| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| #include <assert.h> |
| #include <float.h> |
| #include <string.h> |
| |
| #include "av1/encoder/encoder.h" |
| #include "av1/encoder/encoder_utils.h" |
| #include "av1/encoder/firstpass.h" |
| #include "av1/encoder/rdopt.h" |
| #include "av1/encoder/saliency_map.h" |
| |
| // The Gabor filter is generated by setting the parameters as: |
| // ksize = 9 |
| // sigma = 1 |
| // theta = y*np.pi/4, where y /in {0, 1, 2, 3}, i.e., 0, 45, 90, 135 degree |
| // lambda1 = 1 |
| // gamma=0.8 |
| // phi =0 |
| static const double kGaborFilter[4][9][9] = { // [angle: 0, 45, 90, 135 |
| // degree][ksize][ksize] |
| { { 2.0047323e-06, 6.6387620e-05, 8.0876675e-04, 3.6246411e-03, 5.9760227e-03, |
| 3.6246411e-03, 8.0876675e-04, 6.6387620e-05, 2.0047323e-06 }, |
| { 1.8831115e-05, 6.2360091e-04, 7.5970138e-03, 3.4047455e-02, 5.6134764e-02, |
| 3.4047455e-02, 7.5970138e-03, 6.2360091e-04, 1.8831115e-05 }, |
| { 9.3271126e-05, 3.0887155e-03, 3.7628256e-02, 1.6863814e-01, 2.7803731e-01, |
| 1.6863814e-01, 3.7628256e-02, 3.0887155e-03, 9.3271126e-05 }, |
| { 2.4359586e-04, 8.0667874e-03, 9.8273583e-02, 4.4043165e-01, 7.2614902e-01, |
| 4.4043165e-01, 9.8273583e-02, 8.0667874e-03, 2.4359586e-04 }, |
| { 3.3546262e-04, 1.1108996e-02, 1.3533528e-01, 6.0653067e-01, 1.0000000e+00, |
| 6.0653067e-01, 1.3533528e-01, 1.1108996e-02, 3.3546262e-04 }, |
| { 2.4359586e-04, 8.0667874e-03, 9.8273583e-02, 4.4043165e-01, 7.2614902e-01, |
| 4.4043165e-01, 9.8273583e-02, 8.0667874e-03, 2.4359586e-04 }, |
| { 9.3271126e-05, 3.0887155e-03, 3.7628256e-02, 1.6863814e-01, 2.7803731e-01, |
| 1.6863814e-01, 3.7628256e-02, 3.0887155e-03, 9.3271126e-05 }, |
| { 1.8831115e-05, 6.2360091e-04, 7.5970138e-03, 3.4047455e-02, 5.6134764e-02, |
| 3.4047455e-02, 7.5970138e-03, 6.2360091e-04, 1.8831115e-05 }, |
| { 2.0047323e-06, 6.6387620e-05, 8.0876675e-04, 3.6246411e-03, 5.9760227e-03, |
| 3.6246411e-03, 8.0876675e-04, 6.6387620e-05, 2.0047323e-06 } }, |
| |
| { { -6.2165498e-08, 3.8760313e-06, 3.0079011e-06, -4.4602581e-04, |
| 6.6981313e-04, 1.3962291e-03, -9.9486928e-04, -8.1631159e-05, |
| 3.5712848e-05 }, |
| { 3.8760313e-06, 5.7044272e-06, -1.6041942e-03, 4.5687673e-03, |
| 1.8061366e-02, -2.4406660e-02, -3.7979286e-03, 3.1511115e-03, |
| -8.1631159e-05 }, |
| { 3.0079011e-06, -1.6041942e-03, 8.6645801e-03, 6.4960226e-02, |
| -1.6647682e-01, -4.9129307e-02, 7.7304743e-02, -3.7979286e-03, |
| -9.9486928e-04 }, |
| { -4.4602581e-04, 4.5687673e-03, 6.4960226e-02, -3.1572008e-01, |
| -1.7670043e-01, 5.2729243e-01, -4.9129307e-02, -2.4406660e-02, |
| 1.3962291e-03 }, |
| { 6.6981313e-04, 1.8061366e-02, -1.6647682e-01, -1.7670043e-01, |
| 1.0000000e+00, -1.7670043e-01, -1.6647682e-01, 1.8061366e-02, |
| 6.6981313e-04 }, |
| { 1.3962291e-03, -2.4406660e-02, -4.9129307e-02, 5.2729243e-01, |
| -1.7670043e-01, -3.1572008e-01, 6.4960226e-02, 4.5687673e-03, |
| -4.4602581e-04 }, |
| { -9.9486928e-04, -3.7979286e-03, 7.7304743e-02, -4.9129307e-02, |
| -1.6647682e-01, 6.4960226e-02, 8.6645801e-03, -1.6041942e-03, |
| 3.0079011e-06 }, |
| { -8.1631159e-05, 3.1511115e-03, -3.7979286e-03, -2.4406660e-02, |
| 1.8061366e-02, 4.5687673e-03, -1.6041942e-03, 5.7044272e-06, |
| 3.8760313e-06 }, |
| { 3.5712848e-05, -8.1631159e-05, -9.9486928e-04, 1.3962291e-03, |
| 6.6981313e-04, -4.4602581e-04, 3.0079011e-06, 3.8760313e-06, |
| -6.2165498e-08 } }, |
| |
| { { 2.0047323e-06, 1.8831115e-05, 9.3271126e-05, 2.4359586e-04, 3.3546262e-04, |
| 2.4359586e-04, 9.3271126e-05, 1.8831115e-05, 2.0047323e-06 }, |
| { 6.6387620e-05, 6.2360091e-04, 3.0887155e-03, 8.0667874e-03, 1.1108996e-02, |
| 8.0667874e-03, 3.0887155e-03, 6.2360091e-04, 6.6387620e-05 }, |
| { 8.0876675e-04, 7.5970138e-03, 3.7628256e-02, 9.8273583e-02, 1.3533528e-01, |
| 9.8273583e-02, 3.7628256e-02, 7.5970138e-03, 8.0876675e-04 }, |
| { 3.6246411e-03, 3.4047455e-02, 1.6863814e-01, 4.4043165e-01, 6.0653067e-01, |
| 4.4043165e-01, 1.6863814e-01, 3.4047455e-02, 3.6246411e-03 }, |
| { 5.9760227e-03, 5.6134764e-02, 2.7803731e-01, 7.2614902e-01, 1.0000000e+00, |
| 7.2614902e-01, 2.7803731e-01, 5.6134764e-02, 5.9760227e-03 }, |
| { 3.6246411e-03, 3.4047455e-02, 1.6863814e-01, 4.4043165e-01, 6.0653067e-01, |
| 4.4043165e-01, 1.6863814e-01, 3.4047455e-02, 3.6246411e-03 }, |
| { 8.0876675e-04, 7.5970138e-03, 3.7628256e-02, 9.8273583e-02, 1.3533528e-01, |
| 9.8273583e-02, 3.7628256e-02, 7.5970138e-03, 8.0876675e-04 }, |
| { 6.6387620e-05, 6.2360091e-04, 3.0887155e-03, 8.0667874e-03, 1.1108996e-02, |
| 8.0667874e-03, 3.0887155e-03, 6.2360091e-04, 6.6387620e-05 }, |
| { 2.0047323e-06, 1.8831115e-05, 9.3271126e-05, 2.4359586e-04, 3.3546262e-04, |
| 2.4359586e-04, 9.3271126e-05, 1.8831115e-05, 2.0047323e-06 } }, |
| |
| { { 3.5712848e-05, -8.1631159e-05, -9.9486928e-04, 1.3962291e-03, |
| 6.6981313e-04, -4.4602581e-04, 3.0079011e-06, 3.8760313e-06, |
| -6.2165498e-08 }, |
| { -8.1631159e-05, 3.1511115e-03, -3.7979286e-03, -2.4406660e-02, |
| 1.8061366e-02, 4.5687673e-03, -1.6041942e-03, 5.7044272e-06, |
| 3.8760313e-06 }, |
| { -9.9486928e-04, -3.7979286e-03, 7.7304743e-02, -4.9129307e-02, |
| -1.6647682e-01, 6.4960226e-02, 8.6645801e-03, -1.6041942e-03, |
| 3.0079011e-06 }, |
| { 1.3962291e-03, -2.4406660e-02, -4.9129307e-02, 5.2729243e-01, |
| -1.7670043e-01, -3.1572008e-01, 6.4960226e-02, 4.5687673e-03, |
| -4.4602581e-04 }, |
| { 6.6981313e-04, 1.8061366e-02, -1.6647682e-01, -1.7670043e-01, |
| 1.0000000e+00, -1.7670043e-01, -1.6647682e-01, 1.8061366e-02, |
| 6.6981313e-04 }, |
| { -4.4602581e-04, 4.5687673e-03, 6.4960226e-02, -3.1572008e-01, |
