blob: bf0e3217331b5dbc2f8dce4510d5002860907bb1 [file] [log] [blame]
/*
* Copyright (c) 2016, Alliance for Open Media. All rights reserved
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <assert.h>
#include "./aom_config.h"
#include "./aom_dsp_rtcd.h"
#include "./aom_scale_rtcd.h"
#include "./av1_rtcd.h"
#include "aom/aom_codec.h"
#include "aom_dsp/aom_dsp_common.h"
#include "aom_dsp/binary_codes_reader.h"
#include "aom_dsp/bitreader.h"
#include "aom_dsp/bitreader_buffer.h"
#include "aom_mem/aom_mem.h"
#include "aom_ports/aom_timer.h"
#include "aom_ports/mem.h"
#include "aom_ports/mem_ops.h"
#include "aom_scale/aom_scale.h"
#include "aom_util/aom_thread.h"
#if CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "aom_util/debug_util.h"
#endif // CONFIG_BITSTREAM_DEBUG || CONFIG_MISMATCH_DEBUG
#include "av1/common/alloccommon.h"
#include "av1/common/cdef.h"
#include "av1/common/cfl.h"
#if CONFIG_INSPECTION
#include "av1/decoder/inspection.h"
#endif
#include "av1/common/common.h"
#include "av1/common/entropy.h"
#include "av1/common/entropymode.h"
#include "av1/common/entropymv.h"
#include "av1/common/idct.h"
#include "av1/common/mvref_common.h"
#include "av1/common/pred_common.h"
#include "av1/common/quant_common.h"
#include "av1/common/reconinter.h"
#include "av1/common/reconintra.h"
#include "av1/common/resize.h"
#include "av1/common/seg_common.h"
#include "av1/common/thread_common.h"
#include "av1/common/tile_common.h"
#include "av1/common/warped_motion.h"
#include "av1/decoder/decodeframe.h"
#include "av1/decoder/decodemv.h"
#include "av1/decoder/decoder.h"
#include "av1/decoder/decodetxb.h"
#include "av1/decoder/detokenize.h"
#define MAX_AV1_HEADER_SIZE 80
#define ACCT_STR __func__
#if CONFIG_TRAILING_BITS
// Checks that the remaining bits start with a 1 and ends with 0s.
// It consumes an additional byte, if already byte aligned before the check.
int av1_check_trailing_bits(AV1Decoder *pbi, struct aom_read_bit_buffer *rb) {
AV1_COMMON *const cm = &pbi->common;
// bit_offset is set to 0 (mod 8) when the reader is already byte aligned
int bits_before_alignment = 8 - rb->bit_offset % 8;
int trailing = aom_rb_read_literal(rb, bits_before_alignment);
if (trailing != (1 << (bits_before_alignment - 1))) {
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
return 1;
}
return 0;
}
#endif
// Use only_chroma = 1 to only set the chroma planes
static void set_planes_to_neutral_grey(AV1_COMMON *const cm,
MACROBLOCKD *const xd, int only_chroma) {
YV12_BUFFER_CONFIG *cur_buf = (YV12_BUFFER_CONFIG *)xd->cur_buf;
const int val = 1 << (cm->bit_depth - 1);
for (int plane = only_chroma; plane < MAX_MB_PLANE; plane++) {
const int is_uv = plane > 0;
for (int row_idx = 0; row_idx < cur_buf->crop_heights[is_uv]; row_idx++) {
if (cm->use_highbitdepth) {
// TODO(yaowu): replace this with aom_memset16() for speed
for (int col_idx = 0; col_idx < cur_buf->crop_widths[is_uv];
col_idx++) {
uint16_t *base = CONVERT_TO_SHORTPTR(cur_buf->buffers[plane]);
base[row_idx * cur_buf->strides[is_uv] + col_idx] = val;
}
} else {
memset(&cur_buf->buffers[plane][row_idx * cur_buf->uv_stride], 1 << 7,
cur_buf->crop_widths[is_uv]);
}
}
}
}
static void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm,
MACROBLOCKD *xd,
aom_reader *const r, int plane,
int runit_idx);
static void setup_compound_reference_mode(AV1_COMMON *cm) {
cm->comp_fwd_ref[0] = LAST_FRAME;
cm->comp_fwd_ref[1] = LAST2_FRAME;
cm->comp_fwd_ref[2] = LAST3_FRAME;
cm->comp_fwd_ref[3] = GOLDEN_FRAME;
cm->comp_bwd_ref[0] = BWDREF_FRAME;
cm->comp_bwd_ref[1] = ALTREF2_FRAME;
cm->comp_bwd_ref[2] = ALTREF_FRAME;
}
static int read_is_valid(const uint8_t *start, size_t len, const uint8_t *end) {
return len != 0 && len <= (size_t)(end - start);
}
static TX_MODE read_tx_mode(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
if (cm->coded_lossless) return ONLY_4X4;
return aom_rb_read_bit(rb) ? TX_MODE_SELECT : TX_MODE_LARGEST;
}
static REFERENCE_MODE read_frame_reference_mode(
const AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
if (frame_is_intra_only(cm)) {
return SINGLE_REFERENCE;
} else {
return aom_rb_read_bit(rb) ? REFERENCE_MODE_SELECT : SINGLE_REFERENCE;
}
}
static void inverse_transform_block(MACROBLOCKD *xd, int plane,
const TX_TYPE tx_type,
const TX_SIZE tx_size, uint8_t *dst,
int stride, int16_t scan_line, int eob,
int reduced_tx_set) {
struct macroblockd_plane *const pd = &xd->plane[plane];
tran_low_t *const dqcoeff = pd->dqcoeff;
av1_inverse_transform_block(xd, dqcoeff, plane, tx_type, tx_size, dst, stride,
eob, reduced_tx_set);
memset(dqcoeff, 0, (scan_line + 1) * sizeof(dqcoeff[0]));
}
static void predict_and_reconstruct_intra_block(
AV1_COMMON *cm, MACROBLOCKD *const xd, aom_reader *const r,
MB_MODE_INFO *const mbmi, int plane, int row, int col, TX_SIZE tx_size) {
PLANE_TYPE plane_type = get_plane_type(plane);
av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size);
if (!mbmi->skip) {
struct macroblockd_plane *const pd = &xd->plane[plane];
#if TXCOEFF_TIMER
struct aom_usec_timer timer;
aom_usec_timer_start(&timer);
#endif
int16_t max_scan_line = 0;
int eob;
av1_read_coeffs_txb_facade(cm, xd, r, row, col, plane, tx_size,
&max_scan_line, &eob);
// tx_type will be read out in av1_read_coeffs_txb_facade
const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, row, col, tx_size,
cm->reduced_tx_set_used);
#if TXCOEFF_TIMER
aom_usec_timer_mark(&timer);
const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
cm->txcoeff_timer += elapsed_time;
++cm->txb_count;
#endif
if (eob) {
uint8_t *dst =
&pd->dst.buf[(row * pd->dst.stride + col) << tx_size_wide_log2[0]];
inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
max_scan_line, eob, cm->reduced_tx_set_used);
}
}
if (plane == AOM_PLANE_Y && xd->cfl.store_y && is_cfl_allowed(xd)) {
cfl_store_tx(xd, row, col, tx_size, mbmi->sb_type);
}
}
static void decode_reconstruct_tx(AV1_COMMON *cm, MACROBLOCKD *const xd,
aom_reader *r, MB_MODE_INFO *const mbmi,
int plane, BLOCK_SIZE plane_bsize,
int blk_row, int blk_col, int block,
TX_SIZE tx_size, int *eob_total) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
const TX_SIZE plane_tx_size =
plane ? av1_get_uv_tx_size(mbmi, pd->subsampling_x, pd->subsampling_y)
: mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row,
blk_col)];
// Scale to match transform block unit.
const int max_blocks_high = max_block_high(xd, plane_bsize, plane);
const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
if (tx_size == plane_tx_size || plane) {
PLANE_TYPE plane_type = get_plane_type(plane);
#if TXCOEFF_TIMER
struct aom_usec_timer timer;
aom_usec_timer_start(&timer);
#endif
int16_t max_scan_line = 0;
int eob;
av1_read_coeffs_txb_facade(cm, xd, r, blk_row, blk_col, plane, tx_size,
&max_scan_line, &eob);
// tx_type will be read out in av1_read_coeffs_txb_facade
const TX_TYPE tx_type = av1_get_tx_type(plane_type, xd, blk_row, blk_col,
tx_size, cm->reduced_tx_set_used);
#if TXCOEFF_TIMER
aom_usec_timer_mark(&timer);
const int64_t elapsed_time = aom_usec_timer_elapsed(&timer);
cm->txcoeff_timer += elapsed_time;
++cm->txb_count;
#endif
if (plane == 0)
update_txk_array(mbmi->txk_type, mbmi->sb_type, blk_row, blk_col, tx_size,
tx_type);
uint8_t *dst =
&pd->dst
.buf[(blk_row * pd->dst.stride + blk_col) << tx_size_wide_log2[0]];
inverse_transform_block(xd, plane, tx_type, tx_size, dst, pd->dst.stride,
max_scan_line, eob, cm->reduced_tx_set_used);
#if CONFIG_MISMATCH_DEBUG
int pixel_c, pixel_r;
BLOCK_SIZE bsize = txsize_to_bsize[tx_size];
int blk_w = block_size_wide[bsize];
int blk_h = block_size_high[bsize];
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, blk_col, blk_row,
pd->subsampling_x, pd->subsampling_y);
mismatch_check_block_tx(dst, pd->dst.stride, cm->frame_offset, plane,
pixel_c, pixel_r, blk_w, blk_h,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
#endif
*eob_total += eob;
} else {
const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size];
assert(IMPLIES(tx_size <= TX_4X4, sub_txs == tx_size));
assert(IMPLIES(tx_size > TX_4X4, sub_txs < tx_size));
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
const int sub_step = bsw * bsh;
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
const int offsetr = blk_row + row;
const int offsetc = blk_col + col;
if (offsetr >= max_blocks_high || offsetc >= max_blocks_wide) continue;
decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize, offsetr,
offsetc, block, sub_txs, eob_total);
block += sub_step;
}
}
}
}
static void set_offsets(AV1_COMMON *const cm, MACROBLOCKD *const xd,
BLOCK_SIZE bsize, int mi_row, int mi_col, int bw,
int bh, int x_mis, int y_mis) {
const int num_planes = av1_num_planes(cm);
const int offset = mi_row * cm->mi_stride + mi_col;
const TileInfo *const tile = &xd->tile;
xd->mi = cm->mi_grid_visible + offset;
xd->mi[0] = &cm->mi[offset];
// TODO(slavarnway): Generate sb_type based on bwl and bhl, instead of
// passing bsize from decode_partition().
