_GLOBALL3A2,
THR_COMP_NEAR_NEARGA2,
THR_COMP_NEW_NEWGA2,
THR_COMP_NEW_NEARESTGA2,
THR_COMP_NEAREST_NEWGA2,
THR_COMP_NEW_NEARGA2,
THR_COMP_NEAR_NEWGA2,
THR_COMP_GLOBAL_GLOBALGA2,
THR_COMP_NEAR_NEARLL2,
THR_COMP_NEW_NEWLL2,
THR_COMP_NEW_NEARESTLL2,
THR_COMP_NEAREST_NEWLL2,
THR_COMP_NEW_NEARLL2,
THR_COMP_NEAR_NEWLL2,
THR_COMP_GLOBAL_GLOBALLL2,
THR_COMP_NEAR_NEARLL3,
THR_COMP_NEW_NEWLL3,
THR_COMP_NEW_NEARESTLL3,
THR_COMP_NEAREST_NEWLL3,
THR_COMP_NEW_NEARLL3,
THR_COMP_NEAR_NEWLL3,
THR_COMP_GLOBAL_GLOBALLL3,
THR_COMP_NEAR_NEARLG,
THR_COMP_NEW_NEWLG,
THR_COMP_NEW_NEARESTLG,
THR_COMP_NEAREST_NEWLG,
THR_COMP_NEW_NEARLG,
THR_COMP_NEAR_NEWLG,
THR_COMP_GLOBAL_GLOBALLG,
THR_COMP_NEAR_NEARBA,
THR_COMP_NEW_NEWBA,
THR_COMP_NEW_NEARESTBA,
THR_COMP_NEAREST_NEWBA,
THR_COMP_NEW_NEARBA,
THR_COMP_NEAR_NEWBA,
THR_COMP_GLOBAL_GLOBALBA,
THR_DC,
THR_PAETH,
THR_SMOOTH,
THR_SMOOTH_V,
THR_SMOOTH_H,
THR_H_PRED,
THR_V_PRED,
THR_D135_PRED,
THR_D203_PRED,
THR_D157_PRED,
THR_D67_PRED,
THR_D113_PRED,
THR_D45_PRED,
};
/*!\cond */
typedef struct SingleInterModeState {
int64_t rd;
MV_REFERENCE_FRAME ref_frame;
int valid;
} SingleInterModeState;
typedef struct InterModeSearchState {
int64_t best_rd;
int64_t best_skip_rd[2];
MB_MODE_INFO best_mbmode;
int best_rate_y;
int best_rate_uv;
int best_mode_skippable;
int best_skip2;
THR_MODES best_mode_index;
int num_available_refs;
int64_t dist_refs[REF_FRAMES];
int dist_order_refs[REF_FRAMES];
int64_t mode_threshold[MAX_MODES];
int64_t best_intra_rd;
unsigned int best_pred_sse;
/*!
* \brief Keep track of best intra rd for use in compound mode.
*/
int64_t best_pred_rd[REFERENCE_MODES];
// Save a set of single_newmv for each checked ref_mv.
int_mv single_newmv[MAX_REF_MV_SEARCH][REF_FRAMES];
int single_newmv_rate[MAX_REF_MV_SEARCH][REF_FRAMES];
int single_newmv_valid[MAX_REF_MV_SEARCH][REF_FRAMES];
int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES];
// The rd of simple translation in single inter modes
int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES];
int64_t best_single_rd[REF_FRAMES];
PREDICTION_MODE best_single_mode[REF_FRAMES];
// Single search results by [directions][modes][reference frames]
SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
int single_state_cnt[2][SINGLE_INTER_MODE_NUM];
SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM]
[FWD_REFS];
int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM];
MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS];
IntraModeSearchState intra_search_state;
RD_STATS best_y_rdcost;
} InterModeSearchState;
/*!\endcond */
void av1_inter_mode_data_init(TileDataEnc *tile_data) {
for (int i = 0; i < BLOCK_SIZES_ALL; ++i) {
InterModeRdModel *md = &tile_data->inter_mode_rd_models[i];
md->ready = 0;
md->num = 0;
md->dist_sum = 0;
md->ld_sum = 0;
md->sse_sum = 0;
md->sse_sse_sum = 0;
md->sse_ld_sum = 0;
}
}
static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize,
int64_t sse, int *est_residue_cost,
int64_t *est_dist) {
const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
if (md->ready) {
if (sse < md->dist_mean) {
*est_residue_cost = 0;
*est_dist = sse;
} else {
*est_dist = (int64_t)round(md->dist_mean);
const double est_ld = md->a * sse + md->b;
// Clamp estimated rate cost by INT_MAX / 2.
// TODO(angiebird@google.com): find better solution than clamping.
if (fabs(est_ld) < 1e-2) {
*est_residue_cost = INT_MAX / 2;
} else {
double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld);
if (est_residue_cost_dbl < 0) {
*est_residue_cost = 0;
} else {
*est_residue_cost =
(int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2);
}
}
if (*est_residue_cost <= 0) {
*est_residue_cost = 0;
*est_dist = sse;
}
}
return 1;
}
return 0;
}
void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) {
for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) {
const int block_idx = inter_mode_data_block_idx(bsize);
InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
if (block_idx == -1) continue;
if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) {
continue;
} else {
if (md->ready == 0) {
md->dist_mean = md->dist_sum / md->num;
md->ld_mean = md->ld_sum / md->num;
md->sse_mean = md->sse_sum / md->num;
md->sse_sse_mean = md->sse_sse_sum / md->num;
md->sse_ld_mean = md->sse_ld_sum / md->num;
} else {
const double factor = 3;
md->dist_mean =
(md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1);
md->ld_mean =
(md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1);
md->sse_mean =
(md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1);
md->sse_sse_mean =
(md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) /
(factor + 1);
md->sse_ld_mean =
(md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) /
(factor + 1);
}
const double my = md->ld_mean;
const double mx = md->sse_mean;
const double dx = sqrt(md->sse_sse_mean);
const double dxy = md->sse_ld_mean;
md->a = (dxy - mx * my) / (dx * dx - mx * mx);
md->b = my - md->a * mx;
md->ready = 1;
md->num = 0;
md->dist_sum = 0;
md->ld_sum = 0;
md->sse_sum = 0;
md->sse_sse_sum = 0;
md->sse_ld_sum = 0;
}
(void)rdmult;
}
}
static AOM_INLINE void inter_mode_data_push(TileDataEnc *tile_data,
BLOCK_SIZE bsize, int64_t sse,
int64_t dist, int residue_cost) {
if (residue_cost == 0 || sse == dist) return;
const int block_idx = inter_mode_data_block_idx(bsize);
if (block_idx == -1) return;
InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize];
if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) {
const double ld = (sse - dist) * 1. / residue_cost;
++rd_model->num;
rd_model->dist_sum += dist;
rd_model->ld_sum += ld;
rd_model->sse_sum += sse;
rd_model->sse_sse_sum += (double)sse * (double)sse;
rd_model->sse_ld_sum += sse * ld;
}
}
static AOM_INLINE void inter_modes_info_push(InterModesInfo *inter_modes_info,
int mode_rate, int64_t sse,
int64_t rd, RD_STATS *rd_cost,
RD_STATS *rd_cost_y,
RD_STATS *rd_cost_uv,
const MB_MODE_INFO *mbmi) {
const int num = inter_modes_info->num;
assert(num < MAX_INTER_MODES);
inter_modes_info->mbmi_arr[num] = *mbmi;
inter_modes_info->mode_rate_arr[num] = mode_rate;
inter_modes_info->sse_arr[num] = sse;
inter_modes_info->est_rd_arr[num] = rd;
inter_modes_info->rd_cost_arr[num] = *rd_cost;
inter_modes_info->rd_cost_y_arr[num] = *rd_cost_y;
inter_modes_info->rd_cost_uv_arr[num] = *rd_cost_uv;
++inter_modes_info->num;
}
static int compare_rd_idx_pair(const void *a, const void *b) {
if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) {
// To avoid inconsistency in qsort() ordering when two elements are equal,
// using idx as tie breaker. Refer aomedia:2928
if (((RdIdxPair *)a)->idx == ((RdIdxPair *)b)->idx)
return 0;
else if (((RdIdxPair *)a)->idx > ((RdIdxPair *)b)->idx)
return 1;
else
return -1;
} else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) {
return 1;
} else {
return -1;
}
}
static AOM_INLINE void inter_modes_info_sort(
const InterModesInfo *inter_modes_info, RdIdxPair *rd_idx_pair_arr) {
if (inter_modes_info->num == 0) {
return;
}
for (int i = 0; i < inter_modes_info->num; ++i) {
rd_idx_pair_arr[i].idx = i;
rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i];
}
qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]),
compare_rd_idx_pair);
}
// Similar to get_horver_correlation, but also takes into account first
// row/column, when computing horizontal/vertical correlation.
void av1_get_horver_correlation_full_c(const int16_t *diff, int stride,
int width, int height, float *hcorr,
float *vcorr) {
// The following notation is used:
// x - current pixel
// y - left neighbor pixel
// z - top neighbor pixel
int64_t x_sum = 0, x2_sum = 0, xy_sum = 0, xz_sum = 0;
int64_t x_firstrow = 0, x_finalrow = 0, x_firstcol = 0, x_finalcol = 0;
int64_t x2_firstrow = 0, x2_finalrow = 0, x2_firstcol = 0, x2_finalcol = 0;
// First, process horizontal correlation on just the first row
x_sum += diff[0];
x2_sum += diff[0] * diff[0];
x_firstrow += diff[0];
x2_firstrow += diff[0] * diff[0];
for (int j = 1; j < width; ++j) {
const int16_t x = diff[j];
const int16_t y = diff[j - 1];
x_sum += x;
x_firstrow += x;
x2_sum += x * x;
x2_firstrow += x * x;
xy_sum += x * y;
}
// Process vertical correlation in the first column
x_firstcol += diff[0];
x2_firstcol += diff[0] * diff[0];
for (int i = 1; i < height; ++i) {
const int16_t x = diff[i * stride];
const int16_t z = diff[(i - 1) * stride];
x_sum += x;
x_firstcol += x;
x2_sum += x * x;
x2_firstcol += x * x;
xz_sum += x * z;
}
// Now process horiz and vert correlation through the rest unit
for (int i = 1; i < height; ++i) {
for (int j = 1; j < width; ++j) {
const int16_t x = diff[i * stride + j];
const int16_t y = diff[i * stride + j - 1];
const int16_t z = diff[(i - 1) * stride + j];
x_sum += x;
x2_sum += x * x;
xy_sum += x * y;
xz_sum += x * z;
}
}
for (int j = 0; j < width; ++j) {
x_finalrow += diff[(height - 1) * stride + j];
x2_finalrow +=
diff[(height - 1) * stride + j] * diff[(height - 1) * stride + j];
}
for (int i = 0; i < height; ++i) {
x_finalcol += diff[i * stride + width - 1];
x2_finalcol += diff[i * stride + width - 1] * diff[i * stride + width - 1];
}
int64_t xhor_sum = x_sum - x_finalcol;
int64_t xver_sum = x_sum - x_finalrow;
int64_t y_sum = x_sum - x_firstcol;
int64_t z_sum = x_sum - x_firstrow;
int64_t x2hor_sum = x2_sum - x2_finalcol;
int64_t x2ver_sum = x2_sum - x2_finalrow;
int64_t y2_sum = x2_sum - x2_firstcol;
int64_t z2_sum = x2_sum - x2_firstrow;
const float num_hor = (float)(height * (width - 1));
const float num_ver = (float)((height - 1) * width);
const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor;
const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver;
const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor;
const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver;
const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor;
const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver;
if (xhor_var_n > 0 && y_var_n > 0) {
*hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n);
*hcorr = *hcorr < 0 ? 0 : *hcorr;
} else {
*hcorr = 1.0;
}
if (xver_var_n > 0 && z_var_n > 0) {
*vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n);
*vcorr = *vcorr < 0 ? 0 : *vcorr;
} else {
*vcorr = 1.0;
}
}
static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x,
int64_t *sse_y) {
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
int64_t total_sse = 0;
for (int plane = 0; plane < num_planes; ++plane) {
if (plane && !xd->is_chroma_ref) break;
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE bs =
get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y);
unsigned int sse;
cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf,
pd->dst.stride, &sse);
total_sse += sse;
if (!plane && sse_y) *sse_y = sse;
}
total_sse <<= 4;
return total_sse;
}
int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff,
intptr_t block_size, int64_t *ssz) {
int i;
int64_t error = 0, sqcoeff = 0;
for (i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += coeff[i] * coeff[i];
}
*ssz = sqcoeff;
return error;
}
int64_t av1_block_error_lp_c(const int16_t *coeff, const int16_t *dqcoeff,
intptr_t block_size) {
int64_t error = 0;
for (int i = 0; i < block_size; i++) {
const int diff = coeff[i] - dqcoeff[i];
error += diff * diff;
}
return error;
}
#if CONFIG_AV1_HIGHBITDEPTH
int64_t av1_highbd_block_error_c(const tran_low_t *coeff,
const tran_low_t *dqcoeff, intptr_t block_size,
int64_t *ssz, int bd) {
int i;
int64_t error = 0, sqcoeff = 0;
int shift = 2 * (bd - 8);
int rounding = shift > 0 ? 1 << (shift - 1) : 0;
for (i = 0; i < block_size; i++) {
const int64_t diff = coeff[i] - dqcoeff[i];
error += diff * diff;
sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i];
}
assert(error >= 0 && sqcoeff >= 0);
error = (error + rounding) >> shift;
sqcoeff = (sqcoeff + rounding) >> shift;
*ssz = sqcoeff;
return error;
}
#endif
static int conditional_skipintra(PREDICTION_MODE mode,
PREDICTION_MODE best_intra_mode) {
if (mode == D113_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D135_PRED)
return 1;
if (mode == D67_PRED && best_intra_mode != V_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D203_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D45_PRED)
return 1;
if (mode == D157_PRED && best_intra_mode != H_PRED &&
best_intra_mode != D135_PRED)
return 1;
return 0;
}
static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode,
int16_t mode_context) {
if (is_inter_compound_mode(mode)) {
return mode_costs
->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)];
}
int mode_cost = 0;
int16_t mode_ctx = mode_context & NEWMV_CTX_MASK;
assert(is_inter_mode(mode));
if (mode == NEWMV) {
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK;
if (mode == GLOBALMV) {
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0];
return mode_cost;
} else {
mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1];
mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK;
mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV];
return mode_cost;
}
}
}
static INLINE PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode,
int ref_idx) {
return ref_idx ? compound_ref1_mode(this_mode)
: compound_ref0_mode(this_mode);
}
static AOM_INLINE void estimate_ref_frame_costs(
const AV1_COMMON *cm, const MACROBLOCKD *xd, const ModeCosts *mode_costs,
int segment_id, unsigned int *ref_costs_single,
unsigned int (*ref_costs_comp)[REF_FRAMES]) {
int seg_ref_active =
segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
if (seg_ref_active) {
memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single));
int ref_frame;
for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame)
memset(ref_costs_comp[ref_frame], 0,
REF_FRAMES * sizeof((*ref_costs_comp)[0]));
} else {
int intra_inter_ctx = av1_get_intra_inter_context(xd);
ref_costs_single[INTRA_FRAME] =
mode_costs->intra_inter_cost[intra_inter_ctx][0];
unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1];
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i)
ref_costs_single[i] = base_cost;
const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd);
const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd);
const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd);
const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd);
const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd);
const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd);
// Determine cost of a single ref frame, where frame types are represented
// by a tree:
// Level 0: add cost whether this ref is a forward or backward ref
ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0];
ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1];
ref_costs_single[ALTREF2_FRAME] +=
mode_costs->single_ref_cost[ctx_p1][0][1];
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1];
// Level 1: if this ref is forward ref,
// add cost whether it is last/last2 or last3/golden
ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0];
ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0];
ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1];
// Level 1: if this ref is backward ref
// then add cost whether this ref is altref or backward ref
ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][0];
ref_costs_single[ALTREF2_FRAME] +=
mode_costs->single_ref_cost[ctx_p2][1][0];
ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][1];
// Level 2: further add cost whether this ref is last or last2
ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][0];
ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][1];
// Level 2: last3 or golden
ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][0];
ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][1];
// Level 2: bwdref or altref2
ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p6][5][0];
ref_costs_single[ALTREF2_FRAME] +=
mode_costs->single_ref_cost[ctx_p6][5][1];
if (cm->current_frame.reference_mode != SINGLE_REFERENCE) {
// Similar to single ref, determine cost of compound ref frames.
// cost_compound_refs = cost_first_ref + cost_second_ref
const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd);
const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd);
const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd);
const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd);
const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd);
const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd);
unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 };
ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] =
ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1];
ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0;
ref_bicomp_costs[ALTREF_FRAME] = 0;
// cost of first ref frame
ref_bicomp_costs[LAST_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST2_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0];
ref_bicomp_costs[LAST3_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[GOLDEN_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1];
ref_bicomp_costs[LAST_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][0];
ref_bicomp_costs[LAST2_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][1];
ref_bicomp_costs[LAST3_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][0];
ref_bicomp_costs[GOLDEN_FRAME] +=
mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][1];
// cost of second ref frame
ref_bicomp_costs[BWDREF_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0];
ref_bicomp_costs[ALTREF_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][1];
ref_bicomp_costs[BWDREF_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0];
ref_bicomp_costs[ALTREF2_FRAME] +=
mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1];
// cost: if one ref frame is forward ref, the other ref is backward ref
int ref0, ref1;
for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) {
ref_costs_comp[ref0][ref1] =
ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1];
}
}
// cost: if both ref frames are the same side.
const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd);
const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd);
const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd);
ref_costs_comp[LAST_FRAME][LAST2_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0];
ref_costs_comp[LAST_FRAME][LAST3_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0];
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1];
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] =
base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] +
mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1];
} else {
int ref0, ref1;
for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) {
for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1)
ref_costs_comp[ref0][ref1] = 512;
}
ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512;
ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512;
ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512;
ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512;
}
}
}
static AOM_INLINE void store_coding_context(
#if CONFIG_INTERNAL_STATS
MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index,
#else
MACROBLOCK *x, PICK_MODE_CONTEXT *ctx,
#endif // CONFIG_INTERNAL_STATS
int skippable) {
MACROBLOCKD *const xd = &x->e_mbd;
// Take a snapshot of the coding context so it can be
// restored if we decide to encode this way
ctx->rd_stats.skip_txfm = x->txfm_search_info.skip_txfm;
ctx->skippable = skippable;
#if CONFIG_INTERNAL_STATS
ctx->best_mode_index = mode_index;
#endif // CONFIG_INTERNAL_STATS
ctx->mic = *xd->mi[0];
av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
av1_ref_frame_type(xd->mi[0]->ref_frame));
}
static AOM_INLINE void setup_buffer_ref_mvs_inter(
const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame,
BLOCK_SIZE block_size, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
const YV12_BUFFER_CONFIG *scaled_ref_frame =
av1_get_scaled_ref_frame(cpi, ref_frame);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const struct scale_factors *const sf =
get_ref_scale_factors_const(cm, ref_frame);
const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame);
assert(yv12 != NULL);
if (scaled_ref_frame) {
// Setup pred block based on scaled reference, because av1_mv_pred() doesn't
// support scaling.
av1_setup_pred_block(xd, yv12_mb[ref_frame], scaled_ref_frame, NULL, NULL,
num_planes);
} else {
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
}
// Gets an initial list of candidate vectors from neighbours and orders them
av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
// Further refinement that is encode side only to test the top few candidates
// in full and choose the best as the center point for subsequent searches.
// The current implementation doesn't support scaling.
av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12_mb[ref_frame][0].stride,
ref_frame, block_size);
// Go back to unscaled reference.
if (scaled_ref_frame) {
// We had temporarily setup pred block based on scaled reference above. Go
// back to unscaled reference now, for subsequent use.
av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes);
}
}
#define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
#define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3)
// TODO(jingning): this mv clamping function should be block size dependent.
static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) {
const SubpelMvLimits mv_limits = { xd->mb_to_left_edge - LEFT_TOP_MARGIN,
xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN,
xd->mb_to_top_edge - LEFT_TOP_MARGIN,
xd->mb_to_bottom_edge +
RIGHT_BOTTOM_MARGIN };
clamp_mv(mv, &mv_limits);
}
/* If the current mode shares the same mv with other modes with higher cost,
* skip this mode. */
static int skip_repeated_mv(const AV1_COMMON *const cm,
const MACROBLOCK *const x,
PREDICTION_MODE this_mode,
const MV_REFERENCE_FRAME ref_frames[2],
InterModeSearchState *search_state) {
const int is_comp_pred = ref_frames[1] > INTRA_FRAME;
const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames);
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
PREDICTION_MODE compare_mode = MB_MODE_COUNT;
if (!is_comp_pred) {
if (this_mode == NEARMV) {
if (ref_mv_count == 0) {
// NEARMV has the same motion vector as NEARESTMV
compare_mode = NEARESTMV;
}
if (ref_mv_count == 1 &&
cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
// NEARMV has the same motion vector as GLOBALMV
compare_mode = GLOBALMV;
}
}
if (this_mode == GLOBALMV) {
if (ref_mv_count == 0 &&
cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) {
// GLOBALMV has the same motion vector as NEARESTMV
compare_mode = NEARESTMV;
}
if (ref_mv_count == 1) {
// GLOBALMV has the same motion vector as NEARMV
compare_mode = NEARMV;
}
}
if (compare_mode != MB_MODE_COUNT) {
// Use modelled_rd to check whether compare mode was searched
if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] !=
INT64_MAX) {
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames);
const int compare_cost =
cost_mv_ref(&x->mode_costs, compare_mode, mode_ctx);
const int this_cost = cost_mv_ref(&x->mode_costs, this_mode, mode_ctx);
// Only skip if the mode cost is larger than compare mode cost
if (this_cost > compare_cost) {
search_state->modelled_rd[this_mode][0][ref_frames[0]] =
search_state->modelled_rd[compare_mode][0][ref_frames[0]];
return 1;
}
}
}
}
return 0;
}
static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv,
const AV1_COMMON *cm,
const MACROBLOCK *x) {
const MACROBLOCKD *const xd = &x->e_mbd;
*out_mv = in_mv;
lower_mv_precision(&out_mv->as_mv, cm->features.allow_high_precision_mv,
cm->features.cur_frame_force_integer_mv);
clamp_mv2(&out_mv->as_mv, xd);
return av1_is_fullmv_in_range(&x->mv_limits,
get_fullmv_from_mv(&out_mv->as_mv));
}
// To use single newmv directly for compound modes, need to clamp the mv to the
// valid mv range. Without this, encoder would generate out of range mv, and
// this is seen in 8k encoding.
static INLINE void clamp_mv_in_range(MACROBLOCK *const x, int_mv *mv,
int ref_idx) {
const int_mv ref_mv = av1_get_ref_mv(x, ref_idx);
SubpelMvLimits mv_limits;
av1_set_subpel_mv_search_range(&mv_limits, &x->mv_limits, &ref_mv.as_mv);
clamp_mv(&mv->as_mv, &mv_limits);
}
static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x,
const BLOCK_SIZE bsize, int_mv *cur_mv,
int *const rate_mv, HandleInterModeArgs *const args,
inter_mode_info *mode_info) {
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int is_comp_pred = has_second_ref(mbmi);
const PREDICTION_MODE this_mode = mbmi->mode;
const int refs[2] = { mbmi->ref_frame[0],
mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] };
const int ref_mv_idx = mbmi->ref_mv_idx;
if (is_comp_pred) {
const int valid_mv0 = args->single_newmv_valid[ref_mv_idx][refs[0]];
const int valid_mv1 = args->single_newmv_valid[ref_mv_idx][refs[1]];
if (this_mode == NEW_NEWMV) {
if (valid_mv0) {
cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
clamp_mv_in_range(x, &cur_mv[0], 0);
}
if (valid_mv1) {
cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
clamp_mv_in_range(x, &cur_mv[1], 1);
}
*rate_mv = 0;
for (int i = 0; i < 2; ++i) {
const int_mv ref_mv = av1_get_ref_mv(x, i);
*rate_mv += av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv,
x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
}
} else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) {
if (valid_mv1) {
cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int;
clamp_mv_in_range(x, &cur_mv[1], 1);
}
const int_mv ref_mv = av1_get_ref_mv(x, 1);
*rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv,
x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
} else {
assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV);
if (valid_mv0) {
cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int;
clamp_mv_in_range(x, &cur_mv[0], 0);
}
const int_mv ref_mv = av1_get_ref_mv(x, 0);
*rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv,
x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
}
} else {
// Single ref case.
const int ref_idx = 0;
int search_range = INT_MAX;
if (cpi->sf.mv_sf.reduce_search_range && mbmi->ref_mv_idx > 0) {
const MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv;
int min_mv_diff = INT_MAX;
int best_match = -1;
MV prev_ref_mv[2] = { { 0 } };
for (int idx = 0; idx < mbmi->ref_mv_idx; ++idx) {
prev_ref_mv[idx] = av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame,
idx, &x->mbmi_ext)
.as_mv;
const int ref_mv_diff = AOMMAX(abs(ref_mv.row - prev_ref_mv[idx].row),
abs(ref_mv.col - prev_ref_mv[idx].col));
if (min_mv_diff > ref_mv_diff) {
min_mv_diff = ref_mv_diff;
best_match = idx;
}
}
if (min_mv_diff < (16 << 3)) {
if (args->single_newmv_valid[best_match][refs[0]]) {
search_range = min_mv_diff;
search_range +=
AOMMAX(abs(args->single_newmv[best_match][refs[0]].as_mv.row -
prev_ref_mv[best_match].row),
abs(args->single_newmv[best_match][refs[0]].as_mv.col -
prev_ref_mv[best_match].col));
// Get full pixel search range.
search_range = (search_range + 4) >> 3;
}
}
}
int_mv best_mv;
av1_single_motion_search(cpi, x, bsize, ref_idx, rate_mv, search_range,
mode_info, &best_mv, args);
if (best_mv.as_int == INVALID_MV) return INT64_MAX;
args->single_newmv[ref_mv_idx][refs[0]] = best_mv;
args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv;
args->single_newmv_valid[ref_mv_idx][refs[0]] = 1;
cur_mv[0].as_int = best_mv.as_int;
// Return after single_newmv is set.
if (mode_info[mbmi->ref_mv_idx].skip) return INT64_MAX;
}
return 0;
}
static INLINE void update_mode_start_end_index(
const AV1_COMP *const cpi, const MB_MODE_INFO *const mbmi,
int *mode_index_start, int *mode_index_end, int last_motion_mode_allowed,
int interintra_allowed, int eval_motion_mode) {
*mode_index_start = (int)SIMPLE_TRANSLATION;
*mode_index_end = (int)last_motion_mode_allowed + interintra_allowed;
if (cpi->sf.winner_mode_sf.motion_mode_for_winner_cand) {
if (!eval_motion_mode) {
*mode_index_end = (int)SIMPLE_TRANSLATION;
} else {
// Set the start index appropriately to process motion modes other than
// simple translation
*mode_index_start = 1;
}
}
if (cpi->sf.inter_sf.extra_prune_warped && mbmi->bsize > BLOCK_16X16)
*mode_index_end = SIMPLE_TRANSLATION;
}
/*!\brief AV1 motion mode search
*
* \ingroup inter_mode_search
* Function to search over and determine the motion mode. It will update
* mbmi->motion_mode to one of SIMPLE_TRANSLATION, OBMC_CAUSAL, or
* WARPED_CAUSAL and determine any necessary side information for the selected
* motion mode. It will also perform the full transform search, unless the
* input parameter do_tx_search indicates to do an estimation of the RD rather
* than an RD corresponding to a full transform search. It will return the
* RD for the final motion_mode.
* Do the RD search for a given inter mode and compute all information relevant
* to the input mode. It will compute the best MV,
* compound parameters (if the mode is a compound mode) and interpolation filter
* parameters.
*
* \param[in] cpi Top-level encoder structure.
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during
* encoding.
* \param[in] x Pointer to struct holding all the data for
* the current macroblock.
* \param[in] bsize Current block size.
* \param[in,out] rd_stats Struct to keep track of the overall RD
* information.