| -1.7670043e-01, 5.2729243e-01, -4.9129307e-02, -2.4406660e-02, |
| 1.3962291e-03 }, |
| { 3.0079011e-06, -1.6041942e-03, 8.6645801e-03, 6.4960226e-02, |
| -1.6647682e-01, -4.9129307e-02, 7.7304743e-02, -3.7979286e-03, |
| -9.9486928e-04 }, |
| { 3.8760313e-06, 5.7044272e-06, -1.6041942e-03, 4.5687673e-03, |
| 1.8061366e-02, -2.4406660e-02, -3.7979286e-03, 3.1511115e-03, |
| -8.1631159e-05 }, |
| { -6.2165498e-08, 3.8760313e-06, 3.0079011e-06, -4.4602581e-04, |
| 6.6981313e-04, 1.3962291e-03, -9.9486928e-04, -8.1631159e-05, |
| 3.5712848e-05 } } |
| }; |
| |
| // This function is to extract red/green/blue channels, and calculate intensity |
| // = (r+g+b)/3. Note that it only handles 8bits case now. |
| // TODO(linzhen): add high bitdepth support. |
| static void get_color_intensity(const YV12_BUFFER_CONFIG *src, |
| int subsampling_x, int subsampling_y, |
| double *cr, double *cg, double *cb, |
| double *intensity) { |
| const uint8_t *y = src->buffers[0]; |
| const uint8_t *u = src->buffers[1]; |
| const uint8_t *v = src->buffers[2]; |
| |
| const int y_height = src->crop_heights[0]; |
| const int y_width = src->crop_widths[0]; |
| const int y_stride = src->strides[0]; |
| const int c_stride = src->strides[1]; |
| |
| for (int i = 0; i < y_height; ++i) { |
| for (int j = 0; j < y_width; ++j) { |
| cr[i * y_width + j] = |
| fclamp((double)y[i * y_stride + j] + |
| 1.370 * (double)(v[(i >> subsampling_y) * c_stride + |
| (j >> subsampling_x)] - |
| 128), |
| 0, 255); |
| cg[i * y_width + j] = |
| fclamp((double)y[i * y_stride + j] - |
| 0.698 * (double)(u[(i >> subsampling_y) * c_stride + |
| (j >> subsampling_x)] - |
| 128) - |
| 0.337 * (double)(v[(i >> subsampling_y) * c_stride + |
| (j >> subsampling_x)] - |
| 128), |
| 0, 255); |
| cb[i * y_width + j] = |
| fclamp((double)y[i * y_stride + j] + |
| 1.732 * (double)(u[(i >> subsampling_y) * c_stride + |
| (j >> subsampling_x)] - |
| 128), |
| 0, 255); |
| |
| intensity[i * y_width + j] = |
| (cr[i * y_width + j] + cg[i * y_width + j] + cb[i * y_width + j]) / |
| 3.0; |
| assert(intensity[i * y_width + j] >= 0 && |
| intensity[i * y_width + j] <= 255); |
| |
| intensity[i * y_width + j] /= 256; |
| cr[i * y_width + j] /= 256; |
| cg[i * y_width + j] /= 256; |
| cb[i * y_width + j] /= 256; |
| } |
| } |
| } |
| |
| static INLINE double convolve_map(const double *filter, const double *map, |
| const int size) { |
| double result = 0; |
| for (int i = 0; i < size; ++i) { |
| result += filter[i] * map[i]; // symmetric filter is used |
| } |
| return result; |
| } |
| |
| // This function is to decimate the map by half, and apply Gaussian filter on |
| // top of the downsampled map. |
| static INLINE void decimate_map(const double *map, int height, int width, |
| int stride, double *downsampled_map) { |
| const int new_width = width / 2; |
| const int window_size = 5; |
| const double gaussian_filter[25] = { |
| 1. / 256, 1.0 / 64, 3. / 128, 1. / 64, 1. / 256, 1. / 64, 1. / 16, |
| 3. / 32, 1. / 16, 1. / 64, 3. / 128, 3. / 32, 9. / 64, 3. / 32, |
| 3. / 128, 1. / 64, 1. / 16, 3. / 32, 1. / 16, 1. / 64, 1. / 256, |
| 1. / 64, 3. / 128, 1. / 64, 1. / 256 |
| }; |
| |
| double map_region[25]; |
| for (int y = 0; y < height - 1; y += 2) { |
| for (int x = 0; x < width - 1; x += 2) { |
| int i = 0; |
| for (int yy = y - window_size / 2; yy <= y + window_size / 2; ++yy) { |
| for (int xx = x - window_size / 2; xx <= x + window_size / 2; ++xx) { |
| int yvalue = clamp(yy, 0, height - 1); |
| int xvalue = clamp(xx, 0, width - 1); |
| map_region[i++] = map[yvalue * stride + xvalue]; |
| } |
| } |
| downsampled_map[(y / 2) * new_width + (x / 2)] = |
| convolve_map(gaussian_filter, map_region, window_size * window_size); |
| } |
| } |
| } |
| |
| // This function is to upscale the map from in_level size to out_level size. |
| // Note that the map at "level-1" will upscale the map at "level" by x2. |
| static INLINE int upscale_map(const double *input, int in_level, int out_level, |
| int height[9], int width[9], double *output) { |
| for (int level = in_level; level > out_level; level--) { |
| const int cur_width = width[level]; |
| const int cur_height = height[level]; |
| const int cur_stride = width[level]; |
| |
| double *original = (level == in_level) ? (double *)input : output; |
| |
| assert(level > 0); |
| |
| const int h_upscale = height[level - 1]; |
| const int w_upscale = width[level - 1]; |
| const int s_upscale = width[level - 1]; |
| |
| double *upscale = aom_malloc(h_upscale * w_upscale * sizeof(*upscale)); |
| |
| if (!upscale) { |
| return 0; |
| } |
| |
| for (int i = 0; i < h_upscale; ++i) { |
| for (int j = 0; j < w_upscale; ++j) { |
| const int ii = clamp((i >> 1), 0, cur_height - 1); |
| const int jj = clamp((j >> 1), 0, cur_width - 1); |
| upscale[j + i * s_upscale] = (double)original[jj + ii * cur_stride]; |
| } |
| } |
| memcpy(output, upscale, h_upscale * w_upscale * sizeof(double)); |
| aom_free(upscale); |
| } |
| |
| return 1; |
| } |
| |
| // This function calculates the differences between a fine scale c and a |
| // coarser scale s yielding the feature maps. c \in {2, 3, 4}, and s = c + |
| // delta, where delta \in {3, 4}. |
| static int center_surround_diff(const double *input[9], int height[9], |
| int width[9], saliency_feature_map *output[6]) { |
| int j = 0; |
| for (int k = 2; k < 5; ++k) { |
| int cur_height = height[k]; |
| int cur_width = width[k]; |
| |
| if (upscale_map(input[k + 3], k + 3, k, height, width, output[j]->buf) == |
| 0) { |