xd->mi[0]->sb_type = bsize;
#if CONFIG_RD_DEBUG
xd->mi[0]->mi_row = mi_row;
xd->mi[0]->mi_col = mi_col;
#endif
xd->cfl.mi_row = mi_row;
xd->cfl.mi_col = mi_col;
assert(x_mis && y_mis);
for (int x = 1; x < x_mis; ++x) xd->mi[x] = xd->mi[0];
int idx = cm->mi_stride;
for (int y = 1; y < y_mis; ++y) {
memcpy(&xd->mi[idx], &xd->mi[0], x_mis * sizeof(xd->mi[0]));
idx += cm->mi_stride;
}
set_plane_n4(xd, bw, bh, num_planes);
set_skip_context(xd, mi_row, mi_col, num_planes);
// Distance of Mb to the various image edges. These are specified to 8th pel
// as they are always compared to values that are in 1/8th pel units
set_mi_row_col(xd, tile, mi_row, bh, mi_col, bw, cm->mi_rows, cm->mi_cols);
av1_setup_dst_planes(xd->plane, bsize, get_frame_new_buffer(cm), mi_row,
mi_col, num_planes);
}
static void decode_mbmi_block(AV1Decoder *const pbi, MACROBLOCKD *const xd,
int mi_row, int mi_col, aom_reader *r,
PARTITION_TYPE partition, BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
#if CONFIG_ACCOUNTING
aom_accounting_set_context(&pbi->accounting, mi_col, mi_row);
#endif
set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
xd->mi[0]->partition = partition;
av1_read_mode_info(pbi, xd, mi_row, mi_col, r, x_mis, y_mis);
if (bsize >= BLOCK_8X8 && (cm->subsampling_x || cm->subsampling_y)) {
const BLOCK_SIZE uv_subsize =
ss_size_lookup[bsize][cm->subsampling_x][cm->subsampling_y];
if (uv_subsize == BLOCK_INVALID)
aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
"Invalid block size.");
}
int reader_corrupted_flag = aom_reader_has_error(r);
aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag);
}
static void decode_token_and_recon_block(AV1Decoder *const pbi,
MACROBLOCKD *const xd, int mi_row,
int mi_col, aom_reader *r,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
const int bw = mi_size_wide[bsize];
const int bh = mi_size_high[bsize];
const int x_mis = AOMMIN(bw, cm->mi_cols - mi_col);
const int y_mis = AOMMIN(bh, cm->mi_rows - mi_row);
set_offsets(cm, xd, bsize, mi_row, mi_col, bw, bh, x_mis, y_mis);
MB_MODE_INFO *mbmi = xd->mi[0];
CFL_CTX *const cfl = &xd->cfl;
cfl->is_chroma_reference = is_chroma_reference(
mi_row, mi_col, bsize, cfl->subsampling_x, cfl->subsampling_y);
if (cm->delta_q_present_flag) {
for (int i = 0; i < MAX_SEGMENTS; i++) {
const int current_qindex =
av1_get_qindex(&cm->seg, i, xd->current_qindex);
for (int j = 0; j < num_planes; ++j) {
const int dc_delta_q =
j == 0 ? cm->y_dc_delta_q
: (j == 1 ? cm->u_dc_delta_q : cm->v_dc_delta_q);
const int ac_delta_q =
j == 0 ? 0 : (j == 1 ? cm->u_ac_delta_q : cm->v_ac_delta_q);
xd->plane[j].seg_dequant_QTX[i][0] =
av1_dc_quant_QTX(current_qindex, dc_delta_q, cm->bit_depth);
xd->plane[j].seg_dequant_QTX[i][1] =
av1_ac_quant_QTX(current_qindex, ac_delta_q, cm->bit_depth);
}
}
}
if (mbmi->skip) av1_reset_skip_context(xd, mi_row, mi_col, bsize, num_planes);
if (!is_inter_block(mbmi)) {
const struct macroblockd_plane *const y_pd = &xd->plane[0];
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, y_pd);
int row, col;
const int max_blocks_wide = max_block_wide(xd, plane_bsize, 0);
const int max_blocks_high = max_block_high(xd, plane_bsize, 0);
const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, y_pd);
int mu_blocks_wide =
block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high =
block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
const TX_SIZE tx_size = av1_get_tx_size(plane, xd);
const int stepr = tx_size_high_unit[tx_size];
const int stepc = tx_size_wide_unit[tx_size];
const int unit_height = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_high + row, max_blocks_high), pd->subsampling_y);
const int unit_width = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_wide + col, max_blocks_wide), pd->subsampling_x);
for (int blk_row = row >> pd->subsampling_y; blk_row < unit_height;
blk_row += stepr)
for (int blk_col = col >> pd->subsampling_x; blk_col < unit_width;
blk_col += stepc)
predict_and_reconstruct_intra_block(cm, xd, r, mbmi, plane,
blk_row, blk_col, tx_size);
}
}
}
} else {
for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
const MV_REFERENCE_FRAME frame = mbmi->ref_frame[ref];
if (frame < LAST_FRAME) {
assert(is_intrabc_block(mbmi));
assert(frame == INTRA_FRAME);
assert(ref == 0);
} else {
RefBuffer *ref_buf = &cm->frame_refs[frame - LAST_FRAME];
xd->block_refs[ref] = ref_buf;
if ((!av1_is_valid_scale(&ref_buf->sf)))
aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM,
"Reference frame has invalid dimensions");
av1_setup_pre_planes(xd, ref, ref_buf->buf, mi_row, mi_col,
&ref_buf->sf, num_planes);
}
}
av1_build_inter_predictors_sb(cm, xd, mi_row, mi_col, NULL, bsize);
if (mbmi->motion_mode == OBMC_CAUSAL)
av1_build_obmc_inter_predictors_sb(cm, xd, mi_row, mi_col);
#if CONFIG_MISMATCH_DEBUG
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *pd = &xd->plane[plane];
int pixel_c, pixel_r;
mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0,
pd->subsampling_x, pd->subsampling_y);
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
mismatch_check_block_pre(pd->dst.buf, pd->dst.stride, cm->frame_offset,
plane, pixel_c, pixel_r, pd->width, pd->height,
xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH);
}
#endif
// Reconstruction
if (!mbmi->skip) {
int eobtotal = 0;
const struct macroblockd_plane *const y_pd = &xd->plane[0];
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
const int max_blocks_high = max_block_high(xd, bsize, 0);
int row, col;
const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, y_pd);
int mu_blocks_wide =
block_size_wide[max_unit_bsize] >> tx_size_wide_log2[0];
int mu_blocks_high =
block_size_high[max_unit_bsize] >> tx_size_high_log2[0];
mu_blocks_wide = AOMMIN(max_blocks_wide, mu_blocks_wide);
mu_blocks_high = AOMMIN(max_blocks_high, mu_blocks_high);
for (row = 0; row < max_blocks_high; row += mu_blocks_high) {
for (col = 0; col < max_blocks_wide; col += mu_blocks_wide) {
for (int plane = 0; plane < num_planes; ++plane) {
const struct macroblockd_plane *const pd = &xd->plane[plane];
if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x,
pd->subsampling_y))
continue;
const BLOCK_SIZE bsizec =
scale_chroma_bsize(bsize, pd->subsampling_x, pd->subsampling_y);
const BLOCK_SIZE plane_bsize = get_plane_block_size(bsizec, pd);
TX_SIZE max_tx_size = get_vartx_max_txsize(
xd, plane_bsize, pd->subsampling_x || pd->subsampling_y);
const int bh_var_tx = tx_size_high_unit[max_tx_size];
const int bw_var_tx = tx_size_wide_unit[max_tx_size];
int block = 0;
int step =
tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size];
int blk_row, blk_col;
const int unit_height = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_high + row, max_blocks_high),
pd->subsampling_y);
const int unit_width = ROUND_POWER_OF_TWO(
AOMMIN(mu_blocks_wide + col, max_blocks_wide),
pd->subsampling_x);
for (blk_row = row >> pd->subsampling_y; blk_row < unit_height;
blk_row += bh_var_tx) {
for (blk_col = col >> pd->subsampling_x; blk_col < unit_width;
blk_col += bw_var_tx) {
decode_reconstruct_tx(cm, xd, r, mbmi, plane, plane_bsize,
blk_row, blk_col, block, max_tx_size,
&eobtotal);
block += step;
}
}
}
}
}
}
}
if (mbmi->uv_mode != UV_CFL_PRED) {
if (!cfl->is_chroma_reference && is_inter_block(mbmi) &&
is_cfl_allowed(xd)) {
cfl_store_block(xd, mbmi->sb_type, mbmi->tx_size);
}
}
int reader_corrupted_flag = aom_reader_has_error(r);
aom_merge_corrupted_flag(&xd->corrupted, reader_corrupted_flag);
}
static void read_tx_size_vartx(MACROBLOCKD *xd, MB_MODE_INFO *mbmi,
TX_SIZE tx_size, int depth, int blk_row,
int blk_col, aom_reader *r) {
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
int is_split = 0;
const BLOCK_SIZE bsize = mbmi->sb_type;
const int max_blocks_high = max_block_high(xd, bsize, 0);
const int max_blocks_wide = max_block_wide(xd, bsize, 0);
if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return;
assert(tx_size > TX_4X4);
if (depth == MAX_VARTX_DEPTH) {
for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) {
for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) {
const int index =
av1_get_txb_size_index(bsize, blk_row + idy, blk_col + idx);
mbmi->inter_tx_size[index] = tx_size;
}
}
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
return;
}
const int ctx = txfm_partition_context(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row,
mbmi->sb_type, tx_size);
is_split = aom_read_symbol(r, ec_ctx->txfm_partition_cdf[ctx], 2, ACCT_STR);
if (is_split) {
const TX_SIZE sub_txs = sub_tx_size_map[1][tx_size];
const int bsw = tx_size_wide_unit[sub_txs];
const int bsh = tx_size_high_unit[sub_txs];
if (sub_txs == TX_4X4) {
for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) {
for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) {
const int index =
av1_get_txb_size_index(bsize, blk_row + idy, blk_col + idx);
mbmi->inter_tx_size[index] = sub_txs;
}
}
mbmi->tx_size = sub_txs;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, sub_txs, tx_size);
return;
}
assert(bsw > 0 && bsh > 0);
for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) {
for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) {
int offsetr = blk_row + row;
int offsetc = blk_col + col;
read_tx_size_vartx(xd, mbmi, sub_txs, depth + 1, offsetr, offsetc, r);
}
}
} else {
for (int idy = 0; idy < tx_size_high_unit[tx_size]; ++idy) {
for (int idx = 0; idx < tx_size_wide_unit[tx_size]; ++idx) {
const int index =
av1_get_txb_size_index(bsize, blk_row + idy, blk_col + idx);
mbmi->inter_tx_size[index] = tx_size;
}
}
mbmi->tx_size = tx_size;
txfm_partition_update(xd->above_txfm_context + blk_col,
xd->left_txfm_context + blk_row, tx_size, tx_size);
}
}
static TX_SIZE read_selected_tx_size(MACROBLOCKD *xd, int is_inter,
aom_reader *r) {
// TODO(debargha): Clean up the logic here. This function should only
// be called for intra.
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize, is_inter);
const int max_depths = bsize_to_max_depth(bsize, 0);
const int ctx = get_tx_size_context(xd);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
const int depth = aom_read_symbol(r, ec_ctx->tx_size_cdf[tx_size_cat][ctx],
max_depths + 1, ACCT_STR);
assert(depth >= 0 && depth <= max_depths);
const TX_SIZE tx_size = depth_to_tx_size(depth, bsize, 0);
return tx_size;
}
static TX_SIZE read_tx_size(AV1_COMMON *cm, MACROBLOCKD *xd, int is_inter,
int allow_select_inter, aom_reader *r) {
const TX_MODE tx_mode = cm->tx_mode;
const BLOCK_SIZE bsize = xd->mi[0]->sb_type;
if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
if (block_signals_txsize(bsize)) {
if ((!is_inter || allow_select_inter) && tx_mode == TX_MODE_SELECT) {
const TX_SIZE coded_tx_size = read_selected_tx_size(xd, is_inter, r);
return coded_tx_size;
} else {
return tx_size_from_tx_mode(bsize, tx_mode);
}
} else {
assert(IMPLIES(tx_mode == ONLY_4X4, bsize == BLOCK_4X4));
return get_max_rect_tx_size(bsize);
}
}
static void decode_block(AV1Decoder *const pbi, MACROBLOCKD *const xd,
int mi_row, int mi_col, aom_reader *r,
PARTITION_TYPE partition, BLOCK_SIZE bsize) {
decode_mbmi_block(pbi, xd, mi_row, mi_col, r, partition, bsize);
if (!is_inter_block(xd->mi[0])) {
for (int plane = 0; plane < AOMMIN(2, av1_num_planes(&pbi->common));
++plane) {
if (xd->mi[0]->palette_mode_info.palette_size[plane])
av1_decode_palette_tokens(xd, plane, r);
}
}
AV1_COMMON *cm = &pbi->common;
MB_MODE_INFO *mbmi = xd->mi[0];
int inter_block_tx = is_inter_block(mbmi) || is_intrabc_block(mbmi);
if (cm->tx_mode == TX_MODE_SELECT && block_signals_txsize(bsize) &&
!mbmi->skip && inter_block_tx && !xd->lossless[mbmi->segment_id]) {
const TX_SIZE max_tx_size = get_max_rect_tx_size(bsize);
const int bh = tx_size_high_unit[max_tx_size];
const int bw = tx_size_wide_unit[max_tx_size];
const int width = block_size_wide[bsize] >> tx_size_wide_log2[0];
const int height = block_size_high[bsize] >> tx_size_wide_log2[0];
for (int idy = 0; idy < height; idy += bh)
for (int idx = 0; idx < width; idx += bw)
read_tx_size_vartx(xd, mbmi, max_tx_size, 0, idy, idx, r);
} else {
mbmi->tx_size = read_tx_size(cm, xd, inter_block_tx, !mbmi->skip, r);
if (inter_block_tx)
memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size));
set_txfm_ctxs(mbmi->tx_size, xd->n8_w, xd->n8_h,
mbmi->skip && is_inter_block(mbmi), xd);
}
decode_token_and_recon_block(pbi, xd, mi_row, mi_col, r, bsize);
}
static PARTITION_TYPE read_partition(MACROBLOCKD *xd, int mi_row, int mi_col,
aom_reader *r, int has_rows, int has_cols,
BLOCK_SIZE bsize) {
const int ctx = partition_plane_context(xd, mi_row, mi_col, bsize);
FRAME_CONTEXT *ec_ctx = xd->tile_ctx;
if (!has_rows && !has_cols) return PARTITION_SPLIT;
assert(ctx >= 0);
aom_cdf_prob *partition_cdf = ec_ctx->partition_cdf[ctx];
if (has_rows && has_cols) {
return (PARTITION_TYPE)aom_read_symbol(
r, partition_cdf, partition_cdf_length(bsize), ACCT_STR);
} else if (!has_rows && has_cols) {
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_vert_alike(cdf, partition_cdf, bsize);
assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_HORZ;
} else {
assert(has_rows && !has_cols);
assert(bsize > BLOCK_8X8);
aom_cdf_prob cdf[2];
partition_gather_horz_alike(cdf, partition_cdf, bsize);
assert(cdf[1] == AOM_ICDF(CDF_PROB_TOP));
return aom_read_cdf(r, cdf, 2, ACCT_STR) ? PARTITION_SPLIT : PARTITION_VERT;
}
}
// TODO(slavarnway): eliminate bsize and subsize in future commits
static void decode_partition(AV1Decoder *const pbi, MACROBLOCKD *const xd,
int mi_row, int mi_col, aom_reader *r,
BLOCK_SIZE bsize) {
AV1_COMMON *const cm = &pbi->common;
const int bw = mi_size_wide[bsize];
const int hbs = bw >> 1;
PARTITION_TYPE partition;
BLOCK_SIZE subsize;
const int quarter_step = bw / 4;
BLOCK_SIZE bsize2 = get_subsize(bsize, PARTITION_SPLIT);
const int has_rows = (mi_row + hbs) < cm->mi_rows;
const int has_cols = (mi_col + hbs) < cm->mi_cols;
if (mi_row >= cm->mi_rows || mi_col >= cm->mi_cols) return;
const int num_planes = av1_num_planes(cm);
for (int plane = 0; plane < num_planes; ++plane) {
int rcol0, rcol1, rrow0, rrow1, tile_tl_idx;
if (av1_loop_restoration_corners_in_sb(cm, plane, mi_row, mi_col, bsize,
&rcol0, &rcol1, &rrow0, &rrow1,
&tile_tl_idx)) {
const int rstride = cm->rst_info[plane].horz_units_per_tile;
for (int rrow = rrow0; rrow < rrow1; ++rrow) {
for (int rcol = rcol0; rcol < rcol1; ++rcol) {
const int runit_idx = tile_tl_idx + rcol + rrow * rstride;
loop_restoration_read_sb_coeffs(cm, xd, r, plane, runit_idx);
}
}
}
}
partition = (bsize < BLOCK_8X8) ? PARTITION_NONE
: read_partition(xd, mi_row, mi_col, r,
has_rows, has_cols, bsize);
subsize = subsize_lookup[partition][bsize]; // get_subsize(bsize, partition);
// Check the bitstream is conformant: if there is subsampling on the
// chroma planes, subsize must subsample to a valid block size.