* \param[in,out] rd_stats_y Struct to keep track of the RD information
* for only the Y plane.
* \param[in,out] rd_stats_uv Struct to keep track of the RD information
* for only the UV planes.
* \param[in] args HandleInterModeArgs struct holding
* miscellaneous arguments for inter mode
* search. See the documentation for this
* struct for a description of each member.
* \param[in] ref_best_rd Best RD found so far for this block.
* It is used for early termination of this
* search if the RD exceeds this value.
* \param[in,out] ref_skip_rd A length 2 array, where skip_rd[0] is the
* best total RD for a skip mode so far, and
* skip_rd[1] is the best RD for a skip mode so
* far in luma. This is used as a speed feature
* to skip the transform search if the computed
* skip RD for the current mode is not better
* than the best skip_rd so far.
* \param[in,out] rate_mv The rate associated with the motion vectors.
* This will be modified if a motion search is
* done in the motion mode search.
* \param[in,out] orig_dst A prediction buffer to hold a computed
* prediction. This will eventually hold the
* final prediction, and the tmp_dst info will
* be copied here.
* \param[in,out] best_est_rd Estimated RD for motion mode search if
* do_tx_search (see below) is 0.
* \param[in] do_tx_search Parameter to indicate whether or not to do
* a full transform search. This will compute
* an estimated RD for the modes without the
* transform search and later perform the full
* transform search on the best candidates.
* \param[in] inter_modes_info InterModesInfo struct to hold inter mode
* information to perform a full transform
* search only on winning candidates searched
* with an estimate for transform coding RD.
* \param[in] eval_motion_mode Boolean whether or not to evaluate motion
* motion modes other than SIMPLE_TRANSLATION.
* \param[out] yrd Stores the rdcost corresponding to encoding
* the luma plane.
* \return Returns INT64_MAX if the determined motion mode is invalid and the
* current motion mode being tested should be skipped. It returns 0 if the
* motion mode search is a success.
*/
static int64_t motion_mode_rd(
const AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x,
BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y,
RD_STATS *rd_stats_uv, HandleInterModeArgs *const args, int64_t ref_best_rd,
int64_t *ref_skip_rd, int *rate_mv, const BUFFER_SET *orig_dst,
int64_t *best_est_rd, int do_tx_search, InterModesInfo *inter_modes_info,
int eval_motion_mode, int64_t *yrd) {
const AV1_COMMON *const cm = &cpi->common;
const FeatureFlags *const features = &cm->features;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const int is_comp_pred = has_second_ref(mbmi);
const PREDICTION_MODE this_mode = mbmi->mode;
const int rate2_nocoeff = rd_stats->rate;
int best_xskip_txfm = 0;
RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
const int rate_mv0 = *rate_mv;
const int interintra_allowed = cm->seq_params->enable_interintra_compound &&
is_interintra_allowed(mbmi) &&
mbmi->compound_idx;
WARP_SAMPLE_INFO *const warp_sample_info =
&x->warp_sample_info[mbmi->ref_frame[0]];
int *pts0 = warp_sample_info->pts;
int *pts_inref0 = warp_sample_info->pts_inref;
assert(mbmi->ref_frame[1] != INTRA_FRAME);
const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1];
av1_invalid_rd_stats(&best_rd_stats);
mbmi->num_proj_ref = 1; // assume num_proj_ref >=1
MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION;
*yrd = INT64_MAX;
if (features->switchable_motion_mode) {
// Determine which motion modes to search if more than SIMPLE_TRANSLATION
// is allowed.
last_motion_mode_allowed = motion_mode_allowed(
xd->global_motion, xd, mbmi, features->allow_warped_motion);
}
if (last_motion_mode_allowed == WARPED_CAUSAL) {
// Collect projection samples used in least squares approximation of
// the warped motion parameters if WARPED_CAUSAL is going to be searched.
if (warp_sample_info->num < 0) {
warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0);
}
mbmi->num_proj_ref = warp_sample_info->num;
}
const int total_samples = mbmi->num_proj_ref;
if (total_samples == 0) {
// Do not search WARPED_CAUSAL if there are no samples to use to determine
// warped parameters.
last_motion_mode_allowed = OBMC_CAUSAL;
}
const MB_MODE_INFO base_mbmi = *mbmi;
MB_MODE_INFO best_mbmi;
const int interp_filter = features->interp_filter;
const int switchable_rate =
av1_is_interp_needed(xd)
? av1_get_switchable_rate(x, xd, interp_filter,
cm->seq_params->enable_dual_filter)
: 0;
int64_t best_rd = INT64_MAX;
int best_rate_mv = rate_mv0;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
int mode_index_start, mode_index_end;
// Modify the start and end index according to speed features. For example,
// if SIMPLE_TRANSLATION has already been searched according to
// the motion_mode_for_winner_cand speed feature, update the mode_index_start
// to avoid searching it again.
update_mode_start_end_index(cpi, mbmi, &mode_index_start, &mode_index_end,
last_motion_mode_allowed, interintra_allowed,
eval_motion_mode);
// Main function loop. This loops over all of the possible motion modes and
// computes RD to determine the best one. This process includes computing
// any necessary side information for the motion mode and performing the
// transform search.
for (int mode_index = mode_index_start; mode_index <= mode_index_end;
mode_index++) {
if (args->skip_motion_mode && mode_index) continue;
int tmp_rate2 = rate2_nocoeff;
const int is_interintra_mode = mode_index > (int)last_motion_mode_allowed;
int tmp_rate_mv = rate_mv0;
*mbmi = base_mbmi;
if (is_interintra_mode) {
// Only use SIMPLE_TRANSLATION for interintra
mbmi->motion_mode = SIMPLE_TRANSLATION;
} else {
mbmi->motion_mode = (MOTION_MODE)mode_index;
assert(mbmi->ref_frame[1] != INTRA_FRAME);
}
// Do not search OBMC if the probability of selecting it is below a
// predetermined threshold for this update_type and block size.
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
int use_actual_frame_probs = 1;
int prune_obmc;
#if CONFIG_FPMT_TEST
use_actual_frame_probs =
(cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
if (!use_actual_frame_probs) {
prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] <
cpi->sf.inter_sf.prune_obmc_prob_thresh;
}
#endif
if (use_actual_frame_probs) {
prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] <
cpi->sf.inter_sf.prune_obmc_prob_thresh;
}
if ((!cpi->oxcf.motion_mode_cfg.enable_obmc || prune_obmc) &&
mbmi->motion_mode == OBMC_CAUSAL)
continue;
if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) {
// SIMPLE_TRANSLATION mode: no need to recalculate.
// The prediction is calculated before motion_mode_rd() is called in
// handle_inter_mode()
} else if (mbmi->motion_mode == OBMC_CAUSAL) {
const uint32_t cur_mv = mbmi->mv[0].as_int;
// OBMC_CAUSAL not allowed for compound prediction
assert(!is_comp_pred);
if (have_newmv_in_inter_mode(this_mode)) {
av1_single_motion_search(cpi, x, bsize, 0, &tmp_rate_mv, INT_MAX, NULL,
&mbmi->mv[0], NULL);
tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
}
if ((mbmi->mv[0].as_int != cur_mv) || eval_motion_mode) {
// Build the predictor according to the current motion vector if it has
// not already been built
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
0, av1_num_planes(cm) - 1);
}
// Build the inter predictor by blending the predictor corresponding to
// this MV, and the neighboring blocks using the OBMC model
av1_build_obmc_inter_prediction(
cm, xd, args->above_pred_buf, args->above_pred_stride,
args->left_pred_buf, args->left_pred_stride);
#if !CONFIG_REALTIME_ONLY
} else if (mbmi->motion_mode == WARPED_CAUSAL) {
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
mbmi->motion_mode = WARPED_CAUSAL;
mbmi->wm_params.wmtype = DEFAULT_WMTYPE;
mbmi->interp_filters =
av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0));
memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0));
// Select the samples according to motion vector difference
if (mbmi->num_proj_ref > 1) {
mbmi->num_proj_ref = av1_selectSamples(
&mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref, bsize);
}
// Compute the warped motion parameters with a least squares fit
// using the collected samples
if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize,
mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col,
&mbmi->wm_params, mi_row, mi_col)) {
assert(!is_comp_pred);
if (have_newmv_in_inter_mode(this_mode)) {
// Refine MV for NEWMV mode
const int_mv mv0 = mbmi->mv[0];
const WarpedMotionParams wm_params0 = mbmi->wm_params;
const int num_proj_ref0 = mbmi->num_proj_ref;
const int_mv ref_mv = av1_get_ref_mv(x, 0);
SUBPEL_MOTION_SEARCH_PARAMS ms_params;
av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize,
&ref_mv.as_mv, NULL);
// Refine MV in a small range.
av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0,
total_samples, cpi->sf.mv_sf.warp_search_method,
cpi->sf.mv_sf.warp_search_iters);
if (mv0.as_int != mbmi->mv[0].as_int) {
// Keep the refined MV and WM parameters.
tmp_rate_mv = av1_mv_bit_cost(
&mbmi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost,
x->mv_costs->mv_cost_stack, MV_COST_WEIGHT);
tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv;
} else {
// Restore the old MV and WM parameters.
mbmi->mv[0] = mv0;
mbmi->wm_params = wm_params0;
mbmi->num_proj_ref = num_proj_ref0;
}
}
// Build the warped predictor
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
av1_num_planes(cm) - 1);
} else {
continue;
}
#endif // !CONFIG_REALTIME_ONLY
} else if (is_interintra_mode) {
const int ret =
av1_handle_inter_intra_mode(cpi, x, bsize, mbmi, args, ref_best_rd,
&tmp_rate_mv, &tmp_rate2, orig_dst);
if (ret < 0) continue;
}
// If we are searching newmv and the mv is the same as refmv, skip the
// current mode
if (!av1_check_newmv_joint_nonzero(cm, x)) continue;
// Update rd_stats for the current motion mode
txfm_info->skip_txfm = 0;
rd_stats->dist = 0;
rd_stats->sse = 0;
rd_stats->skip_txfm = 1;
rd_stats->rate = tmp_rate2;
const ModeCosts *mode_costs = &x->mode_costs;
if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate;
if (interintra_allowed) {
rd_stats->rate +=
mode_costs->interintra_cost[size_group_lookup[bsize]]
[mbmi->ref_frame[1] == INTRA_FRAME];
}
if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) &&
(mbmi->ref_frame[1] != INTRA_FRAME)) {
if (last_motion_mode_allowed == WARPED_CAUSAL) {
rd_stats->rate +=
mode_costs->motion_mode_cost[bsize][mbmi->motion_mode];
} else {
rd_stats->rate +=
mode_costs->motion_mode_cost1[bsize][mbmi->motion_mode];
}
}
int64_t this_yrd = INT64_MAX;
if (!do_tx_search) {
// Avoid doing a transform search here to speed up the overall mode
// search. It will be done later in the mode search if the current
// motion mode seems promising.
int64_t curr_sse = -1;
int64_t sse_y = -1;
int est_residue_cost = 0;
int64_t est_dist = 0;
int64_t est_rd = 0;
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
curr_sse = get_sse(cpi, x, &sse_y);
const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse,
&est_residue_cost, &est_dist);
(void)has_est_rd;
assert(has_est_rd);
} else if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 2 ||
cpi->sf.rt_sf.use_nonrd_pick_mode) {
model_rd_sb_fn[MODELRD_TYPE_MOTION_MODE_RD](
cpi, bsize, x, xd, 0, num_planes - 1, &est_residue_cost, &est_dist,
NULL, &curr_sse, NULL, NULL, NULL);
sse_y = x->pred_sse[xd->mi[0]->ref_frame[0]];
}
est_rd = RDCOST(x->rdmult, rd_stats->rate + est_residue_cost, est_dist);
if (est_rd * 0.80 > *best_est_rd) {
mbmi->ref_frame[1] = ref_frame_1;
continue;
}
const int mode_rate = rd_stats->rate;
rd_stats->rate += est_residue_cost;
rd_stats->dist = est_dist;
rd_stats->rdcost = est_rd;
if (rd_stats->rdcost < *best_est_rd) {
*best_est_rd = rd_stats->rdcost;
assert(sse_y >= 0);
ref_skip_rd[1] = cpi->sf.inter_sf.txfm_rd_gate_level
? RDCOST(x->rdmult, mode_rate, (sse_y << 4))
: INT64_MAX;
}
if (cm->current_frame.reference_mode == SINGLE_REFERENCE) {
if (!is_comp_pred) {
assert(curr_sse >= 0);
inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
rd_stats->rdcost, rd_stats, rd_stats_y,
rd_stats_uv, mbmi);
}
} else {
assert(curr_sse >= 0);
inter_modes_info_push(inter_modes_info, mode_rate, curr_sse,
rd_stats->rdcost, rd_stats, rd_stats_y,
rd_stats_uv, mbmi);
}
mbmi->skip_txfm = 0;
} else {
// Perform full transform search
int64_t skip_rd = INT64_MAX;
int64_t skip_rdy = INT64_MAX;
if (cpi->sf.inter_sf.txfm_rd_gate_level) {
// Check if the mode is good enough based on skip RD
int64_t sse_y = INT64_MAX;
int64_t curr_sse = get_sse(cpi, x, &sse_y);
skip_rd = RDCOST(x->rdmult, rd_stats->rate, curr_sse);
skip_rdy = RDCOST(x->rdmult, rd_stats->rate, (sse_y << 4));
int eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd[0], skip_rd,
cpi->sf.inter_sf.txfm_rd_gate_level, 0);
if (!eval_txfm) continue;
}
// Do transform search
const int mode_rate = rd_stats->rate;
if (!av1_txfm_search(cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv,
rd_stats->rate, ref_best_rd)) {
if (rd_stats_y->rate == INT_MAX && mode_index == 0) {
return INT64_MAX;
}
continue;
}
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int y_rate =
rd_stats->skip_txfm
? x->mode_costs.skip_txfm_cost[skip_ctx][1]
: (rd_stats_y->rate + x->mode_costs.skip_txfm_cost[skip_ctx][0]);
this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y->dist);
const int64_t curr_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
if (curr_rd < ref_best_rd) {
ref_best_rd = curr_rd;
ref_skip_rd[0] = skip_rd;
ref_skip_rd[1] = skip_rdy;
}
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
inter_mode_data_push(
tile_data, mbmi->bsize, rd_stats->sse, rd_stats->dist,
rd_stats_y->rate + rd_stats_uv->rate +
mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]);
}
}
if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) {
if (is_nontrans_global_motion(xd, xd->mi[0])) {
mbmi->interp_filters =
av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
}
}
const int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
if (mode_index == 0) {
args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd;
}
if (mode_index == 0 || tmp_rd < best_rd) {
// Update best_rd data if this is the best motion mode so far
best_mbmi = *mbmi;
best_rd = tmp_rd;
best_rd_stats = *rd_stats;
best_rd_stats_y = *rd_stats_y;
best_rate_mv = tmp_rate_mv;
*yrd = this_yrd;
if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv;
memcpy(best_blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width);
best_xskip_txfm = mbmi->skip_txfm;
}
}
// Update RD and mbmi stats for selected motion mode
mbmi->ref_frame[1] = ref_frame_1;
*rate_mv = best_rate_mv;
if (best_rd == INT64_MAX || !av1_check_newmv_joint_nonzero(cm, x)) {
av1_invalid_rd_stats(rd_stats);
restore_dst_buf(xd, *orig_dst, num_planes);
return INT64_MAX;
}
*mbmi = best_mbmi;
*rd_stats = best_rd_stats;
*rd_stats_y = best_rd_stats_y;
if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv;
memcpy(txfm_info->blk_skip, best_blk_skip,
sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width);
txfm_info->skip_txfm = best_xskip_txfm;
restore_dst_buf(xd, *orig_dst, num_planes);
return 0;
}
static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi,
MACROBLOCK *const x, BLOCK_SIZE bsize,
const BUFFER_SET *const orig_dst) {
assert(bsize < BLOCK_SIZES_ALL);
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, 0,
av1_num_planes(cm) - 1);
int64_t total_sse = 0;
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblock_plane *const p = &x->plane[plane];
const struct macroblockd_plane *const pd = &xd->plane[plane];
const BLOCK_SIZE plane_bsize =
get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y);
const int bw = block_size_wide[plane_bsize];
const int bh = block_size_high[plane_bsize];
av1_subtract_plane(x, plane_bsize, plane);
int64_t sse = aom_sum_squares_2d_i16(p->src_diff, bw, bw, bh) << 4;
sse >>= ((cpi->frame_info.bit_depth - 8) * 2);
total_sse += sse;
}
const int skip_mode_ctx = av1_get_skip_mode_context(xd);
rd_stats->dist = rd_stats->sse = total_sse;
rd_stats->rate = x->mode_costs.skip_mode_cost[skip_mode_ctx][1];
rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
restore_dst_buf(xd, *orig_dst, num_planes);
return 0;
}
// Check NEARESTMV, NEARMV, GLOBALMV ref mvs for duplicate and skip the relevant
// mode
// Note(rachelbarker): This speed feature currently does not interact correctly
// with global motion. The issue is that, when global motion is used, GLOBALMV
// produces a different prediction to NEARESTMV/NEARMV even if the motion
// vectors are the same. Thus GLOBALMV should not be pruned in this case.
static INLINE int check_repeat_ref_mv(const MB_MODE_INFO_EXT *mbmi_ext,
int ref_idx,
const MV_REFERENCE_FRAME *ref_frame,
PREDICTION_MODE single_mode) {
const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
assert(single_mode != NEWMV);
if (single_mode == NEARESTMV) {
return 0;
} else if (single_mode == NEARMV) {
// when ref_mv_count = 0, NEARESTMV and NEARMV are same as GLOBALMV
// when ref_mv_count = 1, NEARMV is same as GLOBALMV
if (ref_mv_count < 2) return 1;
} else if (single_mode == GLOBALMV) {
// when ref_mv_count == 0, GLOBALMV is same as NEARESTMV
if (ref_mv_count == 0) return 1;
// when ref_mv_count == 1, NEARMV is same as GLOBALMV
else if (ref_mv_count == 1)
return 0;
int stack_size = AOMMIN(USABLE_REF_MV_STACK_SIZE, ref_mv_count);
// Check GLOBALMV is matching with any mv in ref_mv_stack
for (int ref_mv_idx = 0; ref_mv_idx < stack_size; ref_mv_idx++) {
int_mv this_mv;
if (ref_idx == 0)
this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv;
else
this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv;
if (this_mv.as_int == mbmi_ext->global_mvs[ref_frame[ref_idx]].as_int)
return 1;
}
}
return 0;
}
static INLINE int get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode,
int ref_idx, int ref_mv_idx,
int skip_repeated_ref_mv,
const MV_REFERENCE_FRAME *ref_frame,
const MB_MODE_INFO_EXT *mbmi_ext) {
const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx);
assert(is_inter_singleref_mode(single_mode));
if (single_mode == NEWMV) {
this_mv->as_int = INVALID_MV;
} else if (single_mode == GLOBALMV) {
if (skip_repeated_ref_mv &&
check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode))
return 0;
*this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
} else {
assert(single_mode == NEARMV || single_mode == NEARESTMV);
const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const int ref_mv_offset = single_mode == NEARESTMV ? 0 : ref_mv_idx + 1;
if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) {
assert(ref_mv_offset >= 0);
if (ref_idx == 0) {
*this_mv =
mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv;
} else {
*this_mv =
mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv;
}
} else {
if (skip_repeated_ref_mv &&
check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode))
return 0;
*this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]];
}
}
return 1;
}
// Skip NEARESTMV and NEARMV modes based on refmv weight computed in ref mv list
// population
static INLINE int skip_nearest_near_mv_using_refmv_weight(
const MACROBLOCK *const x, const PREDICTION_MODE this_mode,
const int8_t ref_frame_type) {
if (this_mode != NEARESTMV && this_mode != NEARMV) return 0;
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const uint16_t *const ref_mv_weight = mbmi_ext->weight[ref_frame_type];
const int ref_mv_count =
AOMMIN(MAX_REF_MV_SEARCH, mbmi_ext->ref_mv_count[ref_frame_type]);
if (ref_mv_count == 0) return 0;
// If ref mv list has at least one nearest candidate do not prune NEARESTMV
if (this_mode == NEARESTMV && ref_mv_weight[0] >= REF_CAT_LEVEL) return 0;
// Count number of ref mvs populated from nearest candidates
int nearest_refmv_count = 0;
for (int ref_mv_idx = 0; ref_mv_idx < ref_mv_count; ref_mv_idx++) {
if (ref_mv_weight[ref_mv_idx] >= REF_CAT_LEVEL) nearest_refmv_count++;
}
// nearest_refmv_count indicates the closeness of block motion characteristics
// with respect to its spatial neighbor. Smaller value of nearest_refmv_count
// w.r.t to ref_mv_count means less correlation with its spatial neighbors.
// Hence less possibility for NEARESTMV and NEARMV modes becoming the best
// mode since these modes work well for blocks that shares similar motion
// characteristics with its neighbor. Thus, NEARMV mode is pruned when
// nearest_refmv_count is relatively smaller than ref_mv_count and NEARESTMV
// mode is pruned if none of the ref mvs are populated from nearest candidate.
const int prune_thresh = 1 + (ref_mv_count >= 2);
if (nearest_refmv_count < prune_thresh) return 1;
return 0;
}
// This function update the non-new mv for the current prediction mode
static INLINE int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode,
const AV1_COMMON *cm, const MACROBLOCK *x,
int skip_repeated_ref_mv) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
const int is_comp_pred = has_second_ref(mbmi);
int ret = 1;
for (int i = 0; i < is_comp_pred + 1; ++i) {
int_mv this_mv;
this_mv.as_int = INVALID_MV;
ret = get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx,
skip_repeated_ref_mv, mbmi->ref_frame, &x->mbmi_ext);
if (!ret) return 0;
const PREDICTION_MODE single_mode = get_single_mode(this_mode, i);
if (single_mode == NEWMV) {
const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
cur_mv[i] =
(i == 0) ? x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
.this_mv
: x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx]
.comp_mv;
} else {
ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x);
}
}
return ret;
}
static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi,
const MB_MODE_INFO_EXT *mbmi_ext,
const int (*const drl_mode_cost0)[2],
int8_t ref_frame_type) {
int cost = 0;
if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) {
for (int idx = 0; idx < 2; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx];
if (mbmi->ref_mv_idx == idx) return cost;
}
}
return cost;
}
if (have_nearmv_in_inter_mode(mbmi->mode)) {
for (int idx = 1; idx < 3; ++idx) {
if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) {
uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx);
cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)];
if (mbmi->ref_mv_idx == (idx - 1)) return cost;
}
}
return cost;
}
return cost;
}
static INLINE int is_single_newmv_valid(const HandleInterModeArgs *const args,
const MB_MODE_INFO *const mbmi,
PREDICTION_MODE this_mode) {
for (int ref_idx = 0; ref_idx < 2; ++ref_idx) {
const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx);
const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx];
if (single_mode == NEWMV &&
args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) {
return 0;
}
}
return 1;
}
static int get_drl_refmv_count(const MACROBLOCK *const x,
const MV_REFERENCE_FRAME *ref_frame,
PREDICTION_MODE mode) {
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const int8_t ref_frame_type = av1_ref_frame_type(ref_frame);
const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0;
const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type];
const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV);
const int has_drl =
(has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1);
const int ref_set =
has_drl ? AOMMIN(MAX_REF_MV_SEARCH, ref_mv_count - has_nearmv) : 1;
return ref_set;
}
// Checks if particular ref_mv_idx should be pruned.
static int prune_ref_mv_idx_using_qindex(const int reduce_inter_modes,
const int qindex,
const int ref_mv_idx) {
if (reduce_inter_modes >= 3) return 1;
// Q-index logic based pruning is enabled only for
// reduce_inter_modes = 2.
assert(reduce_inter_modes == 2);
// When reduce_inter_modes=2, pruning happens as below based on q index.
// For q index range between 0 and 85: prune if ref_mv_idx >= 1.
// For q index range between 86 and 170: prune if ref_mv_idx == 2.
// For q index range between 171 and 255: no pruning.
const int min_prune_ref_mv_idx = (qindex * 3 / QINDEX_RANGE) + 1;
return (ref_mv_idx >= min_prune_ref_mv_idx);
}
// Whether this reference motion vector can be skipped, based on initial
// heuristics.
static bool ref_mv_idx_early_breakout(
const SPEED_FEATURES *const sf,
const RefFrameDistanceInfo *const ref_frame_dist_info, MACROBLOCK *x,
const HandleInterModeArgs *const args, int64_t ref_best_rd,
int ref_mv_idx) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
const int is_comp_pred = has_second_ref(mbmi);
if (sf->inter_sf.reduce_inter_modes && ref_mv_idx > 0) {
if (mbmi->ref_frame[0] == LAST2_FRAME ||
mbmi->ref_frame[0] == LAST3_FRAME ||
mbmi->ref_frame[1] == LAST2_FRAME ||
mbmi->ref_frame[1] == LAST3_FRAME) {
const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
if (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] <
REF_CAT_LEVEL) {
return true;
}
}
// TODO(any): Experiment with reduce_inter_modes for compound prediction
if (sf->inter_sf.reduce_inter_modes >= 2 && !is_comp_pred &&
have_newmv_in_inter_mode(mbmi->mode)) {
if (mbmi->ref_frame[0] != ref_frame_dist_info->nearest_past_ref &&
mbmi->ref_frame[0] != ref_frame_dist_info->nearest_future_ref) {
const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0;
const int do_prune = prune_ref_mv_idx_using_qindex(
sf->inter_sf.reduce_inter_modes, x->qindex, ref_mv_idx);
if (do_prune &&
(mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] <
REF_CAT_LEVEL)) {
return true;
}
}
}
}
mbmi->ref_mv_idx = ref_mv_idx;
if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, mbmi->mode))) {
return true;
}
size_t est_rd_rate = args->ref_frame_cost + args->single_comp_cost;
const int drl_cost = get_drl_cost(
mbmi, mbmi_ext, x->mode_costs.drl_mode_cost0, ref_frame_type);
est_rd_rate += drl_cost;
if (RDCOST(x->rdmult, est_rd_rate, 0) > ref_best_rd &&
mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
return true;
}
return false;
}
// Compute the estimated RD cost for the motion vector with simple translation.
static int64_t simple_translation_pred_rd(AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats,
HandleInterModeArgs *args,
int ref_mv_idx, int64_t ref_best_rd,
BLOCK_SIZE bsize) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
const AV1_COMMON *cm = &cpi->common;
const int is_comp_pred = has_second_ref(mbmi);
const ModeCosts *mode_costs = &x->mode_costs;
struct macroblockd_plane *p = xd->plane;
const BUFFER_SET orig_dst = {
{ p[0].dst.buf, p[1].dst.buf, p[2].dst.buf },
{ p[0].dst.stride, p[1].dst.stride, p[2].dst.stride },
};
av1_init_rd_stats(rd_stats);
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
mbmi->comp_group_idx = 0;
mbmi->compound_idx = 1;
if (mbmi->ref_frame[1] == INTRA_FRAME) {
mbmi->ref_frame[1] = NONE_FRAME;
}
int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
mbmi->num_proj_ref = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->ref_mv_idx = ref_mv_idx;
rd_stats->rate += args->ref_frame_cost + args->single_comp_cost;
const int drl_cost =
get_drl_cost(mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type);
rd_stats->rate += drl_cost;
int_mv cur_mv[2];
if (!build_cur_mv(cur_mv, mbmi->mode, cm, x, 0)) {
return INT64_MAX;
}
assert(have_nearmv_in_inter_mode(mbmi->mode));
for (int i = 0; i < is_comp_pred + 1; ++i) {
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
const int ref_mv_cost = cost_mv_ref(mode_costs, mbmi->mode, mode_ctx);
rd_stats->rate += ref_mv_cost;
if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd) {
return INT64_MAX;
}
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->num_proj_ref = 0;
if (is_comp_pred) {
// Only compound_average
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
mbmi->comp_group_idx = 0;
mbmi->compound_idx = 1;
}
set_default_interp_filters(mbmi, cm->features.interp_filter);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize,
AOM_PLANE_Y, AOM_PLANE_Y);
int est_rate;
int64_t est_dist;
model_rd_sb_fn[MODELRD_CURVFIT](cpi, bsize, x, xd, 0, 0, &est_rate, &est_dist,
NULL, NULL, NULL, NULL, NULL);
return RDCOST(x->rdmult, rd_stats->rate + est_rate, est_dist);
}
// Represents a set of integers, from 0 to sizeof(int) * 8, as bits in
// an integer. 0 for the i-th bit means that integer is excluded, 1 means
// it is included.
static INLINE void mask_set_bit(int *mask, int index) { *mask |= (1 << index); }
static INLINE bool mask_check_bit(int mask, int index) {
return (mask >> index) & 0x1;
}
// Before performing the full MV search in handle_inter_mode, do a simple
// translation search and see if we can eliminate any motion vectors.