| return 0; |
| } |
| |
| for (int r = 0; r < cur_height; ++r) { |
| for (int c = 0; c < cur_width; ++c) { |
| output[j]->buf[r * cur_width + c] = |
| fabs((double)(input[k][r * cur_width + c] - |
| output[j]->buf[r * cur_width + c])); |
| } |
| } |
| |
| if (upscale_map(input[k + 4], k + 4, k, height, width, |
| output[j + 1]->buf) == 0) { |
| return 0; |
| } |
| |
| for (int r = 0; r < cur_height; ++r) { |
| for (int c = 0; c < cur_width; ++c) { |
| output[j + 1]->buf[r * cur_width + c] = |
| fabs(input[k][r * cur_width + c] - |
| output[j + 1]->buf[r * cur_width + c]); |
| } |
| } |
| |
| j += 2; |
| } |
| return 1; |
| } |
| |
| // For color channels, the differences is calculated based on "color |
| // double-opponency". For example, the RG feature map is constructed between a |
| // fine scale c of R-G component and a coarser scale s of G-R component. |
| static int center_surround_diff_rgb(const double *input_1[9], |
| const double *input_2[9], int height[9], |
| int width[9], |
| saliency_feature_map *output[6]) { |
| int j = 0; |
| for (int k = 2; k < 5; ++k) { |
| int cur_height = height[k]; |
| int cur_width = width[k]; |
| |
| if (upscale_map(input_2[k + 3], k + 3, k, height, width, output[j]->buf) == |
| 0) { |
| return 0; |
| } |
| |
| for (int r = 0; r < cur_height; ++r) { |
| for (int c = 0; c < cur_width; ++c) { |
| output[j]->buf[r * cur_width + c] = |
| fabs((double)(input_1[k][r * cur_width + c] - |
| output[j]->buf[r * cur_width + c])); |
| } |
| } |
| |
| if (upscale_map(input_2[k + 4], k + 4, k, height, width, |
| output[j + 1]->buf) == 0) { |
| return 0; |
| } |
| |
| for (int r = 0; r < cur_height; ++r) { |
| for (int c = 0; c < cur_width; ++c) { |
| output[j + 1]->buf[r * cur_width + c] = |
| fabs(input_1[k][r * cur_width + c] - |
| output[j + 1]->buf[r * cur_width + c]); |
| } |
| } |
| |
| j += 2; |
| } |
| return 1; |
| } |
| |
| // This function is to generate Gaussian pyramid images with indexes from 0 to |
| // 8, and construct the feature maps from calculating the center-surround |
| // differences. |
| static int gaussian_pyramid(const double *src, int width[9], int height[9], |
| saliency_feature_map *dst[6]) { |
| double *gaussian_map[9]; // scale = 9 |
| gaussian_map[0] = |
| (double *)aom_malloc(width[0] * height[0] * sizeof(*gaussian_map[0])); |
| if (!gaussian_map[0]) { |
| return 0; |
| } |
| |
| memcpy(gaussian_map[0], src, width[0] * height[0] * sizeof(double)); |
| |
| for (int i = 1; i < 9; ++i) { |
| int stride = width[i - 1]; |
| int new_width = width[i]; |
| int new_height = height[i]; |
| |
| gaussian_map[i] = |
| (double *)aom_malloc(new_width * new_height * sizeof(*gaussian_map[i])); |
| |
| if (!gaussian_map[i]) { |
| for (int l = 0; l < i; ++l) { |
| aom_free(gaussian_map[l]); |
| } |
| return 0; |
| } |
| |
| memset(gaussian_map[i], 0, new_width * new_height * sizeof(double)); |
| |
| decimate_map(gaussian_map[i - 1], height[i - 1], width[i - 1], stride, |
| gaussian_map[i]); |
| } |
| |
| if (center_surround_diff((const double **)gaussian_map, height, width, dst) == |
| 0) { |
| for (int l = 0; l < 9; ++l) { |
| aom_free(gaussian_map[l]); |
| } |
| return 0; |
| } |
| |
| for (int i = 0; i < 9; ++i) { |
| aom_free(gaussian_map[i]); |
| } |
| return 1; |
| } |
| |
| static int gaussian_pyramid_rgb(double *src_1, double *src_2, int width[9], |
| int height[9], saliency_feature_map *dst[6]) { |
| double *gaussian_map[2][9]; // scale = 9 |
| double *src[2]; |
| |
| src[0] = src_1; |
| src[1] = src_2; |
| |
| for (int k = 0; k < 2; ++k) { |
| gaussian_map[k][0] = (double *)aom_malloc(width[0] * height[0] * |
| sizeof(*gaussian_map[k][0])); |
| if (!gaussian_map[k][0]) { |
| for (int l = 0; l < k; ++l) { |
| aom_free(gaussian_map[l][0]); |
| } |
| return 0; |
| } |
| memcpy(gaussian_map[k][0], src[k], width[0] * height[0] * sizeof(double)); |
| |
| for (int i = 1; i < 9; ++i) { |
| int stride = width[i - 1]; |
| int new_width = width[i]; |
| int new_height = height[i]; |
| |
| gaussian_map[k][i] = (double *)aom_malloc(new_width * new_height * |
| sizeof(*gaussian_map[k][i])); |
| if (!gaussian_map[k][i]) { |
| for (int l = 0; l < k; ++l) { |
| aom_free(gaussian_map[l][i]); |
| } |
| return 0; |
| } |
| memset(gaussian_map[k][i], 0, new_width * new_height * sizeof(double)); |
| decimate_map(gaussian_map[k][i - 1], height[i - 1], width[i - 1], stride, |
| gaussian_map[k][i]); |
| } |
| } |
| |
| if (center_surround_diff_rgb((const double **)gaussian_map[0], |
| (const double **)gaussian_map[1], height, width, |
| dst) == 0) { |
| for (int l = 0; l < 2; ++l) { |
| for (int i = 0; i < 9; ++i) { |
| aom_free(gaussian_map[l][i]); |
| } |
| } |
| return 0; |
| } |
| |
| for (int l = 0; l < 2; ++l) { |
| for (int i = 0; i < 9; ++i) { |
| aom_free(gaussian_map[l][i]); |
| } |
| } |
| return 1; |
| } |
| |
| static int get_feature_map_intensity(double *intensity, int width[9], |
| int height[9], |
| saliency_feature_map *i_map[6]) { |
| if (gaussian_pyramid(intensity, width, height, i_map) == 0) { |
| return 0; |
| } |
| return 1; |
| } |
| |
| static int get_feature_map_rgb(double *cr, double *cg, double *cb, int width[9], |
| int height[9], saliency_feature_map *rg_map[6], |
| saliency_feature_map *by_map[6]) { |
| double *rg_mat = aom_malloc(height[0] * width[0] * sizeof(*rg_mat)); |
| double *by_mat = aom_malloc(height[0] * width[0] * sizeof(*by_mat)); |
| double *gr_mat = aom_malloc(height[0] * width[0] * sizeof(*gr_mat)); |
| double *yb_mat = aom_malloc(height[0] * width[0] * sizeof(*yb_mat)); |
| |