const struct macroblockd_plane *const pd_u = &xd->plane[1];
if (get_plane_block_size(subsize, pd_u) == BLOCK_INVALID) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Block size %dx%d invalid with this subsampling mode",
block_size_wide[subsize], block_size_high[subsize]);
}
#define DEC_BLOCK_STX_ARG
#define DEC_BLOCK_EPT_ARG partition,
#define DEC_BLOCK(db_r, db_c, db_subsize) \
decode_block(pbi, xd, DEC_BLOCK_STX_ARG(db_r), (db_c), r, \
DEC_BLOCK_EPT_ARG(db_subsize))
#define DEC_PARTITION(db_r, db_c, db_subsize) \
decode_partition(pbi, xd, DEC_BLOCK_STX_ARG(db_r), (db_c), r, (db_subsize))
switch (partition) {
case PARTITION_NONE: DEC_BLOCK(mi_row, mi_col, subsize); break;
case PARTITION_HORZ:
DEC_BLOCK(mi_row, mi_col, subsize);
if (has_rows) DEC_BLOCK(mi_row + hbs, mi_col, subsize);
break;
case PARTITION_VERT:
DEC_BLOCK(mi_row, mi_col, subsize);
if (has_cols) DEC_BLOCK(mi_row, mi_col + hbs, subsize);
break;
case PARTITION_SPLIT:
DEC_PARTITION(mi_row, mi_col, subsize);
DEC_PARTITION(mi_row, mi_col + hbs, subsize);
DEC_PARTITION(mi_row + hbs, mi_col, subsize);
DEC_PARTITION(mi_row + hbs, mi_col + hbs, subsize);
break;
case PARTITION_HORZ_A:
DEC_BLOCK(mi_row, mi_col, bsize2);
DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
DEC_BLOCK(mi_row + hbs, mi_col, subsize);
break;
case PARTITION_HORZ_B:
DEC_BLOCK(mi_row, mi_col, subsize);
DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
break;
case PARTITION_VERT_A:
DEC_BLOCK(mi_row, mi_col, bsize2);
DEC_BLOCK(mi_row + hbs, mi_col, bsize2);
DEC_BLOCK(mi_row, mi_col + hbs, subsize);
break;
case PARTITION_VERT_B:
DEC_BLOCK(mi_row, mi_col, subsize);
DEC_BLOCK(mi_row, mi_col + hbs, bsize2);
DEC_BLOCK(mi_row + hbs, mi_col + hbs, bsize2);
break;
case PARTITION_HORZ_4:
for (int i = 0; i < 4; ++i) {
int this_mi_row = mi_row + i * quarter_step;
if (i > 0 && this_mi_row >= cm->mi_rows) break;
DEC_BLOCK(this_mi_row, mi_col, subsize);
}
break;
case PARTITION_VERT_4:
for (int i = 0; i < 4; ++i) {
int this_mi_col = mi_col + i * quarter_step;
if (i > 0 && this_mi_col >= cm->mi_cols) break;
DEC_BLOCK(mi_row, this_mi_col, subsize);
}
break;
default: assert(0 && "Invalid partition type");
}
#undef DEC_PARTITION
#undef DEC_BLOCK
#undef DEC_BLOCK_EPT_ARG
#undef DEC_BLOCK_STX_ARG
update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition);
}
static void setup_bool_decoder(const uint8_t *data, const uint8_t *data_end,
const size_t read_size,
struct aom_internal_error_info *error_info,
aom_reader *r, uint8_t allow_update_cdf) {
// Validate the calculated partition length. If the buffer
// described by the partition can't be fully read, then restrict
// it to the portion that can be (for EC mode) or throw an error.
if (!read_is_valid(data, read_size, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
if (aom_reader_init(r, data, read_size))
aom_internal_error(error_info, AOM_CODEC_MEM_ERROR,
"Failed to allocate bool decoder %d", 1);
r->allow_update_cdf = allow_update_cdf;
}
static void setup_segmentation(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
struct segmentation *const seg = &cm->seg;
seg->update_map = 0;
seg->update_data = 0;
seg->temporal_update = 0;
seg->enabled = aom_rb_read_bit(rb);
if (!seg->enabled) {
if (cm->cur_frame->seg_map)
memset(cm->cur_frame->seg_map, 0, (cm->mi_rows * cm->mi_cols));
memset(seg, 0, sizeof(*seg));
segfeatures_copy(&cm->cur_frame->seg, seg);
return;
}
if (cm->seg.enabled && cm->prev_frame &&
(cm->mi_rows == cm->prev_frame->mi_rows) &&
(cm->mi_cols == cm->prev_frame->mi_cols)) {
cm->last_frame_seg_map = cm->prev_frame->seg_map;
} else {
cm->last_frame_seg_map = NULL;
}
// Read update flags
if (cm->primary_ref_frame == PRIMARY_REF_NONE) {
// These frames can't use previous frames, so must signal map + features
seg->update_map = 1;
seg->temporal_update = 0;
seg->update_data = 1;
} else {
seg->update_map = aom_rb_read_bit(rb);
if (seg->update_map) {
seg->temporal_update = aom_rb_read_bit(rb);
} else {
seg->temporal_update = 0;
}
seg->update_data = aom_rb_read_bit(rb);
}
// Segmentation data update
if (seg->update_data) {
av1_clearall_segfeatures(seg);
for (int i = 0; i < MAX_SEGMENTS; i++) {
for (int j = 0; j < SEG_LVL_MAX; j++) {
int data = 0;
const int feature_enabled = aom_rb_read_bit(rb);
if (feature_enabled) {
av1_enable_segfeature(seg, i, j);
const int data_max = av1_seg_feature_data_max(j);
const int data_min = -data_max;
const int ubits = get_unsigned_bits(data_max);
if (av1_is_segfeature_signed(j)) {
data = aom_rb_read_inv_signed_literal(rb, ubits);
} else {
data = aom_rb_read_literal(rb, ubits);
}
data = clamp(data, data_min, data_max);
}
av1_set_segdata(seg, i, j, data);
}
}
} else if (cm->prev_frame) {
segfeatures_copy(seg, &cm->prev_frame->seg);
}
segfeatures_copy(&cm->cur_frame->seg, seg);
}
static void decode_restoration_mode(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
assert(!cm->all_lossless);
const int num_planes = av1_num_planes(cm);
if (cm->allow_intrabc && NO_FILTER_FOR_IBC) return;
int all_none = 1, chroma_none = 1;
for (int p = 0; p < num_planes; ++p) {
RestorationInfo *rsi = &cm->rst_info[p];
if (aom_rb_read_bit(rb)) {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_SGRPROJ : RESTORE_WIENER;
} else {
rsi->frame_restoration_type =
aom_rb_read_bit(rb) ? RESTORE_SWITCHABLE : RESTORE_NONE;
}
if (rsi->frame_restoration_type != RESTORE_NONE) {
all_none = 0;
chroma_none &= p == 0;
}
}
if (!all_none) {
assert(cm->seq_params.sb_size == BLOCK_64X64 ||
cm->seq_params.sb_size == BLOCK_128X128);
const int sb_size = cm->seq_params.sb_size == BLOCK_128X128 ? 128 : 64;
for (int p = 0; p < num_planes; ++p)
cm->rst_info[p].restoration_unit_size = sb_size;
RestorationInfo *rsi = &cm->rst_info[0];
if (sb_size == 64) {
rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
}
if (rsi->restoration_unit_size > 64) {
rsi->restoration_unit_size <<= aom_rb_read_bit(rb);
}
} else {
const int size = RESTORATION_UNITSIZE_MAX;
for (int p = 0; p < num_planes; ++p)
cm->rst_info[p].restoration_unit_size = size;
}
if (num_planes > 1) {
int s = AOMMIN(cm->subsampling_x, cm->subsampling_y);
if (s && !chroma_none) {
cm->rst_info[1].restoration_unit_size =
cm->rst_info[0].restoration_unit_size >> (aom_rb_read_bit(rb) * s);
} else {
cm->rst_info[1].restoration_unit_size =
cm->rst_info[0].restoration_unit_size;
}
cm->rst_info[2].restoration_unit_size =
cm->rst_info[1].restoration_unit_size;
}
}
static void read_wiener_filter(int wiener_win, WienerInfo *wiener_info,
WienerInfo *ref_wiener_info, aom_reader *rb) {
memset(wiener_info->vfilter, 0, sizeof(wiener_info->vfilter));
memset(wiener_info->hfilter, 0, sizeof(wiener_info->hfilter));
if (wiener_win == WIENER_WIN)
wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
else
wiener_info->vfilter[0] = wiener_info->vfilter[WIENER_WIN - 1] = 0;
wiener_info->vfilter[1] = wiener_info->vfilter[WIENER_WIN - 2] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
wiener_info->vfilter[2] = wiener_info->vfilter[WIENER_WIN - 3] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
// The central element has an implicit +WIENER_FILT_STEP
wiener_info->vfilter[WIENER_HALFWIN] =
-2 * (wiener_info->vfilter[0] + wiener_info->vfilter[1] +
wiener_info->vfilter[2]);
if (wiener_win == WIENER_WIN)
wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1,
WIENER_FILT_TAP0_SUBEXP_K,
ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, ACCT_STR) +
WIENER_FILT_TAP0_MINV;
else
wiener_info->hfilter[0] = wiener_info->hfilter[WIENER_WIN - 1] = 0;
wiener_info->hfilter[1] = wiener_info->hfilter[WIENER_WIN - 2] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1,
WIENER_FILT_TAP1_SUBEXP_K,
ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, ACCT_STR) +
WIENER_FILT_TAP1_MINV;
wiener_info->hfilter[2] = wiener_info->hfilter[WIENER_WIN - 3] =
aom_read_primitive_refsubexpfin(
rb, WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1,
WIENER_FILT_TAP2_SUBEXP_K,
ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, ACCT_STR) +
WIENER_FILT_TAP2_MINV;
// The central element has an implicit +WIENER_FILT_STEP
wiener_info->hfilter[WIENER_HALFWIN] =
-2 * (wiener_info->hfilter[0] + wiener_info->hfilter[1] +
wiener_info->hfilter[2]);
memcpy(ref_wiener_info, wiener_info, sizeof(*wiener_info));
}
static void read_sgrproj_filter(SgrprojInfo *sgrproj_info,
SgrprojInfo *ref_sgrproj_info, aom_reader *rb) {
sgrproj_info->ep = aom_read_literal(rb, SGRPROJ_PARAMS_BITS, ACCT_STR);
const sgr_params_type *params = &sgr_params[sgrproj_info->ep];
if (params->r0 == 0) {
sgrproj_info->xqd[0] = 0;
sgrproj_info->xqd[1] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
SGRPROJ_PRJ_MIN1;
} else if (params->r1 == 0) {
sgrproj_info->xqd[0] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
SGRPROJ_PRJ_MIN0;
sgrproj_info->xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - sgrproj_info->xqd[0],
SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1);
} else {