// Returns an integer where, if the i-th bit is set, it means that the i-th
// motion vector should be searched. This is only set for NEAR_MV.
static int ref_mv_idx_to_search(AV1_COMP *const cpi, MACROBLOCK *x,
RD_STATS *rd_stats,
HandleInterModeArgs *const args,
int64_t ref_best_rd, BLOCK_SIZE bsize,
const int ref_set) {
AV1_COMMON *const cm = &cpi->common;
const MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const PREDICTION_MODE this_mode = mbmi->mode;
// Only search indices if they have some chance of being good.
int good_indices = 0;
for (int i = 0; i < ref_set; ++i) {
if (ref_mv_idx_early_breakout(&cpi->sf, &cpi->ref_frame_dist_info, x, args,
ref_best_rd, i)) {
continue;
}
mask_set_bit(&good_indices, i);
}
// Only prune in NEARMV mode, if the speed feature is set, and the block size
// is large enough. If these conditions are not met, return all good indices
// found so far.
if (!cpi->sf.inter_sf.prune_mode_search_simple_translation)
return good_indices;
if (!have_nearmv_in_inter_mode(this_mode)) return good_indices;
if (num_pels_log2_lookup[bsize] <= 6) return good_indices;
// Do not prune when there is internal resizing. TODO(elliottk) fix this
// so b/2384 can be resolved.
if (av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[0])) ||
(mbmi->ref_frame[1] > 0 &&
av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[1])))) {
return good_indices;
}
// Calculate the RD cost for the motion vectors using simple translation.
int64_t idx_rdcost[] = { INT64_MAX, INT64_MAX, INT64_MAX };
for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
// If this index is bad, ignore it.
if (!mask_check_bit(good_indices, ref_mv_idx)) {
continue;
}
idx_rdcost[ref_mv_idx] = simple_translation_pred_rd(
cpi, x, rd_stats, args, ref_mv_idx, ref_best_rd, bsize);
}
// Find the index with the best RD cost.
int best_idx = 0;
for (int i = 1; i < MAX_REF_MV_SEARCH; ++i) {
if (idx_rdcost[i] < idx_rdcost[best_idx]) {
best_idx = i;
}
}
// Only include indices that are good and within a % of the best.
const double dth = has_second_ref(mbmi) ? 1.05 : 1.001;
// If the simple translation cost is not within this multiple of the
// best RD, skip it. Note that the cutoff is derived experimentally.
const double ref_dth = 5;
int result = 0;
for (int i = 0; i < ref_set; ++i) {
if (mask_check_bit(good_indices, i) &&
(1.0 * idx_rdcost[i]) / idx_rdcost[best_idx] < dth &&
(1.0 * idx_rdcost[i]) / ref_best_rd < ref_dth) {
mask_set_bit(&result, i);
}
}
return result;
}
/*!\brief Motion mode information for inter mode search speedup.
*
* Used in a speed feature to search motion modes other than
* SIMPLE_TRANSLATION only on winning candidates.
*/
typedef struct motion_mode_candidate {
/*!
* Mode info for the motion mode candidate.
*/
MB_MODE_INFO mbmi;
/*!
* Rate describing the cost of the motion vectors for this candidate.
*/
int rate_mv;
/*!
* Rate before motion mode search and transform coding is applied.
*/
int rate2_nocoeff;
/*!
* An integer value 0 or 1 which indicates whether or not to skip the motion
* mode search and default to SIMPLE_TRANSLATION as a speed feature for this
* candidate.
*/
int skip_motion_mode;
/*!
* Total RD cost for this candidate.
*/
int64_t rd_cost;
} motion_mode_candidate;
/*!\cond */
typedef struct motion_mode_best_st_candidate {
motion_mode_candidate motion_mode_cand[MAX_WINNER_MOTION_MODES];
int num_motion_mode_cand;
} motion_mode_best_st_candidate;
// Checks if the current reference frame matches with neighbouring block's
// (top/left) reference frames
static AOM_INLINE int ref_match_found_in_nb_blocks(MB_MODE_INFO *cur_mbmi,
MB_MODE_INFO *nb_mbmi) {
MV_REFERENCE_FRAME nb_ref_frames[2] = { nb_mbmi->ref_frame[0],
nb_mbmi->ref_frame[1] };
MV_REFERENCE_FRAME cur_ref_frames[2] = { cur_mbmi->ref_frame[0],
cur_mbmi->ref_frame[1] };
const int is_cur_comp_pred = has_second_ref(cur_mbmi);
int match_found = 0;
for (int i = 0; i < (is_cur_comp_pred + 1); i++) {
if ((cur_ref_frames[i] == nb_ref_frames[0]) ||
(cur_ref_frames[i] == nb_ref_frames[1]))
match_found = 1;
}
return match_found;
}
static AOM_INLINE int find_ref_match_in_above_nbs(const int total_mi_cols,
MACROBLOCKD *xd) {
if (!xd->up_available) return 1;
const int mi_col = xd->mi_col;
MB_MODE_INFO **cur_mbmi = xd->mi;
// prev_row_mi points into the mi array, starting at the beginning of the
// previous row.
MB_MODE_INFO **prev_row_mi = xd->mi - mi_col - 1 * xd->mi_stride;
const int end_col = AOMMIN(mi_col + xd->width, total_mi_cols);
uint8_t mi_step;
for (int above_mi_col = mi_col; above_mi_col < end_col;
above_mi_col += mi_step) {
MB_MODE_INFO **above_mi = prev_row_mi + above_mi_col;
mi_step = mi_size_wide[above_mi[0]->bsize];
int match_found = 0;
if (is_inter_block(*above_mi))
match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *above_mi);
if (match_found) return 1;
}
return 0;
}
static AOM_INLINE int find_ref_match_in_left_nbs(const int total_mi_rows,
MACROBLOCKD *xd) {
if (!xd->left_available) return 1;
const int mi_row = xd->mi_row;
MB_MODE_INFO **cur_mbmi = xd->mi;
// prev_col_mi points into the mi array, starting at the top of the
// previous column
MB_MODE_INFO **prev_col_mi = xd->mi - 1 - mi_row * xd->mi_stride;
const int end_row = AOMMIN(mi_row + xd->height, total_mi_rows);
uint8_t mi_step;
for (int left_mi_row = mi_row; left_mi_row < end_row;
left_mi_row += mi_step) {
MB_MODE_INFO **left_mi = prev_col_mi + left_mi_row * xd->mi_stride;
mi_step = mi_size_high[left_mi[0]->bsize];
int match_found = 0;
if (is_inter_block(*left_mi))
match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *left_mi);
if (match_found) return 1;
}
return 0;
}
/*!\endcond */
/*! \brief Struct used to hold TPL data to
* narrow down parts of the inter mode search.
*/
typedef struct {
/*!
* The best inter cost out of all of the reference frames.
*/
int64_t best_inter_cost;
/*!
* The inter cost for each reference frame.
*/
int64_t ref_inter_cost[INTER_REFS_PER_FRAME];
} PruneInfoFromTpl;
#if !CONFIG_REALTIME_ONLY
// TODO(Remya): Check if get_tpl_stats_b() can be reused
static AOM_INLINE void get_block_level_tpl_stats(
AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, int *valid_refs,
PruneInfoFromTpl *inter_cost_info_from_tpl) {
AV1_COMMON *const cm = &cpi->common;
assert(IMPLIES(cpi->ppi->gf_group.size > 0,
cpi->gf_frame_index < cpi->ppi->gf_group.size));
const int tpl_idx = cpi->gf_frame_index;
TplParams *const tpl_data = &cpi->ppi->tpl_data;
if (!av1_tpl_stats_ready(tpl_data, tpl_idx)) return;
const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx];
const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr;
const int mi_wide = mi_size_wide[bsize];
const int mi_high = mi_size_high[bsize];
const int tpl_stride = tpl_frame->stride;
const int step = 1 << tpl_data->tpl_stats_block_mis_log2;
const int mi_col_sr =
coded_to_superres_mi(mi_col, cm->superres_scale_denominator);
const int mi_col_end_sr =
coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator);
const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width);
const int row_step = step;
const int col_step_sr =
coded_to_superres_mi(step, cm->superres_scale_denominator);
for (int row = mi_row; row < AOMMIN(mi_row + mi_high, cm->mi_params.mi_rows);
row += row_step) {
for (int col = mi_col_sr; col < AOMMIN(mi_col_end_sr, mi_cols_sr);
col += col_step_sr) {
const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(
row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)];
// Sums up the inter cost of corresponding ref frames
for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) {
inter_cost_info_from_tpl->ref_inter_cost[ref_idx] +=
this_stats->pred_error[ref_idx];
}
}
}
// Computes the best inter cost (minimum inter_cost)
int64_t best_inter_cost = INT64_MAX;
for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) {
const int64_t cur_inter_cost =
inter_cost_info_from_tpl->ref_inter_cost[ref_idx];
// For invalid ref frames, cur_inter_cost = 0 and has to be handled while
// calculating the minimum inter_cost
if (cur_inter_cost != 0 && (cur_inter_cost < best_inter_cost) &&
valid_refs[ref_idx])
best_inter_cost = cur_inter_cost;
}
inter_cost_info_from_tpl->best_inter_cost = best_inter_cost;
}
#endif
static AOM_INLINE int prune_modes_based_on_tpl_stats(
PruneInfoFromTpl *inter_cost_info_from_tpl, const int *refs, int ref_mv_idx,
const PREDICTION_MODE this_mode, int prune_mode_level) {
const int have_newmv = have_newmv_in_inter_mode(this_mode);
if ((prune_mode_level < 2) && have_newmv) return 0;
const int64_t best_inter_cost = inter_cost_info_from_tpl->best_inter_cost;
if (best_inter_cost == INT64_MAX) return 0;
const int prune_level = prune_mode_level - 1;
int64_t cur_inter_cost;
const int is_globalmv =
(this_mode == GLOBALMV) || (this_mode == GLOBAL_GLOBALMV);
const int prune_index = is_globalmv ? MAX_REF_MV_SEARCH : ref_mv_idx;
// Thresholds used for pruning:
// Lower value indicates aggressive pruning and higher value indicates
// conservative pruning which is set based on ref_mv_idx and speed feature.
// 'prune_index' 0, 1, 2 corresponds to ref_mv indices 0, 1 and 2. prune_index
// 3 corresponds to GLOBALMV/GLOBAL_GLOBALMV
static const int tpl_inter_mode_prune_mul_factor[3][MAX_REF_MV_SEARCH + 1] = {
{ 6, 6, 6, 4 }, { 6, 4, 4, 4 }, { 5, 4, 4, 4 }
};
const int is_comp_pred = (refs[1] > INTRA_FRAME);
if (!is_comp_pred) {
cur_inter_cost = inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1];
} else {
const int64_t inter_cost_ref0 =
inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1];
const int64_t inter_cost_ref1 =
inter_cost_info_from_tpl->ref_inter_cost[refs[1] - 1];
// Choose maximum inter_cost among inter_cost_ref0 and inter_cost_ref1 for
// more aggressive pruning
cur_inter_cost = AOMMAX(inter_cost_ref0, inter_cost_ref1);
}
// Prune the mode if cur_inter_cost is greater than threshold times
// best_inter_cost
if (cur_inter_cost >
((tpl_inter_mode_prune_mul_factor[prune_level][prune_index] *
best_inter_cost) >>
2))
return 1;
return 0;
}
/*!\brief High level function to select parameters for compound mode.
*
* \ingroup inter_mode_search
* The main search functionality is done in the call to av1_compound_type_rd().
*
* \param[in] cpi Top-level encoder structure.
* \param[in] x Pointer to struct holding all the data for
* the current macroblock.
* \param[in] args HandleInterModeArgs struct holding
* miscellaneous arguments for inter mode
* search. See the documentation for this
* struct for a description of each member.
* \param[in] ref_best_rd Best RD found so far for this block.
* It is used for early termination of this
* search if the RD exceeds this value.
* \param[in,out] cur_mv Current motion vector.
* \param[in] bsize Current block size.
* \param[in,out] compmode_interinter_cost RD of the selected interinter
compound mode.
* \param[in,out] rd_buffers CompoundTypeRdBuffers struct to hold all
* allocated buffers for the compound
* predictors and masks in the compound type
* search.
* \param[in,out] orig_dst A prediction buffer to hold a computed
* prediction. This will eventually hold the
* final prediction, and the tmp_dst info will
* be copied here.
* \param[in] tmp_dst A temporary prediction buffer to hold a
* computed prediction.
* \param[in,out] rate_mv The rate associated with the motion vectors.
* This will be modified if a motion search is
* done in the motion mode search.
* \param[in,out] rd_stats Struct to keep track of the overall RD
* information.
* \param[in,out] skip_rd An array of length 2 where skip_rd[0] is the
* best total RD for a skip mode so far, and
* skip_rd[1] is the best RD for a skip mode so
* far in luma. This is used as a speed feature
* to skip the transform search if the computed
* skip RD for the current mode is not better
* than the best skip_rd so far.
* \param[in,out] skip_build_pred Indicates whether or not to build the inter
* predictor. If this is 0, the inter predictor
* has already been built and thus we can avoid
* repeating computation.
* \return Returns 1 if this mode is worse than one already seen and 0 if it is
* a viable candidate.
*/
static int process_compound_inter_mode(
AV1_COMP *const cpi, MACROBLOCK *x, HandleInterModeArgs *args,
int64_t ref_best_rd, int_mv *cur_mv, BLOCK_SIZE bsize,
int *compmode_interinter_cost, const CompoundTypeRdBuffers *rd_buffers,
const BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst, int *rate_mv,
RD_STATS *rd_stats, int64_t *skip_rd, int *skip_build_pred) {
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
const AV1_COMMON *cm = &cpi->common;
const int masked_compound_used = is_any_masked_compound_used(bsize) &&
cm->seq_params->enable_masked_compound;
int mode_search_mask = (1 << COMPOUND_AVERAGE) | (1 << COMPOUND_DISTWTD) |
(1 << COMPOUND_WEDGE) | (1 << COMPOUND_DIFFWTD);
const int num_planes = av1_num_planes(cm);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
int is_luma_interp_done = 0;
set_default_interp_filters(mbmi, cm->features.interp_filter);
int64_t best_rd_compound;
int64_t rd_thresh;
const int comp_type_rd_shift = COMP_TYPE_RD_THRESH_SHIFT;
const int comp_type_rd_scale = COMP_TYPE_RD_THRESH_SCALE;
rd_thresh = get_rd_thresh_from_best_rd(ref_best_rd, (1 << comp_type_rd_shift),
comp_type_rd_scale);
// Select compound type and any parameters related to that type
// (for example, the mask parameters if it is a masked mode) and compute
// the RD
*compmode_interinter_cost = av1_compound_type_rd(
cpi, x, args, bsize, cur_mv, mode_search_mask, masked_compound_used,
orig_dst, tmp_dst, rd_buffers, rate_mv, &best_rd_compound, rd_stats,
ref_best_rd, skip_rd[1], &is_luma_interp_done, rd_thresh);
if (ref_best_rd < INT64_MAX &&
(best_rd_compound >> comp_type_rd_shift) * comp_type_rd_scale >
ref_best_rd) {
restore_dst_buf(xd, *orig_dst, num_planes);
return 1;
}
// Build only uv predictor for COMPOUND_AVERAGE.
// Note there is no need to call av1_enc_build_inter_predictor
// for luma if COMPOUND_AVERAGE is selected because it is the first
// candidate in av1_compound_type_rd, which means it used the dst_buf
// rather than the tmp_buf.
if (mbmi->interinter_comp.type == COMPOUND_AVERAGE && is_luma_interp_done) {
if (num_planes > 1) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize,
AOM_PLANE_U, num_planes - 1);
}
*skip_build_pred = 1;
}
return 0;
}
// Speed feature to prune out MVs that are similar to previous MVs if they
// don't achieve the best RD advantage.
static int prune_ref_mv_idx_search(int ref_mv_idx, int best_ref_mv_idx,
int_mv save_mv[MAX_REF_MV_SEARCH - 1][2],
MB_MODE_INFO *mbmi, int pruning_factor) {
int i;
const int is_comp_pred = has_second_ref(mbmi);
const int thr = (1 + is_comp_pred) << (pruning_factor + 1);
// Skip the evaluation if an MV match is found.
if (ref_mv_idx > 0) {
for (int idx = 0; idx < ref_mv_idx; ++idx) {
if (save_mv[idx][0].as_int == INVALID_MV) continue;
int mv_diff = 0;
for (i = 0; i < 1 + is_comp_pred; ++i) {
mv_diff += abs(save_mv[idx][i].as_mv.row - mbmi->mv[i].as_mv.row) +
abs(save_mv[idx][i].as_mv.col - mbmi->mv[i].as_mv.col);
}
// If this mode is not the best one, and current MV is similar to
// previous stored MV, terminate this ref_mv_idx evaluation.
if (best_ref_mv_idx == -1 && mv_diff <= thr) return 1;
}
}
if (ref_mv_idx < MAX_REF_MV_SEARCH - 1) {
for (i = 0; i < is_comp_pred + 1; ++i)
save_mv[ref_mv_idx][i].as_int = mbmi->mv[i].as_int;
}
return 0;
}
/*!\brief Prunes ZeroMV Search Using Best NEWMV's SSE
*
* \ingroup inter_mode_search
*
* Compares the sse of zero mv and the best sse found in single new_mv. If the
* sse of the zero_mv is higher, returns 1 to signal zero_mv can be skipped.
* Else returns 0.
*
* Note that the sse of here comes from single_motion_search. So it is
* interpolated with the filter in motion search, not the actual interpolation
* filter used in encoding.
*
* \param[in] fn_ptr A table of function pointers to compute SSE.
* \param[in] x Pointer to struct holding all the data for
* the current macroblock.
* \param[in] bsize The current block_size.
* \param[in] args The args to handle_inter_mode, used to track
* the best SSE.
* \param[in] prune_zero_mv_with_sse The argument holds speed feature
* prune_zero_mv_with_sse value
* \return Returns 1 if zero_mv is pruned, 0 otherwise.
*/
static AOM_INLINE int prune_zero_mv_with_sse(
const aom_variance_fn_ptr_t *fn_ptr, const MACROBLOCK *x, BLOCK_SIZE bsize,
const HandleInterModeArgs *args, int prune_zero_mv_with_sse) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
const int is_comp_pred = has_second_ref(mbmi);
const MV_REFERENCE_FRAME *refs = mbmi->ref_frame;
for (int idx = 0; idx < 1 + is_comp_pred; idx++) {
if (xd->global_motion[refs[idx]].wmtype != IDENTITY) {
// Pruning logic only works for IDENTITY type models
// Note: In theory we could apply similar logic for TRANSLATION
// type models, but we do not code these due to a spec bug
// (see comments in gm_get_motion_vector() in av1/common/mv.h)
assert(xd->global_motion[refs[idx]].wmtype != TRANSLATION);
return 0;
}
// Don't prune if we have invalid data
assert(mbmi->mv[idx].as_int == 0);
if (args->best_single_sse_in_refs[refs[idx]] == INT32_MAX) {
return 0;
}
}
// Sum up the sse of ZEROMV and best NEWMV
unsigned int this_sse_sum = 0;
unsigned int best_sse_sum = 0;
for (int idx = 0; idx < 1 + is_comp_pred; idx++) {
const struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y];
const struct macroblockd_plane *pd = xd->plane;
const struct buf_2d *src_buf = &p->src;
const struct buf_2d *ref_buf = &pd->pre[idx];
const uint8_t *src = src_buf->buf;
const uint8_t *ref = ref_buf->buf;
const int src_stride = src_buf->stride;
const int ref_stride = ref_buf->stride;
unsigned int this_sse;
fn_ptr[bsize].vf(ref, ref_stride, src, src_stride, &this_sse);
this_sse_sum += this_sse;
const unsigned int best_sse = args->best_single_sse_in_refs[refs[idx]];
best_sse_sum += best_sse;
}
const double mul = prune_zero_mv_with_sse > 1 ? 1.00 : 1.25;
if ((double)this_sse_sum > (mul * (double)best_sse_sum)) {
return 1;
}
return 0;
}
/*!\brief Searches for interpolation filter in realtime mode during winner eval
*
* \ingroup inter_mode_search
*
* Does a simple interpolation filter search during winner mode evaluation. This
* is currently only used by realtime mode as \ref
* av1_interpolation_filter_search is not called during realtime encoding.
*
* This function only searches over two possible filters. EIGHTTAP_REGULAR is
* always search. For lowres clips (<= 240p), MULTITAP_SHARP is also search. For
* higher res slips (>240p), EIGHTTAP_SMOOTH is also searched.
* *
* \param[in] cpi Pointer to the compressor. Used for feature
* flags.
* \param[in,out] x Pointer to macroblock. This is primarily
* used to access the buffers.
* \param[in] mi_row The current row in mi unit (4X4 pixels).
* \param[in] mi_col The current col in mi unit (4X4 pixels).
* \param[in] bsize The current block_size.
* \return Returns true if a predictor is built in xd->dst, false otherwise.
*/
static AOM_INLINE bool fast_interp_search(const AV1_COMP *cpi, MACROBLOCK *x,
int mi_row, int mi_col,
BLOCK_SIZE bsize) {
static const InterpFilters filters_ref_set[3] = {
{ EIGHTTAP_REGULAR, EIGHTTAP_REGULAR },
{ EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH },
{ MULTITAP_SHARP, MULTITAP_SHARP }
};
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mi = xd->mi[0];
int64_t best_cost = INT64_MAX;
int best_filter_index = -1;
// dst_bufs[0] sores the new predictor, and dist_bifs[1] stores the best
const int num_planes = av1_num_planes(cm);
const int is_240p_or_lesser = AOMMIN(cm->width, cm->height) <= 240;
assert(is_inter_mode(mi->mode));
assert(mi->motion_mode == SIMPLE_TRANSLATION);
assert(!is_inter_compound_mode(mi->mode));
if (!av1_is_interp_needed(xd)) {
return false;
}
struct macroblockd_plane *pd = xd->plane;
const BUFFER_SET orig_dst = {
{ pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
{ pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
};
uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]);
const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE,
tmp_buf + 2 * MAX_SB_SQUARE },
{ MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } };
const BUFFER_SET *dst_bufs[2] = { &orig_dst, &tmp_dst };
for (int i = 0; i < 3; ++i) {
if (is_240p_or_lesser) {
if (filters_ref_set[i].x_filter == EIGHTTAP_SMOOTH) {
continue;
}
} else {
if (filters_ref_set[i].x_filter == MULTITAP_SHARP) {
continue;
}
}
int64_t cost;
RD_STATS tmp_rd = { 0 };
mi->interp_filters.as_filters = filters_ref_set[i];
av1_enc_build_inter_predictor_y(xd, mi_row, mi_col);
model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model
? MODELRD_LEGACY
: MODELRD_TYPE_INTERP_FILTER](
cpi, bsize, x, xd, AOM_PLANE_Y, AOM_PLANE_Y, &tmp_rd.rate, &tmp_rd.dist,
&tmp_rd.skip_txfm, &tmp_rd.sse, NULL, NULL, NULL);
tmp_rd.rate += av1_get_switchable_rate(x, xd, cm->features.interp_filter,
cm->seq_params->enable_dual_filter);
cost = RDCOST(x->rdmult, tmp_rd.rate, tmp_rd.dist);
if (cost < best_cost) {
best_filter_index = i;
best_cost = cost;
swap_dst_buf(xd, dst_bufs, num_planes);
}
}
assert(best_filter_index >= 0);
mi->interp_filters.as_filters = filters_ref_set[best_filter_index];
const bool is_best_pred_in_orig = &orig_dst == dst_bufs[1];
if (is_best_pred_in_orig) {
swap_dst_buf(xd, dst_bufs, num_planes);
} else {
// Note that xd->pd's bufers are kept in sync with dst_bufs[0]. So if
// is_best_pred_in_orig is false, that means the current buffer is the
// original one.
assert(&orig_dst == dst_bufs[0]);
assert(xd->plane[AOM_PLANE_Y].dst.buf == orig_dst.plane[AOM_PLANE_Y]);
const int width = block_size_wide[bsize];
const int height = block_size_high[bsize];
#if CONFIG_AV1_HIGHBITDEPTH
const bool is_hbd = is_cur_buf_hbd(xd);
if (is_hbd) {
aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(tmp_dst.plane[AOM_PLANE_Y]),
tmp_dst.stride[AOM_PLANE_Y],
CONVERT_TO_SHORTPTR(orig_dst.plane[AOM_PLANE_Y]),
orig_dst.stride[AOM_PLANE_Y], width, height);
} else {
aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y],
orig_dst.plane[AOM_PLANE_Y],
orig_dst.stride[AOM_PLANE_Y], width, height);
}
#else
aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y],
orig_dst.plane[AOM_PLANE_Y], orig_dst.stride[AOM_PLANE_Y],
width, height);
#endif
}
// Build the YUV predictor.
if (num_planes > 1) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize,
AOM_PLANE_U, AOM_PLANE_V);
}
return true;
}
/*!\brief AV1 inter mode RD computation
*
* \ingroup inter_mode_search
* Do the RD search for a given inter mode and compute all information relevant
* to the input mode. It will compute the best MV,
* compound parameters (if the mode is a compound mode) and interpolation filter
* parameters.
*
* \param[in] cpi Top-level encoder structure.
* \param[in] tile_data Pointer to struct holding adaptive
* data/contexts/models for the tile during
* encoding.
* \param[in] x Pointer to structure holding all the data
* for the current macroblock.
* \param[in] bsize Current block size.
* \param[in,out] rd_stats Struct to keep track of the overall RD
* information.
* \param[in,out] rd_stats_y Struct to keep track of the RD information
* for only the Y plane.
* \param[in,out] rd_stats_uv Struct to keep track of the RD information
* for only the UV planes.
* \param[in] args HandleInterModeArgs struct holding
* miscellaneous arguments for inter mode
* search. See the documentation for this
* struct for a description of each member.
* \param[in] ref_best_rd Best RD found so far for this block.
* It is used for early termination of this
* search if the RD exceeds this value.
* \param[in] tmp_buf Temporary buffer used to hold predictors
* built in this search.
* \param[in,out] rd_buffers CompoundTypeRdBuffers struct to hold all
* allocated buffers for the compound
* predictors and masks in the compound type
* search.
* \param[in,out] best_est_rd Estimated RD for motion mode search if
* do_tx_search (see below) is 0.
* \param[in] do_tx_search Parameter to indicate whether or not to do
* a full transform search. This will compute
* an estimated RD for the modes without the
* transform search and later perform the full
* transform search on the best candidates.
* \param[in,out] inter_modes_info InterModesInfo struct to hold inter mode
* information to perform a full transform
* search only on winning candidates searched
* with an estimate for transform coding RD.
* \param[in,out] motion_mode_cand A motion_mode_candidate struct to store
* motion mode information used in a speed
* feature to search motion modes other than
* SIMPLE_TRANSLATION only on winning
* candidates.
* \param[in,out] skip_rd A length 2 array, where skip_rd[0] is the
* best total RD for a skip mode so far, and
* skip_rd[1] is the best RD for a skip mode so
* far in luma. This is used as a speed feature
* to skip the transform search if the computed
* skip RD for the current mode is not better
* than the best skip_rd so far.
* \param[in] inter_cost_info_from_tpl A PruneInfoFromTpl struct used to
* narrow down the search based on data
* collected in the TPL model.
* \param[out] yrd Stores the rdcost corresponding to encoding
* the luma plane.