| if (!rg_mat || !by_mat || !gr_mat || !yb_mat) { |
| aom_free(rg_mat); |
| aom_free(by_mat); |
| aom_free(gr_mat); |
| aom_free(yb_mat); |
| return 0; |
| } |
| |
| double r, g, b, y; |
| for (int i = 0; i < height[0]; ++i) { |
| for (int j = 0; j < width[0]; ++j) { |
| r = AOMMAX(0, cr[i * width[0] + j] - |
| (cg[i * width[0] + j] + cb[i * width[0] + j]) / 2); |
| g = AOMMAX(0, cg[i * width[0] + j] - |
| (cr[i * width[0] + j] + cb[i * width[0] + j]) / 2); |
| b = AOMMAX(0, cb[i * width[0] + j] - |
| (cr[i * width[0] + j] + cg[i * width[0] + j]) / 2); |
| y = AOMMAX(0, (cr[i * width[0] + j] + cg[i * width[0] + j]) / 2 - |
| fabs(cr[i * width[0] + j] - cg[i * width[0] + j]) / 2 - |
| cb[i * width[0] + j]); |
| |
| rg_mat[i * width[0] + j] = r - g; |
| by_mat[i * width[0] + j] = b - y; |
| gr_mat[i * width[0] + j] = g - r; |
| yb_mat[i * width[0] + j] = y - b; |
| } |
| } |
| |
| if (gaussian_pyramid_rgb(rg_mat, gr_mat, width, height, rg_map) == 0 || |
| gaussian_pyramid_rgb(by_mat, yb_mat, width, height, by_map) == 0) { |
| aom_free(rg_mat); |
| aom_free(by_mat); |
| aom_free(gr_mat); |
| aom_free(yb_mat); |
| return 0; |
| } |
| |
| aom_free(rg_mat); |
| aom_free(by_mat); |
| aom_free(gr_mat); |
| aom_free(yb_mat); |
| return 1; |
| } |
| |
| static INLINE void filter2d(const double *input, const double kernel[9][9], |
| int width, int height, double *output) { |
| const int window_size = 9; |
| double map_section[81]; |
| for (int y = 0; y <= height - 1; ++y) { |
| for (int x = 0; x <= width - 1; ++x) { |
| int i = 0; |
| for (int yy = y - window_size / 2; yy <= y + window_size / 2; ++yy) { |
| for (int xx = x - window_size / 2; xx <= x + window_size / 2; ++xx) { |
| int yvalue = clamp(yy, 0, height - 1); |
| int xvalue = clamp(xx, 0, width - 1); |
| map_section[i++] = input[yvalue * width + xvalue]; |
| } |
| } |
| |
| output[y * width + x] = 0; |
| for (int k = 0; k < window_size; ++k) { |
| for (int l = 0; l < window_size; ++l) { |
| output[y * width + x] += |
| kernel[k][l] * map_section[k * window_size + l]; |
| } |
| } |
| } |
| } |
| } |
| |
| static int get_feature_map_orientation(const double *intensity, int width[9], |
| int height[9], |
| saliency_feature_map *dst[24]) { |
| double *gaussian_map[9]; |
| |
| gaussian_map[0] = |
| (double *)aom_malloc(width[0] * height[0] * sizeof(*gaussian_map[0])); |
| if (!gaussian_map[0]) { |
| return 0; |
| } |
| memcpy(gaussian_map[0], intensity, width[0] * height[0] * sizeof(double)); |
| |
| for (int i = 1; i < 9; ++i) { |
| int stride = width[i - 1]; |
| int new_width = width[i]; |
| int new_height = height[i]; |
| |
| gaussian_map[i] = |
| (double *)aom_malloc(new_width * new_height * sizeof(*gaussian_map[i])); |
| if (!gaussian_map[i]) { |
| for (int l = 0; l < i; ++l) { |
| aom_free(gaussian_map[l]); |
| } |
| return 0; |
| } |
| memset(gaussian_map[i], 0, new_width * new_height * sizeof(double)); |
| decimate_map(gaussian_map[i - 1], height[i - 1], width[i - 1], stride, |
| gaussian_map[i]); |
| } |
| |
| double *tempGaborOutput[4][9]; //[angle: 0, 45, 90, 135 degree][filter_size] |
| |
| for (int i = 2; i < 9; ++i) { |
| const int cur_height = height[i]; |
| const int cur_width = width[i]; |
| for (int j = 0; j < 4; ++j) { |
| tempGaborOutput[j][i] = (double *)aom_malloc( |
| cur_height * cur_width * sizeof(*tempGaborOutput[j][i])); |
| if (!tempGaborOutput[j][i]) { |
| for (int l = 0; l < 9; ++l) { |
| aom_free(gaussian_map[l]); |
| } |
| for (int h = 0; h < 4; ++h) { |
| for (int g = 2; g < 9; ++g) { |
| aom_free(tempGaborOutput[h][g]); |
| } |
| } |
| return 0; |
| } |
| filter2d(gaussian_map[i], kGaborFilter[j], cur_width, cur_height, |
| tempGaborOutput[j][i]); |
| } |
| } |
| |
| for (int i = 0; i < 9; ++i) { |
| aom_free(gaussian_map[i]); |
| } |
| |
| saliency_feature_map |
| *tmp[4][6]; //[angle: 0, 45, 90, 135 degree][filter_size] |
| |
| for (int i = 0; i < 6; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| tmp[j][i] = dst[j * 6 + i]; |
| } |
| } |
| |
| for (int j = 0; j < 4; ++j) { |
| if (center_surround_diff((const double **)tempGaborOutput[j], height, width, |
| tmp[j]) == 0) { |
| for (int h = 0; h < 4; ++h) { |
| for (int g = 2; g < 9; ++g) { |
| aom_free(tempGaborOutput[h][g]); |
| } |
| } |
| return 0; |
| } |
| } |
| |
| for (int i = 2; i < 9; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| aom_free(tempGaborOutput[j][i]); |
| } |
| } |
| |
| return 1; |
| } |
| |
| static INLINE void find_min_max(const saliency_feature_map *input, |
| double *max_value, double *min_value) { |
| assert(input && input->buf); |
| *min_value = DBL_MAX; |
| *max_value = 0.0; |
| |
| for (int i = 0; i < input->height; ++i) { |
| for (int j = 0; j < input->width; ++j) { |
| assert(input->buf[i * input->width + j] >= 0.0); |
| *min_value = fmin(input->buf[i * input->width + j], *min_value); |
| *max_value = fmax(input->buf[i * input->width + j], *max_value); |
| } |
| } |
| } |
| |
| static INLINE double average_local_max(const saliency_feature_map *input, |
| int stepsize) { |
| int numlocal = 0; |
| double lmaxmean = 0, lmax = 0, dummy = 0; |
| saliency_feature_map local_map; |
| local_map.height = stepsize; |
| local_map.width = stepsize; |
| local_map.buf = |
| (double *)aom_malloc(stepsize * stepsize * sizeof(*local_map.buf)); |
| |
| if (!local_map.buf) { |
| return -1; |
| } |
| |
| for (int y = 0; y < input->height - stepsize; y += stepsize) { |
| for (int x = 0; x < input->width - stepsize; x += stepsize) { |
| for (int i = 0; i < stepsize; ++i) { |
| for (int j = 0; j < stepsize; ++j) { |