sgrproj_info->xqd[0] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, ACCT_STR) +
SGRPROJ_PRJ_MIN0;
sgrproj_info->xqd[1] =
aom_read_primitive_refsubexpfin(
rb, SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K,
ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, ACCT_STR) +
SGRPROJ_PRJ_MIN1;
}
memcpy(ref_sgrproj_info, sgrproj_info, sizeof(*sgrproj_info));
}
static void loop_restoration_read_sb_coeffs(const AV1_COMMON *const cm,
MACROBLOCKD *xd,
aom_reader *const r, int plane,
int runit_idx) {
const RestorationInfo *rsi = &cm->rst_info[plane];
RestorationUnitInfo *rui = &rsi->unit_info[runit_idx];
if (rsi->frame_restoration_type == RESTORE_NONE) return;
assert(!cm->all_lossless);
const int wiener_win = (plane > 0) ? WIENER_WIN_CHROMA : WIENER_WIN;
WienerInfo *wiener_info = xd->wiener_info + plane;
SgrprojInfo *sgrproj_info = xd->sgrproj_info + plane;
if (rsi->frame_restoration_type == RESTORE_SWITCHABLE) {
rui->restoration_type =
aom_read_symbol(r, xd->tile_ctx->switchable_restore_cdf,
RESTORE_SWITCHABLE_TYPES, ACCT_STR);
switch (rui->restoration_type) {
case RESTORE_WIENER:
read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
break;
case RESTORE_SGRPROJ:
read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
break;
default: assert(rui->restoration_type == RESTORE_NONE); break;
}
} else if (rsi->frame_restoration_type == RESTORE_WIENER) {
if (aom_read_symbol(r, xd->tile_ctx->wiener_restore_cdf, 2, ACCT_STR)) {
rui->restoration_type = RESTORE_WIENER;
read_wiener_filter(wiener_win, &rui->wiener_info, wiener_info, r);
} else {
rui->restoration_type = RESTORE_NONE;
}
} else if (rsi->frame_restoration_type == RESTORE_SGRPROJ) {
if (aom_read_symbol(r, xd->tile_ctx->sgrproj_restore_cdf, 2, ACCT_STR)) {
rui->restoration_type = RESTORE_SGRPROJ;
read_sgrproj_filter(&rui->sgrproj_info, sgrproj_info, r);
} else {
rui->restoration_type = RESTORE_NONE;
}
}
}
static void setup_loopfilter(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
const int num_planes = av1_num_planes(cm);
struct loopfilter *lf = &cm->lf;
if ((cm->allow_intrabc && NO_FILTER_FOR_IBC) || cm->coded_lossless) {
// write default deltas to frame buffer
av1_set_default_ref_deltas(cm->cur_frame->ref_deltas);
av1_set_default_mode_deltas(cm->cur_frame->mode_deltas);
return;
}
assert(!cm->coded_lossless);
if (cm->prev_frame) {
// write deltas to frame buffer
memcpy(lf->ref_deltas, cm->prev_frame->ref_deltas, REF_FRAMES);
memcpy(lf->mode_deltas, cm->prev_frame->mode_deltas, MAX_MODE_LF_DELTAS);
} else {
av1_set_default_ref_deltas(lf->ref_deltas);
av1_set_default_mode_deltas(lf->mode_deltas);
}
lf->filter_level[0] = aom_rb_read_literal(rb, 6);
lf->filter_level[1] = aom_rb_read_literal(rb, 6);
if (num_planes > 1) {
if (lf->filter_level[0] || lf->filter_level[1]) {
lf->filter_level_u = aom_rb_read_literal(rb, 6);
lf->filter_level_v = aom_rb_read_literal(rb, 6);
}
}
lf->sharpness_level = aom_rb_read_literal(rb, 3);
// Read in loop filter deltas applied at the MB level based on mode or ref
// frame.
lf->mode_ref_delta_update = 0;
lf->mode_ref_delta_enabled = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_enabled) {
lf->mode_ref_delta_update = aom_rb_read_bit(rb);
if (lf->mode_ref_delta_update) {
for (int i = 0; i < REF_FRAMES; i++)
if (aom_rb_read_bit(rb))
lf->ref_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
for (int i = 0; i < MAX_MODE_LF_DELTAS; i++)
if (aom_rb_read_bit(rb))
lf->mode_deltas[i] = aom_rb_read_inv_signed_literal(rb, 6);
}
}
// write deltas to frame buffer
memcpy(cm->cur_frame->ref_deltas, lf->ref_deltas, REF_FRAMES);
memcpy(cm->cur_frame->mode_deltas, lf->mode_deltas, MAX_MODE_LF_DELTAS);
}
static void setup_cdef(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
const int num_planes = av1_num_planes(cm);
if (cm->allow_intrabc && NO_FILTER_FOR_IBC) return;
cm->cdef_pri_damping = cm->cdef_sec_damping = aom_rb_read_literal(rb, 2) + 3;
cm->cdef_bits = aom_rb_read_literal(rb, 2);
cm->nb_cdef_strengths = 1 << cm->cdef_bits;
for (int i = 0; i < cm->nb_cdef_strengths; i++) {
cm->cdef_strengths[i] = aom_rb_read_literal(rb, CDEF_STRENGTH_BITS);
cm->cdef_uv_strengths[i] =
num_planes > 1 ? aom_rb_read_literal(rb, CDEF_STRENGTH_BITS) : 0;
}
}
static INLINE int read_delta_q(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? aom_rb_read_inv_signed_literal(rb, 6) : 0;
}
static void setup_quantization(AV1_COMMON *const cm,
struct aom_read_bit_buffer *rb) {
const int num_planes = av1_num_planes(cm);
cm->base_qindex = aom_rb_read_literal(rb, QINDEX_BITS);
cm->y_dc_delta_q = read_delta_q(rb);
if (num_planes > 1) {
int diff_uv_delta = 0;
if (cm->separate_uv_delta_q) diff_uv_delta = aom_rb_read_bit(rb);
cm->u_dc_delta_q = read_delta_q(rb);
cm->u_ac_delta_q = read_delta_q(rb);
if (diff_uv_delta) {
cm->v_dc_delta_q = read_delta_q(rb);
cm->v_ac_delta_q = read_delta_q(rb);
} else {
cm->v_dc_delta_q = cm->u_dc_delta_q;
cm->v_ac_delta_q = cm->u_ac_delta_q;
}
}
cm->dequant_bit_depth = cm->bit_depth;
cm->using_qmatrix = aom_rb_read_bit(rb);
if (cm->using_qmatrix) {
cm->qm_y = aom_rb_read_literal(rb, QM_LEVEL_BITS);
cm->qm_u = aom_rb_read_literal(rb, QM_LEVEL_BITS);
if (!cm->separate_uv_delta_q)
cm->qm_v = cm->qm_u;
else
cm->qm_v = aom_rb_read_literal(rb, QM_LEVEL_BITS);
} else {
cm->qm_y = 0;
cm->qm_u = 0;
cm->qm_v = 0;
}
}
// Build y/uv dequant values based on segmentation.
static void setup_segmentation_dequant(AV1_COMMON *const cm) {
const int using_qm = cm->using_qmatrix;
// When segmentation is disabled, only the first value is used. The
// remaining are don't cares.
const int max_segments = cm->seg.enabled ? MAX_SEGMENTS : 1;
for (int i = 0; i < max_segments; ++i) {
const int qindex = av1_get_qindex(&cm->seg, i, cm->base_qindex);
cm->y_dequant_QTX[i][0] =
av1_dc_quant_QTX(qindex, cm->y_dc_delta_q, cm->bit_depth);
cm->y_dequant_QTX[i][1] = av1_ac_quant_QTX(qindex, 0, cm->bit_depth);
cm->u_dequant_QTX[i][0] =
av1_dc_quant_QTX(qindex, cm->u_dc_delta_q, cm->bit_depth);
cm->u_dequant_QTX[i][1] =
av1_ac_quant_QTX(qindex, cm->u_ac_delta_q, cm->bit_depth);
cm->v_dequant_QTX[i][0] =
av1_dc_quant_QTX(qindex, cm->v_dc_delta_q, cm->bit_depth);
cm->v_dequant_QTX[i][1] =
av1_ac_quant_QTX(qindex, cm->v_ac_delta_q, cm->bit_depth);
const int lossless = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 &&
cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0;
// NB: depends on base index so there is only 1 set per frame
// No quant weighting when lossless or signalled not using QM
int qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : cm->qm_y;
for (int j = 0; j < TX_SIZES_ALL; ++j) {
cm->y_iqmatrix[i][j] = av1_iqmatrix(cm, qmlevel, AOM_PLANE_Y, j);
}
qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : cm->qm_u;
for (int j = 0; j < TX_SIZES_ALL; ++j) {
cm->u_iqmatrix[i][j] = av1_iqmatrix(cm, qmlevel, AOM_PLANE_U, j);
}
qmlevel = (lossless || using_qm == 0) ? NUM_QM_LEVELS - 1 : cm->qm_v;
for (int j = 0; j < TX_SIZES_ALL; ++j) {
cm->v_iqmatrix[i][j] = av1_iqmatrix(cm, qmlevel, AOM_PLANE_V, j);
}
}
}
static InterpFilter read_frame_interp_filter(struct aom_read_bit_buffer *rb) {
return aom_rb_read_bit(rb) ? SWITCHABLE
: aom_rb_read_literal(rb, LOG_SWITCHABLE_FILTERS);
}
static void setup_render_size(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
cm->render_width = cm->superres_upscaled_width;
cm->render_height = cm->superres_upscaled_height;
if (aom_rb_read_bit(rb))
av1_read_frame_size(rb, 16, 16, &cm->render_width, &cm->render_height);
}
// TODO(afergs): make "struct aom_read_bit_buffer *const rb"?
static void setup_superres(AV1_COMMON *const cm, struct aom_read_bit_buffer *rb,
int *width, int *height) {
cm->superres_upscaled_width = *width;
cm->superres_upscaled_height = *height;
const SequenceHeader *const seq_params = &cm->seq_params;
if (!seq_params->enable_superres) return;
if (aom_rb_read_bit(rb)) {
cm->superres_scale_denominator =
(uint8_t)aom_rb_read_literal(rb, SUPERRES_SCALE_BITS);
cm->superres_scale_denominator += SUPERRES_SCALE_DENOMINATOR_MIN;
// Don't edit cm->width or cm->height directly, or the buffers won't get
// resized correctly
av1_calculate_scaled_superres_size(width, height,
cm->superres_scale_denominator);
} else {
// 1:1 scaling - ie. no scaling, scale not provided
cm->superres_scale_denominator = SCALE_NUMERATOR;
}
}
static void resize_context_buffers(AV1_COMMON *cm, int width, int height) {
#if CONFIG_SIZE_LIMIT
if (width > DECODE_WIDTH_LIMIT || height > DECODE_HEIGHT_LIMIT)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Dimensions of %dx%d beyond allowed size of %dx%d.",
width, height, DECODE_WIDTH_LIMIT, DECODE_HEIGHT_LIMIT);
#endif
if (cm->width != width || cm->height != height) {
const int new_mi_rows =
ALIGN_POWER_OF_TWO(height, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
const int new_mi_cols =
ALIGN_POWER_OF_TWO(width, MI_SIZE_LOG2) >> MI_SIZE_LOG2;
// Allocations in av1_alloc_context_buffers() depend on individual
// dimensions as well as the overall size.