*
* \return The RD cost for the mode being searched.
*/
static int64_t handle_inter_mode(
AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *x,
BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y,
RD_STATS *rd_stats_uv, HandleInterModeArgs *args, int64_t ref_best_rd,
uint8_t *const tmp_buf, const CompoundTypeRdBuffers *rd_buffers,
int64_t *best_est_rd, const int do_tx_search,
InterModesInfo *inter_modes_info, motion_mode_candidate *motion_mode_cand,
int64_t *skip_rd, PruneInfoFromTpl *inter_cost_info_from_tpl,
int64_t *yrd) {
const AV1_COMMON *cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *xd = &x->e_mbd;
MB_MODE_INFO *mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
const int is_comp_pred = has_second_ref(mbmi);
const PREDICTION_MODE this_mode = mbmi->mode;
#if CONFIG_REALTIME_ONLY
const int prune_modes_based_on_tpl = 0;
#else // CONFIG_REALTIME_ONLY
const TplParams *const tpl_data = &cpi->ppi->tpl_data;
const int prune_modes_based_on_tpl =
cpi->sf.inter_sf.prune_inter_modes_based_on_tpl &&
av1_tpl_stats_ready(tpl_data, cpi->gf_frame_index);
#endif // CONFIG_REALTIME_ONLY
int i;
// Reference frames for this mode
const int refs[2] = { mbmi->ref_frame[0],
(mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) };
int rate_mv = 0;
int64_t rd = INT64_MAX;
// Do first prediction into the destination buffer. Do the next
// prediction into a temporary buffer. Then keep track of which one
// of these currently holds the best predictor, and use the other
// one for future predictions. In the end, copy from tmp_buf to
// dst if necessary.
struct macroblockd_plane *pd = xd->plane;
const BUFFER_SET orig_dst = {
{ pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
{ pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
};
const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE,
tmp_buf + 2 * MAX_SB_SQUARE },
{ MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } };
int64_t ret_val = INT64_MAX;
const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv;
int64_t best_rd = INT64_MAX;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
int64_t best_yrd = INT64_MAX;
MB_MODE_INFO best_mbmi = *mbmi;
int best_xskip_txfm = 0;
int64_t newmv_ret_val = INT64_MAX;
inter_mode_info mode_info[MAX_REF_MV_SEARCH];
// Do not prune the mode based on inter cost from tpl if the current ref frame
// is the winner ref in neighbouring blocks.
int ref_match_found_in_above_nb = 0;
int ref_match_found_in_left_nb = 0;
if (prune_modes_based_on_tpl) {
ref_match_found_in_above_nb =
find_ref_match_in_above_nbs(cm->mi_params.mi_cols, xd);
ref_match_found_in_left_nb =
find_ref_match_in_left_nbs(cm->mi_params.mi_rows, xd);
}
// First, perform a simple translation search for each of the indices. If
// an index performs well, it will be fully searched in the main loop
// of this function.
const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);
// Save MV results from first 2 ref_mv_idx.
int_mv save_mv[MAX_REF_MV_SEARCH - 1][2];
int best_ref_mv_idx = -1;
const int idx_mask =
ref_mv_idx_to_search(cpi, x, rd_stats, args, ref_best_rd, bsize, ref_set);
const int16_t mode_ctx =
av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame);
const ModeCosts *mode_costs = &x->mode_costs;
const int ref_mv_cost = cost_mv_ref(mode_costs, this_mode, mode_ctx);
const int base_rate =
args->ref_frame_cost + args->single_comp_cost + ref_mv_cost;
// As per the experiments, in real-time preset impact of model rd based
// breakouts is less on encoding time if the following conditions are true.
// (1) compound mode is disabled
// (2) interpolation filter search is disabled
// TODO(any): Check the impact of model rd based breakouts in other presets
const int skip_interp_search_modelrd_calc =
cpi->oxcf.mode == REALTIME &&
cm->current_frame.reference_mode == SINGLE_REFERENCE &&
(cpi->sf.rt_sf.skip_interp_filter_search ||
cpi->sf.winner_mode_sf.winner_mode_ifs);
for (i = 0; i < MAX_REF_MV_SEARCH - 1; ++i) {
save_mv[i][0].as_int = INVALID_MV;
save_mv[i][1].as_int = INVALID_MV;
}
args->start_mv_cnt = 0;
// Main loop of this function. This will iterate over all of the ref mvs
// in the dynamic reference list and do the following:
// 1.) Get the current MV. Create newmv MV if necessary
// 2.) Search compound type and parameters if applicable
// 3.) Do interpolation filter search
// 4.) Build the inter predictor
// 5.) Pick the motion mode (SIMPLE_TRANSLATION, OBMC_CAUSAL,
// WARPED_CAUSAL)
// 6.) Update stats if best so far
for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) {
mbmi->ref_mv_idx = ref_mv_idx;
mode_info[ref_mv_idx].full_search_mv.as_int = INVALID_MV;
mode_info[ref_mv_idx].full_mv_bestsme = INT_MAX;
const int drl_cost = get_drl_cost(
mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type);
mode_info[ref_mv_idx].drl_cost = drl_cost;
mode_info[ref_mv_idx].skip = 0;
if (!mask_check_bit(idx_mask, ref_mv_idx)) {
// MV did not perform well in simple translation search. Skip it.
continue;
}
if (prune_modes_based_on_tpl && !ref_match_found_in_above_nb &&
!ref_match_found_in_left_nb && (ref_best_rd != INT64_MAX)) {
// Skip mode if TPL model indicates it will not be beneficial.
if (prune_modes_based_on_tpl_stats(
inter_cost_info_from_tpl, refs, ref_mv_idx, this_mode,
cpi->sf.inter_sf.prune_inter_modes_based_on_tpl))
continue;
}
av1_init_rd_stats(rd_stats);
// Initialize compound mode data
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
mbmi->comp_group_idx = 0;
mbmi->compound_idx = 1;
if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME;
mbmi->num_proj_ref = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
// Compute cost for signalling this DRL index
rd_stats->rate = base_rate;
rd_stats->rate += drl_cost;
int rs = 0;
int compmode_interinter_cost = 0;
int_mv cur_mv[2];
// TODO(Cherma): Extend this speed feature to support compound mode
int skip_repeated_ref_mv =
is_comp_pred ? 0 : cpi->sf.inter_sf.skip_repeated_ref_mv;
// Generate the current mv according to the prediction mode
if (!build_cur_mv(cur_mv, this_mode, cm, x, skip_repeated_ref_mv)) {
continue;
}
// The above call to build_cur_mv does not handle NEWMV modes. Build
// the mv here if we have NEWMV for any predictors.
if (have_newmv_in_inter_mode(this_mode)) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, handle_newmv_time);
#endif
newmv_ret_val =
handle_newmv(cpi, x, bsize, cur_mv, &rate_mv, args, mode_info);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, handle_newmv_time);
#endif
if (newmv_ret_val != 0) continue;
if (is_inter_singleref_mode(this_mode) &&
cur_mv[0].as_int != INVALID_MV) {
const MV_REFERENCE_FRAME ref = refs[0];
const unsigned int this_sse = x->pred_sse[ref];
if (this_sse < args->best_single_sse_in_refs[ref]) {
args->best_single_sse_in_refs[ref] = this_sse;
}
if (cpi->sf.rt_sf.skip_newmv_mode_based_on_sse) {
const int th_idx = cpi->sf.rt_sf.skip_newmv_mode_based_on_sse - 1;
const int pix_idx = num_pels_log2_lookup[bsize] - 4;
const double scale_factor[3][11] = {
{ 0.7, 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9 },
{ 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 1, 1, 1, 1, 1 },
{ 0.7, 0.7, 0.7, 0.7, 1, 1, 1, 1, 1, 1, 1 }
};
assert(pix_idx >= 0);
assert(th_idx <= 2);
if (args->best_pred_sse < scale_factor[th_idx][pix_idx] * this_sse)
continue;
}
}
rd_stats->rate += rate_mv;
}
// Copy the motion vector for this mode into mbmi struct
for (i = 0; i < is_comp_pred + 1; ++i) {
mbmi->mv[i].as_int = cur_mv[i].as_int;
}
if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd &&
mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) {
continue;
}
// Skip the rest of the search if prune_ref_mv_idx_search speed feature
// is enabled, and the current MV is similar to a previous one.
if (cpi->sf.inter_sf.prune_ref_mv_idx_search && is_comp_pred &&
prune_ref_mv_idx_search(ref_mv_idx, best_ref_mv_idx, save_mv, mbmi,
cpi->sf.inter_sf.prune_ref_mv_idx_search))
continue;
if (cpi->sf.gm_sf.prune_zero_mv_with_sse &&
(this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV)) {
if (prune_zero_mv_with_sse(cpi->ppi->fn_ptr, x, bsize, args,
cpi->sf.gm_sf.prune_zero_mv_with_sse)) {
continue;
}
}
int skip_build_pred = 0;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// Handle a compound predictor, continue if it is determined this
// cannot be the best compound mode
if (is_comp_pred) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, compound_type_rd_time);
#endif
const int not_best_mode = process_compound_inter_mode(
cpi, x, args, ref_best_rd, cur_mv, bsize, &compmode_interinter_cost,
rd_buffers, &orig_dst, &tmp_dst, &rate_mv, rd_stats, skip_rd,
&skip_build_pred);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, compound_type_rd_time);
#endif
if (not_best_mode) continue;
}
if (!skip_interp_search_modelrd_calc) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, interpolation_filter_search_time);
#endif
// Determine the interpolation filter for this mode
ret_val = av1_interpolation_filter_search(
x, cpi, tile_data, bsize, &tmp_dst, &orig_dst, &rd, &rs,
&skip_build_pred, args, ref_best_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, interpolation_filter_search_time);
#endif
if (args->modelled_rd != NULL && !is_comp_pred) {
args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = rd;
}
if (ret_val != 0) {
restore_dst_buf(xd, orig_dst, num_planes);
continue;
} else if (cpi->sf.inter_sf.model_based_post_interp_filter_breakout &&
ref_best_rd != INT64_MAX && (rd >> 3) * 3 > ref_best_rd) {
restore_dst_buf(xd, orig_dst, num_planes);
continue;
}
// Compute modelled RD if enabled
if (args->modelled_rd != NULL) {
if (is_comp_pred) {
const int mode0 = compound_ref0_mode(this_mode);
const int mode1 = compound_ref1_mode(this_mode);
const int64_t mrd =
AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]],
args->modelled_rd[mode1][ref_mv_idx][refs[1]]);
if ((rd >> 3) * 6 > mrd && ref_best_rd < INT64_MAX) {
restore_dst_buf(xd, orig_dst, num_planes);
continue;
}
}
}
}
rd_stats->rate += compmode_interinter_cost;
if (skip_build_pred != 1) {
// Build this inter predictor if it has not been previously built
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, 0,
av1_num_planes(cm) - 1);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, motion_mode_rd_time);
#endif
int rate2_nocoeff = rd_stats->rate;
// Determine the motion mode. This will be one of SIMPLE_TRANSLATION,
// OBMC_CAUSAL or WARPED_CAUSAL
int64_t this_yrd;
ret_val = motion_mode_rd(cpi, tile_data, x, bsize, rd_stats, rd_stats_y,
rd_stats_uv, args, ref_best_rd, skip_rd, &rate_mv,
&orig_dst, best_est_rd, do_tx_search,
inter_modes_info, 0, &this_yrd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, motion_mode_rd_time);
#endif
assert(
IMPLIES(!av1_check_newmv_joint_nonzero(cm, x), ret_val == INT64_MAX));
if (ret_val != INT64_MAX) {
int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
const THR_MODES mode_enum = get_prediction_mode_idx(
mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Collect mode stats for multiwinner mode processing
store_winner_mode_stats(&cpi->common, x, mbmi, rd_stats, rd_stats_y,
rd_stats_uv, mode_enum, NULL, bsize, tmp_rd,
cpi->sf.winner_mode_sf.multi_winner_mode_type,
do_tx_search);
if (tmp_rd < best_rd) {
best_yrd = this_yrd;
// Update the best rd stats if we found the best mode so far
best_rd_stats = *rd_stats;
best_rd_stats_y = *rd_stats_y;
best_rd_stats_uv = *rd_stats_uv;
best_rd = tmp_rd;
best_mbmi = *mbmi;
best_xskip_txfm = txfm_info->skip_txfm;
memcpy(best_blk_skip, txfm_info->blk_skip,
sizeof(best_blk_skip[0]) * xd->height * xd->width);
av1_copy_array(best_tx_type_map, xd->tx_type_map,
xd->height * xd->width);
motion_mode_cand->rate_mv = rate_mv;
motion_mode_cand->rate2_nocoeff = rate2_nocoeff;
}
if (tmp_rd < ref_best_rd) {
ref_best_rd = tmp_rd;
best_ref_mv_idx = ref_mv_idx;
}
}
restore_dst_buf(xd, orig_dst, num_planes);
}
if (best_rd == INT64_MAX) return INT64_MAX;
// re-instate status of the best choice
*rd_stats = best_rd_stats;
*rd_stats_y = best_rd_stats_y;
*rd_stats_uv = best_rd_stats_uv;
*yrd = best_yrd;
*mbmi = best_mbmi;
txfm_info->skip_txfm = best_xskip_txfm;
assert(IMPLIES(mbmi->comp_group_idx == 1,
mbmi->interinter_comp.type != COMPOUND_AVERAGE));
memcpy(txfm_info->blk_skip, best_blk_skip,
sizeof(best_blk_skip[0]) * xd->height * xd->width);
av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width);
rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist);
return rd_stats->rdcost;
}
/*!\brief Search for the best intrabc predictor
*
* \ingroup intra_mode_search
* \callergraph
* This function performs a motion search to find the best intrabc predictor.
*
* \returns Returns the best overall rdcost (including the non-intrabc modes
* search before this function).
*/
static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x,
PICK_MODE_CONTEXT *ctx,
RD_STATS *rd_stats, BLOCK_SIZE bsize,
int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
if (!av1_allow_intrabc(cm) || !cpi->oxcf.kf_cfg.enable_intrabc ||
cpi->sf.rt_sf.use_nonrd_pick_mode)
return INT64_MAX;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
const TileInfo *tile = &xd->tile;
MB_MODE_INFO *mbmi = xd->mi[0];
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int w = block_size_wide[bsize];
const int h = block_size_high[bsize];
const int sb_row = mi_row >> cm->seq_params->mib_size_log2;
const int sb_col = mi_col >> cm->seq_params->mib_size_log2;
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
const MV_REFERENCE_FRAME ref_frame = INTRA_FRAME;
av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
int_mv nearestmv, nearmv;
av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv,
0);
if (nearestmv.as_int == INVALID_MV) {
nearestmv.as_int = 0;
}
if (nearmv.as_int == INVALID_MV) {
nearmv.as_int = 0;
}
int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv;
if (dv_ref.as_int == 0) {
av1_find_ref_dv(&dv_ref, tile, cm->seq_params->mib_size, mi_row);
}
// Ref DV should not have sub-pel.
assert((dv_ref.as_mv.col & 7) == 0);
assert((dv_ref.as_mv.row & 7) == 0);
mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref;
struct buf_2d yv12_mb[MAX_MB_PLANE];
av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, NULL, NULL, num_planes);
for (int i = 0; i < num_planes; ++i) {
xd->plane[i].pre[0] = yv12_mb[i];
}
enum IntrabcMotionDirection {
IBC_MOTION_ABOVE,
IBC_MOTION_LEFT,
IBC_MOTION_DIRECTIONS
};
MB_MODE_INFO best_mbmi = *mbmi;
RD_STATS best_rdstats = *rd_stats;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 };
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
FULLPEL_MOTION_SEARCH_PARAMS fullms_params;
const search_site_config *lookahead_search_sites =
cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD];
av1_make_default_fullpel_ms_params(&fullms_params, cpi, x, bsize,
&dv_ref.as_mv, lookahead_search_sites,
/*fine_search_interval=*/0);
const IntraBCMVCosts *const dv_costs = x->dv_costs;
av1_set_ms_to_intra_mode(&fullms_params, dv_costs);
for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE;
dir < IBC_MOTION_DIRECTIONS; ++dir) {
switch (dir) {
case IBC_MOTION_ABOVE:
fullms_params.mv_limits.col_min =
(tile->mi_col_start - mi_col) * MI_SIZE;
fullms_params.mv_limits.col_max =
(tile->mi_col_end - mi_col) * MI_SIZE - w;
fullms_params.mv_limits.row_min =
(tile->mi_row_start - mi_row) * MI_SIZE;
fullms_params.mv_limits.row_max =
(sb_row * cm->seq_params->mib_size - mi_row) * MI_SIZE - h;
break;
case IBC_MOTION_LEFT:
fullms_params.mv_limits.col_min =
(tile->mi_col_start - mi_col) * MI_SIZE;
fullms_params.mv_limits.col_max =
(sb_col * cm->seq_params->mib_size - mi_col) * MI_SIZE - w;
// TODO(aconverse@google.com): Minimize the overlap between above and
// left areas.
fullms_params.mv_limits.row_min =
(tile->mi_row_start - mi_row) * MI_SIZE;
int bottom_coded_mi_edge =
AOMMIN((sb_row + 1) * cm->seq_params->mib_size, tile->mi_row_end);
fullms_params.mv_limits.row_max =
(bottom_coded_mi_edge - mi_row) * MI_SIZE - h;
break;
default: assert(0);
}
assert(fullms_params.mv_limits.col_min >= fullms_params.mv_limits.col_min);
assert(fullms_params.mv_limits.col_max <= fullms_params.mv_limits.col_max);
assert(fullms_params.mv_limits.row_min >= fullms_params.mv_limits.row_min);
assert(fullms_params.mv_limits.row_max <= fullms_params.mv_limits.row_max);
av1_set_mv_search_range(&fullms_params.mv_limits, &dv_ref.as_mv);
if (fullms_params.mv_limits.col_max < fullms_params.mv_limits.col_min ||
fullms_params.mv_limits.row_max < fullms_params.mv_limits.row_min) {
continue;
}
const int step_param = cpi->mv_search_params.mv_step_param;
const FULLPEL_MV start_mv = get_fullmv_from_mv(&dv_ref.as_mv);
IntraBCHashInfo *intrabc_hash_info = &x->intrabc_hash_info;
int_mv best_mv, best_hash_mv;
int bestsme = av1_full_pixel_search(start_mv, &fullms_params, step_param,
NULL, &best_mv.as_fullmv, NULL);
const int hashsme = av1_intrabc_hash_search(
cpi, xd, &fullms_params, intrabc_hash_info, &best_hash_mv.as_fullmv);
if (hashsme < bestsme) {
best_mv = best_hash_mv;
bestsme = hashsme;
}
if (bestsme == INT_MAX) continue;
const MV dv = get_mv_from_fullmv(&best_mv.as_fullmv);
if (!av1_is_fullmv_in_range(&fullms_params.mv_limits,
get_fullmv_from_mv(&dv)))
continue;
if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize,
cm->seq_params->mib_size_log2))
continue;
// DV should not have sub-pel.
assert((dv.col & 7) == 0);
assert((dv.row & 7) == 0);
memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info));
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->use_intrabc = 1;
mbmi->mode = DC_PRED;
mbmi->uv_mode = UV_DC_PRED;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->mv[0].as_mv = dv;
mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR);
mbmi->skip_txfm = 0;
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
av1_num_planes(cm) - 1);
// TODO(aconverse@google.com): The full motion field defining discount
// in MV_COST_WEIGHT is too large. Explore other values.
const int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, dv_costs->joint_mv,
dv_costs->dv_costs, MV_COST_WEIGHT_SUB);
const int rate_mode = x->mode_costs.intrabc_cost[1];
RD_STATS rd_stats_yuv, rd_stats_y, rd_stats_uv;
if (!av1_txfm_search(cpi, x, bsize, &rd_stats_yuv, &rd_stats_y,
&rd_stats_uv, rate_mode + rate_mv, INT64_MAX))
continue;
rd_stats_yuv.rdcost =
RDCOST(x->rdmult, rd_stats_yuv.rate, rd_stats_yuv.dist);
if (rd_stats_yuv.rdcost < best_rd) {
best_rd = rd_stats_yuv.rdcost;
best_mbmi = *mbmi;
best_rdstats = rd_stats_yuv;
memcpy(best_blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width);
}
}
*mbmi = best_mbmi;
*rd_stats = best_rdstats;
memcpy(txfm_info->blk_skip, best_blk_skip,
sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width);
av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk);
#if CONFIG_RD_DEBUG
mbmi->rd_stats = *rd_stats;
#endif
return best_rd;
}
// TODO(chiyotsai@google.com): We are using struct $struct_name instead of their
// typedef here because Doxygen doesn't know about the typedefs yet. So using
// the typedef will prevent doxygen from finding this function and generating
// the callgraph. Once documents for AV1_COMP and MACROBLOCK are added to
// doxygen, we can revert back to using the typedefs.
void av1_rd_pick_intra_mode_sb(const struct AV1_COMP *cpi, struct macroblock *x,
struct RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, int64_t best_rd) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
const int num_planes = av1_num_planes(cm);
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0;
uint8_t y_skip_txfm = 0, uv_skip_txfm = 0;
int64_t dist_y = 0, dist_uv = 0;
ctx->rd_stats.skip_txfm = 0;
mbmi->ref_frame[0] = INTRA_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
mbmi->use_intrabc = 0;
mbmi->mv[0].as_int = 0;
mbmi->skip_mode = 0;
const int64_t intra_yrd =
av1_rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y,
&y_skip_txfm, bsize, best_rd, ctx);
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
if (intra_yrd < best_rd) {
// Search intra modes for uv planes if needed
if (num_planes > 1) {
// Set up the tx variables for reproducing the y predictions in case we
// need it for chroma-from-luma.
if (xd->is_chroma_ref && store_cfl_required_rdo(cm, x)) {
memcpy(txfm_info->blk_skip, ctx->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk);
}
const TX_SIZE max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd);
av1_rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly,
&dist_uv, &uv_skip_txfm, bsize,
max_uv_tx_size);
}
// Intra block is always coded as non-skip
rd_cost->rate =
rate_y + rate_uv +
x->mode_costs.skip_txfm_cost[av1_get_skip_txfm_context(xd)][0];
rd_cost->dist = dist_y + dist_uv;
rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
rd_cost->skip_txfm = 0;
} else {
rd_cost->rate = INT_MAX;
}
if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd)
best_rd = rd_cost->rdcost;
if (rd_pick_intrabc_mode_sb(cpi, x, ctx, rd_cost, bsize, best_rd) < best_rd) {
ctx->rd_stats.skip_txfm = mbmi->skip_txfm;
memcpy(ctx->blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
assert(rd_cost->rate != INT_MAX);
}
if (rd_cost->rate == INT_MAX) return;
ctx->mic = *xd->mi[0];
av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext,
av1_ref_frame_type(xd->mi[0]->ref_frame));
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}
static AOM_INLINE void calc_target_weighted_pred(
const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd,
const uint8_t *above, int above_stride, const uint8_t *left,
int left_stride);
static AOM_INLINE void rd_pick_skip_mode(
RD_STATS *rd_cost, InterModeSearchState *search_state,
const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize,
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) {
const AV1_COMMON *const cm = &cpi->common;
const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
x->compound_idx = 1; // COMPOUND_AVERAGE
RD_STATS skip_mode_rd_stats;
av1_invalid_rd_stats(&skip_mode_rd_stats);
if (skip_mode_info->ref_frame_idx_0 == INVALID_IDX ||
skip_mode_info->ref_frame_idx_1 == INVALID_IDX) {
return;
}
const MV_REFERENCE_FRAME ref_frame =
LAST_FRAME + skip_mode_info->ref_frame_idx_0;
const MV_REFERENCE_FRAME second_ref_frame =
LAST_FRAME + skip_mode_info->ref_frame_idx_1;
const PREDICTION_MODE this_mode = NEAREST_NEARESTMV;
const THR_MODES mode_index =
get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame);
if (mode_index == THR_INVALID) {
return;
}
if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp ||
cpi->sf.inter_sf.disable_onesided_comp) &&
cpi->all_one_sided_refs) {
return;
}
mbmi->mode = this_mode;
mbmi->uv_mode = UV_DC_PRED;
mbmi->ref_frame[0] = ref_frame;
mbmi->ref_frame[1] = second_ref_frame;
const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame);
if (x->mbmi_ext.ref_mv_count[ref_frame_type] == UINT8_MAX) {
MB_MODE_INFO_EXT *mbmi_ext = &x->mbmi_ext;
if (mbmi_ext->ref_mv_count[ref_frame] == UINT8_MAX ||
mbmi_ext->ref_mv_count[second_ref_frame] == UINT8_MAX) {
return;
}
av1_find_mv_refs(cm, xd, mbmi, ref_frame_type, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_type);
}
assert(this_mode == NEAREST_NEARESTMV);
if (!build_cur_mv(mbmi->mv, this_mode, cm, x, 0)) {
return;
}
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
mbmi->comp_group_idx = 0;
mbmi->compound_idx = x->compound_idx;
mbmi->interinter_comp.type = COMPOUND_AVERAGE;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->ref_mv_idx = 0;
mbmi->skip_mode = mbmi->skip_txfm = 1;
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
set_default_interp_filters(mbmi, cm->features.interp_filter);
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
BUFFER_SET orig_dst;
for (int i = 0; i < num_planes; i++) {
orig_dst.plane[i] = xd->plane[i].dst.buf;
orig_dst.stride[i] = xd->plane[i].dst.stride;
}
// Obtain the rdcost for skip_mode.
skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, &orig_dst);
// Compare the use of skip_mode with the best intra/inter mode obtained.
const int skip_mode_ctx = av1_get_skip_mode_context(xd);
int64_t best_intra_inter_mode_cost = INT64_MAX;
if (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX) {
const ModeCosts *mode_costs = &x->mode_costs;
best_intra_inter_mode_cost = RDCOST(
x->rdmult, rd_cost->rate + mode_costs->skip_mode_cost[skip_mode_ctx][0],
rd_cost->dist);
// Account for non-skip mode rate in total rd stats
rd_cost->rate += mode_costs->skip_mode_cost[skip_mode_ctx][0];
av1_rd_cost_update(x->rdmult, rd_cost);
}
if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost &&
(!xd->lossless[mbmi->segment_id] || skip_mode_rd_stats.dist == 0)) {
assert(mode_index != THR_INVALID);
search_state->best_mbmode.skip_mode = 1;
search_state->best_mbmode = *mbmi;
memset(search_state->best_mbmode.inter_tx_size,
search_state->best_mbmode.tx_size,
sizeof(search_state->best_mbmode.inter_tx_size));
set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->width, xd->height,
search_state->best_mbmode.skip_txfm && is_inter_block(mbmi),
xd);
search_state->best_mode_index = mode_index;
// Update rd_cost
rd_cost->rate = skip_mode_rd_stats.rate;
rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist;
rd_cost->rdcost = skip_mode_rd_stats.rdcost;
search_state->best_rd = rd_cost->rdcost;
search_state->best_skip2 = 1;
search_state->best_mode_skippable = 1;
x->txfm_search_info.skip_txfm = 1;
}
}
// Get winner mode stats of given mode index
static AOM_INLINE MB_MODE_INFO *get_winner_mode_stats(
MACROBLOCK *x, MB_MODE_INFO *best_mbmode, RD_STATS *best_rd_cost,
int best_rate_y, int best_rate_uv, THR_MODES *best_mode_index,
RD_STATS **winner_rd_cost, int *winner_rate_y, int *winner_rate_uv,
THR_MODES *winner_mode_index, MULTI_WINNER_MODE_TYPE multi_winner_mode_type,
int mode_idx) {
MB_MODE_INFO *winner_mbmi;
if (multi_winner_mode_type) {
assert(mode_idx >= 0 && mode_idx < x->winner_mode_count);
WinnerModeStats *winner_mode_stat = &x->winner_mode_stats[mode_idx];
winner_mbmi = &winner_mode_stat->mbmi;
*winner_rd_cost = &winner_mode_stat->rd_cost;
*winner_rate_y = winner_mode_stat->rate_y;
*winner_rate_uv = winner_mode_stat->rate_uv;
*winner_mode_index = winner_mode_stat->mode_index;
} else {
winner_mbmi = best_mbmode;
*winner_rd_cost = best_rd_cost;
*winner_rate_y = best_rate_y;
*winner_rate_uv = best_rate_uv;
*winner_mode_index = *best_mode_index;
}
return winner_mbmi;
}
// speed feature: fast intra/inter transform type search
// Used for speed >= 2
// When this speed feature is on, in rd mode search, only DCT is used.