| local_map.buf[i * stepsize + j] = |
| input->buf[(y + i) * input->width + x + j]; |
| } |
| } |
| |
| find_min_max(&local_map, &lmax, &dummy); |
| lmaxmean += lmax; |
| numlocal++; |
| } |
| } |
| |
| aom_free(local_map.buf); |
| |
| return lmaxmean / numlocal; |
| } |
| |
| // Linear normalization the values in the map to [0,1]. |
| static void minmax_normalize(saliency_feature_map *input) { |
| double max_value, min_value; |
| find_min_max(input, &max_value, &min_value); |
| |
| for (int i = 0; i < input->height; ++i) { |
| for (int j = 0; j < input->width; ++j) { |
| if (max_value != min_value) { |
| input->buf[i * input->width + j] = |
| input->buf[i * input->width + j] / (max_value - min_value) + |
| min_value / (min_value - max_value); |
| } else { |
| input->buf[i * input->width + j] -= min_value; |
| } |
| } |
| } |
| } |
| |
| // This function is to promote meaningful “activation spots” in the map and |
| // ignores homogeneous areas. |
| static int nomalization_operator(saliency_feature_map *input, int stepsize) { |
| minmax_normalize(input); |
| double lmaxmean = average_local_max(input, stepsize); |
| if (lmaxmean < 0) { |
| return 0; |
| } |
| double normCoeff = (1 - lmaxmean) * (1 - lmaxmean); |
| |
| for (int i = 0; i < input->height; ++i) { |
| for (int j = 0; j < input->width; ++j) { |
| input->buf[i * input->width + j] *= normCoeff; |
| } |
| } |
| |
| return 1; |
| } |
| |
| // Normalize the values in feature maps to [0,1], and then upscale all maps to |
| // the original frame size. |
| static int normalize_fm(saliency_feature_map *input[6], int width[9], |
| int height[9], int num_fm, |
| saliency_feature_map *output[6]) { |
| // Feature maps (FM) are generated by function "center_surround_diff()". The |
| // difference is between a fine scale c and a coarser scale s, where c \in {2, |
| // 3, 4}, and s = c + delta, where delta \in {3, 4}, and the FM size is scale |
| // c. Specifically, i=0: c=2 and s=5, i=1: c=2 and s=6, i=2: c=3 and s=6, i=3: |
| // c=3 and s=7, i=4: c=4 and s=7, i=5: c=4 and s=8. |
| for (int i = 0; i < num_fm; ++i) { |
| if (nomalization_operator(input[i], 8) == 0) { |
| return 0; |
| } |
| |
| // Upscale FM to original frame size |
| if (upscale_map(input[i]->buf, (i / 2) + 2, 0, height, width, |
| output[i]->buf) == 0) { |
| return 0; |
| } |
| } |
| return 1; |
| } |
| |
| // Combine feature maps with the same category (intensity, color, or |
| // orientation) into one conspicuity map. |
| static int normalized_map(saliency_feature_map *input[6], int width[9], |
| int height[9], saliency_feature_map *output) { |
| int num_fm = 6; |
| |
| saliency_feature_map *n_input[6]; |
| for (int i = 0; i < 6; ++i) { |
| n_input[i] = (saliency_feature_map *)aom_malloc(sizeof(*n_input[i])); |
| if (!n_input[i]) { |
| return 0; |
| } |
| n_input[i]->buf = |
| (double *)aom_malloc(width[0] * height[0] * sizeof(*n_input[i]->buf)); |
| if (!n_input[i]->buf) { |
| aom_free(n_input[i]); |
| return 0; |
| } |
| n_input[i]->height = height[0]; |
| n_input[i]->width = width[0]; |
| } |
| |
| if (normalize_fm(input, width, height, num_fm, n_input) == 0) { |
| for (int i = 0; i < num_fm; ++i) { |
| aom_free(n_input[i]->buf); |
| aom_free(n_input[i]); |
| } |
| return 0; |
| } |
| |
| // Add up all normalized feature maps with the same category into one map. |
| for (int i = 0; i < num_fm; ++i) { |
| for (int r = 0; r < height[0]; ++r) { |
| for (int c = 0; c < width[0]; ++c) { |
| output->buf[r * width[0] + c] += n_input[i]->buf[r * width[0] + c]; |
| } |
| } |
| } |
| |
| for (int i = 0; i < num_fm; ++i) { |
| aom_free(n_input[i]->buf); |
| aom_free(n_input[i]); |
| } |
| |
| nomalization_operator(output, 8); |
| return 1; |
| } |
| |
| static int normalized_map_rgb(saliency_feature_map *rg_map[6], |
| saliency_feature_map *by_map[6], int width[9], |
| int height[9], saliency_feature_map *output) { |
| saliency_feature_map *color_cm[2]; // 0: color_cm_rg, 1: color_cm_by |
| for (int i = 0; i < 2; ++i) { |
| color_cm[i] = aom_malloc(sizeof(*color_cm[i])); |
| if (!color_cm[i]) { |
| return 0; |
| } |
| color_cm[i]->buf = |
| (double *)aom_malloc(width[0] * height[0] * sizeof(*color_cm[i]->buf)); |
| if (!color_cm[i]->buf) { |
| for (int l = 0; l < i; ++l) { |
| aom_free(color_cm[l]->buf); |
| } |
| aom_free(color_cm[i]); |
| return 0; |
| } |
| |
| color_cm[i]->width = width[0]; |
| color_cm[i]->height = height[0]; |
| memset(color_cm[i]->buf, 0, |
| width[0] * height[0] * sizeof(*color_cm[i]->buf)); |
| } |
| |
| if (normalized_map(rg_map, width, height, color_cm[0]) == 0 || |
| normalized_map(by_map, width, height, color_cm[1]) == 0) { |
| for (int i = 0; i < 2; ++i) { |
| aom_free(color_cm[i]->buf); |
| aom_free(color_cm[i]); |
| } |
| return 0; |
| } |
| |
| for (int r = 0; r < height[0]; ++r) { |
| for (int c = 0; c < width[0]; ++c) { |
| output->buf[r * width[0] + c] = color_cm[0]->buf[r * width[0] + c] + |
| color_cm[1]->buf[r * width[0] + c]; |
| } |
| } |
| |
| for (int i = 0; i < 2; ++i) { |
| aom_free(color_cm[i]->buf); |
| aom_free(color_cm[i]); |
| } |
| |
| nomalization_operator(output, 8); |
| return 1; |
| } |
| |
| static int normalized_map_orientation(saliency_feature_map *orientation_map[24], |
| int width[9], int height[9], |
| saliency_feature_map *output) { |
| int num_fms_per_angle = 6; |
| |
| saliency_feature_map *ofm[4][6]; |
| for (int i = 0; i < num_fms_per_angle; ++i) { |
| for (int j = 0; j < 4; ++j) { |
| ofm[j][i] = orientation_map[j * num_fms_per_angle + i]; |
| } |
| } |
| |