if (new_mi_cols > cm->mi_cols || new_mi_rows > cm->mi_rows) {
if (av1_alloc_context_buffers(cm, width, height))
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate context buffers");
} else {
av1_set_mb_mi(cm, width, height);
}
av1_init_context_buffers(cm);
cm->width = width;
cm->height = height;
}
ensure_mv_buffer(cm->cur_frame, cm);
cm->cur_frame->width = cm->width;
cm->cur_frame->height = cm->height;
}
static void setup_frame_size(AV1_COMMON *cm, int frame_size_override_flag,
struct aom_read_bit_buffer *rb) {
int width, height;
BufferPool *const pool = cm->buffer_pool;
if (frame_size_override_flag) {
int num_bits_width = cm->seq_params.num_bits_width;
int num_bits_height = cm->seq_params.num_bits_height;
av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
if (width > cm->seq_params.max_frame_width ||
height > cm->seq_params.max_frame_height) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Frame dimensions are larger than the maximum values");
}
} else {
width = cm->seq_params.max_frame_width;
height = cm->seq_params.max_frame_height;
}
setup_superres(cm, rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
lock_buffer_pool(pool);
if (aom_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y, cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_primaries = cm->color_primaries;
pool->frame_bufs[cm->new_fb_idx].buf.transfer_characteristics =
cm->transfer_characteristics;
pool->frame_bufs[cm->new_fb_idx].buf.matrix_coefficients =
cm->matrix_coefficients;
pool->frame_bufs[cm->new_fb_idx].buf.monochrome = cm->seq_params.monochrome;
pool->frame_bufs[cm->new_fb_idx].buf.chroma_sample_position =
cm->chroma_sample_position;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
static void setup_sb_size(SequenceHeader *seq_params,
struct aom_read_bit_buffer *rb) {
(void)rb;
set_sb_size(seq_params, aom_rb_read_bit(rb) ? BLOCK_128X128 : BLOCK_64X64);
}
static INLINE int valid_ref_frame_img_fmt(aom_bit_depth_t ref_bit_depth,
int ref_xss, int ref_yss,
aom_bit_depth_t this_bit_depth,
int this_xss, int this_yss) {
return ref_bit_depth == this_bit_depth && ref_xss == this_xss &&
ref_yss == this_yss;
}
static void setup_frame_size_with_refs(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
int width, height;
int found = 0;
int has_valid_ref_frame = 0;
BufferPool *const pool = cm->buffer_pool;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
if (aom_rb_read_bit(rb)) {
YV12_BUFFER_CONFIG *const buf = cm->frame_refs[i].buf;
width = buf->y_crop_width;
height = buf->y_crop_height;
cm->render_width = buf->render_width;
cm->render_height = buf->render_height;
setup_superres(cm, rb, &width, &height);
resize_context_buffers(cm, width, height);
found = 1;
break;
}
}
if (!found) {
int num_bits_width = cm->seq_params.num_bits_width;
int num_bits_height = cm->seq_params.num_bits_height;
av1_read_frame_size(rb, num_bits_width, num_bits_height, &width, &height);
setup_superres(cm, rb, &width, &height);
resize_context_buffers(cm, width, height);
setup_render_size(cm, rb);
}
if (width <= 0 || height <= 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid frame size");
// Check to make sure at least one of frames that this frame references
// has valid dimensions.
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
has_valid_ref_frame |=
valid_ref_frame_size(ref_frame->buf->y_crop_width,
ref_frame->buf->y_crop_height, width, height);
}
if (!has_valid_ref_frame)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has invalid size");
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
RefBuffer *const ref_frame = &cm->frame_refs[i];
if (!valid_ref_frame_img_fmt(ref_frame->buf->bit_depth,
ref_frame->buf->subsampling_x,
ref_frame->buf->subsampling_y, cm->bit_depth,
cm->subsampling_x, cm->subsampling_y))
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Referenced frame has incompatible color format");
}
lock_buffer_pool(pool);
if (aom_realloc_frame_buffer(
get_frame_new_buffer(cm), cm->width, cm->height, cm->subsampling_x,
cm->subsampling_y, cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment,
&pool->frame_bufs[cm->new_fb_idx].raw_frame_buffer, pool->get_fb_cb,
pool->cb_priv)) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_MEM_ERROR,
"Failed to allocate frame buffer");
}
unlock_buffer_pool(pool);
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_x = cm->subsampling_x;
pool->frame_bufs[cm->new_fb_idx].buf.subsampling_y = cm->subsampling_y;
pool->frame_bufs[cm->new_fb_idx].buf.bit_depth = (unsigned int)cm->bit_depth;
pool->frame_bufs[cm->new_fb_idx].buf.color_primaries = cm->color_primaries;
pool->frame_bufs[cm->new_fb_idx].buf.transfer_characteristics =
cm->transfer_characteristics;
pool->frame_bufs[cm->new_fb_idx].buf.matrix_coefficients =
cm->matrix_coefficients;
pool->frame_bufs[cm->new_fb_idx].buf.monochrome = cm->seq_params.monochrome;
pool->frame_bufs[cm->new_fb_idx].buf.chroma_sample_position =
cm->chroma_sample_position;
pool->frame_bufs[cm->new_fb_idx].buf.color_range = cm->color_range;
pool->frame_bufs[cm->new_fb_idx].buf.render_width = cm->render_width;
pool->frame_bufs[cm->new_fb_idx].buf.render_height = cm->render_height;
}
// Same function as av1_read_uniform but reading from uncompresses header wb
static int rb_read_uniform(struct aom_read_bit_buffer *const rb, int n) {
const int l = get_unsigned_bits(n);
const int m = (1 << l) - n;
const int v = aom_rb_read_literal(rb, l - 1);
assert(l != 0);
if (v < m)
return v;
else
return (v << 1) - m + aom_rb_read_literal(rb, 1);
}
static void read_tile_info_max_tile(AV1_COMMON *const cm,
struct aom_read_bit_buffer *const rb) {
int width_mi = ALIGN_POWER_OF_TWO(cm->mi_cols, cm->seq_params.mib_size_log2);
int height_mi = ALIGN_POWER_OF_TWO(cm->mi_rows, cm->seq_params.mib_size_log2);
int width_sb = width_mi >> cm->seq_params.mib_size_log2;
int height_sb = height_mi >> cm->seq_params.mib_size_log2;
av1_get_tile_limits(cm);
cm->uniform_tile_spacing_flag = aom_rb_read_bit(rb);
// Read tile columns
if (cm->uniform_tile_spacing_flag) {
cm->log2_tile_cols = cm->min_log2_tile_cols;
while (cm->log2_tile_cols < cm->max_log2_tile_cols) {
if (!aom_rb_read_bit(rb)) {
break;
}
cm->log2_tile_cols++;
}
} else {
int i;
int start_sb;
for (i = 0, start_sb = 0; width_sb > 0 && i < MAX_TILE_COLS; i++) {
const int size_sb =
1 + rb_read_uniform(rb, AOMMIN(width_sb, cm->max_tile_width_sb));
cm->tile_col_start_sb[i] = start_sb;
start_sb += size_sb;
width_sb -= size_sb;
}
cm->tile_cols = i;
cm->tile_col_start_sb[i] = start_sb + width_sb;
}
av1_calculate_tile_cols(cm);
// Read tile rows
if (cm->uniform_tile_spacing_flag) {
cm->log2_tile_rows = cm->min_log2_tile_rows;
while (cm->log2_tile_rows < cm->max_log2_tile_rows) {
if (!aom_rb_read_bit(rb)) {
break;
}
cm->log2_tile_rows++;
}
} else {
int i;
int start_sb;
for (i = 0, start_sb = 0; height_sb > 0 && i < MAX_TILE_ROWS; i++) {
const int size_sb =
1 + rb_read_uniform(rb, AOMMIN(height_sb, cm->max_tile_height_sb));
cm->tile_row_start_sb[i] = start_sb;
start_sb += size_sb;
height_sb -= size_sb;
}
cm->tile_rows = i;
cm->tile_row_start_sb[i] = start_sb + height_sb;
}
av1_calculate_tile_rows(cm);
}
static void set_single_tile_decoding_mode(AV1_COMMON *const cm) {
cm->single_tile_decoding = 0;
if (cm->large_scale_tile) {
struct loopfilter *lf = &cm->lf;
// Figure out single_tile_decoding by loopfilter_level.
const int no_loopfilter = !(lf->filter_level[0] || lf->filter_level[1]);
const int no_cdef = cm->cdef_bits == 0 && cm->cdef_strengths[0] == 0 &&
cm->cdef_uv_strengths[0] == 0;
const int no_restoration =
cm->rst_info[0].frame_restoration_type == RESTORE_NONE &&
cm->rst_info[1].frame_restoration_type == RESTORE_NONE &&
cm->rst_info[2].frame_restoration_type == RESTORE_NONE;
assert(IMPLIES(cm->coded_lossless, no_loopfilter && no_cdef));
assert(IMPLIES(cm->all_lossless, no_restoration));
cm->single_tile_decoding = no_loopfilter && no_cdef && no_restoration;
}
}
static void read_tile_info(AV1Decoder *const pbi,
struct aom_read_bit_buffer *const rb) {
AV1_COMMON *const cm = &pbi->common;
if (cm->large_scale_tile) {
// Read the tile width/height
if (cm->seq_params.sb_size == BLOCK_128X128) {
cm->tile_width = aom_rb_read_literal(rb, 5) + 1;
cm->tile_height = aom_rb_read_literal(rb, 5) + 1;
} else {
cm->tile_width = aom_rb_read_literal(rb, 6) + 1;
cm->tile_height = aom_rb_read_literal(rb, 6) + 1;
}
cm->tile_width <<= cm->seq_params.mib_size_log2;
cm->tile_height <<= cm->seq_params.mib_size_log2;
cm->tile_width = AOMMIN(cm->tile_width, cm->mi_cols);
cm->tile_height = AOMMIN(cm->tile_height, cm->mi_rows);
// Get the number of tiles
cm->tile_cols = 1;
while (cm->tile_cols * cm->tile_width < cm->mi_cols) ++cm->tile_cols;
cm->tile_rows = 1;
while (cm->tile_rows * cm->tile_height < cm->mi_rows) ++cm->tile_rows;
if (cm->tile_cols * cm->tile_rows > 1) {
// Read the number of bytes used to store tile size
pbi->tile_col_size_bytes = aom_rb_read_literal(rb, 2) + 1;
pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
}
for (int i = 0; i <= cm->tile_cols; i++) {
cm->tile_col_start_sb[i] =
((i * cm->tile_width - 1) >> cm->seq_params.mib_size_log2) + 1;
}
for (int i = 0; i <= cm->tile_rows; i++) {
cm->tile_row_start_sb[i] =
((i * cm->tile_height - 1) >> cm->seq_params.mib_size_log2) + 1;
}
return;
}
read_tile_info_max_tile(cm, rb);
if (cm->tile_rows * cm->tile_cols > 1) {
// tile size magnitude
pbi->tile_size_bytes = aom_rb_read_literal(rb, 2) + 1;
}
}
static int mem_get_varsize(const uint8_t *src, int sz) {
switch (sz) {
case 1: return src[0];
case 2: return mem_get_le16(src);
case 3: return mem_get_le24(src);
case 4: return mem_get_le32(src);
default: assert(0 && "Invalid size"); return -1;
}
}
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static void get_ls_tile_buffer(
const uint8_t *const data_end, struct aom_internal_error_info *error_info,
const uint8_t **data, TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
int tile_size_bytes, int col, int row, int tile_copy_mode) {
size_t size;
size_t copy_size = 0;
const uint8_t *copy_data = NULL;
if (!read_is_valid(*data, tile_size_bytes, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
size = mem_get_varsize(*data, tile_size_bytes);
// If tile_copy_mode = 1, then the top bit of the tile header indicates copy
// mode.
if (tile_copy_mode && (size >> (tile_size_bytes * 8 - 1)) == 1) {
// The remaining bits in the top byte signal the row offset
int offset = (size >> (tile_size_bytes - 1) * 8) & 0x7f;
// Currently, only use tiles in same column as reference tiles.
copy_data = tile_buffers[row - offset][col].data;
copy_size = tile_buffers[row - offset][col].size;
size = 0;
} else {
size += AV1_MIN_TILE_SIZE_BYTES;
}
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
if (size > 0) {
tile_buffers[row][col].data = *data;
tile_buffers[row][col].size = size;
} else {
tile_buffers[row][col].data = copy_data;
tile_buffers[row][col].size = copy_size;
}
*data += size;
tile_buffers[row][col].raw_data_end = *data;
}
static void get_ls_tile_buffers(
AV1Decoder *pbi, const uint8_t *data, const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS]) {
AV1_COMMON *const cm = &pbi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
const int have_tiles = tile_cols * tile_rows > 1;
if (!have_tiles) {
const size_t tile_size = data_end - data;
tile_buffers[0][0].data = data;
tile_buffers[0][0].size = tile_size;
tile_buffers[0][0].raw_data_end = NULL;
} else {
// We locate only the tile buffers that are required, which are the ones
// specified by pbi->dec_tile_col and pbi->dec_tile_row. Also, we always
// need the last (bottom right) tile buffer, as we need to know where the
// end of the compressed frame buffer is for proper superframe decoding.
const uint8_t *tile_col_data_end[MAX_TILE_COLS] = { NULL };
const uint8_t *const data_start = data;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int tile_rows_start = single_row ? dec_tile_row : 0;
const int tile_rows_end = single_row ? tile_rows_start + 1 : tile_rows;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
const int tile_cols_start = single_col ? dec_tile_col : 0;
const int tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
const int tile_col_size_bytes = pbi->tile_col_size_bytes;
const int tile_size_bytes = pbi->tile_size_bytes;
const int tile_copy_mode =
((AOMMAX(cm->tile_width, cm->tile_height) << MI_SIZE_LOG2) <= 256) ? 1
: 0;
// Read tile column sizes for all columns (we need the last tile buffer)
for (int c = 0; c < tile_cols; ++c) {
const int is_last = c == tile_cols - 1;
size_t tile_col_size;
if (!is_last) {
tile_col_size = mem_get_varsize(data, tile_col_size_bytes);
data += tile_col_size_bytes;
tile_col_data_end[c] = data + tile_col_size;
} else {
tile_col_size = data_end - data;
tile_col_data_end[c] = data_end;
}
data += tile_col_size;
}
data = data_start;
// Read the required tile sizes.