// After the mode is determined, this function is called, to select
// transform types and get accurate rdcost.
static AOM_INLINE void refine_winner_mode_tx(
const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx, THR_MODES *best_mode_index,
MB_MODE_INFO *best_mbmode, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE],
int best_rate_y, int best_rate_uv, int *best_skip2, int winner_mode_count) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
TxfmSearchParams *txfm_params = &x->txfm_search_params;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int64_t best_rd;
const int num_planes = av1_num_planes(cm);
if (!is_winner_mode_processing_enabled(cpi, x, best_mbmode,
rd_cost->skip_txfm))
return;
// Set params for winner mode evaluation
set_mode_eval_params(cpi, x, WINNER_MODE_EVAL);
// No best mode identified so far
if (*best_mode_index == THR_INVALID) return;
best_rd = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist);
for (int mode_idx = 0; mode_idx < winner_mode_count; mode_idx++) {
RD_STATS *winner_rd_stats = NULL;
int winner_rate_y = 0, winner_rate_uv = 0;
THR_MODES winner_mode_index = 0;
// TODO(any): Combine best mode and multi-winner mode processing paths
// Get winner mode stats for current mode index
MB_MODE_INFO *winner_mbmi = get_winner_mode_stats(
x, best_mbmode, rd_cost, best_rate_y, best_rate_uv, best_mode_index,
&winner_rd_stats, &winner_rate_y, &winner_rate_uv, &winner_mode_index,
cpi->sf.winner_mode_sf.multi_winner_mode_type, mode_idx);
if (xd->lossless[winner_mbmi->segment_id] == 0 &&
winner_mode_index != THR_INVALID &&
is_winner_mode_processing_enabled(cpi, x, winner_mbmi,
rd_cost->skip_txfm)) {
RD_STATS rd_stats = *winner_rd_stats;
int skip_blk = 0;
RD_STATS rd_stats_y, rd_stats_uv;
const int skip_ctx = av1_get_skip_txfm_context(xd);
*mbmi = *winner_mbmi;
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Select prediction reference frames.
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
if (has_second_ref(mbmi))
xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
if (is_inter_mode(mbmi->mode)) {
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
bool is_predictor_built = false;
const PREDICTION_MODE prediction_mode = mbmi->mode;
// Do interpolation filter search for realtime mode if applicable.
if (cpi->sf.winner_mode_sf.winner_mode_ifs &&
cpi->oxcf.mode == REALTIME &&
cm->current_frame.reference_mode == SINGLE_REFERENCE &&
is_inter_mode(prediction_mode) &&
mbmi->motion_mode == SIMPLE_TRANSLATION &&
!is_inter_compound_mode(prediction_mode)) {
is_predictor_built =
fast_interp_search(cpi, x, mi_row, mi_col, bsize);
}
if (!is_predictor_built) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
av1_num_planes(cm) - 1);
}
if (mbmi->motion_mode == OBMC_CAUSAL)
av1_build_obmc_inter_predictors_sb(cm, xd);
av1_subtract_plane(x, bsize, 0);
if (txfm_params->tx_mode_search_type == TX_MODE_SELECT &&
!xd->lossless[mbmi->segment_id]) {
av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
INT64_MAX);
assert(rd_stats_y.rate != INT_MAX);
} else {
av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
INT64_MAX);
memset(mbmi->inter_tx_size, mbmi->tx_size,
sizeof(mbmi->inter_tx_size));
for (int i = 0; i < xd->height * xd->width; ++i)
set_blk_skip(txfm_info->blk_skip, 0, i, rd_stats_y.skip_txfm);
}
} else {
av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize,
INT64_MAX);
}
if (num_planes > 1) {
av1_txfm_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX);
} else {
av1_init_rd_stats(&rd_stats_uv);
}
const ModeCosts *mode_costs = &x->mode_costs;
if (is_inter_mode(mbmi->mode) &&
RDCOST(x->rdmult,
mode_costs->skip_txfm_cost[skip_ctx][0] + rd_stats_y.rate +
rd_stats_uv.rate,
(rd_stats_y.dist + rd_stats_uv.dist)) >
RDCOST(x->rdmult, mode_costs->skip_txfm_cost[skip_ctx][1],
(rd_stats_y.sse + rd_stats_uv.sse))) {
skip_blk = 1;
rd_stats_y.rate = mode_costs->skip_txfm_cost[skip_ctx][1];
rd_stats_uv.rate = 0;
rd_stats_y.dist = rd_stats_y.sse;
rd_stats_uv.dist = rd_stats_uv.sse;
} else {
skip_blk = 0;
rd_stats_y.rate += mode_costs->skip_txfm_cost[skip_ctx][0];
}
int this_rate = rd_stats.rate + rd_stats_y.rate + rd_stats_uv.rate -
winner_rate_y - winner_rate_uv;
int64_t this_rd =
RDCOST(x->rdmult, this_rate, (rd_stats_y.dist + rd_stats_uv.dist));
if (best_rd > this_rd) {
*best_mbmode = *mbmi;
*best_mode_index = winner_mode_index;
av1_copy_array(ctx->blk_skip, txfm_info->blk_skip, ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
rd_cost->rate = this_rate;
rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist;
rd_cost->sse = rd_stats_y.sse + rd_stats_uv.sse;
rd_cost->rdcost = this_rd;
best_rd = this_rd;
*best_skip2 = skip_blk;
}
}
}
}
/*!\cond */
typedef struct {
// Mask for each reference frame, specifying which prediction modes to NOT try
// during search.
uint32_t pred_modes[REF_FRAMES];
// If ref_combo[i][j + 1] is true, do NOT try prediction using combination of
// reference frames (i, j).
// Note: indexing with 'j + 1' is due to the fact that 2nd reference can be -1
// (NONE_FRAME).
bool ref_combo[REF_FRAMES][REF_FRAMES + 1];
} mode_skip_mask_t;
/*!\endcond */
// Update 'ref_combo' mask to disable given 'ref' in single and compound modes.
static AOM_INLINE void disable_reference(
MV_REFERENCE_FRAME ref, bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) {
for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) {
ref_combo[ref][ref2 + 1] = true;
}
}
// Update 'ref_combo' mask to disable all inter references except ALTREF.
static AOM_INLINE void disable_inter_references_except_altref(
bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) {
disable_reference(LAST_FRAME, ref_combo);
disable_reference(LAST2_FRAME, ref_combo);
disable_reference(LAST3_FRAME, ref_combo);
disable_reference(GOLDEN_FRAME, ref_combo);
disable_reference(BWDREF_FRAME, ref_combo);
disable_reference(ALTREF2_FRAME, ref_combo);
}
static const MV_REFERENCE_FRAME reduced_ref_combos[][2] = {
{ LAST_FRAME, NONE_FRAME }, { ALTREF_FRAME, NONE_FRAME },
{ LAST_FRAME, ALTREF_FRAME }, { GOLDEN_FRAME, NONE_FRAME },
{ INTRA_FRAME, NONE_FRAME }, { GOLDEN_FRAME, ALTREF_FRAME },
{ LAST_FRAME, GOLDEN_FRAME }, { LAST_FRAME, INTRA_FRAME },
{ LAST_FRAME, BWDREF_FRAME }, { LAST_FRAME, LAST3_FRAME },
{ GOLDEN_FRAME, BWDREF_FRAME }, { GOLDEN_FRAME, INTRA_FRAME },
{ BWDREF_FRAME, NONE_FRAME }, { BWDREF_FRAME, ALTREF_FRAME },
{ ALTREF_FRAME, INTRA_FRAME }, { BWDREF_FRAME, INTRA_FRAME },
};
typedef enum { REF_SET_FULL, REF_SET_REDUCED, REF_SET_REALTIME } REF_SET;
static AOM_INLINE void default_skip_mask(mode_skip_mask_t *mask,
REF_SET ref_set) {
if (ref_set == REF_SET_FULL) {
// Everything available by default.
memset(mask, 0, sizeof(*mask));
} else {
// All modes available by default.
memset(mask->pred_modes, 0, sizeof(mask->pred_modes));
// All references disabled first.
for (MV_REFERENCE_FRAME ref1 = INTRA_FRAME; ref1 < REF_FRAMES; ++ref1) {
for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) {
mask->ref_combo[ref1][ref2 + 1] = true;
}
}
const MV_REFERENCE_FRAME(*ref_set_combos)[2];
int num_ref_combos;
// Then enable reduced set of references explicitly.
switch (ref_set) {
case REF_SET_REDUCED:
ref_set_combos = reduced_ref_combos;
num_ref_combos =
(int)sizeof(reduced_ref_combos) / sizeof(reduced_ref_combos[0]);
break;
case REF_SET_REALTIME:
ref_set_combos = real_time_ref_combos;
num_ref_combos =
(int)sizeof(real_time_ref_combos) / sizeof(real_time_ref_combos[0]);
break;
default: assert(0); num_ref_combos = 0;
}
for (int i = 0; i < num_ref_combos; ++i) {
const MV_REFERENCE_FRAME *const this_combo = ref_set_combos[i];
mask->ref_combo[this_combo[0]][this_combo[1] + 1] = false;
}
}
}
static AOM_INLINE void init_mode_skip_mask(mode_skip_mask_t *mask,
const AV1_COMP *cpi, MACROBLOCK *x,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const struct segmentation *const seg = &cm->seg;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
unsigned char segment_id = mbmi->segment_id;
const SPEED_FEATURES *const sf = &cpi->sf;
REF_SET ref_set = REF_SET_FULL;
if (sf->rt_sf.use_real_time_ref_set)
ref_set = REF_SET_REALTIME;
else if (cpi->oxcf.ref_frm_cfg.enable_reduced_reference_set)
ref_set = REF_SET_REDUCED;
default_skip_mask(mask, ref_set);
int min_pred_mv_sad = INT_MAX;
MV_REFERENCE_FRAME ref_frame;
if (ref_set == REF_SET_REALTIME) {
// For real-time encoding, we only look at a subset of ref frames. So the
// threshold for pruning should be computed from this subset as well.
const int num_rt_refs =
sizeof(real_time_ref_combos) / sizeof(*real_time_ref_combos);
for (int r_idx = 0; r_idx < num_rt_refs; r_idx++) {
const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0];
if (ref != INTRA_FRAME) {
min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref]);
}
}
} else {
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame)
min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]);
}
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame])) {
// Skip checking missing reference in both single and compound reference
// modes.
disable_reference(ref_frame, mask->ref_combo);
} else {
// Skip fixed mv modes for poor references
if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) {
mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
}
}
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) &&
get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) {
// Reference not used for the segment.
disable_reference(ref_frame, mask->ref_combo);
}
}
// Note: We use the following drop-out only if the SEG_LVL_REF_FRAME feature
// is disabled for this segment. This is to prevent the possibility that we
// end up unable to pick any mode.
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
// Only consider GLOBALMV/ALTREF_FRAME for alt ref frame,
// unless ARNR filtering is enabled in which case we want
// an unfiltered alternative. We allow near/nearest as well
// because they may result in zero-zero MVs but be cheaper.
if (cpi->rc.is_src_frame_alt_ref &&
(cpi->oxcf.algo_cfg.arnr_max_frames == 0)) {
disable_inter_references_except_altref(mask->ref_combo);
mask->pred_modes[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO;
const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME };
int_mv near_mv, nearest_mv, global_mv;
get_this_mv(&nearest_mv, NEARESTMV, 0, 0, 0, tmp_ref_frames,
&x->mbmi_ext);
get_this_mv(&near_mv, NEARMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext);
get_this_mv(&global_mv, GLOBALMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext);
if (near_mv.as_int != global_mv.as_int)
mask->pred_modes[ALTREF_FRAME] |= (1 << NEARMV);
if (nearest_mv.as_int != global_mv.as_int)
mask->pred_modes[ALTREF_FRAME] |= (1 << NEARESTMV);
}
}
if (cpi->rc.is_src_frame_alt_ref) {
if (sf->inter_sf.alt_ref_search_fp &&
(cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME])) {
mask->pred_modes[ALTREF_FRAME] = 0;
disable_inter_references_except_altref(mask->ref_combo);
disable_reference(INTRA_FRAME, mask->ref_combo);
}
}
if (sf->inter_sf.alt_ref_search_fp) {
if (!cm->show_frame && x->best_pred_mv_sad[0] < INT_MAX) {
int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 3);
// Conservatively skip the modes w.r.t. BWDREF, ALTREF2 and ALTREF, if
// those are past frames
MV_REFERENCE_FRAME start_frame =
sf->inter_sf.alt_ref_search_fp == 1 ? ALTREF2_FRAME : BWDREF_FRAME;
for (ref_frame = start_frame; ref_frame <= ALTREF_FRAME; ref_frame++) {
if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] <
0) {
// Prune inter modes when relative dist of ALTREF2 and ALTREF is close
// to the relative dist of LAST_FRAME.
if (sf->inter_sf.alt_ref_search_fp == 1 &&
(abs(cpi->ref_frame_dist_info
.ref_relative_dist[ref_frame - LAST_FRAME]) >
1.5 * abs(cpi->ref_frame_dist_info
.ref_relative_dist[LAST_FRAME - LAST_FRAME]))) {
continue;
}
if (x->pred_mv_sad[ref_frame] > sad_thresh)
mask->pred_modes[ref_frame] |= INTER_ALL;
}
}
}
}
if (sf->rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) {
if (x->best_pred_mv_sad[0] < INT_MAX) {
int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 1);
const int prune_ref_list[2] = { GOLDEN_FRAME, ALTREF_FRAME };
// Conservatively skip the modes w.r.t. GOLDEN and ALTREF references
for (int ref_idx = 0; ref_idx < 2; ref_idx++) {
ref_frame = prune_ref_list[ref_idx];
if (x->pred_mv_sad[ref_frame] > sad_thresh)
mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO;
}
}
}
if (bsize > sf->part_sf.max_intra_bsize) {
disable_reference(INTRA_FRAME, mask->ref_combo);
}
if (!cpi->oxcf.tool_cfg.enable_global_motion) {
for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) {
mask->pred_modes[ref_frame] |= (1 << GLOBALMV);
mask->pred_modes[ref_frame] |= (1 << GLOBAL_GLOBALMV);
}
}
mask->pred_modes[INTRA_FRAME] |=
~(uint32_t)sf->intra_sf.intra_y_mode_mask[max_txsize_lookup[bsize]];
}
static AOM_INLINE void init_neighbor_pred_buf(
const OBMCBuffer *const obmc_buffer, HandleInterModeArgs *const args,
int is_hbd) {
if (is_hbd) {
const int len = sizeof(uint16_t);
args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred);
args->above_pred_buf[1] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred +
(MAX_SB_SQUARE >> 1) * len);
args->above_pred_buf[2] =
CONVERT_TO_BYTEPTR(obmc_buffer->above_pred + MAX_SB_SQUARE * len);
args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->left_pred);
args->left_pred_buf[1] =
CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1) * len);
args->left_pred_buf[2] =
CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + MAX_SB_SQUARE * len);
} else {
args->above_pred_buf[0] = obmc_buffer->above_pred;
args->above_pred_buf[1] = obmc_buffer->above_pred + (MAX_SB_SQUARE >> 1);
args->above_pred_buf[2] = obmc_buffer->above_pred + MAX_SB_SQUARE;
args->left_pred_buf[0] = obmc_buffer->left_pred;
args->left_pred_buf[1] = obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1);
args->left_pred_buf[2] = obmc_buffer->left_pred + MAX_SB_SQUARE;
}
}
static AOM_INLINE int prune_ref_frame(const AV1_COMP *cpi, const MACROBLOCK *x,
MV_REFERENCE_FRAME ref_frame) {
const AV1_COMMON *const cm = &cpi->common;
MV_REFERENCE_FRAME rf[2];
av1_set_ref_frame(rf, ref_frame);
if ((cpi->prune_ref_frame_mask >> ref_frame) & 1) return 1;
if (prune_ref_by_selective_ref_frame(cpi, x, rf,
cm->cur_frame->ref_display_order_hint)) {
return 1;
}
return 0;
}
static AOM_INLINE int is_ref_frame_used_by_compound_ref(
int ref_frame, int skip_ref_frame_mask) {
for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) {
if (!(skip_ref_frame_mask & (1 << r))) {
const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES];
if (rf[0] == ref_frame || rf[1] == ref_frame) {
return 1;
}
}
}
return 0;
}
static AOM_INLINE int is_ref_frame_used_in_cache(MV_REFERENCE_FRAME ref_frame,
const MB_MODE_INFO *mi_cache) {
if (!mi_cache) {
return 0;
}
if (ref_frame < REF_FRAMES) {
return (ref_frame == mi_cache->ref_frame[0] ||
ref_frame == mi_cache->ref_frame[1]);
}
// if we are here, then the current mode is compound.
MV_REFERENCE_FRAME cached_ref_type = av1_ref_frame_type(mi_cache->ref_frame);
return ref_frame == cached_ref_type;
}
// Please add/modify parameter setting in this function, making it consistent
// and easy to read and maintain.
static AOM_INLINE void set_params_rd_pick_inter_mode(
const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args,
BLOCK_SIZE bsize, mode_skip_mask_t *mode_skip_mask, int skip_ref_frame_mask,
unsigned int *ref_costs_single, unsigned int (*ref_costs_comp)[REF_FRAMES],
struct buf_2d (*yv12_mb)[MAX_MB_PLANE]) {
const AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext;
unsigned char segment_id = mbmi->segment_id;
init_neighbor_pred_buf(&x->obmc_buffer, args, is_cur_buf_hbd(&x->e_mbd));
av1_collect_neighbors_ref_counts(xd);
estimate_ref_frame_costs(cm, xd, &x->mode_costs, segment_id, ref_costs_single,
ref_costs_comp);
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
x->best_pred_mv_sad[0] = INT_MAX;
x->best_pred_mv_sad[1] = INT_MAX;
for (MV_REFERENCE_FRAME ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME;
++ref_frame) {
x->pred_mv_sad[ref_frame] = INT_MAX;
mbmi_ext->mode_context[ref_frame] = 0;
mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) {
// Skip the ref frame if the mask says skip and the ref is not used by
// compound ref.
if (skip_ref_frame_mask & (1 << ref_frame) &&
!is_ref_frame_used_by_compound_ref(ref_frame, skip_ref_frame_mask) &&
!is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) {
continue;
}
assert(get_ref_frame_yv12_buf(cm, ref_frame) != NULL);
setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, yv12_mb);
}
if (cpi->sf.inter_sf.alt_ref_search_fp ||
cpi->sf.rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) {
// Store the best pred_mv_sad across all past frames
if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] <
0)
x->best_pred_mv_sad[0] =
AOMMIN(x->best_pred_mv_sad[0], x->pred_mv_sad[ref_frame]);
else
// Store the best pred_mv_sad across all future frames
x->best_pred_mv_sad[1] =
AOMMIN(x->best_pred_mv_sad[1], x->pred_mv_sad[ref_frame]);
}
}
if (!cpi->sf.rt_sf.use_real_time_ref_set && is_comp_ref_allowed(bsize)) {
// No second reference on RT ref set, so no need to initialize
for (MV_REFERENCE_FRAME ref_frame = EXTREF_FRAME;
ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) {
mbmi_ext->mode_context[ref_frame] = 0;
mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX;
const MV_REFERENCE_FRAME *rf = ref_frame_map[ref_frame - REF_FRAMES];
if (!((cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) &&
(cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]]))) {
continue;
}
if (skip_ref_frame_mask & (1 << ref_frame) &&
!is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) {
continue;
}
// Ref mv list population is not required, when compound references are
// pruned.
if (prune_ref_frame(cpi, x, ref_frame)) continue;
av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count,
xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs,
mbmi_ext->mode_context);
// TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and
// mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs.
av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame);
}
}
av1_count_overlappable_neighbors(cm, xd);
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
int use_actual_frame_probs = 1;
int prune_obmc;
#if CONFIG_FPMT_TEST
use_actual_frame_probs =
(cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1;
if (!use_actual_frame_probs) {
prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] <
cpi->sf.inter_sf.prune_obmc_prob_thresh;
}
#endif
if (use_actual_frame_probs) {
prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] <
cpi->sf.inter_sf.prune_obmc_prob_thresh;
}
if (cpi->oxcf.motion_mode_cfg.enable_obmc && !prune_obmc) {
if (check_num_overlappable_neighbors(mbmi) &&
is_motion_variation_allowed_bsize(bsize)) {
int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
MAX_SB_SIZE >> 1 };
int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
MAX_SB_SIZE >> 1 };
int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE };
av1_build_prediction_by_above_preds(cm, xd, args->above_pred_buf,
dst_width1, dst_height1,
args->above_pred_stride);
av1_build_prediction_by_left_preds(cm, xd, args->left_pred_buf,
dst_width2, dst_height2,
args->left_pred_stride);
const int num_planes = av1_num_planes(cm);
av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row,
mi_col, 0, num_planes);
calc_target_weighted_pred(
cm, x, xd, args->above_pred_buf[0], args->above_pred_stride[0],
args->left_pred_buf[0], args->left_pred_stride[0]);
}
}
init_mode_skip_mask(mode_skip_mask, cpi, x, bsize);
// Set params for mode evaluation
set_mode_eval_params(cpi, x, MODE_EVAL);
x->comp_rd_stats_idx = 0;
for (int idx = 0; idx < REF_FRAMES; idx++) {
args->best_single_sse_in_refs[idx] = INT32_MAX;
}
}
static AOM_INLINE void init_single_inter_mode_search_state(
InterModeSearchState *search_state) {
for (int dir = 0; dir < 2; ++dir) {
for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) {
SingleInterModeState *state;
state = &search_state->single_state[dir][mode][ref_frame];
state->ref_frame = NONE_FRAME;
state->rd = INT64_MAX;
state = &search_state->single_state_modelled[dir][mode][ref_frame];
state->ref_frame = NONE_FRAME;
state->rd = INT64_MAX;
search_state->single_rd_order[dir][mode][ref_frame] = NONE_FRAME;
}
}
}
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
search_state->best_single_rd[ref_frame] = INT64_MAX;
search_state->best_single_mode[ref_frame] = PRED_MODE_INVALID;
}
av1_zero(search_state->single_state_cnt);
av1_zero(search_state->single_state_modelled_cnt);
}
static AOM_INLINE void init_inter_mode_search_state(
InterModeSearchState *search_state, const AV1_COMP *cpi,
const MACROBLOCK *x, BLOCK_SIZE bsize, int64_t best_rd_so_far) {
init_intra_mode_search_state(&search_state->intra_search_state);
av1_invalid_rd_stats(&search_state->best_y_rdcost);
search_state->best_rd = best_rd_so_far;
search_state->best_skip_rd[0] = INT64_MAX;
search_state->best_skip_rd[1] = INT64_MAX;
av1_zero(search_state->best_mbmode);
search_state->best_rate_y = INT_MAX;
search_state->best_rate_uv = INT_MAX;
search_state->best_mode_skippable = 0;
search_state->best_skip2 = 0;
search_state->best_mode_index = THR_INVALID;
const MACROBLOCKD *const xd = &x->e_mbd;
const MB_MODE_INFO *const mbmi = xd->mi[0];
const unsigned char segment_id = mbmi->segment_id;
search_state->num_available_refs = 0;
memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs));
memset(search_state->dist_order_refs, -1,
sizeof(search_state->dist_order_refs));
for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i)
search_state->mode_threshold[i] = 0;
const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize];
for (int i = LAST_NEW_MV_INDEX + 1; i < SINGLE_REF_MODE_END; ++i)
search_state->mode_threshold[i] =
((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >>
RD_THRESH_FAC_FRAC_BITS;
search_state->best_intra_rd = INT64_MAX;
search_state->best_pred_sse = UINT_MAX;
av1_zero(search_state->single_newmv);
av1_zero(search_state->single_newmv_rate);
av1_zero(search_state->single_newmv_valid);
for (int i = SINGLE_INTER_MODE_START; i < SINGLE_INTER_MODE_END; ++i) {
for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) {
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
search_state->modelled_rd[i][j][ref_frame] = INT64_MAX;
search_state->simple_rd[i][j][ref_frame] = INT64_MAX;
}
}
}
for (int i = 0; i < REFERENCE_MODES; ++i) {
search_state->best_pred_rd[i] = INT64_MAX;
}
if (cpi->common.current_frame.reference_mode != SINGLE_REFERENCE) {
for (int i = SINGLE_REF_MODE_END; i < THR_INTER_MODE_END; ++i)
search_state->mode_threshold[i] =
((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >>
RD_THRESH_FAC_FRAC_BITS;
for (int i = COMP_INTER_MODE_START; i < COMP_INTER_MODE_END; ++i) {
for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) {
for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) {
search_state->modelled_rd[i][j][ref_frame] = INT64_MAX;
search_state->simple_rd[i][j][ref_frame] = INT64_MAX;
}
}
}
init_single_inter_mode_search_state(search_state);
}
}
static bool mask_says_skip(const mode_skip_mask_t *mode_skip_mask,
const MV_REFERENCE_FRAME *ref_frame,
const PREDICTION_MODE this_mode) {
if (mode_skip_mask->pred_modes[ref_frame[0]] & (1 << this_mode)) {
return true;
}
return mode_skip_mask->ref_combo[ref_frame[0]][ref_frame[1] + 1];
}
static int inter_mode_compatible_skip(const AV1_COMP *cpi, const MACROBLOCK *x,
BLOCK_SIZE bsize,
PREDICTION_MODE curr_mode,
const MV_REFERENCE_FRAME *ref_frames) {
const int comp_pred = ref_frames[1] > INTRA_FRAME;
if (comp_pred) {
if (!is_comp_ref_allowed(bsize)) return 1;
if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frames[1]])) {
return 1;
}
const AV1_COMMON *const cm = &cpi->common;
if (frame_is_intra_only(cm)) return 1;
const CurrentFrame *const current_frame = &cm->current_frame;
if (current_frame->reference_mode == SINGLE_REFERENCE) return 1;
const struct segmentation *const seg = &cm->seg;
const unsigned char segment_id = x->e_mbd.mi[0]->segment_id;
// Do not allow compound prediction if the segment level reference frame
// feature is in use as in this case there can only be one reference.
if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1;
}
if (ref_frames[0] > INTRA_FRAME && ref_frames[1] == INTRA_FRAME) {
// Mode must be compatible
if (!is_interintra_allowed_bsize(bsize)) return 1;
if (!is_interintra_allowed_mode(curr_mode)) return 1;
}
return 0;
}
static int fetch_picked_ref_frames_mask(const MACROBLOCK *const x,
BLOCK_SIZE bsize, int mib_size) {
const int sb_size_mask = mib_size - 1;
const MACROBLOCKD *const xd = &x->e_mbd;
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
const int mi_row_in_sb = mi_row & sb_size_mask;
const int mi_col_in_sb = mi_col & sb_size_mask;
const int mi_w = mi_size_wide[bsize];
const int mi_h = mi_size_high[bsize];
int picked_ref_frames_mask = 0;
for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_h; ++i) {
for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_w; ++j) {
picked_ref_frames_mask |= x->picked_ref_frames_mask[i * 32 + j];
}
}
return picked_ref_frames_mask;
}
// Check if reference frame pair of the current block matches with the given
// block.
static INLINE int match_ref_frame_pair(const MB_MODE_INFO *mbmi,
const MV_REFERENCE_FRAME *ref_frames) {
return ((ref_frames[0] == mbmi->ref_frame[0]) &&
(ref_frames[1] == mbmi->ref_frame[1]));
}
// Case 1: return 0, means don't skip this mode
// Case 2: return 1, means skip this mode completely
// Case 3: return 2, means skip compound only, but still try single motion modes
static int inter_mode_search_order_independent_skip(
const AV1_COMP *cpi, const MACROBLOCK *x, mode_skip_mask_t *mode_skip_mask,
InterModeSearchState *search_state, int skip_ref_frame_mask,
PREDICTION_MODE mode, const MV_REFERENCE_FRAME *ref_frame) {
if (mask_says_skip(mode_skip_mask, ref_frame, mode)) {
return 1;
}
const int ref_type = av1_ref_frame_type(ref_frame);
if (!cpi->sf.rt_sf.use_real_time_ref_set)
if (prune_ref_frame(cpi, x, ref_type)) return 1;
// This is only used in motion vector unit test.