| // extract conspicuity map for each angle |
| saliency_feature_map *nofm = aom_malloc(sizeof(*nofm)); |
| if (!nofm) { |
| return 0; |
| } |
| nofm->buf = (double *)aom_malloc(width[0] * height[0] * sizeof(*nofm->buf)); |
| if (!nofm->buf) { |
| aom_free(nofm); |
| return 0; |
| } |
| nofm->height = height[0]; |
| nofm->width = width[0]; |
| |
| for (int i = 0; i < 4; ++i) { |
| memset(nofm->buf, 0, width[0] * height[0] * sizeof(*nofm->buf)); |
| if (normalized_map(ofm[i], width, height, nofm) == 0) { |
| aom_free(nofm->buf); |
| aom_free(nofm); |
| return 0; |
| } |
| |
| for (int r = 0; r < height[0]; ++r) { |
| for (int c = 0; c < width[0]; ++c) { |
| output->buf[r * width[0] + c] += nofm->buf[r * width[0] + c]; |
| } |
| } |
| } |
| |
| aom_free(nofm->buf); |
| aom_free(nofm); |
| |
| nomalization_operator(output, 8); |
| return 1; |
| } |
| |
| // Set pixel level saliency mask based on Itti-Koch algorithm |
| int av1_set_saliency_map(AV1_COMP *cpi) { |
| AV1_COMMON *const cm = &cpi->common; |
| |
| int frm_width = cm->width; |
| int frm_height = cm->height; |
| |
| int pyr_height[9]; |
| int pyr_width[9]; |
| |
| pyr_height[0] = frm_height; |
| pyr_width[0] = frm_width; |
| |
| for (int i = 1; i < 9; ++i) { |
| pyr_width[i] = pyr_width[i - 1] / 2; |
| pyr_height[i] = pyr_height[i - 1] / 2; |
| } |
| |
| double *cr = aom_malloc(frm_width * frm_height * sizeof(*cr)); |
| double *cg = aom_malloc(frm_width * frm_height * sizeof(*cg)); |
| double *cb = aom_malloc(frm_width * frm_height * sizeof(*cb)); |
| double *intensity = aom_malloc(frm_width * frm_height * sizeof(*intensity)); |
| |
| if (!cr || !cg || !cb || !intensity) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| return 0; |
| } |
| |
| // Extract red / green / blue channels and intensity component |
| get_color_intensity(cpi->source, cm->seq_params->subsampling_x, |
| cm->seq_params->subsampling_y, cr, cg, cb, intensity); |
| |
| // Feature Map Extraction |
| // intensity map |
| saliency_feature_map *i_map[6]; |
| for (int i = 0; i < 6; ++i) { |
| int cur_height = pyr_height[(i / 2) + 2]; |
| int cur_width = pyr_width[(i / 2) + 2]; |
| |
| i_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*i_map[i])); |
| if (!i_map[i]) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| for (int l = 0; l < i; ++l) { |
| aom_free(i_map[l]); |
| } |
| return 0; |
| } |
| i_map[i]->buf = |
| (double *)aom_malloc(cur_height * cur_width * sizeof(*i_map[i]->buf)); |
| if (!i_map[i]->buf) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| for (int l = 0; l < i; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(i_map[l]); |
| } |
| return 0; |
| } |
| i_map[i]->height = cur_height; |
| i_map[i]->width = cur_width; |
| } |
| |
| if (get_feature_map_intensity(intensity, pyr_width, pyr_height, i_map) == 0) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| for (int l = 0; l < 6; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(i_map[l]); |
| } |
| return 0; |
| } |
| |
| // RGB map |
| saliency_feature_map *rg_map[6], *by_map[6]; |
| for (int i = 0; i < 6; ++i) { |
| int cur_height = pyr_height[(i / 2) + 2]; |
| int cur_width = pyr_width[(i / 2) + 2]; |
| rg_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*rg_map[i])); |
| by_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*by_map[i])); |
| if (!rg_map[i] || !by_map[i]) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| for (int l = 0; l < 6; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(i_map[l]); |
| aom_free(rg_map[l]); |
| aom_free(by_map[l]); |
| } |
| return 0; |
| } |
| rg_map[i]->buf = |
| (double *)aom_malloc(cur_height * cur_width * sizeof(*rg_map[i]->buf)); |
| by_map[i]->buf = |
| (double *)aom_malloc(cur_height * cur_width * sizeof(*by_map[i]->buf)); |
| if (!by_map[i]->buf || !rg_map[i]->buf) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| for (int l = 0; l < 6; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(i_map[l]); |
| } |
| for (int l = 0; l < i; ++l) { |
| aom_free(rg_map[l]->buf); |
| aom_free(by_map[l]->buf); |
| aom_free(rg_map[l]); |
| aom_free(by_map[l]); |
| } |
| return 0; |
| } |
| rg_map[i]->height = cur_height; |
| rg_map[i]->width = cur_width; |
| by_map[i]->height = cur_height; |
| by_map[i]->width = cur_width; |
| } |
| |
| if (get_feature_map_rgb(cr, cg, cb, pyr_width, pyr_height, rg_map, by_map) == |
| 0) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| for (int l = 0; l < 6; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(rg_map[l]->buf); |
| aom_free(by_map[l]->buf); |
| aom_free(i_map[l]); |
| aom_free(rg_map[l]); |
| aom_free(by_map[l]); |
| } |
| return 0; |
| } |
| |
| // Orientation map |
| saliency_feature_map *orientation_map[24]; |
| for (int i = 0; i < 24; ++i) { |
| int cur_height = pyr_height[((i % 6) / 2) + 2]; |
| int cur_width = pyr_width[((i % 6) / 2) + 2]; |
| |
| orientation_map[i] = |
| (saliency_feature_map *)aom_malloc(sizeof(*orientation_map[i])); |
| if (!orientation_map[i]) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| for (int l = 0; l < 6; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(rg_map[l]->buf); |
| aom_free(by_map[l]->buf); |
| aom_free(i_map[l]); |
| aom_free(rg_map[l]); |
| aom_free(by_map[l]); |
| } |
| for (int h = 0; h < i; ++h) { |
| aom_free(orientation_map[h]); |
| } |
| return 0; |
| } |
| |
| orientation_map[i]->buf = (double *)aom_malloc( |
| cur_height * cur_width * sizeof(*orientation_map[i]->buf)); |
| if (!orientation_map[i]->buf) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| for (int l = 0; l < 6; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(rg_map[l]->buf); |