for (int c = tile_cols_start; c < tile_cols_end; ++c) {
const int is_last = c == tile_cols - 1;
if (c > 0) data = tile_col_data_end[c - 1];
if (!is_last) data += tile_col_size_bytes;
// Get the whole of the last column, otherwise stop at the required tile.
for (int r = 0; r < (is_last ? tile_rows : tile_rows_end); ++r) {
tile_buffers[r][c].col = c;
get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
}
}
// If we have not read the last column, then read it to get the last tile.
if (tile_cols_end != tile_cols) {
int c = tile_cols - 1;
data = tile_col_data_end[c - 1];
for (int r = 0; r < tile_rows; ++r) {
tile_buffers[r][c].col = c;
get_ls_tile_buffer(tile_col_data_end[c], &pbi->common.error, &data,
tile_buffers, tile_size_bytes, c, r, tile_copy_mode);
}
}
}
}
// Reads the next tile returning its size and adjusting '*data' accordingly
// based on 'is_last'.
static void get_tile_buffer(const uint8_t *const data_end,
const int tile_size_bytes, int is_last,
struct aom_internal_error_info *error_info,
const uint8_t **data, TileBufferDec *const buf) {
size_t size;
if (!is_last) {
if (!read_is_valid(*data, tile_size_bytes, data_end))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile length");
size = mem_get_varsize(*data, tile_size_bytes) + AV1_MIN_TILE_SIZE_BYTES;
*data += tile_size_bytes;
if (size > (size_t)(data_end - *data))
aom_internal_error(error_info, AOM_CODEC_CORRUPT_FRAME,
"Truncated packet or corrupt tile size");
} else {
size = data_end - *data;
}
buf->data = *data;
buf->size = size;
*data += size;
}
static void get_tile_buffers(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end,
TileBufferDec (*const tile_buffers)[MAX_TILE_COLS],
int startTile, int endTile) {
AV1_COMMON *const cm = &pbi->common;
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
int tc = 0;
int first_tile_in_tg = 0;
if (startTile == 0) {
cm->largest_tile_size = 0;
cm->largest_tile_id = 0;
}
for (int r = 0; r < tile_rows; ++r) {
for (int c = 0; c < tile_cols; ++c, ++tc) {
TileBufferDec *const buf = &tile_buffers[r][c];
const int is_last = (tc == endTile);
const size_t hdr_offset = 0;
if (tc < startTile || tc > endTile) continue;
if (data + hdr_offset >= data_end)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Data ended before all tiles were read.");
buf->col = c;
first_tile_in_tg += tc == first_tile_in_tg ? pbi->tg_size : 0;
data += hdr_offset;
get_tile_buffer(data_end, pbi->tile_size_bytes, is_last,
&pbi->common.error, &data, buf);
if (buf->size > cm->largest_tile_size) {
cm->largest_tile_size = buf->size;
cm->largest_tile_id = r * tile_cols + c;
}
}
}
}
static void decode_tile_sb_row(AV1Decoder *pbi, TileData *const td,
TileInfo tile_info, const int mi_row) {
AV1_COMMON *const cm = &pbi->common;
av1_zero_left_context(&td->xd);
for (int mi_col = tile_info.mi_col_start; mi_col < tile_info.mi_col_end;
mi_col += cm->seq_params.mib_size) {
decode_partition(pbi, &td->xd, mi_row, mi_col, &td->bit_reader,
cm->seq_params.sb_size);
}
aom_merge_corrupted_flag(&pbi->mb.corrupted, td->xd.corrupted);
if (pbi->mb.corrupted)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Failed to decode tile data");
}
static void decode_tile(AV1Decoder *pbi, int tile_row, int tile_col) {
TileInfo tile_info;
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
TileData *const td = pbi->tile_data + cm->tile_cols * tile_row + tile_col;
av1_tile_set_row(&tile_info, cm, tile_row);
av1_tile_set_col(&tile_info, cm, tile_col);
av1_zero_above_context(cm, tile_info.mi_col_start, tile_info.mi_col_end);
av1_reset_loop_restoration(&td->xd, num_planes);
for (int mi_row = tile_info.mi_row_start; mi_row < tile_info.mi_row_end;
mi_row += cm->seq_params.mib_size) {
decode_tile_sb_row(pbi, td, tile_info, mi_row);
}
#if CONFIG_TRAILING_BITS
uint32_t nb_bits = aom_reader_tell(&td->bit_reader);
uint32_t nb_bytes = (nb_bits + 7) >> 3;
const uint8_t *p_begin = aom_reader_find_begin(&td->bit_reader);
const uint8_t *p_end = aom_reader_find_end(&td->bit_reader);
const uint8_t *p = p_begin + nb_bytes;
if (p > p_end) cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
uint8_t last_byte = p[-1];
uint8_t pattern = 128 >> ((nb_bits - 1) & 7);
if ((last_byte & (2 * pattern - 1)) != pattern)
cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
while (p < p_end) {
if (*p != 0) cm->error.error_code = AOM_CODEC_CORRUPT_FRAME;
p++;
}
#endif
}
static const uint8_t *decode_tiles(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end, int startTile,
int endTile) {
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
const int tile_cols = cm->tile_cols;
const int tile_rows = cm->tile_rows;
const int n_tiles = tile_cols * tile_rows;
TileBufferDec(*const tile_buffers)[MAX_TILE_COLS] = pbi->tile_buffers;
const int dec_tile_row = AOMMIN(pbi->dec_tile_row, tile_rows);
const int single_row = pbi->dec_tile_row >= 0;
const int dec_tile_col = AOMMIN(pbi->dec_tile_col, tile_cols);
const int single_col = pbi->dec_tile_col >= 0;
int tile_rows_start;
int tile_rows_end;
int tile_cols_start;
int tile_cols_end;
int inv_col_order;
int inv_row_order;
int tile_row, tile_col;
uint8_t allow_update_cdf;
if (cm->large_scale_tile) {
tile_rows_start = single_row ? dec_tile_row : 0;
tile_rows_end = single_row ? dec_tile_row + 1 : tile_rows;
tile_cols_start = single_col ? dec_tile_col : 0;
tile_cols_end = single_col ? tile_cols_start + 1 : tile_cols;
inv_col_order = pbi->inv_tile_order && !single_col;
inv_row_order = pbi->inv_tile_order && !single_row;
allow_update_cdf = 0;
} else {
tile_rows_start = 0;
tile_rows_end = tile_rows;
tile_cols_start = 0;
tile_cols_end = tile_cols;
inv_col_order = pbi->inv_tile_order;
inv_row_order = pbi->inv_tile_order;
allow_update_cdf = 1;
}
// No tiles to decode.
if (tile_rows_end <= tile_rows_start || tile_cols_end <= tile_cols_start ||
// First tile is larger then endTile.
tile_rows_start * cm->tile_cols + tile_cols_start > endTile ||
// Last tile is smaller than startTile.
(tile_rows_end - 1) * cm->tile_cols + tile_cols_end - 1 < startTile)
return data;
allow_update_cdf = allow_update_cdf && !cm->disable_cdf_update;
assert(tile_rows <= MAX_TILE_ROWS);
assert(tile_cols <= MAX_TILE_COLS);
if (cm->large_scale_tile)
get_ls_tile_buffers(pbi, data, data_end, tile_buffers);
else
get_tile_buffers(pbi, data, data_end, tile_buffers, startTile, endTile);
if (pbi->tile_data == NULL || n_tiles != pbi->allocated_tiles) {
aom_free(pbi->tile_data);
CHECK_MEM_ERROR(cm, pbi->tile_data,
aom_memalign(32, n_tiles * (sizeof(*pbi->tile_data))));
pbi->allocated_tiles = n_tiles;
}
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
aom_accounting_reset(&pbi->accounting);
}
#endif
// Load all tile information into tile_data.
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
const TileBufferDec *const buf = &tile_buffers[tile_row][tile_col];
TileData *const td = pbi->tile_data + tile_cols * tile_row + tile_col;
if (tile_row * cm->tile_cols + tile_col < startTile ||
tile_row * cm->tile_cols + tile_col > endTile)
continue;
td->cm = cm;
td->xd = pbi->mb;
td->xd.corrupted = 0;
td->xd.counts = NULL;
av1_zero(td->dqcoeff);
av1_tile_init(&td->xd.tile, td->cm, tile_row, tile_col);
setup_bool_decoder(buf->data, data_end, buf->size, &cm->error,
&td->bit_reader, allow_update_cdf);
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
td->bit_reader.accounting = &pbi->accounting;
} else {
td->bit_reader.accounting = NULL;
}
#endif
av1_init_macroblockd(cm, &td->xd, td->dqcoeff);
// Initialise the tile context from the frame context
td->tctx = *cm->fc;
td->xd.tile_ctx = &td->tctx;
td->xd.plane[0].color_index_map = td->color_index_map[0];
td->xd.plane[1].color_index_map = td->color_index_map[1];
}
}
for (tile_row = tile_rows_start; tile_row < tile_rows_end; ++tile_row) {
const int row = inv_row_order ? tile_rows - 1 - tile_row : tile_row;
for (tile_col = tile_cols_start; tile_col < tile_cols_end; ++tile_col) {
const int col = inv_col_order ? tile_cols - 1 - tile_col : tile_col;
if (tile_row * cm->tile_cols + tile_col < startTile ||
tile_row * cm->tile_cols + tile_col > endTile)
continue;
#if CONFIG_ACCOUNTING
if (pbi->acct_enabled) {
td->bit_reader.accounting->last_tell_frac =
aom_reader_tell_frac(&td->bit_reader);
}
#endif
decode_tile(pbi, row, col);
}
}
if (!(cm->allow_intrabc && NO_FILTER_FOR_IBC)) {
// Loopfilter the whole frame.