if (cpi->oxcf.unit_test_cfg.motion_vector_unit_test &&
ref_frame[0] == INTRA_FRAME)
return 1;
const AV1_COMMON *const cm = &cpi->common;
if (skip_repeated_mv(cm, x, mode, ref_frame, search_state)) {
return 1;
}
// Reuse the prediction mode in cache
if (x->use_mb_mode_cache) {
const MB_MODE_INFO *cached_mi = x->mb_mode_cache;
const PREDICTION_MODE cached_mode = cached_mi->mode;
const MV_REFERENCE_FRAME *cached_frame = cached_mi->ref_frame;
const int cached_mode_is_single = cached_frame[1] <= INTRA_FRAME;
// If the cached mode is intra, then we just need to match the mode.
if (is_mode_intra(cached_mode) && mode != cached_mode) {
return 1;
}
// If the cached mode is single inter mode, then we match the mode and
// reference frame.
if (cached_mode_is_single) {
if (mode != cached_mode || ref_frame[0] != cached_frame[0]) {
return 1;
}
} else {
// If the cached mode is compound, then we need to consider several cases.
const int mode_is_single = ref_frame[1] <= INTRA_FRAME;
if (mode_is_single) {
// If the mode is single, we know the modes can't match. But we might
// still want to search it if compound mode depends on the current mode.
int skip_motion_mode_only = 0;
if (cached_mode == NEW_NEARMV || cached_mode == NEW_NEARESTMV) {
skip_motion_mode_only = (ref_frame[0] == cached_frame[0]);
} else if (cached_mode == NEAR_NEWMV || cached_mode == NEAREST_NEWMV) {
skip_motion_mode_only = (ref_frame[0] == cached_frame[1]);
} else if (cached_mode == NEW_NEWMV) {
skip_motion_mode_only = (ref_frame[0] == cached_frame[0] ||
ref_frame[0] == cached_frame[1]);
}
return 1 + skip_motion_mode_only;
} else {
// If both modes are compound, then everything must match.
if (mode != cached_mode || ref_frame[0] != cached_frame[0] ||
ref_frame[1] != cached_frame[1]) {
return 1;
}
}
}
}
const MB_MODE_INFO *const mbmi = x->e_mbd.mi[0];
// If no valid mode has been found so far in PARTITION_NONE when finding a
// valid partition is required, do not skip mode.
if (search_state->best_rd == INT64_MAX && mbmi->partition == PARTITION_NONE &&
x->must_find_valid_partition)
return 0;
const SPEED_FEATURES *const sf = &cpi->sf;
// Prune NEARMV and NEAR_NEARMV based on q index and neighbor's reference
// frames
if (sf->inter_sf.prune_nearmv_using_neighbors &&
(mode == NEAR_NEARMV || mode == NEARMV)) {
const MACROBLOCKD *const xd = &x->e_mbd;
if (search_state->best_rd != INT64_MAX && xd->left_available &&
xd->up_available) {
const int thresholds[PRUNE_NEARMV_MAX][3] = { { 1, 0, 0 },
{ 1, 1, 0 },
{ 2, 1, 0 } };
const int qindex_sub_range = x->qindex * 3 / QINDEX_RANGE;
assert(sf->inter_sf.prune_nearmv_using_neighbors <= PRUNE_NEARMV_MAX &&
qindex_sub_range < 3);
const int num_ref_frame_pair_match_thresh =
thresholds[sf->inter_sf.prune_nearmv_using_neighbors - 1]
[qindex_sub_range];
assert(num_ref_frame_pair_match_thresh <= 2 &&
num_ref_frame_pair_match_thresh >= 0);
int num_ref_frame_pair_match = 0;
num_ref_frame_pair_match = match_ref_frame_pair(xd->left_mbmi, ref_frame);
num_ref_frame_pair_match +=
match_ref_frame_pair(xd->above_mbmi, ref_frame);
// Pruning based on ref frame pair match with neighbors.
if (num_ref_frame_pair_match < num_ref_frame_pair_match_thresh) return 1;
}
}
int skip_motion_mode = 0;
if (mbmi->partition != PARTITION_NONE) {
int skip_ref = skip_ref_frame_mask & (1 << ref_type);
if (ref_type <= ALTREF_FRAME && skip_ref) {
// Since the compound ref modes depends on the motion estimation result of
// two single ref modes (best mv of single ref modes as the start point),
// if current single ref mode is marked skip, we need to check if it will
// be used in compound ref modes.
if (is_ref_frame_used_by_compound_ref(ref_type, skip_ref_frame_mask)) {
// Found a not skipped compound ref mode which contains current
// single ref. So this single ref can't be skipped completely
// Just skip its motion mode search, still try its simple
// transition mode.
skip_motion_mode = 1;
skip_ref = 0;
}
}
// If we are reusing the prediction from cache, and the current frame is
// required by the cache, then we cannot prune it.
if (is_ref_frame_used_in_cache(ref_type, x->mb_mode_cache)) {
skip_ref = 0;
// If the cache only needs the current reference type for compound
// prediction, then we can skip motion mode search.
skip_motion_mode = (ref_type <= ALTREF_FRAME &&
x->mb_mode_cache->ref_frame[1] > INTRA_FRAME);
}
if (skip_ref) return 1;
}
if (ref_frame[0] == INTRA_FRAME) {
if (mode != DC_PRED) {
// Disable intra modes other than DC_PRED for blocks with low variance
// Threshold for intra skipping based on source variance
// TODO(debargha): Specialize the threshold for super block sizes
const unsigned int skip_intra_var_thresh = 64;
if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) &&
x->source_variance < skip_intra_var_thresh)
return 1;
}
}
if (skip_motion_mode) return 2;
return 0;
}
static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE curr_mode,
const MV_REFERENCE_FRAME *ref_frames,
const AV1_COMMON *cm) {
PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info;
mbmi->ref_mv_idx = 0;
mbmi->mode = curr_mode;
mbmi->uv_mode = UV_DC_PRED;
mbmi->ref_frame[0] = ref_frames[0];
mbmi->ref_frame[1] = ref_frames[1];
pmi->palette_size[0] = 0;
pmi->palette_size[1] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1);
set_default_interp_filters(mbmi, cm->features.interp_filter);
}
static AOM_INLINE void collect_single_states(MACROBLOCK *x,
InterModeSearchState *search_state,
const MB_MODE_INFO *const mbmi) {
int i, j;
const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0];
const PREDICTION_MODE this_mode = mbmi->mode;
const int dir = ref_frame <= GOLDEN_FRAME ? 0 : 1;
const int mode_offset = INTER_OFFSET(this_mode);
const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode);
// Simple rd
int64_t simple_rd = search_state->simple_rd[this_mode][0][ref_frame];
for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
const int64_t rd =
search_state->simple_rd[this_mode][ref_mv_idx][ref_frame];
if (rd < simple_rd) simple_rd = rd;
}
// Insertion sort of single_state
const SingleInterModeState this_state_s = { simple_rd, ref_frame, 1 };
SingleInterModeState *state_s = search_state->single_state[dir][mode_offset];
i = search_state->single_state_cnt[dir][mode_offset];
for (j = i; j > 0 && state_s[j - 1].rd > this_state_s.rd; --j)
state_s[j] = state_s[j - 1];
state_s[j] = this_state_s;
search_state->single_state_cnt[dir][mode_offset]++;
// Modelled rd
int64_t modelled_rd = search_state->modelled_rd[this_mode][0][ref_frame];
for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) {
const int64_t rd =
search_state->modelled_rd[this_mode][ref_mv_idx][ref_frame];
if (rd < modelled_rd) modelled_rd = rd;
}
// Insertion sort of single_state_modelled
const SingleInterModeState this_state_m = { modelled_rd, ref_frame, 1 };
SingleInterModeState *state_m =
search_state->single_state_modelled[dir][mode_offset];
i = search_state->single_state_modelled_cnt[dir][mode_offset];
for (j = i; j > 0 && state_m[j - 1].rd > this_state_m.rd; --j)
state_m[j] = state_m[j - 1];
state_m[j] = this_state_m;
search_state->single_state_modelled_cnt[dir][mode_offset]++;
}
static AOM_INLINE void analyze_single_states(
const AV1_COMP *cpi, InterModeSearchState *search_state) {
const int prune_level = cpi->sf.inter_sf.prune_comp_search_by_single_result;
assert(prune_level >= 1);
int i, j, dir, mode;
for (dir = 0; dir < 2; ++dir) {
int64_t best_rd;
SingleInterModeState(*state)[FWD_REFS];
const int prune_factor = prune_level >= 2 ? 6 : 5;
// Use the best rd of GLOBALMV or NEWMV to prune the unlikely
// reference frames for all the modes (NEARESTMV and NEARMV may not
// have same motion vectors). Always keep the best of each mode
// because it might form the best possible combination with other mode.
state = search_state->single_state[dir];
best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
state[INTER_OFFSET(GLOBALMV)][0].rd);
for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
for (i = 1; i < search_state->single_state_cnt[dir][mode]; ++i) {
if (state[mode][i].rd != INT64_MAX &&
(state[mode][i].rd >> 3) * prune_factor > best_rd) {
state[mode][i].valid = 0;
}
}
}
state = search_state->single_state_modelled[dir];
best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd,
state[INTER_OFFSET(GLOBALMV)][0].rd);
for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
for (i = 1; i < search_state->single_state_modelled_cnt[dir][mode]; ++i) {
if (state[mode][i].rd != INT64_MAX &&
(state[mode][i].rd >> 3) * prune_factor > best_rd) {
state[mode][i].valid = 0;
}
}
}
}
// Ordering by simple rd first, then by modelled rd
for (dir = 0; dir < 2; ++dir) {
for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) {
const int state_cnt_s = search_state->single_state_cnt[dir][mode];
const int state_cnt_m =
search_state->single_state_modelled_cnt[dir][mode];
SingleInterModeState *state_s = search_state->single_state[dir][mode];
SingleInterModeState *state_m =
search_state->single_state_modelled[dir][mode];
int count = 0;
const int max_candidates = AOMMAX(state_cnt_s, state_cnt_m);
for (i = 0; i < state_cnt_s; ++i) {
if (state_s[i].rd == INT64_MAX) break;
if (state_s[i].valid) {
search_state->single_rd_order[dir][mode][count++] =
state_s[i].ref_frame;
}
}
if (count >= max_candidates) continue;
for (i = 0; i < state_cnt_m && count < max_candidates; ++i) {
if (state_m[i].rd == INT64_MAX) break;
if (!state_m[i].valid) continue;
const int ref_frame = state_m[i].ref_frame;
int match = 0;
// Check if existing already
for (j = 0; j < count; ++j) {
if (search_state->single_rd_order[dir][mode][j] == ref_frame) {
match = 1;
break;
}
}
if (match) continue;
// Check if this ref_frame is removed in simple rd
int valid = 1;
for (j = 0; j < state_cnt_s; ++j) {
if (ref_frame == state_s[j].ref_frame) {
valid = state_s[j].valid;
break;
}
}
if (valid) {
search_state->single_rd_order[dir][mode][count++] = ref_frame;
}
}
}
}
}
static int compound_skip_get_candidates(
const AV1_COMP *cpi, const InterModeSearchState *search_state,
const int dir, const PREDICTION_MODE mode) {
const int mode_offset = INTER_OFFSET(mode);
const SingleInterModeState *state =
search_state->single_state[dir][mode_offset];
const SingleInterModeState *state_modelled =
search_state->single_state_modelled[dir][mode_offset];
int max_candidates = 0;
for (int i = 0; i < FWD_REFS; ++i) {
if (search_state->single_rd_order[dir][mode_offset][i] == NONE_FRAME) break;
max_candidates++;
}
int candidates = max_candidates;
if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 2) {
candidates = AOMMIN(2, max_candidates);
}
if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 3) {
if (state[0].rd != INT64_MAX && state_modelled[0].rd != INT64_MAX &&
state[0].ref_frame == state_modelled[0].ref_frame)
candidates = 1;
if (mode == NEARMV || mode == GLOBALMV) candidates = 1;
}
if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 4) {
// Limit the number of candidates to 1 in each direction for compound
// prediction
candidates = AOMMIN(1, candidates);
}
return candidates;
}
static int compound_skip_by_single_states(
const AV1_COMP *cpi, const InterModeSearchState *search_state,
const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame,
const MV_REFERENCE_FRAME second_ref_frame, const MACROBLOCK *x) {
const MV_REFERENCE_FRAME refs[2] = { ref_frame, second_ref_frame };
const int mode[2] = { compound_ref0_mode(this_mode),
compound_ref1_mode(this_mode) };
const int mode_offset[2] = { INTER_OFFSET(mode[0]), INTER_OFFSET(mode[1]) };
const int mode_dir[2] = { refs[0] <= GOLDEN_FRAME ? 0 : 1,
refs[1] <= GOLDEN_FRAME ? 0 : 1 };
int ref_searched[2] = { 0, 0 };
int ref_mv_match[2] = { 1, 1 };
int i, j;
for (i = 0; i < 2; ++i) {
const SingleInterModeState *state =
search_state->single_state[mode_dir[i]][mode_offset[i]];
const int state_cnt =
search_state->single_state_cnt[mode_dir[i]][mode_offset[i]];
for (j = 0; j < state_cnt; ++j) {
if (state[j].ref_frame == refs[i]) {
ref_searched[i] = 1;
break;
}
}
}
const int ref_set = get_drl_refmv_count(x, refs, this_mode);
for (i = 0; i < 2; ++i) {
if (!ref_searched[i] || (mode[i] != NEARESTMV && mode[i] != NEARMV)) {
continue;
}
const MV_REFERENCE_FRAME single_refs[2] = { refs[i], NONE_FRAME };
for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ref_mv_idx++) {
int_mv single_mv;
int_mv comp_mv;
get_this_mv(&single_mv, mode[i], 0, ref_mv_idx, 0, single_refs,
&x->mbmi_ext);
get_this_mv(&comp_mv, this_mode, i, ref_mv_idx, 0, refs, &x->mbmi_ext);
if (single_mv.as_int != comp_mv.as_int) {
ref_mv_match[i] = 0;
break;
}
}
}
for (i = 0; i < 2; ++i) {
if (!ref_searched[i] || !ref_mv_match[i]) continue;
const int candidates =
compound_skip_get_candidates(cpi, search_state, mode_dir[i], mode[i]);
const MV_REFERENCE_FRAME *ref_order =
search_state->single_rd_order[mode_dir[i]][mode_offset[i]];
int match = 0;
for (j = 0; j < candidates; ++j) {
if (refs[i] == ref_order[j]) {
match = 1;
break;
}
}
if (!match) return 1;
}
return 0;
}
// Check if ref frames of current block matches with given block.
static INLINE void match_ref_frame(const MB_MODE_INFO *const mbmi,
const MV_REFERENCE_FRAME *ref_frames,
int *const is_ref_match) {
if (is_inter_block(mbmi)) {
is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[0];
is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[0];
if (has_second_ref(mbmi)) {
is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[1];
is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[1];
}
}
}
// Prune compound mode using ref frames of neighbor blocks.
static INLINE int compound_skip_using_neighbor_refs(
MACROBLOCKD *const xd, const PREDICTION_MODE this_mode,
const MV_REFERENCE_FRAME *ref_frames, int prune_ext_comp_using_neighbors) {
// Exclude non-extended compound modes from pruning
if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV ||
this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV)
return 0;
if (prune_ext_comp_using_neighbors >= 3) return 1;
int is_ref_match[2] = { 0 }; // 0 - match for forward refs
// 1 - match for backward refs
// Check if ref frames of this block matches with left neighbor.
if (xd->left_available)
match_ref_frame(xd->left_mbmi, ref_frames, is_ref_match);
// Check if ref frames of this block matches with above neighbor.
if (xd->up_available)
match_ref_frame(xd->above_mbmi, ref_frames, is_ref_match);
// Combine ref frame match with neighbors in forward and backward refs.
const int track_ref_match = is_ref_match[0] + is_ref_match[1];
// Pruning based on ref frame match with neighbors.
if (track_ref_match >= prune_ext_comp_using_neighbors) return 0;
return 1;
}
// Update best single mode for the given reference frame based on simple rd.
static INLINE void update_best_single_mode(InterModeSearchState *search_state,
const PREDICTION_MODE this_mode,
const MV_REFERENCE_FRAME ref_frame,
int64_t this_rd) {
if (this_rd < search_state->best_single_rd[ref_frame]) {
search_state->best_single_rd[ref_frame] = this_rd;
search_state->best_single_mode[ref_frame] = this_mode;
}
}
// Prune compound mode using best single mode for the same reference.
static INLINE int skip_compound_using_best_single_mode_ref(
const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME *ref_frames,
const PREDICTION_MODE *best_single_mode,
int prune_comp_using_best_single_mode_ref) {
// Exclude non-extended compound modes from pruning
if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV ||
this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV)
return 0;
assert(this_mode >= NEAREST_NEWMV && this_mode <= NEW_NEARMV);
const PREDICTION_MODE comp_mode_ref0 = compound_ref0_mode(this_mode);
// Get ref frame direction corresponding to NEWMV
// 0 - NEWMV corresponding to forward direction
// 1 - NEWMV corresponding to backward direction
const int newmv_dir = comp_mode_ref0 != NEWMV;
// Avoid pruning the compound mode when ref frame corresponding to NEWMV
// have NEWMV as single mode winner.
// Example: For an extended-compound mode,
// {mode, {fwd_frame, bwd_frame}} = {NEAR_NEWMV, {LAST_FRAME, ALTREF_FRAME}}
// - Ref frame corresponding to NEWMV is ALTREF_FRAME
// - Avoid pruning this mode, if best single mode corresponding to ref frame
// ALTREF_FRAME is NEWMV
const PREDICTION_MODE single_mode = best_single_mode[ref_frames[newmv_dir]];
if (single_mode == NEWMV) return 0;
// Avoid pruning the compound mode when best single mode is not available
if (prune_comp_using_best_single_mode_ref == 1)
if (single_mode == MB_MODE_COUNT) return 0;
return 1;
}
static int compare_int64(const void *a, const void *b) {
int64_t a64 = *((int64_t *)a);
int64_t b64 = *((int64_t *)b);
if (a64 < b64) {
return -1;
} else if (a64 == b64) {
return 0;
} else {
return 1;
}
}
static INLINE void update_search_state(
InterModeSearchState *search_state, RD_STATS *best_rd_stats_dst,
PICK_MODE_CONTEXT *ctx, const RD_STATS *new_best_rd_stats,
const RD_STATS *new_best_rd_stats_y, const RD_STATS *new_best_rd_stats_uv,
THR_MODES new_best_mode, const MACROBLOCK *x, int txfm_search_done) {
const MACROBLOCKD *xd = &x->e_mbd;
const MB_MODE_INFO *mbmi = xd->mi[0];
const int skip_ctx = av1_get_skip_txfm_context(xd);
const int skip_txfm =
mbmi->skip_txfm && !is_mode_intra(av1_mode_defs[new_best_mode].mode);
const TxfmSearchInfo *txfm_info = &x->txfm_search_info;
search_state->best_rd = new_best_rd_stats->rdcost;
search_state->best_mode_index = new_best_mode;
*best_rd_stats_dst = *new_best_rd_stats;
search_state->best_mbmode = *mbmi;
search_state->best_skip2 = skip_txfm;
search_state->best_mode_skippable = new_best_rd_stats->skip_txfm;
// When !txfm_search_done, new_best_rd_stats won't provide correct rate_y and
// rate_uv because av1_txfm_search process is replaced by rd estimation.
// Therefore, we should avoid updating best_rate_y and best_rate_uv here.
// These two values will be updated when av1_txfm_search is called.
if (txfm_search_done) {
search_state->best_rate_y =
new_best_rd_stats_y->rate +
x->mode_costs.skip_txfm_cost[skip_ctx]
[new_best_rd_stats->skip_txfm || skip_txfm];
search_state->best_rate_uv = new_best_rd_stats_uv->rate;
}
search_state->best_y_rdcost = *new_best_rd_stats_y;
memcpy(ctx->blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}
// Find the best RD for a reference frame (among single reference modes)
// and store +10% of it in the 0-th element in ref_frame_rd.
static AOM_INLINE void find_top_ref(int64_t ref_frame_rd[REF_FRAMES]) {
assert(ref_frame_rd[0] == INT64_MAX);
int64_t ref_copy[REF_FRAMES - 1];
memcpy(ref_copy, ref_frame_rd + 1,
sizeof(ref_frame_rd[0]) * (REF_FRAMES - 1));
qsort(ref_copy, REF_FRAMES - 1, sizeof(int64_t), compare_int64);
int64_t cutoff = ref_copy[0];
// The cut-off is within 10% of the best.
if (cutoff != INT64_MAX) {
assert(cutoff < INT64_MAX / 200);
cutoff = (110 * cutoff) / 100;
}
ref_frame_rd[0] = cutoff;
}
// Check if either frame is within the cutoff.
static INLINE bool in_single_ref_cutoff(int64_t ref_frame_rd[REF_FRAMES],
MV_REFERENCE_FRAME frame1,
MV_REFERENCE_FRAME frame2) {
assert(frame2 > 0);
return ref_frame_rd[frame1] <= ref_frame_rd[0] ||
ref_frame_rd[frame2] <= ref_frame_rd[0];
}
static AOM_INLINE void evaluate_motion_mode_for_winner_candidates(
const AV1_COMP *const cpi, MACROBLOCK *const x, RD_STATS *const rd_cost,
HandleInterModeArgs *const args, TileDataEnc *const tile_data,
PICK_MODE_CONTEXT *const ctx,
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE],
const motion_mode_best_st_candidate *const best_motion_mode_cands,
int do_tx_search, const BLOCK_SIZE bsize, int64_t *const best_est_rd,
InterModeSearchState *const search_state, int64_t *yrd) {
const AV1_COMMON *const cm = &cpi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
InterModesInfo *const inter_modes_info = x->inter_modes_info;
const int num_best_cand = best_motion_mode_cands->num_motion_mode_cand;
for (int cand = 0; cand < num_best_cand; cand++) {
RD_STATS rd_stats;
RD_STATS rd_stats_y;
RD_STATS rd_stats_uv;
av1_init_rd_stats(&rd_stats);
av1_init_rd_stats(&rd_stats_y);
av1_init_rd_stats(&rd_stats_uv);
int rate_mv;
rate_mv = best_motion_mode_cands->motion_mode_cand[cand].rate_mv;
args->skip_motion_mode =
best_motion_mode_cands->motion_mode_cand[cand].skip_motion_mode;
*mbmi = best_motion_mode_cands->motion_mode_cand[cand].mbmi;
rd_stats.rate =
best_motion_mode_cands->motion_mode_cand[cand].rate2_nocoeff;
// Continue if the best candidate is compound.
if (!is_inter_singleref_mode(mbmi->mode)) continue;
x->txfm_search_info.skip_txfm = 0;
struct macroblockd_plane *pd = xd->plane;
const BUFFER_SET orig_dst = {
{ pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf },
{ pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride },
};
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Initialize motion mode to simple translation
// Calculation of switchable rate depends on it.
mbmi->motion_mode = 0;
const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
int64_t skip_rd[2] = { search_state->best_skip_rd[0],
search_state->best_skip_rd[1] };
int64_t this_yrd = INT64_MAX;
int64_t ret_value = motion_mode_rd(
cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, args,
search_state->best_rd, skip_rd, &rate_mv, &orig_dst, best_est_rd,
do_tx_search, inter_modes_info, 1, &this_yrd);
if (ret_value != INT64_MAX) {
rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist);
const THR_MODES mode_enum = get_prediction_mode_idx(
mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Collect mode stats for multiwinner mode processing
store_winner_mode_stats(
&cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv,
mode_enum, NULL, bsize, rd_stats.rdcost,
cpi->sf.winner_mode_sf.multi_winner_mode_type, do_tx_search);
if (rd_stats.rdcost < search_state->best_rd) {
*yrd = this_yrd;
update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
&rd_stats_uv, mode_enum, x, do_tx_search);
if (do_tx_search) search_state->best_skip_rd[0] = skip_rd[0];
}
}
}
}
/*!\cond */
// Arguments for speed feature pruning of inter mode search
typedef struct {
int *skip_motion_mode;
mode_skip_mask_t *mode_skip_mask;
InterModeSearchState *search_state;
int skip_ref_frame_mask;
int reach_first_comp_mode;
int mode_thresh_mul_fact;
int num_single_modes_processed;
int prune_cpd_using_sr_stats_ready;
} InterModeSFArgs;
/*!\endcond */
static int skip_inter_mode(AV1_COMP *cpi, MACROBLOCK *x, const BLOCK_SIZE bsize,
int64_t *ref_frame_rd, int midx,
InterModeSFArgs *args, int is_low_temp_var) {
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
// Get the actual prediction mode we are trying in this iteration
const THR_MODES mode_enum = av1_default_mode_order[midx];
const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum];
const PREDICTION_MODE this_mode = mode_def->mode;
const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame;
const MV_REFERENCE_FRAME ref_frame = ref_frames[0];
const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1];
const int comp_pred = second_ref_frame > INTRA_FRAME;
if (ref_frame == INTRA_FRAME) return 1;
const FRAME_UPDATE_TYPE update_type =
get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index);
if (sf->inter_sf.skip_arf_compound && update_type == ARF_UPDATE &&
comp_pred) {
return 1;
}
// This is for real time encoding.
if (is_low_temp_var && !comp_pred && ref_frame != LAST_FRAME &&
this_mode != NEARESTMV)
return 1;
// Check if this mode should be skipped because it is incompatible with the
// current frame
if (inter_mode_compatible_skip(cpi, x, bsize, this_mode, ref_frames))
return 1;
const int ret = inter_mode_search_order_independent_skip(
cpi, x, args->mode_skip_mask, args->search_state,
args->skip_ref_frame_mask, this_mode, mode_def->ref_frame);
if (ret == 1) return 1;
*(args->skip_motion_mode) = (ret == 2);
// We've reached the first compound prediction mode, get stats from the
// single reference predictors to help with pruning
if (sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred &&
args->reach_first_comp_mode == 0) {
analyze_single_states(cpi, args->search_state);
args->reach_first_comp_mode = 1;
}
// Prune aggressively when best mode is skippable.
int mul_fact = args->search_state->best_mode_skippable
? args->mode_thresh_mul_fact
: (1 << MODE_THRESH_QBITS);
int64_t mode_threshold =
(args->search_state->mode_threshold[mode_enum] * mul_fact) >>
MODE_THRESH_QBITS;
if (args->search_state->best_rd < mode_threshold) return 1;
// Skip this compound mode based on the RD results from the single prediction
// modes
if (sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred) {
if (compound_skip_by_single_states(cpi, args->search_state, this_mode,
ref_frame, second_ref_frame, x))
return 1;
}
if (sf->inter_sf.prune_compound_using_single_ref && comp_pred) {
// After we done with single reference modes, find the 2nd best RD
// for a reference frame. Only search compound modes that have a reference
// frame at least as good as the 2nd best.
if (!args->prune_cpd_using_sr_stats_ready &&
args->num_single_modes_processed == NUM_SINGLE_REF_MODES) {
find_top_ref(ref_frame_rd);
args->prune_cpd_using_sr_stats_ready = 1;
}
if (args->prune_cpd_using_sr_stats_ready &&
!in_single_ref_cutoff(ref_frame_rd, ref_frame, second_ref_frame))
return 1;
}
// Skip NEW_NEARMV and NEAR_NEWMV extended compound modes
if (sf->inter_sf.skip_ext_comp_nearmv_mode &&
(this_mode == NEW_NEARMV || this_mode == NEAR_NEWMV)) {
return 1;
}
if (sf->inter_sf.prune_ext_comp_using_neighbors && comp_pred) {
if (compound_skip_using_neighbor_refs(
xd, this_mode, ref_frames,
sf->inter_sf.prune_ext_comp_using_neighbors))
return 1;
}
if (sf->inter_sf.prune_comp_using_best_single_mode_ref && comp_pred) {
if (skip_compound_using_best_single_mode_ref(
this_mode, ref_frames, args->search_state->best_single_mode,
sf->inter_sf.prune_comp_using_best_single_mode_ref))
return 1;
}
if (sf->inter_sf.prune_nearest_near_mv_using_refmv_weight && !comp_pred) {
const int8_t ref_frame_type = av1_ref_frame_type(ref_frames);
if (skip_nearest_near_mv_using_refmv_weight(x, this_mode, ref_frame_type))
return 1;
}
if (sf->rt_sf.prune_inter_modes_with_golden_ref &&
ref_frame == GOLDEN_FRAME && !comp_pred) {
const int subgop_size = AOMMIN(cpi->ppi->gf_group.size, FIXED_GF_INTERVAL);
if (cpi->rc.frames_since_golden > (subgop_size >> 2) &&
args->search_state->best_mbmode.ref_frame[0] != GOLDEN_FRAME) {
if ((bsize > BLOCK_16X16 && this_mode == NEWMV) || this_mode == NEARMV)
return 1;
}
}
return 0;
}
static void record_best_compound(REFERENCE_MODE reference_mode,
RD_STATS *rd_stats, int comp_pred, int rdmult,
InterModeSearchState *search_state,
int compmode_cost) {
int64_t single_rd, hybrid_rd, single_rate, hybrid_rate;
if (reference_mode == REFERENCE_MODE_SELECT) {
single_rate = rd_stats->rate - compmode_cost;
hybrid_rate = rd_stats->rate;
} else {
single_rate = rd_stats->rate;
hybrid_rate = rd_stats->rate + compmode_cost;
}
single_rd = RDCOST(rdmult, single_rate, rd_stats->dist);
hybrid_rd = RDCOST(rdmult, hybrid_rate, rd_stats->dist);
if (!comp_pred) {
if (single_rd < search_state->best_pred_rd[SINGLE_REFERENCE])
search_state->best_pred_rd[SINGLE_REFERENCE] = single_rd;
} else {
if (single_rd < search_state->best_pred_rd[COMPOUND_REFERENCE])
search_state->best_pred_rd[COMPOUND_REFERENCE] = single_rd;
}
if (hybrid_rd < search_state->best_pred_rd[REFERENCE_MODE_SELECT])
search_state->best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd;
}
// Does a transform search over a list of the best inter mode candidates.