| aom_free(by_map[l]->buf); |
| aom_free(i_map[l]); |
| aom_free(rg_map[l]); |
| aom_free(by_map[l]); |
| } |
| |
| for (int h = 0; h < i; ++h) { |
| aom_free(orientation_map[h]->buf); |
| aom_free(orientation_map[h]->buf); |
| aom_free(orientation_map[h]); |
| aom_free(orientation_map[h]); |
| } |
| return 0; |
| } |
| |
| orientation_map[i]->height = cur_height; |
| orientation_map[i]->width = cur_width; |
| } |
| |
| if (get_feature_map_orientation(intensity, pyr_width, pyr_height, |
| orientation_map) == 0) { |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| for (int l = 0; l < 6; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(rg_map[l]->buf); |
| aom_free(by_map[l]->buf); |
| aom_free(i_map[l]); |
| aom_free(rg_map[l]); |
| aom_free(by_map[l]); |
| } |
| for (int h = 0; h < 24; ++h) { |
| aom_free(orientation_map[h]->buf); |
| aom_free(orientation_map[h]); |
| } |
| return 0; |
| } |
| |
| aom_free(cr); |
| aom_free(cg); |
| aom_free(cb); |
| aom_free(intensity); |
| |
| saliency_feature_map |
| *normalized_maps[3]; // 0: intensity, 1: color, 2: orientation |
| |
| for (int i = 0; i < 3; ++i) { |
| normalized_maps[i] = aom_malloc(sizeof(*normalized_maps[i])); |
| if (!normalized_maps[i]) { |
| for (int l = 0; l < 6; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(rg_map[l]->buf); |
| aom_free(by_map[l]->buf); |
| aom_free(i_map[l]); |
| aom_free(rg_map[l]); |
| aom_free(by_map[l]); |
| } |
| |
| for (int h = 0; h < 24; ++h) { |
| aom_free(orientation_map[h]->buf); |
| aom_free(orientation_map[h]); |
| } |
| |
| for (int l = 0; l < i; ++l) { |
| aom_free(normalized_maps[l]); |
| } |
| return 0; |
| } |
| normalized_maps[i]->buf = (double *)aom_malloc( |
| frm_width * frm_height * sizeof(*normalized_maps[i]->buf)); |
| if (!normalized_maps[i]->buf) { |
| for (int l = 0; l < 6; ++l) { |
| aom_free(i_map[l]->buf); |
| aom_free(rg_map[l]->buf); |
| aom_free(by_map[l]->buf); |
| aom_free(i_map[l]); |
| aom_free(rg_map[l]); |
| aom_free(by_map[l]); |
| } |
| for (int h = 0; h < 24; ++h) { |
| aom_free(orientation_map[h]->buf); |
| aom_free(orientation_map[h]); |
| } |
| for (int l = 0; l < i; ++l) { |
| aom_free(normalized_maps[l]->buf); |
| aom_free(normalized_maps[l]); |
| } |
| return 0; |
| } |
| normalized_maps[i]->width = frm_width; |
| normalized_maps[i]->height = frm_height; |
| memset(normalized_maps[i]->buf, 0, |
| frm_width * frm_height * sizeof(*normalized_maps[i]->buf)); |
| } |
| |
| // Conspicuity map generation |
| if (normalized_map(i_map, pyr_width, pyr_height, normalized_maps[0]) == 0 || |
| normalized_map_rgb(rg_map, by_map, pyr_width, pyr_height, |
| normalized_maps[1]) == 0 || |
| normalized_map_orientation(orientation_map, pyr_width, pyr_height, |
| normalized_maps[2]) == 0) { |
| for (int i = 0; i < 6; ++i) { |
| aom_free(i_map[i]->buf); |
| aom_free(rg_map[i]->buf); |
| aom_free(by_map[i]->buf); |
| aom_free(i_map[i]); |
| aom_free(rg_map[i]); |
| aom_free(by_map[i]); |
| } |
| |
| for (int i = 0; i < 24; ++i) { |
| aom_free(orientation_map[i]->buf); |
| aom_free(orientation_map[i]); |
| } |
| |
| for (int i = 0; i < 3; ++i) { |
| aom_free(normalized_maps[i]->buf); |
| aom_free(normalized_maps[i]); |
| } |
| return 0; |
| } |
| |
| for (int i = 0; i < 6; ++i) { |
| aom_free(i_map[i]->buf); |
| aom_free(rg_map[i]->buf); |
| aom_free(by_map[i]->buf); |
| aom_free(i_map[i]); |
| aom_free(rg_map[i]); |
| aom_free(by_map[i]); |
| } |
| |
| for (int i = 0; i < 24; ++i) { |
| aom_free(orientation_map[i]->buf); |
| aom_free(orientation_map[i]); |
| } |
| |
| // Pixel level saliency map |
| saliency_feature_map *combined_saliency_map = |
| aom_malloc(sizeof(*combined_saliency_map)); |
| if (!combined_saliency_map) { |
| for (int i = 0; i < 3; ++i) { |
| aom_free(normalized_maps[i]->buf); |
| aom_free(normalized_maps[i]); |
| } |
| return 0; |
| } |
| |
| combined_saliency_map->buf = (double *)aom_malloc( |
| frm_width * frm_height * sizeof(*combined_saliency_map->buf)); |
| if (!combined_saliency_map->buf) { |
| for (int i = 0; i < 3; ++i) { |
| aom_free(normalized_maps[i]->buf); |
| aom_free(normalized_maps[i]); |
| } |
| |
| aom_free(combined_saliency_map); |
| return 0; |
| } |
| combined_saliency_map->height = frm_height; |
| combined_saliency_map->width = frm_width; |
| |
| double w_intensity, w_color, w_orient; |
| |
| w_intensity = w_color = w_orient = (double)1 / 3; |
| |
| for (int r = 0; r < frm_height; ++r) { |
| for (int c = 0; c < frm_width; ++c) { |
| combined_saliency_map->buf[r * frm_width + c] = |
| (w_intensity * normalized_maps[0]->buf[r * frm_width + c] + |
| w_color * normalized_maps[1]->buf[r * frm_width + c] + |
| w_orient * normalized_maps[2]->buf[r * frm_width + c]); |
| } |
| } |
| |
| for (int r = 0; r < frm_height; ++r) { |
| for (int c = 0; c < frm_width; ++c) { |
| int index = r * frm_width + c; |
| cpi->saliency_map[index] = |
| (uint8_t)(combined_saliency_map->buf[index] * 255); |
| } |
| } |
| |
| for (int i = 0; i < 3; ++i) { |
| aom_free(normalized_maps[i]->buf); |
| aom_free(normalized_maps[i]); |
| } |
| |
| aom_free(combined_saliency_map->buf); |
| aom_free(combined_saliency_map); |
| |
| return 1; |
| } |
| |
| // Set superblock level saliency mask for rdmult scaling |
| int av1_setup_sm_rdmult_scaling_factor(AV1_COMP *cpi, double motion_ratio) { |
| AV1_COMMON *cm = &cpi->common; |
| |
| saliency_feature_map *sb_saliency_map = |
| aom_malloc(sizeof(saliency_feature_map)); |
| |
| if (sb_saliency_map == NULL) { |
| return 0; |