if (endTile == cm->tile_rows * cm->tile_cols - 1)
if (cm->lf.filter_level[0] || cm->lf.filter_level[1]) {
av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb,
cm->lf.filter_level[0], cm->lf.filter_level[1], 0,
0);
if (num_planes > 1) {
av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb,
cm->lf.filter_level_u, cm->lf.filter_level_u, 1,
0);
av1_loop_filter_frame(get_frame_new_buffer(cm), cm, &pbi->mb,
cm->lf.filter_level_v, cm->lf.filter_level_v, 2,
0);
}
}
}
if (cm->large_scale_tile) {
if (n_tiles == 1) {
// Find the end of the single tile buffer
return aom_reader_find_end(&pbi->tile_data->bit_reader);
}
// Return the end of the last tile buffer
return tile_buffers[tile_rows - 1][tile_cols - 1].raw_data_end;
}
TileData *const td = pbi->tile_data + endTile;
return aom_reader_find_end(&td->bit_reader);
}
static void error_handler(void *data) {
AV1_COMMON *const cm = (AV1_COMMON *)data;
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME, "Truncated packet");
}
void av1_read_bitdepth(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
const int high_bitdepth = aom_rb_read_bit(rb);
if (cm->profile == PROFILE_2 && high_bitdepth) {
const int twelve_bit = aom_rb_read_bit(rb);
cm->bit_depth = twelve_bit ? AOM_BITS_12 : AOM_BITS_10;
} else if (cm->profile <= PROFILE_2) {
cm->bit_depth = high_bitdepth ? AOM_BITS_10 : AOM_BITS_8;
} else {
assert(0 && "unsupported profile/bit-depth combination");
}
return;
}
void av1_read_film_grain_params(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
aom_film_grain_t *pars = &cm->film_grain_params;
pars->apply_grain = aom_rb_read_bit(rb);
if (!pars->apply_grain) {
memset(pars, 0, sizeof(*pars));
return;
}
pars->random_seed = aom_rb_read_literal(rb, 16);
if (cm->frame_type == INTER_FRAME)
pars->update_parameters = aom_rb_read_bit(rb);
else
pars->update_parameters = 1;
if (!pars->update_parameters) {
// inherit parameters from a previous reference frame
RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
int film_grain_params_ref_idx = aom_rb_read_literal(rb, 3);
int buf_idx = cm->ref_frame_map[film_grain_params_ref_idx];
if (!frame_bufs[buf_idx].film_grain_params_present) {
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Film grain reference parameters not available");
}
uint16_t random_seed = pars->random_seed;
*pars = frame_bufs[buf_idx].film_grain_params; // inherit paramaters
pars->random_seed = random_seed; // with new random seed
return;
}
// Scaling functions parameters
pars->num_y_points = aom_rb_read_literal(rb, 4); // max 14
if (pars->num_y_points > 14)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Number of points for film grain luma scaling function "
"exceeds the maximum value.");
for (int i = 0; i < pars->num_y_points; i++) {
pars->scaling_points_y[i][0] = aom_rb_read_literal(rb, 8);
if (i && pars->scaling_points_y[i - 1][0] >= pars->scaling_points_y[i][0])
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"First coordinateg of the scaling function points "
"shall be increasing.");
pars->scaling_points_y[i][1] = aom_rb_read_literal(rb, 8);
}
if (!cm->seq_params.monochrome)
pars->chroma_scaling_from_luma = aom_rb_read_bit(rb);
if (cm->seq_params.monochrome || pars->chroma_scaling_from_luma ||
((cm->subsampling_x == 1) && (cm->subsampling_y == 1) &&
(pars->num_y_points == 0))) {
pars->num_cb_points = 0;
pars->num_cr_points = 0;
} else {
pars->num_cb_points = aom_rb_read_literal(rb, 4); // max 10
if (pars->num_cb_points > 10)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Number of points for film grain cb scaling function "
"exceeds the maximum value.");
for (int i = 0; i < pars->num_cb_points; i++) {
pars->scaling_points_cb[i][0] = aom_rb_read_literal(rb, 8);
if (i &&
pars->scaling_points_cb[i - 1][0] >= pars->scaling_points_cb[i][0])
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"First coordinate of the scaling function points "
"shall be increasing.");
pars->scaling_points_cb[i][1] = aom_rb_read_literal(rb, 8);
}
pars->num_cr_points = aom_rb_read_literal(rb, 4); // max 10
if (pars->num_cr_points > 10)
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Number of points for film grain cr scaling function "
"exceeds the maximum value.");
for (int i = 0; i < pars->num_cr_points; i++) {
pars->scaling_points_cr[i][0] = aom_rb_read_literal(rb, 8);
if (i &&
pars->scaling_points_cr[i - 1][0] >= pars->scaling_points_cr[i][0])
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"First coordinate of the scaling function points "
"shall be increasing.");
pars->scaling_points_cr[i][1] = aom_rb_read_literal(rb, 8);
}
if ((cm->subsampling_x == 1) && (cm->subsampling_y == 1) &&
(((pars->num_cb_points == 0) && (pars->num_cr_points != 0)) ||
((pars->num_cb_points != 0) && (pars->num_cr_points == 0))))
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"In YCbCr 4:2:0, film grain shall be applied "
"to both chroma components or neither.");
}
pars->scaling_shift = aom_rb_read_literal(rb, 2) + 8; // 8 + value
// AR coefficients
// Only sent if the corresponsing scaling function has
// more than 0 points
pars->ar_coeff_lag = aom_rb_read_literal(rb, 2);
int num_pos_luma = 2 * pars->ar_coeff_lag * (pars->ar_coeff_lag + 1);
int num_pos_chroma = num_pos_luma;
if (pars->num_y_points > 0) ++num_pos_chroma;
if (pars->num_y_points)
for (int i = 0; i < num_pos_luma; i++)
pars->ar_coeffs_y[i] = aom_rb_read_literal(rb, 8) - 128;
if (pars->num_cb_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
pars->ar_coeffs_cb[i] = aom_rb_read_literal(rb, 8) - 128;
if (pars->num_cr_points || pars->chroma_scaling_from_luma)
for (int i = 0; i < num_pos_chroma; i++)
pars->ar_coeffs_cr[i] = aom_rb_read_literal(rb, 8) - 128;
pars->ar_coeff_shift = aom_rb_read_literal(rb, 2) + 6; // 6 + value
pars->grain_scale_shift = aom_rb_read_literal(rb, 2);
if (pars->num_cb_points) {
pars->cb_mult = aom_rb_read_literal(rb, 8);
pars->cb_luma_mult = aom_rb_read_literal(rb, 8);
pars->cb_offset = aom_rb_read_literal(rb, 9);
}
if (pars->num_cr_points) {
pars->cr_mult = aom_rb_read_literal(rb, 8);
pars->cr_luma_mult = aom_rb_read_literal(rb, 8);
pars->cr_offset = aom_rb_read_literal(rb, 9);
}
pars->overlap_flag = aom_rb_read_bit(rb);
pars->clip_to_restricted_range = aom_rb_read_bit(rb);
}
static void read_film_grain(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
if (cm->film_grain_params_present) {
av1_read_film_grain_params(cm, rb);
} else {
memset(&cm->film_grain_params, 0, sizeof(cm->film_grain_params));
}
cm->film_grain_params.bit_depth = cm->bit_depth;
memcpy(&cm->cur_frame->film_grain_params, &cm->film_grain_params,
sizeof(aom_film_grain_t));
}
void av1_read_bitdepth_colorspace_sampling(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb,
int allow_lowbitdepth) {
av1_read_bitdepth(cm, rb);
cm->use_highbitdepth = cm->bit_depth > AOM_BITS_8 || !allow_lowbitdepth;
// monochrome bit (not needed for PROFILE_1)
const int is_monochrome = cm->profile != PROFILE_1 ? aom_rb_read_bit(rb) : 0;
cm->seq_params.monochrome = is_monochrome;
int color_description_present_flag = aom_rb_read_bit(rb);
if (color_description_present_flag) {
cm->color_primaries = aom_rb_read_literal(rb, 8);
cm->transfer_characteristics = aom_rb_read_literal(rb, 8);
cm->matrix_coefficients = aom_rb_read_literal(rb, 8);
} else {
cm->color_primaries = AOM_CICP_CP_UNSPECIFIED;
cm->transfer_characteristics = AOM_CICP_TC_UNSPECIFIED;
cm->matrix_coefficients = AOM_CICP_MC_UNSPECIFIED;
}
if (is_monochrome) {
// [16,235] (including xvycc) vs [0,255] range
cm->color_range = aom_rb_read_bit(rb);
cm->subsampling_y = cm->subsampling_x = 1;
cm->chroma_sample_position = AOM_CSP_UNKNOWN;
cm->separate_uv_delta_q = 0;
return;
}
if (cm->color_primaries == AOM_CICP_CP_BT_709 &&
cm->transfer_characteristics == AOM_CICP_TC_SRGB &&
cm->matrix_coefficients == AOM_CICP_MC_IDENTITY) { // it would be better
// to remove this
// dependency too
cm->subsampling_y = cm->subsampling_x = 0;
cm->color_range = 1; // assume full color-range
if (!(cm->profile == PROFILE_1 ||
(cm->profile == PROFILE_2 && cm->bit_depth == AOM_BITS_12))) {
aom_internal_error(
&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"sRGB colorspace not compatible with specified profile");
}
} else {
// [16,235] (including xvycc) vs [0,255] range
cm->color_range = aom_rb_read_bit(rb);
if (cm->profile == PROFILE_0) {
// 420 only
cm->subsampling_x = cm->subsampling_y = 1;
} else if (cm->profile == PROFILE_1) {
// 444 only
cm->subsampling_x = cm->subsampling_y = 0;
} else if (cm->profile == PROFILE_2) {
if (cm->bit_depth == AOM_BITS_12) {
cm->subsampling_x = aom_rb_read_bit(rb);
if (cm->subsampling_x == 0)
cm->subsampling_y = 0; // 444
else
cm->subsampling_y = aom_rb_read_bit(rb); // 422 or 420
} else {
// 422
cm->subsampling_x = 1;
cm->subsampling_y = 0;
}
}
if (cm->subsampling_x == 1 && cm->subsampling_y == 1) {
cm->chroma_sample_position = aom_rb_read_literal(rb, 2);
}
}
cm->separate_uv_delta_q = aom_rb_read_bit(rb);
}
void av1_read_timing_info_header(AV1_COMMON *cm,
struct aom_read_bit_buffer *rb) {
cm->timing_info_present = aom_rb_read_bit(rb); // timing info present flag
if (cm->timing_info_present) {
cm->num_units_in_tick =
aom_rb_read_unsigned_literal(rb, 32); // Number of units in tick
cm->time_scale = aom_rb_read_unsigned_literal(rb, 32); // Time scale
cm->equal_picture_interval =
aom_rb_read_bit(rb); // Equal picture interval bit
if (cm->equal_picture_interval) {
cm->num_ticks_per_picture =
aom_rb_read_uvlc(rb) + 1; // ticks per picture
}
}
}
void read_sequence_header(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
SequenceHeader *seq_params = &cm->seq_params;
int num_bits_width = aom_rb_read_literal(rb, 4) + 1;
int num_bits_height = aom_rb_read_literal(rb, 4) + 1;
int max_frame_width = aom_rb_read_literal(rb, num_bits_width) + 1;
int max_frame_height = aom_rb_read_literal(rb, num_bits_height) + 1;
seq_params->num_bits_width = num_bits_width;
seq_params->num_bits_height = num_bits_height;
seq_params->max_frame_width = max_frame_width;
seq_params->max_frame_height = max_frame_height;
seq_params->frame_id_numbers_present_flag = aom_rb_read_bit(rb);
if (seq_params->frame_id_numbers_present_flag) {
// We must always have delta_frame_id_length < frame_id_length,
// in order for a frame to be referenced with a unique delta.
// Avoid wasting bits by using a coding that enforces this restriction.
seq_params->delta_frame_id_length = aom_rb_read_literal(rb, 4) + 2;
seq_params->frame_id_length =
aom_rb_read_literal(rb, 3) + seq_params->delta_frame_id_length + 1;
if (seq_params->frame_id_length > 16)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid frame_id_length");
}
setup_sb_size(seq_params, rb);
seq_params->enable_filter_intra = aom_rb_read_bit(rb);
seq_params->enable_intra_edge_filter = aom_rb_read_bit(rb);
seq_params->enable_interintra_compound = aom_rb_read_bit(rb);
seq_params->enable_masked_compound = aom_rb_read_bit(rb);
seq_params->enable_warped_motion = aom_rb_read_bit(rb);
seq_params->enable_dual_filter = aom_rb_read_bit(rb);
seq_params->enable_order_hint = aom_rb_read_bit(rb);
seq_params->enable_jnt_comp =
seq_params->enable_order_hint ? aom_rb_read_bit(rb) : 0;
seq_params->enable_ref_frame_mvs =
seq_params->enable_order_hint ? aom_rb_read_bit(rb) : 0;
if (aom_rb_read_bit(rb)) {
seq_params->force_screen_content_tools = 2;
} else {
seq_params->force_screen_content_tools = aom_rb_read_bit(rb);
}
if (seq_params->force_screen_content_tools > 0) {
if (aom_rb_read_bit(rb)) {
seq_params->force_integer_mv = 2;
} else {
seq_params->force_integer_mv = aom_rb_read_bit(rb);
}
} else {
seq_params->force_integer_mv = 2;
}
seq_params->order_hint_bits_minus1 =
seq_params->enable_order_hint ? aom_rb_read_literal(rb, 3) : -1;
seq_params->enable_superres = aom_rb_read_bit(rb);
seq_params->enable_cdef = aom_rb_read_bit(rb);
seq_params->enable_restoration = aom_rb_read_bit(rb);
}
static int read_global_motion_params(WarpedMotionParams *params,
const WarpedMotionParams *ref_params,
struct aom_read_bit_buffer *rb,
int allow_hp) {
TransformationType type = aom_rb_read_bit(rb);
if (type != IDENTITY) {
#if GLOBAL_TRANS_TYPES > 4
type += aom_rb_read_literal(rb, GLOBAL_TYPE_BITS);
#else
if (aom_rb_read_bit(rb))
type = ROTZOOM;
else
type = aom_rb_read_bit(rb) ? TRANSLATION : AFFINE;
#endif // GLOBAL_TRANS_TYPES > 4
}
*params = default_warp_params;
params->wmtype = type;
if (type >= ROTZOOM) {
params->wmmat[2] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[2] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS)) *
GM_ALPHA_DECODE_FACTOR +
(1 << WARPEDMODEL_PREC_BITS);
params->wmmat[3] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[3] >> GM_ALPHA_PREC_DIFF)) *
GM_ALPHA_DECODE_FACTOR;
}
if (type >= AFFINE) {
params->wmmat[4] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[4] >> GM_ALPHA_PREC_DIFF)) *
GM_ALPHA_DECODE_FACTOR;
params->wmmat[5] = aom_rb_read_signed_primitive_refsubexpfin(
rb, GM_ALPHA_MAX + 1, SUBEXPFIN_K,
(ref_params->wmmat[5] >> GM_ALPHA_PREC_DIFF) -
(1 << GM_ALPHA_PREC_BITS)) *
GM_ALPHA_DECODE_FACTOR +
(1 << WARPEDMODEL_PREC_BITS);
} else {
params->wmmat[4] = -params->wmmat[3];
params->wmmat[5] = params->wmmat[2];
}
if (type >= TRANSLATION) {
const int trans_bits = (type == TRANSLATION)
? GM_ABS_TRANS_ONLY_BITS - !allow_hp
: GM_ABS_TRANS_BITS;
const int trans_dec_factor =
(type == TRANSLATION) ? GM_TRANS_ONLY_DECODE_FACTOR * (1 << !allow_hp)
: GM_TRANS_DECODE_FACTOR;
const int trans_prec_diff = (type == TRANSLATION)
? GM_TRANS_ONLY_PREC_DIFF + !allow_hp
: GM_TRANS_PREC_DIFF;
params->wmmat[0] = aom_rb_read_signed_primitive_refsubexpfin(
rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[0] >> trans_prec_diff)) *
trans_dec_factor;
params->wmmat[1] = aom_rb_read_signed_primitive_refsubexpfin(
rb, (1 << trans_bits) + 1, SUBEXPFIN_K,
(ref_params->wmmat[1] >> trans_prec_diff)) *
trans_dec_factor;
}
if (params->wmtype <= AFFINE) {
int good_shear_params = get_shear_params(params);
if (!good_shear_params) return 0;
}
return 1;
}
static void read_global_motion(AV1_COMMON *cm, struct aom_read_bit_buffer *rb) {
for (int frame = LAST_FRAME; frame <= ALTREF_FRAME; ++frame) {
const WarpedMotionParams *ref_params =
cm->prev_frame ? &cm->prev_frame->global_motion[frame]
: &default_warp_params;
int good_params = read_global_motion_params(
&cm->global_motion[frame], ref_params, rb, cm->allow_high_precision_mv);
if (!good_params) {
#if WARPED_MOTION_DEBUG
printf("Warning: unexpected global motion shear params from aomenc\n");
#endif
cm->global_motion[frame].invalid = 1;
}
// TODO(sarahparker, debargha): The logic in the commented out code below
// does not work currently and causes mismatches when resize is on. Fix it
// before turning the optimization back on.