// This is called if the original mode search computed an RD estimate
// for the transform search rather than doing a full search.
static void tx_search_best_inter_candidates(
AV1_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x,
int64_t best_rd_so_far, BLOCK_SIZE bsize,
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int mi_row, int mi_col,
InterModeSearchState *search_state, RD_STATS *rd_cost,
PICK_MODE_CONTEXT *ctx, int64_t *yrd) {
AV1_COMMON *const cm = &cpi->common;
MACROBLOCKD *const xd = &x->e_mbd;
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
const ModeCosts *mode_costs = &x->mode_costs;
const int num_planes = av1_num_planes(cm);
const int skip_ctx = av1_get_skip_txfm_context(xd);
MB_MODE_INFO *const mbmi = xd->mi[0];
InterModesInfo *inter_modes_info = x->inter_modes_info;
inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr);
search_state->best_rd = best_rd_so_far;
search_state->best_mode_index = THR_INVALID;
// Initialize best mode stats for winner mode processing
x->winner_mode_count = 0;
store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID,
NULL, bsize, best_rd_so_far,
cpi->sf.winner_mode_sf.multi_winner_mode_type, 0);
inter_modes_info->num =
inter_modes_info->num < cpi->sf.rt_sf.num_inter_modes_for_tx_search
? inter_modes_info->num
: cpi->sf.rt_sf.num_inter_modes_for_tx_search;
const int64_t top_est_rd =
inter_modes_info->num > 0
? inter_modes_info
->est_rd_arr[inter_modes_info->rd_idx_pair_arr[0].idx]
: INT64_MAX;
*yrd = INT64_MAX;
int64_t best_rd_in_this_partition = INT64_MAX;
int num_inter_mode_cands = inter_modes_info->num;
int newmv_mode_evaled = 0;
int max_allowed_cands = INT_MAX;
if (cpi->sf.inter_sf.limit_inter_mode_cands) {
// The bound on the no. of inter mode candidates, beyond which the
// candidates are limited if a newmv mode got evaluated, is set as
// max_allowed_cands + 1.
const int num_allowed_cands[5] = { INT_MAX, 10, 9, 6, 2 };
assert(cpi->sf.inter_sf.limit_inter_mode_cands <= 4);
max_allowed_cands =
num_allowed_cands[cpi->sf.inter_sf.limit_inter_mode_cands];
}
int num_mode_thresh = INT_MAX;
if (cpi->sf.inter_sf.limit_txfm_eval_per_mode) {
// Bound the no. of transform searches per prediction mode beyond a
// threshold.
const int num_mode_thresh_ary[4] = { INT_MAX, 4, 3, 0 };
assert(cpi->sf.inter_sf.limit_txfm_eval_per_mode <= 3);
num_mode_thresh =
num_mode_thresh_ary[cpi->sf.inter_sf.limit_txfm_eval_per_mode];
}
int num_tx_cands = 0;
int num_tx_search_modes[INTER_MODE_END - INTER_MODE_START] = { 0 };
// Iterate over best inter mode candidates and perform tx search
for (int j = 0; j < num_inter_mode_cands; ++j) {
const int data_idx = inter_modes_info->rd_idx_pair_arr[j].idx;
*mbmi = inter_modes_info->mbmi_arr[data_idx];
const PREDICTION_MODE prediction_mode = mbmi->mode;
int64_t curr_est_rd = inter_modes_info->est_rd_arr[data_idx];
if (curr_est_rd * 0.80 > top_est_rd) break;
if (num_tx_cands > num_mode_thresh) {
if ((prediction_mode != NEARESTMV &&
num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 1) ||
(prediction_mode == NEARESTMV &&
num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 2))
continue;
}
txfm_info->skip_txfm = 0;
set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Select prediction reference frames.
const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME;
for (int i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i];
if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i];
}
bool is_predictor_built = false;
// Initialize RD stats
RD_STATS rd_stats;
RD_STATS rd_stats_y;
RD_STATS rd_stats_uv;
const int mode_rate = inter_modes_info->mode_rate_arr[data_idx];
int64_t skip_rd = INT64_MAX;
if (cpi->sf.inter_sf.txfm_rd_gate_level) {
// Check if the mode is good enough based on skip RD
int64_t curr_sse = inter_modes_info->sse_arr[data_idx];
skip_rd = RDCOST(x->rdmult, mode_rate, curr_sse);
int eval_txfm =
check_txfm_eval(x, bsize, search_state->best_skip_rd[0], skip_rd,
cpi->sf.inter_sf.txfm_rd_gate_level, 0);
if (!eval_txfm) continue;
}
// Build the prediction for this mode
if (!is_predictor_built) {
av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0,
av1_num_planes(cm) - 1);
}
if (mbmi->motion_mode == OBMC_CAUSAL) {
av1_build_obmc_inter_predictors_sb(cm, xd);
}
num_tx_cands++;
if (have_newmv_in_inter_mode(prediction_mode)) newmv_mode_evaled = 1;
num_tx_search_modes[prediction_mode - INTER_MODE_START]++;
int64_t this_yrd = INT64_MAX;
// Do the transform search
if (!av1_txfm_search(cpi, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv,
mode_rate, search_state->best_rd)) {
continue;
} else {
const int y_rate =
rd_stats.skip_txfm
? mode_costs->skip_txfm_cost[skip_ctx][1]
: (rd_stats_y.rate + mode_costs->skip_txfm_cost[skip_ctx][0]);
this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y.dist);
if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) {
inter_mode_data_push(
tile_data, mbmi->bsize, rd_stats.sse, rd_stats.dist,
rd_stats_y.rate + rd_stats_uv.rate +
mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]);
}
}
rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist);
if (rd_stats.rdcost < best_rd_in_this_partition) {
best_rd_in_this_partition = rd_stats.rdcost;
*yrd = this_yrd;
}
const THR_MODES mode_enum = get_prediction_mode_idx(
prediction_mode, mbmi->ref_frame[0], mbmi->ref_frame[1]);
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
store_winner_mode_stats(
&cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_enum,
NULL, bsize, rd_stats.rdcost,
cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
if (rd_stats.rdcost < search_state->best_rd) {
update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
&rd_stats_uv, mode_enum, x, txfm_search_done);
search_state->best_skip_rd[0] = skip_rd;
// Limit the total number of modes to be evaluated if the first is valid
// and transform skip or compound
if (cpi->sf.inter_sf.inter_mode_txfm_breakout) {
if (!j && (search_state->best_mbmode.skip_txfm || rd_stats.skip_txfm)) {
// Evaluate more candidates at high quantizers where occurrence of
// transform skip is high.
const int max_cands_cap[5] = { 2, 3, 5, 7, 9 };
const int qindex_band = (5 * x->qindex) >> QINDEX_BITS;
num_inter_mode_cands =
AOMMIN(max_cands_cap[qindex_band], inter_modes_info->num);
} else if (!j && has_second_ref(&search_state->best_mbmode)) {
const int aggr = cpi->sf.inter_sf.inter_mode_txfm_breakout - 1;
// Evaluate more candidates at low quantizers where occurrence of
// single reference mode is high.
const int max_cands_cap_cmp[2][4] = { { 10, 7, 5, 4 },
{ 10, 7, 5, 3 } };
const int qindex_band_cmp = (4 * x->qindex) >> QINDEX_BITS;
num_inter_mode_cands = AOMMIN(
max_cands_cap_cmp[aggr][qindex_band_cmp], inter_modes_info->num);
}
}
}
// If the number of candidates evaluated exceeds max_allowed_cands, break if
// a newmv mode was evaluated already.
if ((num_tx_cands > max_allowed_cands) && newmv_mode_evaled) break;
}
}
// Indicates number of winner simple translation modes to be used
static const unsigned int num_winner_motion_modes[3] = { 0, 10, 3 };
// Adds a motion mode to the candidate list for motion_mode_for_winner_cand
// speed feature. This list consists of modes that have only searched
// SIMPLE_TRANSLATION. The final list will be used to search other motion
// modes after the initial RD search.
static void handle_winner_cand(
MB_MODE_INFO *const mbmi,
motion_mode_best_st_candidate *best_motion_mode_cands,
int max_winner_motion_mode_cand, int64_t this_rd,
motion_mode_candidate *motion_mode_cand, int skip_motion_mode) {
// Number of current motion mode candidates in list
const int num_motion_mode_cand = best_motion_mode_cands->num_motion_mode_cand;
int valid_motion_mode_cand_loc = num_motion_mode_cand;
// find the best location to insert new motion mode candidate
for (int j = 0; j < num_motion_mode_cand; j++) {
if (this_rd < best_motion_mode_cands->motion_mode_cand[j].rd_cost) {
valid_motion_mode_cand_loc = j;
break;
}
}
// Insert motion mode if location is found
if (valid_motion_mode_cand_loc < max_winner_motion_mode_cand) {
if (num_motion_mode_cand > 0 &&
valid_motion_mode_cand_loc < max_winner_motion_mode_cand - 1)
memmove(
&best_motion_mode_cands
->motion_mode_cand[valid_motion_mode_cand_loc + 1],
&best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc],
(AOMMIN(num_motion_mode_cand, max_winner_motion_mode_cand - 1) -
valid_motion_mode_cand_loc) *
sizeof(best_motion_mode_cands->motion_mode_cand[0]));
motion_mode_cand->mbmi = *mbmi;
motion_mode_cand->rd_cost = this_rd;
motion_mode_cand->skip_motion_mode = skip_motion_mode;
best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc] =
*motion_mode_cand;
best_motion_mode_cands->num_motion_mode_cand =
AOMMIN(max_winner_motion_mode_cand,
best_motion_mode_cands->num_motion_mode_cand + 1);
}
}
/*!\brief Search intra modes in interframes
*
* \ingroup intra_mode_search
*
* This function searches for the best intra mode when the current frame is an
* interframe. This function however does *not* handle luma palette mode.
* Palette mode is currently handled by \ref av1_search_palette_mode.
*
* This function will first iterate through the luma mode candidates to find the
* best luma intra mode. Once the best luma mode it's found, it will then search
* for the best chroma mode. Because palette mode is currently not handled by
* here, a cache of uv mode is stored in
* InterModeSearchState::intra_search_state so it can be reused later by \ref
* av1_search_palette_mode.
*
* \param[in,out] search_state Struct keep track of the prediction mode
* search state in interframe.
*
* \param[in] cpi Top-level encoder structure.
* \param[in,out] x Pointer to struct holding all the data for
* the current prediction block.
* \param[out] rd_cost Stores the best rd_cost among all the
* prediction modes searched.
* \param[in] bsize Current block size.
* \param[in,out] ctx Structure to hold the number of 4x4 blks to
* copy the tx_type and txfm_skip arrays.
* for only the Y plane.
* \param[in] sf_args Stores the list of intra mode candidates
* to be searched.
* \param[in] intra_ref_frame_cost The entropy cost for signaling that the
* current ref frame is an intra frame.
* \param[in] yrd_threshold The rdcost threshold for luma intra mode to
* terminate chroma intra mode search.
*
* \remark If a new best mode is found, search_state and rd_costs are updated
* correspondingly. While x is also modified, it is only used as a temporary
* buffer, and the final decisions are stored in search_state.
*/
static AOM_INLINE void search_intra_modes_in_interframe(
InterModeSearchState *search_state, const AV1_COMP *cpi, MACROBLOCK *x,
RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
const InterModeSFArgs *sf_args, unsigned int intra_ref_frame_cost,
int64_t yrd_threshold) {
const AV1_COMMON *const cm = &cpi->common;
const SPEED_FEATURES *const sf = &cpi->sf;
const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
IntraModeSearchState *intra_search_state = &search_state->intra_search_state;
int is_best_y_mode_intra = 0;
RD_STATS best_intra_rd_stats_y;
int64_t best_rd_y = INT64_MAX;
int best_mode_cost_y = -1;
MB_MODE_INFO best_mbmi = *xd->mi[0];
THR_MODES best_mode_enum = THR_INVALID;
uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE];
uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE];
const int num_4x4 = bsize_to_num_blk(bsize);
// Performs luma search
int64_t best_model_rd = INT64_MAX;
int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT];
for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) {
top_intra_model_rd[i] = INT64_MAX;
}
for (int mode_idx = 0; mode_idx < LUMA_MODE_COUNT; ++mode_idx) {
if (sf->intra_sf.skip_intra_in_interframe &&
search_state->intra_search_state.skip_intra_modes)
break;
set_y_mode_and_delta_angle(
mode_idx, mbmi, sf->intra_sf.prune_luma_odd_delta_angles_in_intra);
assert(mbmi->mode < INTRA_MODE_END);
// Use intra_y_mode_mask speed feature to skip intra mode evaluation.
if (sf_args->mode_skip_mask->pred_modes[INTRA_FRAME] & (1 << mbmi->mode))
continue;
const THR_MODES mode_enum =
get_prediction_mode_idx(mbmi->mode, INTRA_FRAME, NONE_FRAME);
if ((!intra_mode_cfg->enable_smooth_intra ||
cpi->sf.intra_sf.disable_smooth_intra) &&
(mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED ||
mbmi->mode == SMOOTH_V_PRED))
continue;
if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED)
continue;
if (av1_is_directional_mode(mbmi->mode) &&
!(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) &&
mbmi->angle_delta[PLANE_TYPE_Y] != 0)
continue;
const PREDICTION_MODE this_mode = mbmi->mode;
assert(av1_mode_defs[mode_enum].ref_frame[0] == INTRA_FRAME);
assert(av1_mode_defs[mode_enum].ref_frame[1] == NONE_FRAME);
init_mbmi(mbmi, this_mode, av1_mode_defs[mode_enum].ref_frame, cm);
x->txfm_search_info.skip_txfm = 0;
if (this_mode != DC_PRED) {
// Only search the oblique modes if the best so far is
// one of the neighboring directional modes
if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) &&
(this_mode >= D45_PRED && this_mode <= PAETH_PRED)) {
if (search_state->best_mode_index != THR_INVALID &&
search_state->best_mbmode.ref_frame[0] > INTRA_FRAME)
continue;
}
if (sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) {
if (conditional_skipintra(
this_mode, search_state->intra_search_state.best_intra_mode))
continue;
}
}
RD_STATS intra_rd_stats_y;
int mode_cost_y;
int64_t intra_rd_y = INT64_MAX;
const int is_luma_result_valid = av1_handle_intra_y_mode(
intra_search_state, cpi, x, bsize, intra_ref_frame_cost, ctx,
&intra_rd_stats_y, search_state->best_rd, &mode_cost_y, &intra_rd_y,
&best_model_rd, top_intra_model_rd);
if (is_luma_result_valid && intra_rd_y < yrd_threshold) {
is_best_y_mode_intra = 1;
if (intra_rd_y < best_rd_y) {
best_intra_rd_stats_y = intra_rd_stats_y;
best_mode_cost_y = mode_cost_y;
best_rd_y = intra_rd_y;
best_mbmi = *mbmi;
best_mode_enum = mode_enum;
memcpy(best_blk_skip, x->txfm_search_info.blk_skip,
sizeof(best_blk_skip[0]) * num_4x4);
av1_copy_array(best_tx_type_map, xd->tx_type_map, num_4x4);
}
}
}
if (!is_best_y_mode_intra) {
return;
}
assert(best_rd_y < INT64_MAX);
// Restores the best luma mode
*mbmi = best_mbmi;
memcpy(x->txfm_search_info.blk_skip, best_blk_skip,
sizeof(best_blk_skip[0]) * num_4x4);
av1_copy_array(xd->tx_type_map, best_tx_type_map, num_4x4);
// Performs chroma search
RD_STATS intra_rd_stats, intra_rd_stats_uv;
av1_init_rd_stats(&intra_rd_stats);
av1_init_rd_stats(&intra_rd_stats_uv);
const int num_planes = av1_num_planes(cm);
if (num_planes > 1) {
const int intra_uv_mode_valid = av1_search_intra_uv_modes_in_interframe(
intra_search_state, cpi, x, bsize, &intra_rd_stats,
&best_intra_rd_stats_y, &intra_rd_stats_uv, search_state->best_rd);
if (!intra_uv_mode_valid) {
return;
}
}
// Merge the luma and chroma rd stats
assert(best_mode_cost_y >= 0);
intra_rd_stats.rate = best_intra_rd_stats_y.rate + best_mode_cost_y;
if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) {
// av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size
// in the tokenonly rate, but for intra blocks, tx_size is always coded
// (prediction granularity), so we account for it in the full rate,
// not the tokenonly rate.
best_intra_rd_stats_y.rate -= tx_size_cost(x, bsize, mbmi->tx_size);
}
const ModeCosts *mode_costs = &x->mode_costs;
const PREDICTION_MODE mode = mbmi->mode;
if (num_planes > 1 && xd->is_chroma_ref) {
const int uv_mode_cost =
mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mode][mbmi->uv_mode];
intra_rd_stats.rate +=
intra_rd_stats_uv.rate +
intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost);
}
// Intra block is always coded as non-skip
intra_rd_stats.skip_txfm = 0;
intra_rd_stats.dist = best_intra_rd_stats_y.dist + intra_rd_stats_uv.dist;
// Add in the cost of the no skip flag.
const int skip_ctx = av1_get_skip_txfm_context(xd);
intra_rd_stats.rate += mode_costs->skip_txfm_cost[skip_ctx][0];
// Calculate the final RD estimate for this mode.
const int64_t this_rd =
RDCOST(x->rdmult, intra_rd_stats.rate, intra_rd_stats.dist);
// Keep record of best intra rd
if (this_rd < search_state->best_intra_rd) {
search_state->best_intra_rd = this_rd;
intra_search_state->best_intra_mode = mode;
}
for (int i = 0; i < REFERENCE_MODES; ++i) {
search_state->best_pred_rd[i] =
AOMMIN(search_state->best_pred_rd[i], this_rd);
}
intra_rd_stats.rdcost = this_rd;
// Collect mode stats for multiwinner mode processing
const int txfm_search_done = 1;
store_winner_mode_stats(
&cpi->common, x, mbmi, &intra_rd_stats, &best_intra_rd_stats_y,
&intra_rd_stats_uv, best_mode_enum, NULL, bsize, intra_rd_stats.rdcost,
cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done);
if (intra_rd_stats.rdcost < search_state->best_rd) {
update_search_state(search_state, rd_cost, ctx, &intra_rd_stats,
&best_intra_rd_stats_y, &intra_rd_stats_uv,
best_mode_enum, x, txfm_search_done);
}
}
#if !CONFIG_REALTIME_ONLY
// Prepare inter_cost and intra_cost from TPL stats, which are used as ML
// features in intra mode pruning.
static AOM_INLINE void calculate_cost_from_tpl_data(
const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row,
int mi_col, int64_t *inter_cost, int64_t *intra_cost) {
const AV1_COMMON *const cm = &cpi->common;
// Only consider full SB.
const BLOCK_SIZE sb_size = cm->seq_params->sb_size;
const int tpl_bsize_1d = cpi->ppi->tpl_data.tpl_bsize_1d;
const int len = (block_size_wide[sb_size] / tpl_bsize_1d) *
(block_size_high[sb_size] / tpl_bsize_1d);
SuperBlockEnc *sb_enc = &x->sb_enc;
if (sb_enc->tpl_data_count == len) {
const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_bsize_1d);
const int tpl_stride = sb_enc->tpl_stride;
const int tplw = mi_size_wide[tpl_bsize];
const int tplh = mi_size_high[tpl_bsize];
const int nw = mi_size_wide[bsize] / tplw;
const int nh = mi_size_high[bsize] / tplh;
if (nw >= 1 && nh >= 1) {
const int of_h = mi_row % mi_size_high[sb_size];
const int of_w = mi_col % mi_size_wide[sb_size];
const int start = of_h / tplh * tpl_stride + of_w / tplw;
for (int k = 0; k < nh; k++) {
for (int l = 0; l < nw; l++) {
*inter_cost += sb_enc->tpl_inter_cost[start + k * tpl_stride + l];
*intra_cost += sb_enc->tpl_intra_cost[start + k * tpl_stride + l];
}
}
*inter_cost /= nw * nh;
*intra_cost /= nw * nh;
}
}
}
#endif // !CONFIG_REALTIME_ONLY
// When the speed feature skip_intra_in_interframe > 0, enable ML model to prune
// intra mode search.
static AOM_INLINE void skip_intra_modes_in_interframe(
AV1_COMMON *const cm, struct macroblock *x, BLOCK_SIZE bsize,
InterModeSearchState *search_state, const SPEED_FEATURES *const sf,
int64_t inter_cost, int64_t intra_cost) {
MACROBLOCKD *const xd = &x->e_mbd;
const int comp_pred = search_state->best_mbmode.ref_frame[1] > INTRA_FRAME;
if (sf->rt_sf.prune_intra_mode_based_on_mv_range &&
bsize > sf->part_sf.max_intra_bsize && !comp_pred) {
const MV best_mv = search_state->best_mbmode.mv[0].as_mv;
const int mv_thresh = 16 << sf->rt_sf.prune_intra_mode_based_on_mv_range;
if (abs(best_mv.row) < mv_thresh && abs(best_mv.col) < mv_thresh &&
x->source_variance > 128) {
search_state->intra_search_state.skip_intra_modes = 1;
return;
}
}
const unsigned int src_var_thresh_intra_skip = 1;
const int skip_intra_in_interframe = sf->intra_sf.skip_intra_in_interframe;
if (!(skip_intra_in_interframe &&
(x->source_variance > src_var_thresh_intra_skip)))
return;
// Prune intra search based on best inter mode being transfrom skip.
if ((skip_intra_in_interframe >= 2) && search_state->best_mbmode.skip_txfm) {
const int qindex_thresh[2] = { 200, MAXQ };
const int ind = (skip_intra_in_interframe >= 3) ? 1 : 0;
if (!have_newmv_in_inter_mode(search_state->best_mbmode.mode) &&
(x->qindex <= qindex_thresh[ind])) {
search_state->intra_search_state.skip_intra_modes = 1;
return;
} else if ((skip_intra_in_interframe >= 4) &&
(inter_cost < 0 || intra_cost < 0)) {
search_state->intra_search_state.skip_intra_modes = 1;
return;
}
}
// Use ML model to prune intra search.
if (inter_cost >= 0 && intra_cost >= 0) {
const NN_CONFIG *nn_config = (AOMMIN(cm->width, cm->height) <= 480)
? &av1_intrap_nn_config
: &av1_intrap_hd_nn_config;
float nn_features[6];
float scores[2] = { 0.0f };
nn_features[0] = (float)search_state->best_mbmode.skip_txfm;
nn_features[1] = (float)mi_size_wide_log2[bsize];
nn_features[2] = (float)mi_size_high_log2[bsize];
nn_features[3] = (float)intra_cost;
nn_features[4] = (float)inter_cost;
const int ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd);
const int ac_q_max = av1_ac_quant_QTX(255, 0, xd->bd);
nn_features[5] = (float)(ac_q_max / ac_q);
av1_nn_predict(nn_features, nn_config, 1, scores);
// For two parameters, the max prob returned from av1_nn_softmax equals
// 1.0 / (1.0 + e^(-|diff_score|)). Here use scores directly to avoid the
// calling of av1_nn_softmax.
const float thresh[5] = { 1.4f, 1.4f, 1.4f, 1.4f, 1.4f };
assert(skip_intra_in_interframe <= 5);
if (scores[1] > scores[0] + thresh[skip_intra_in_interframe - 1]) {
search_state->intra_search_state.skip_intra_modes = 1;
}
}
}
static AOM_INLINE int get_block_temp_var(const AV1_COMP *cpi,
const MACROBLOCK *x,
BLOCK_SIZE bsize) {
const AV1_COMMON *const cm = &cpi->common;
const SPEED_FEATURES *const sf = &cpi->sf;
if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION ||
!sf->rt_sf.short_circuit_low_temp_var ||
!sf->rt_sf.prune_inter_modes_using_temp_var) {
return 0;
}
const int mi_row = x->e_mbd.mi_row;
const int mi_col = x->e_mbd.mi_col;
int is_low_temp_var = 0;
if (cm->seq_params->sb_size == BLOCK_64X64)
is_low_temp_var = av1_get_force_skip_low_temp_var_small_sb(
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
else
is_low_temp_var = av1_get_force_skip_low_temp_var(
&x->part_search_info.variance_low[0], mi_row, mi_col, bsize);
return is_low_temp_var;
}
// TODO(chiyotsai@google.com): See the todo for av1_rd_pick_intra_mode_sb.
void av1_rd_pick_inter_mode(struct AV1_COMP *cpi, struct TileDataEnc *tile_data,
struct macroblock *x, struct RD_STATS *rd_cost,
BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
AV1_COMMON *const cm = &cpi->common;
const FeatureFlags *const features = &cm->features;
const int num_planes = av1_num_planes(cm);
const SPEED_FEATURES *const sf = &cpi->sf;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
TxfmSearchInfo *txfm_info = &x->txfm_search_info;
int i;
const ModeCosts *mode_costs = &x->mode_costs;
const int *comp_inter_cost =
mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)];
InterModeSearchState search_state;
init_inter_mode_search_state(&search_state, cpi, x, bsize, best_rd_so_far);
INTERINTRA_MODE interintra_modes[REF_FRAMES] = {
INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES,
INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES
};
HandleInterModeArgs args = { { NULL },
{ MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE },
{ NULL },
{ MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1,
MAX_SB_SIZE >> 1 },
NULL,
NULL,
NULL,
search_state.modelled_rd,
INT_MAX,
INT_MAX,
search_state.simple_rd,
0,
interintra_modes,
{ { { 0 }, { { 0 } }, { 0 }, 0, 0, 0, 0 } },
{ { 0, 0 } },
0,
0,
-1,
-1,
-1,
{ 0 },
{ 0 },
UINT_MAX };
// Currently, is_low_temp_var is used in real time encoding.
const int is_low_temp_var = get_block_temp_var(cpi, x, bsize);
for (i = 0; i < MODE_CTX_REF_FRAMES; ++i) args.cmp_mode[i] = -1;
// Indicates the appropriate number of simple translation winner modes for
// exhaustive motion mode evaluation
const int max_winner_motion_mode_cand =
num_winner_motion_modes[sf->winner_mode_sf.motion_mode_for_winner_cand];
assert(max_winner_motion_mode_cand <= MAX_WINNER_MOTION_MODES);
motion_mode_candidate motion_mode_cand;
motion_mode_best_st_candidate best_motion_mode_cands;
// Initializing the number of motion mode candidates to zero.
best_motion_mode_cands.num_motion_mode_cand = 0;
for (i = 0; i < MAX_WINNER_MOTION_MODES; ++i)
best_motion_mode_cands.motion_mode_cand[i].rd_cost = INT64_MAX;
for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
av1_invalid_rd_stats(rd_cost);
for (i = 0; i < REF_FRAMES; ++i) {
x->warp_sample_info[i].num = -1;
}
// Ref frames that are selected by square partition blocks.
int picked_ref_frames_mask = 0;
if (sf->inter_sf.prune_ref_frame_for_rect_partitions &&
mbmi->partition != PARTITION_NONE) {
// prune_ref_frame_for_rect_partitions = 1 implies prune only extended
// partition blocks. prune_ref_frame_for_rect_partitions >=2
// implies prune for vert, horiz and extended partition blocks.
if ((mbmi->partition != PARTITION_VERT &&
mbmi->partition != PARTITION_HORZ) ||
sf->inter_sf.prune_ref_frame_for_rect_partitions >= 2) {
picked_ref_frames_mask =
fetch_picked_ref_frames_mask(x, bsize, cm->seq_params->mib_size);
}
}
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, set_params_rd_pick_inter_mode_time);
#endif
// Skip ref frames that never selected by square blocks.
const int skip_ref_frame_mask =
picked_ref_frames_mask ? ~picked_ref_frames_mask : 0;
mode_skip_mask_t mode_skip_mask;
unsigned int ref_costs_single[REF_FRAMES];
unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE];
// init params, set frame modes, speed features
set_params_rd_pick_inter_mode(cpi, x, &args, bsize, &mode_skip_mask,
skip_ref_frame_mask, ref_costs_single,
ref_costs_comp, yv12_mb);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, set_params_rd_pick_inter_mode_time);
#endif
int64_t best_est_rd = INT64_MAX;
const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize];
// If do_tx_search is 0, only estimated RD should be computed.