| } |
| |
| const int bsize = cm->seq_params->sb_size; |
| const int num_mi_w = mi_size_wide[bsize]; |
| const int num_mi_h = mi_size_high[bsize]; |
| const int block_width = block_size_wide[bsize]; |
| const int block_height = block_size_high[bsize]; |
| const int num_sb_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; |
| const int num_sb_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; |
| |
| sb_saliency_map->height = num_sb_rows; |
| sb_saliency_map->width = num_sb_cols; |
| sb_saliency_map->buf = (double *)aom_malloc(num_sb_rows * num_sb_cols * |
| sizeof(*sb_saliency_map->buf)); |
| |
| if (sb_saliency_map->buf == NULL) { |
| aom_free(sb_saliency_map); |
| return 0; |
| } |
| |
| for (int row = 0; row < num_sb_rows; ++row) { |
| for (int col = 0; col < num_sb_cols; ++col) { |
| const int index = row * num_sb_cols + col; |
| double total_pixel = 0; |
| double total_weight = 0; |
| |
| for (int i = 0; i < block_height; i++) { |
| for (int j = 0; j < block_width; j++) { |
| if ((row * block_height + i) >= cpi->common.height || |
| (col * block_width + j) >= cpi->common.width) |
| continue; |
| total_pixel++; |
| total_weight += |
| cpi->saliency_map[(row * block_height + i) * cpi->common.width + |
| col * block_width + j]; |
| } |
| } |
| |
| assert(total_pixel > 0); |
| |
| // Calculate the superblock level saliency map from pixel level saliency |
| // map |
| sb_saliency_map->buf[index] = total_weight / total_pixel; |
| |
| // Further lower the superblock saliency score for boundary superblocks. |
| if (row < 1 || row > num_sb_rows - 2 || col < 1 || |
| col > num_sb_cols - 2) { |
| sb_saliency_map->buf[index] /= 5; |
| } |
| } |
| } |
| |
| // superblock level saliency map finalization |
| minmax_normalize(sb_saliency_map); |
| |
| double log_sum = 0.0; |
| double sum = 0.0; |
| int block_count = 0; |
| |
| // Calculate the average superblock sm_scaling_factor for a frame, to be used |
| // for clamping later. |
| for (int row = 0; row < num_sb_rows; ++row) { |
| for (int col = 0; col < num_sb_cols; ++col) { |
| const int index = row * num_sb_cols + col; |
| const double saliency = sb_saliency_map->buf[index]; |
| |
| cpi->sm_scaling_factor[index] = 1 - saliency; |
| sum += cpi->sm_scaling_factor[index]; |
| block_count++; |
| } |
| } |
| assert(block_count > 0); |
| sum /= block_count; |
| |
| // Calculate the geometric mean of superblock sm_scaling_factor for a frame, |
| // to be used for normalization. |
| for (int row = 0; row < num_sb_rows; ++row) { |
| for (int col = 0; col < num_sb_cols; ++col) { |
| const int index = row * num_sb_cols + col; |
| log_sum += log(fmax(cpi->sm_scaling_factor[index], 0.001)); |
| cpi->sm_scaling_factor[index] = |
| fmax(cpi->sm_scaling_factor[index], 0.8 * sum); |
| } |
| } |
| |
| log_sum = exp(log_sum / block_count); |
| |
| // Normalize the sm_scaling_factor by geometric mean. |
| for (int row = 0; row < num_sb_rows; ++row) { |
| for (int col = 0; col < num_sb_cols; ++col) { |
| const int index = row * num_sb_cols + col; |
| assert(log_sum > 0); |
| cpi->sm_scaling_factor[index] /= log_sum; |
| |
| // Modulate the sm_scaling_factor by frame basis motion factor |
| cpi->sm_scaling_factor[index] = |
| cpi->sm_scaling_factor[index] * motion_ratio; |
| } |
| } |
| |
| aom_free(sb_saliency_map->buf); |
| aom_free(sb_saliency_map); |
| return 1; |
| } |
| |
| // av1_setup_motion_ratio() is only enabled when CONFIG_REALTIME_ONLY is 0, |
| // because the computations need to access the first pass stats which are |
| // only available when CONFIG_REALTIME_ONLY is equal to 0. |
| #if !CONFIG_REALTIME_ONLY |
| // Set motion_ratio that reflects the motion quantities between two consecutive |
| // frames. Motion_ratio will be used to set up saliency_map based rdmult scaling |
| // factor, i.e., the less the motion quantities are, the more bits will be spent |
| // on this frame, and vice versa. |
| double av1_setup_motion_ratio(AV1_COMP *cpi) { |
| AV1_COMMON *cm = &cpi->common; |
| int frames_since_key = |
| cm->current_frame.display_order_hint - cpi->rc.frames_since_key; |
| const FIRSTPASS_STATS *cur_stats = av1_firstpass_info_peek( |
| &cpi->ppi->twopass.firstpass_info, frames_since_key); |
| assert(cur_stats != NULL); |
| assert(cpi->ppi->twopass.firstpass_info.total_stats.count > 0); |
| |
| const double avg_intra_error = |
| exp(cpi->ppi->twopass.firstpass_info.total_stats.log_intra_error / |
| cpi->ppi->twopass.firstpass_info.total_stats.count); |
| const double avg_inter_error = |
| exp(cpi->ppi->twopass.firstpass_info.total_stats.log_coded_error / |
| cpi->ppi->twopass.firstpass_info.total_stats.count); |
| |
| double inter_error = cur_stats->coded_error; |
| double error_stdev = 0; |
| const double avg_error = |
| cpi->ppi->twopass.firstpass_info.total_stats.intra_error / |
| cpi->ppi->twopass.firstpass_info.total_stats.count; |
| for (int i = 0; i < cpi->ppi->twopass.firstpass_info.total_stats.count; i++) { |
| const FIRSTPASS_STATS *stats = |
| &cpi->ppi->twopass.firstpass_info.stats_buf[i]; |
| error_stdev += |
| (stats->intra_error - avg_error) * (stats->intra_error - avg_error); |
| } |
| error_stdev = |
| sqrt(error_stdev / cpi->ppi->twopass.firstpass_info.total_stats.count); |
| |
| double motion_ratio = 1; |
| if (error_stdev / fmax(avg_intra_error, 1) > 0.1) { |
| motion_ratio = inter_error / fmax(1, avg_inter_error); |
| motion_ratio = AOMMIN(motion_ratio, 1.5); |
| motion_ratio = AOMMAX(motion_ratio, 0.8); |
| } |
| |
| return motion_ratio; |
| } |
| #endif // !CONFIG_REALTIME_ONLY |