// If do_tx_search is 1, all modes have TX search performed.
const int do_tx_search =
!((sf->inter_sf.inter_mode_rd_model_estimation == 1 && md->ready) ||
(sf->inter_sf.inter_mode_rd_model_estimation == 2 &&
num_pels_log2_lookup[bsize] > 8));
InterModesInfo *inter_modes_info = x->inter_modes_info;
inter_modes_info->num = 0;
// Temporary buffers used by handle_inter_mode().
uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]);
// The best RD found for the reference frame, among single reference modes.
// Note that the 0-th element will contain a cut-off that is later used
// to determine if we should skip a compound mode.
int64_t ref_frame_rd[REF_FRAMES] = { INT64_MAX, INT64_MAX, INT64_MAX,
INT64_MAX, INT64_MAX, INT64_MAX,
INT64_MAX, INT64_MAX };
// Prepared stats used later to check if we could skip intra mode eval.
int64_t inter_cost = -1;
int64_t intra_cost = -1;
// Need to tweak the threshold for hdres speed 0 & 1.
const int mi_row = xd->mi_row;
const int mi_col = xd->mi_col;
// Obtain the relevant tpl stats for pruning inter modes
PruneInfoFromTpl inter_cost_info_from_tpl;
#if !CONFIG_REALTIME_ONLY
if (sf->inter_sf.prune_inter_modes_based_on_tpl) {
// x->tpl_keep_ref_frame[id] = 1 => no pruning in
// prune_ref_by_selective_ref_frame()
// x->tpl_keep_ref_frame[id] = 0 => ref frame can be pruned in
// prune_ref_by_selective_ref_frame()
// Populating valid_refs[idx] = 1 ensures that
// 'inter_cost_info_from_tpl.best_inter_cost' does not correspond to a
// pruned ref frame.
int valid_refs[INTER_REFS_PER_FRAME];
for (MV_REFERENCE_FRAME frame = LAST_FRAME; frame < REF_FRAMES; frame++) {
const MV_REFERENCE_FRAME refs[2] = { frame, NONE_FRAME };
valid_refs[frame - 1] =
x->tpl_keep_ref_frame[frame] ||
!prune_ref_by_selective_ref_frame(
cpi, x, refs, cm->cur_frame->ref_display_order_hint);
}
av1_zero(inter_cost_info_from_tpl);
get_block_level_tpl_stats(cpi, bsize, mi_row, mi_col, valid_refs,
&inter_cost_info_from_tpl);
}
const int do_pruning =
(AOMMIN(cm->width, cm->height) > 480 && cpi->speed <= 1) ? 0 : 1;
if (do_pruning && sf->intra_sf.skip_intra_in_interframe &&
cpi->oxcf.algo_cfg.enable_tpl_model)
calculate_cost_from_tpl_data(cpi, x, bsize, mi_row, mi_col, &inter_cost,
&intra_cost);
#endif // !CONFIG_REALTIME_ONLY
// Initialize best mode stats for winner mode processing.
const int max_winner_mode_count =
winner_mode_count_allowed[sf->winner_mode_sf.multi_winner_mode_type];
zero_winner_mode_stats(bsize, max_winner_mode_count, x->winner_mode_stats);
x->winner_mode_count = 0;
store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID,
NULL, bsize, best_rd_so_far,
sf->winner_mode_sf.multi_winner_mode_type, 0);
int mode_thresh_mul_fact = (1 << MODE_THRESH_QBITS);
if (sf->inter_sf.prune_inter_modes_if_skippable) {
// Higher multiplication factor values for lower quantizers.
mode_thresh_mul_fact = mode_threshold_mul_factor[x->qindex];
}
// Initialize arguments for mode loop speed features
InterModeSFArgs sf_args = { &args.skip_motion_mode,
&mode_skip_mask,
&search_state,
skip_ref_frame_mask,
0,
mode_thresh_mul_fact,
0,
0 };
int64_t best_inter_yrd = INT64_MAX;
// This is the main loop of this function. It loops over all possible inter
// modes and calls handle_inter_mode() to compute the RD for each.
// Here midx is just an iterator index that should not be used by itself
// except to keep track of the number of modes searched. It should be used
// with av1_default_mode_order to get the enum that defines the mode, which
// can be used with av1_mode_defs to get the prediction mode and the ref
// frames.
// TODO(yunqing, any): Setting mode_start and mode_end outside for-loop brings
// good speedup for real time case. If we decide to use compound mode in real
// time, maybe we can modify av1_default_mode_order table.
THR_MODES mode_start = THR_INTER_MODE_START;
THR_MODES mode_end = THR_INTER_MODE_END;
const CurrentFrame *const current_frame = &cm->current_frame;
if (current_frame->reference_mode == SINGLE_REFERENCE) {
mode_start = SINGLE_REF_MODE_START;
mode_end = SINGLE_REF_MODE_END;
}
for (THR_MODES midx = mode_start; midx < mode_end; ++midx) {
// Get the actual prediction mode we are trying in this iteration
const THR_MODES mode_enum = av1_default_mode_order[midx];
const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum];
const PREDICTION_MODE this_mode = mode_def->mode;
const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame;
const MV_REFERENCE_FRAME ref_frame = ref_frames[0];
const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1];
const int is_single_pred =
ref_frame > INTRA_FRAME && second_ref_frame == NONE_FRAME;
const int comp_pred = second_ref_frame > INTRA_FRAME;
init_mbmi(mbmi, this_mode, ref_frames, cm);
txfm_info->skip_txfm = 0;
sf_args.num_single_modes_processed += is_single_pred;
set_ref_ptrs(cm, xd, ref_frame, second_ref_frame);
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, skip_inter_mode_time);
#endif
// Apply speed features to decide if this inter mode can be skipped
const int is_skip_inter_mode = skip_inter_mode(
cpi, x, bsize, ref_frame_rd, midx, &sf_args, is_low_temp_var);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, skip_inter_mode_time);
#endif
if (is_skip_inter_mode) continue;
// Select prediction reference frames.
for (i = 0; i < num_planes; i++) {
xd->plane[i].pre[0] = yv12_mb[ref_frame][i];
if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i];
}
mbmi->angle_delta[PLANE_TYPE_Y] = 0;
mbmi->angle_delta[PLANE_TYPE_UV] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->ref_mv_idx = 0;
const int64_t ref_best_rd = search_state.best_rd;
RD_STATS rd_stats, rd_stats_y, rd_stats_uv;
av1_init_rd_stats(&rd_stats);
const int ref_frame_cost = comp_pred
? ref_costs_comp[ref_frame][second_ref_frame]
: ref_costs_single[ref_frame];
const int compmode_cost =
is_comp_ref_allowed(mbmi->bsize) ? comp_inter_cost[comp_pred] : 0;
const int real_compmode_cost =
cm->current_frame.reference_mode == REFERENCE_MODE_SELECT
? compmode_cost
: 0;
// Point to variables that are maintained between loop iterations
args.single_newmv = search_state.single_newmv;
args.single_newmv_rate = search_state.single_newmv_rate;
args.single_newmv_valid = search_state.single_newmv_valid;
args.single_comp_cost = real_compmode_cost;
args.ref_frame_cost = ref_frame_cost;
args.best_pred_sse = search_state.best_pred_sse;
int64_t skip_rd[2] = { search_state.best_skip_rd[0],
search_state.best_skip_rd[1] };
int64_t this_yrd = INT64_MAX;
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, handle_inter_mode_time);
#endif
int64_t this_rd = handle_inter_mode(
cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, &args,
ref_best_rd, tmp_buf, &x->comp_rd_buffer, &best_est_rd, do_tx_search,
inter_modes_info, &motion_mode_cand, skip_rd, &inter_cost_info_from_tpl,
&this_yrd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, handle_inter_mode_time);
#endif
if (current_frame->reference_mode != SINGLE_REFERENCE) {
if (sf->inter_sf.prune_comp_search_by_single_result > 0 &&
is_inter_singleref_mode(this_mode)) {
collect_single_states(x, &search_state, mbmi);
}
if (sf->inter_sf.prune_comp_using_best_single_mode_ref > 0 &&
is_inter_singleref_mode(this_mode))
update_best_single_mode(&search_state, this_mode, ref_frame, this_rd);
}
if (this_rd == INT64_MAX) continue;
if (mbmi->skip_txfm) {
rd_stats_y.rate = 0;
rd_stats_uv.rate = 0;
}
if (sf->inter_sf.prune_compound_using_single_ref && is_single_pred &&
this_rd < ref_frame_rd[ref_frame]) {
ref_frame_rd[ref_frame] = this_rd;
}
// Did this mode help, i.e., is it the new best mode
if (this_rd < search_state.best_rd) {
assert(IMPLIES(comp_pred,
cm->current_frame.reference_mode != SINGLE_REFERENCE));
search_state.best_pred_sse = x->pred_sse[ref_frame];
best_inter_yrd = this_yrd;
update_search_state(&search_state, rd_cost, ctx, &rd_stats, &rd_stats_y,
&rd_stats_uv, mode_enum, x, do_tx_search);
if (do_tx_search) search_state.best_skip_rd[0] = skip_rd[0];
search_state.best_skip_rd[1] = skip_rd[1];
}
if (sf->winner_mode_sf.motion_mode_for_winner_cand) {
// Add this mode to motion mode candidate list for motion mode search
// if using motion_mode_for_winner_cand speed feature
handle_winner_cand(mbmi, &best_motion_mode_cands,
max_winner_motion_mode_cand, this_rd,
&motion_mode_cand, args.skip_motion_mode);
}
/* keep record of best compound/single-only prediction */
record_best_compound(cm->current_frame.reference_mode, &rd_stats, comp_pred,
x->rdmult, &search_state, compmode_cost);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, evaluate_motion_mode_for_winner_candidates_time);
#endif
if (sf->winner_mode_sf.motion_mode_for_winner_cand) {
// For the single ref winner candidates, evaluate other motion modes (non
// simple translation).
evaluate_motion_mode_for_winner_candidates(
cpi, x, rd_cost, &args, tile_data, ctx, yv12_mb,
&best_motion_mode_cands, do_tx_search, bsize, &best_est_rd,
&search_state, &best_inter_yrd);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, evaluate_motion_mode_for_winner_candidates_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, do_tx_search_time);
#endif
if (do_tx_search != 1) {
// A full tx search has not yet been done, do tx search for
// top mode candidates
tx_search_best_inter_candidates(cpi, tile_data, x, best_rd_so_far, bsize,
yv12_mb, mi_row, mi_col, &search_state,
rd_cost, ctx, &best_inter_yrd);
}
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, do_tx_search_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, handle_intra_mode_time);
#endif
// Gate intra mode evaluation if best of inter is skip except when source
// variance is extremely low and also based on max intra bsize.
skip_intra_modes_in_interframe(cm, x, bsize, &search_state, sf, inter_cost,
intra_cost);
const unsigned int intra_ref_frame_cost = ref_costs_single[INTRA_FRAME];
search_intra_modes_in_interframe(&search_state, cpi, x, rd_cost, bsize, ctx,
&sf_args, intra_ref_frame_cost,
best_inter_yrd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, handle_intra_mode_time);
#endif
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, refine_winner_mode_tx_time);
#endif
int winner_mode_count =
sf->winner_mode_sf.multi_winner_mode_type ? x->winner_mode_count : 1;
// In effect only when fast tx search speed features are enabled.
refine_winner_mode_tx(
cpi, x, rd_cost, bsize, ctx, &search_state.best_mode_index,
&search_state.best_mbmode, yv12_mb, search_state.best_rate_y,
search_state.best_rate_uv, &search_state.best_skip2, winner_mode_count);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, refine_winner_mode_tx_time);
#endif
// Initialize default mode evaluation params
set_mode_eval_params(cpi, x, DEFAULT_EVAL);
// Only try palette mode when the best mode so far is an intra mode.
const int try_palette =
cpi->oxcf.tool_cfg.enable_palette &&
av1_allow_palette(features->allow_screen_content_tools, mbmi->bsize) &&
!is_inter_mode(search_state.best_mbmode.mode) && rd_cost->rate != INT_MAX;
RD_STATS this_rd_cost;
int this_skippable = 0;
if (try_palette) {
#if CONFIG_COLLECT_COMPONENT_TIMING
start_timing(cpi, av1_search_palette_mode_time);
#endif
this_skippable = av1_search_palette_mode(
&search_state.intra_search_state, cpi, x, bsize, intra_ref_frame_cost,
ctx, &this_rd_cost, search_state.best_rd);
#if CONFIG_COLLECT_COMPONENT_TIMING
end_timing(cpi, av1_search_palette_mode_time);
#endif
if (this_rd_cost.rdcost < search_state.best_rd) {
search_state.best_mode_index = THR_DC;
mbmi->mv[0].as_int = 0;
rd_cost->rate = this_rd_cost.rate;
rd_cost->dist = this_rd_cost.dist;
rd_cost->rdcost = this_rd_cost.rdcost;
search_state.best_rd = rd_cost->rdcost;
search_state.best_mbmode = *mbmi;
search_state.best_skip2 = 0;
search_state.best_mode_skippable = this_skippable;
memcpy(ctx->blk_skip, txfm_info->blk_skip,
sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk);
av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk);
}
}
search_state.best_mbmode.skip_mode = 0;
if (cm->current_frame.skip_mode_info.skip_mode_flag &&
is_comp_ref_allowed(bsize)) {
const struct segmentation *const seg = &cm->seg;
unsigned char segment_id = mbmi->segment_id;
if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) {
rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, yv12_mb);
}
}
// Make sure that the ref_mv_idx is only nonzero when we're
// using a mode which can support ref_mv_idx
if (search_state.best_mbmode.ref_mv_idx != 0 &&
!(search_state.best_mbmode.mode == NEWMV ||
search_state.best_mbmode.mode == NEW_NEWMV ||
have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) {
search_state.best_mbmode.ref_mv_idx = 0;
}
if (search_state.best_mode_index == THR_INVALID ||
search_state.best_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
const InterpFilter interp_filter = features->interp_filter;
assert((interp_filter == SWITCHABLE) ||
(interp_filter ==
search_state.best_mbmode.interp_filters.as_filters.y_filter) ||
!is_inter_block(&search_state.best_mbmode));
assert((interp_filter == SWITCHABLE) ||
(interp_filter ==
search_state.best_mbmode.interp_filters.as_filters.x_filter) ||
!is_inter_block(&search_state.best_mbmode));
if (!cpi->rc.is_src_frame_alt_ref && sf->inter_sf.adaptive_rd_thresh) {
av1_update_rd_thresh_fact(
cm, x->thresh_freq_fact, sf->inter_sf.adaptive_rd_thresh, bsize,
search_state.best_mode_index, mode_start, mode_end, THR_DC, MAX_MODES);
}
// macroblock modes
*mbmi = search_state.best_mbmode;
txfm_info->skip_txfm |= search_state.best_skip2;
// Note: this section is needed since the mode may have been forced to
// GLOBALMV by the all-zero mode handling of ref-mv.
if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) {
// Correct the interp filters for GLOBALMV
if (is_nontrans_global_motion(xd, xd->mi[0])) {
int_interpfilters filters =
av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter));
assert(mbmi->interp_filters.as_int == filters.as_int);
(void)filters;
}
}
txfm_info->skip_txfm |= search_state.best_mode_skippable;
assert(search_state.best_mode_index != THR_INVALID);
#if CONFIG_INTERNAL_STATS
store_coding_context(x, ctx, search_state.best_mode_index,
search_state.best_mode_skippable);
#else
store_coding_context(x, ctx, search_state.best_mode_skippable);
#endif // CONFIG_INTERNAL_STATS
if (mbmi->palette_mode_info.palette_size[1] > 0) {
assert(try_palette);
av1_restore_uv_color_map(cpi, x);
}
}
void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi,
TileDataEnc *tile_data, MACROBLOCK *x,
int mi_row, int mi_col,
RD_STATS *rd_cost, BLOCK_SIZE bsize,
PICK_MODE_CONTEXT *ctx,
int64_t best_rd_so_far) {
const AV1_COMMON *const cm = &cpi->common;
const FeatureFlags *const features = &cm->features;
MACROBLOCKD *const xd = &x->e_mbd;
MB_MODE_INFO *const mbmi = xd->mi[0];
unsigned char segment_id = mbmi->segment_id;
const int comp_pred = 0;
int i;
unsigned int ref_costs_single[REF_FRAMES];
unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES];
const ModeCosts *mode_costs = &x->mode_costs;
const int *comp_inter_cost =
mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)];
InterpFilter best_filter = SWITCHABLE;
int64_t this_rd = INT64_MAX;
int rate2 = 0;
const int64_t distortion2 = 0;
(void)mi_row;
(void)mi_col;
(void)tile_data;
av1_collect_neighbors_ref_counts(xd);
estimate_ref_frame_costs(cm, xd, mode_costs, segment_id, ref_costs_single,
ref_costs_comp);
for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX;
for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX;
rd_cost->rate = INT_MAX;
assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP));
mbmi->palette_mode_info.palette_size[0] = 0;
mbmi->palette_mode_info.palette_size[1] = 0;
mbmi->filter_intra_mode_info.use_filter_intra = 0;
mbmi->mode = GLOBALMV;
mbmi->motion_mode = SIMPLE_TRANSLATION;
mbmi->uv_mode = UV_DC_PRED;
if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME))
mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME);
else
mbmi->ref_frame[0] = LAST_FRAME;
mbmi->ref_frame[1] = NONE_FRAME;
mbmi->mv[0].as_int =
gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]],
features->allow_high_precision_mv, bsize, mi_col,
mi_row, features->cur_frame_force_integer_mv)
.as_int;
mbmi->tx_size = max_txsize_lookup[bsize];
x->txfm_search_info.skip_txfm = 1;
mbmi->ref_mv_idx = 0;
mbmi->motion_mode = SIMPLE_TRANSLATION;
av1_count_overlappable_neighbors(cm, xd);
if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) {
int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE];
mbmi->num_proj_ref = av1_findSamples(cm, xd, pts, pts_inref);
// Select the samples according to motion vector difference
if (mbmi->num_proj_ref > 1) {
mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref,
mbmi->num_proj_ref, bsize);
}
}
const InterpFilter interp_filter = features->interp_filter;
set_default_interp_filters(mbmi, interp_filter);
if (interp_filter != SWITCHABLE) {
best_filter = interp_filter;
} else {
best_filter = EIGHTTAP_REGULAR;
if (av1_is_interp_needed(xd)) {
int rs;
int best_rs = INT_MAX;
for (i = 0; i < SWITCHABLE_FILTERS; ++i) {
mbmi->interp_filters = av1_broadcast_interp_filter(i);
rs = av1_get_switchable_rate(x, xd, interp_filter,
cm->seq_params->enable_dual_filter);
if (rs < best_rs) {
best_rs = rs;
best_filter = mbmi->interp_filters.as_filters.y_filter;
}
}
}
}
// Set the appropriate filter
mbmi->interp_filters = av1_broadcast_interp_filter(best_filter);
rate2 += av1_get_switchable_rate(x, xd, interp_filter,
cm->seq_params->enable_dual_filter);
if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT)
rate2 += comp_inter_cost[comp_pred];
// Estimate the reference frame signaling cost and add it
// to the rolling cost variable.
rate2 += ref_costs_single[LAST_FRAME];
this_rd = RDCOST(x->rdmult, rate2, distortion2);
rd_cost->rate = rate2;
rd_cost->dist = distortion2;
rd_cost->rdcost = this_rd;
if (this_rd >= best_rd_so_far) {
rd_cost->rate = INT_MAX;
rd_cost->rdcost = INT64_MAX;
return;
}
assert((interp_filter == SWITCHABLE) ||
(interp_filter == mbmi->interp_filters.as_filters.y_filter));
if (cpi->sf.inter_sf.adaptive_rd_thresh) {
av1_update_rd_thresh_fact(cm, x->thresh_freq_fact,
cpi->sf.inter_sf.adaptive_rd_thresh, bsize,
THR_GLOBALMV, THR_INTER_MODE_START,
THR_INTER_MODE_END, THR_DC, MAX_MODES);
}
#if CONFIG_INTERNAL_STATS
store_coding_context(x, ctx, THR_GLOBALMV, 0);
#else
store_coding_context(x, ctx, 0);
#endif // CONFIG_INTERNAL_STATS
}
/*!\cond */
struct calc_target_weighted_pred_ctxt {
const OBMCBuffer *obmc_buffer;
const uint8_t *tmp;
int tmp_stride;
int overlap;
};
/*!\endcond */
static INLINE void calc_target_weighted_pred_above(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) {
(void)nb_mi;
(void)num_planes;
(void)rel_mi_row;
(void)dir;
struct calc_target_weighted_pred_ctxt *ctxt =
(struct calc_target_weighted_pred_ctxt *)fun_ctxt;
const int bw = xd->width << MI_SIZE_LOG2;
const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);
int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_col * MI_SIZE);
int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_col * MI_SIZE);
const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE;
const int is_hbd = is_cur_buf_hbd(xd);
if (!is_hbd) {
for (int row = 0; row < ctxt->overlap; ++row) {
const uint8_t m0 = mask1d[row];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
for (int col = 0; col < op_mi_size * MI_SIZE; ++col) {
wsrc[col] = m1 * tmp[col];
mask[col] = m0;
}
wsrc += bw;
mask += bw;
tmp += ctxt->tmp_stride;
}
} else {
const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
for (int row = 0; row < ctxt->overlap; ++row) {
const uint8_t m0 = mask1d[row];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
for (int col = 0; col < op_mi_size * MI_SIZE; ++col) {
wsrc[col] = m1 * tmp16[col];
mask[col] = m0;
}
wsrc += bw;
mask += bw;
tmp16 += ctxt->tmp_stride;
}
}
}
static INLINE void calc_target_weighted_pred_left(
MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size,
int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) {
(void)nb_mi;
(void)num_planes;
(void)rel_mi_col;
(void)dir;
struct calc_target_weighted_pred_ctxt *ctxt =
(struct calc_target_weighted_pred_ctxt *)fun_ctxt;
const int bw = xd->width << MI_SIZE_LOG2;
const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap);
int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_row * MI_SIZE * bw);
int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_row * MI_SIZE * bw);
const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride);
const int is_hbd = is_cur_buf_hbd(xd);
if (!is_hbd) {
for (int row = 0; row < op_mi_size * MI_SIZE; ++row) {
for (int col = 0; col < ctxt->overlap; ++col) {
const uint8_t m0 = mask1d[col];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
(tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
}
wsrc += bw;
mask += bw;
tmp += ctxt->tmp_stride;
}
} else {
const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp);
for (int row = 0; row < op_mi_size * MI_SIZE; ++row) {
for (int col = 0; col < ctxt->overlap; ++col) {
const uint8_t m0 = mask1d[col];
const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0;
wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 +
(tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1;
mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0;
}
wsrc += bw;
mask += bw;
tmp16 += ctxt->tmp_stride;
}
}
}
// This function has a structure similar to av1_build_obmc_inter_prediction
//
// The OBMC predictor is computed as:
//
// PObmc(x,y) =
// AOM_BLEND_A64(Mh(x),
// AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)),
// PLeft(x, y))
//
// Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate
// rounding, this can be written as:
//
// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) =
// Mh(x) * Mv(y) * P(x,y) +
// Mh(x) * Cv(y) * Pabove(x,y) +
// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// Where :
//
// Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y)
// Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y)
//
// This function computes 'wsrc' and 'mask' as:
//
// wsrc(x, y) =
// AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) -
// Mh(x) * Cv(y) * Pabove(x,y) +
// AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y)
//
// mask(x, y) = Mh(x) * Mv(y)
//
// These can then be used to efficiently approximate the error for any
// predictor P in the context of the provided neighbouring predictors by
// computing:
//
// error(x, y) =
// wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2)
//
static AOM_INLINE void calc_target_weighted_pred(
const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd,
const uint8_t *above, int above_stride, const uint8_t *left,
int left_stride) {
const BLOCK_SIZE bsize = xd->mi[0]->bsize;
const int bw = xd->width << MI_SIZE_LOG2;
const int bh = xd->height << MI_SIZE_LOG2;
const OBMCBuffer *obmc_buffer = &x->obmc_buffer;
int32_t *mask_buf = obmc_buffer->mask;
int32_t *wsrc_buf = obmc_buffer->wsrc;
const int is_hbd = is_cur_buf_hbd(xd);
const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA;
// plane 0 should not be sub-sampled
assert(xd->plane[0].subsampling_x == 0);
assert(xd->plane[0].subsampling_y == 0);
av1_zero_array(wsrc_buf, bw * bh);
for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA;
// handle above row
if (xd->up_available) {
const int overlap =
AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1;
struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, above,
above_stride, overlap };
foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd,
max_neighbor_obmc[mi_size_wide_log2[bsize]],
calc_target_weighted_pred_above, &ctxt);
}
for (int i = 0; i < bw * bh; ++i) {
wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA;
}
// handle left column
if (xd->left_available) {
const int overlap =
AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1;
struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, left,
left_stride, overlap };
foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd,
max_neighbor_obmc[mi_size_high_log2[bsize]],
calc_target_weighted_pred_left, &ctxt);
}
if (!is_hbd) {
const uint8_t *src = x->plane[0].src.buf;
for (int row = 0; row < bh; ++row) {
for (int col = 0; col < bw; ++col) {
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
}
wsrc_buf += bw;
src += x->plane[0].src.stride;
}
} else {
const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf);
for (int row = 0; row < bh; ++row) {
for (int col = 0; col < bw; ++col) {
wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col];
}
wsrc_buf += bw;
src += x->plane[0].src.stride;
}
}
}