/*
YV12_BUFFER_CONFIG *ref_buf = get_ref_frame(cm, frame);
if (cm->width == ref_buf->y_crop_width &&
cm->height == ref_buf->y_crop_height) {
read_global_motion_params(&cm->global_motion[frame],
&cm->prev_frame->global_motion[frame], rb,
cm->allow_high_precision_mv);
} else {
cm->global_motion[frame] = default_warp_params;
}
*/
/*
printf("Dec Ref %d [%d/%d]: %d %d %d %d\n",
frame, cm->current_video_frame, cm->show_frame,
cm->global_motion[frame].wmmat[0],
cm->global_motion[frame].wmmat[1],
cm->global_motion[frame].wmmat[2],
cm->global_motion[frame].wmmat[3]);
*/
}
memcpy(cm->cur_frame->global_motion, cm->global_motion,
REF_FRAMES * sizeof(WarpedMotionParams));
}
static void show_existing_frame_reset(AV1Decoder *const pbi,
int existing_frame_idx) {
AV1_COMMON *const cm = &pbi->common;
BufferPool *const pool = cm->buffer_pool;
RefCntBuffer *const frame_bufs = pool->frame_bufs;
assert(cm->show_existing_frame);
cm->frame_type = KEY_FRAME;
pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->frame_refs[i].idx = INVALID_IDX;
cm->frame_refs[i].buf = NULL;
}
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
cm->cur_frame->intra_only = 1;
if (cm->seq_params.frame_id_numbers_present_flag) {
/* If bitmask is set, update reference frame id values and
mark frames as valid for reference.
Note that the displayed frame be valid for referencing
in order to have been selected.
*/
int refresh_frame_flags = pbi->refresh_frame_flags;
int display_frame_id = cm->ref_frame_id[existing_frame_idx];
for (int i = 0; i < REF_FRAMES; i++) {
if ((refresh_frame_flags >> i) & 1) {
cm->ref_frame_id[i] = display_frame_id;
cm->valid_for_referencing[i] = 1;
}
}
}
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
// Generate next_ref_frame_map.
lock_buffer_pool(pool);
int ref_index = 0;
for (int mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
if (mask & 1) {
cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
++frame_bufs[cm->new_fb_idx].ref_count;
} else {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
}
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
++ref_index;
}
for (; ref_index < REF_FRAMES; ++ref_index) {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
}
unlock_buffer_pool(pool);
pbi->hold_ref_buf = 1;
// Reload the adapted CDFs from when we originally coded this keyframe
*cm->fc = cm->frame_contexts[existing_frame_idx];
}
static int read_uncompressed_header(AV1Decoder *pbi,
struct aom_read_bit_buffer *rb) {
AV1_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
BufferPool *const pool = cm->buffer_pool;
RefCntBuffer *const frame_bufs = pool->frame_bufs;
if (!pbi->sequence_header_ready) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"No sequence header");
}
cm->last_frame_type = cm->frame_type;
cm->last_intra_only = cm->intra_only;
// NOTE: By default all coded frames to be used as a reference
cm->is_reference_frame = 1;
cm->show_existing_frame = aom_rb_read_bit(rb);
cm->reset_decoder_state = 0;
if (cm->show_existing_frame) {
// Show an existing frame directly.
const int existing_frame_idx = aom_rb_read_literal(rb, 3);
const int frame_to_show = cm->ref_frame_map[existing_frame_idx];
if (cm->seq_params.frame_id_numbers_present_flag) {
int frame_id_length = cm->seq_params.frame_id_length;
int display_frame_id = aom_rb_read_literal(rb, frame_id_length);
/* Compare display_frame_id with ref_frame_id and check valid for
* referencing */
if (display_frame_id != cm->ref_frame_id[existing_frame_idx] ||
cm->valid_for_referencing[existing_frame_idx] == 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference buffer frame ID mismatch");
}
lock_buffer_pool(pool);
if (frame_to_show < 0 || frame_bufs[frame_to_show].ref_count < 1) {
unlock_buffer_pool(pool);
aom_internal_error(&cm->error, AOM_CODEC_UNSUP_BITSTREAM,
"Buffer %d does not contain a decoded frame",
frame_to_show);
}
ref_cnt_fb(frame_bufs, &cm->new_fb_idx, frame_to_show);
cm->reset_decoder_state = frame_bufs[frame_to_show].frame_type == KEY_FRAME;
unlock_buffer_pool(pool);
cm->lf.filter_level[0] = 0;
cm->lf.filter_level[1] = 0;
cm->show_frame = 1;
if (!frame_bufs[frame_to_show].showable_frame) {
aom_merge_corrupted_flag(&xd->corrupted, 1);
}
frame_bufs[frame_to_show].showable_frame = 0;
cm->film_grain_params = frame_bufs[frame_to_show].film_grain_params;
if (cm->reset_decoder_state) {
show_existing_frame_reset(pbi, existing_frame_idx);
} else {
pbi->refresh_frame_flags = 0;
}
return 0;
}
cm->frame_type = (FRAME_TYPE)aom_rb_read_literal(rb, 2); // 2 bits
cm->show_frame = aom_rb_read_bit(rb);
cm->showable_frame = 0;
if (!cm->show_frame) {
// See if this frame can be used as show_existing_frame in future
cm->showable_frame = aom_rb_read_bit(rb);
}
cm->cur_frame->showable_frame = cm->showable_frame;
cm->intra_only = cm->frame_type == INTRA_ONLY_FRAME;
cm->error_resilient_mode = frame_is_sframe(cm) ? 1 : aom_rb_read_bit(rb);
cm->disable_cdf_update = aom_rb_read_bit(rb);
if (cm->seq_params.force_screen_content_tools == 2) {
cm->allow_screen_content_tools = aom_rb_read_bit(rb);
} else {
cm->allow_screen_content_tools = cm->seq_params.force_screen_content_tools;
}
if (cm->allow_screen_content_tools) {
if (cm->seq_params.force_integer_mv == 2) {
cm->cur_frame_force_integer_mv = aom_rb_read_bit(rb);
} else {
cm->cur_frame_force_integer_mv = cm->seq_params.force_integer_mv;
}
} else {
cm->cur_frame_force_integer_mv = 0;
}
if (cm->seq_params.frame_id_numbers_present_flag) {
int frame_id_length = cm->seq_params.frame_id_length;
int diff_len = cm->seq_params.delta_frame_id_length;
int prev_frame_id = 0;
if (!(cm->frame_type == KEY_FRAME && cm->show_frame)) {
prev_frame_id = cm->current_frame_id;
}
cm->current_frame_id = aom_rb_read_literal(rb, frame_id_length);
if (!(cm->frame_type == KEY_FRAME && cm->show_frame)) {
int diff_frame_id;
if (cm->current_frame_id > prev_frame_id) {
diff_frame_id = cm->current_frame_id - prev_frame_id;
} else {
diff_frame_id =
(1 << frame_id_length) + cm->current_frame_id - prev_frame_id;
}
/* Check current_frame_id for conformance */
if (prev_frame_id == cm->current_frame_id ||
diff_frame_id >= (1 << (frame_id_length - 1))) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Invalid value of current_frame_id");
}
}
/* Check if some frames need to be marked as not valid for referencing */
for (int i = 0; i < REF_FRAMES; i++) {
if (cm->frame_type == KEY_FRAME && cm->show_frame) {
cm->valid_for_referencing[i] = 0;
} else if (cm->current_frame_id - (1 << diff_len) > 0) {
if (cm->ref_frame_id[i] > cm->current_frame_id ||
cm->ref_frame_id[i] < cm->current_frame_id - (1 << diff_len))
cm->valid_for_referencing[i] = 0;
} else {
if (cm->ref_frame_id[i] > cm->current_frame_id &&
cm->ref_frame_id[i] <
(1 << frame_id_length) + cm->current_frame_id - (1 << diff_len))
cm->valid_for_referencing[i] = 0;
}
}
}
int frame_size_override_flag =
frame_is_sframe(cm) ? 1 : aom_rb_read_literal(rb, 1);
cm->allow_intrabc = 0;
cm->frame_refs_short_signaling = 0;
cm->primary_ref_frame = PRIMARY_REF_NONE;
cm->frame_offset =
aom_rb_read_literal(rb, cm->seq_params.order_hint_bits_minus1 + 1);
cm->current_video_frame = cm->frame_offset;
if (!cm->error_resilient_mode && !frame_is_intra_only(cm)) {
cm->primary_ref_frame = aom_rb_read_literal(rb, PRIMARY_REF_BITS);
}
if (cm->frame_type == KEY_FRAME) {
if (!cm->show_frame) // unshown keyframe (forward keyframe)
pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
else // shown keyframe
pbi->refresh_frame_flags = (1 << REF_FRAMES) - 1;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
cm->frame_refs[i].idx = INVALID_IDX;
cm->frame_refs[i].buf = NULL;
}
setup_frame_size(cm, frame_size_override_flag, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
if (cm->allow_screen_content_tools &&
(av1_superres_unscaled(cm) || !NO_FILTER_FOR_IBC))
cm->allow_intrabc = aom_rb_read_bit(rb);
cm->allow_ref_frame_mvs = 0;
cm->prev_frame = NULL;
} else {
// Read all ref frame order hints if error_resilient_mode == 1
if (cm->error_resilient_mode && cm->seq_params.enable_order_hint) {
for (int ref_idx = 0; ref_idx < REF_FRAMES; ref_idx++) {
// Read order hint from bit stream
unsigned int frame_offset =
aom_rb_read_literal(rb, cm->seq_params.order_hint_bits_minus1 + 1);
// Get buffer index
int buf_idx = cm->ref_frame_map[ref_idx];
assert(buf_idx < FRAME_BUFFERS);
if (buf_idx == -1) {
// If no corresponding buffer exists, allocate a new buffer with all
// pixels set to neutral grey.
buf_idx = get_free_fb(cm);
aom_alloc_frame_buffer(
&frame_bufs[buf_idx].buf, cm->seq_params.max_frame_width,
cm->seq_params.max_frame_height, cm->subsampling_x,
cm->subsampling_y, cm->use_highbitdepth, AOM_BORDER_IN_PIXELS,
cm->byte_alignment);
set_planes_to_neutral_grey(cm, xd, 0);
cm->ref_frame_map[ref_idx] = buf_idx;
frame_bufs[buf_idx].cur_frame_offset = frame_offset;
}
}
}
cm->allow_ref_frame_mvs = 0;
if (cm->intra_only) {
cm->cur_frame->film_grain_params_present = cm->film_grain_params_present;
pbi->refresh_frame_flags = aom_rb_read_literal(rb, REF_FRAMES);
setup_frame_size(cm, frame_size_override_flag, rb);
if (pbi->need_resync) {
memset(&cm->ref_frame_map, -1, sizeof(cm->ref_frame_map));
pbi->need_resync = 0;
}
if (cm->allow_screen_content_tools &&
(av1_superres_unscaled(cm) || !NO_FILTER_FOR_IBC))
cm->allow_intrabc = aom_rb_read_bit(rb);
} else if (pbi->need_resync != 1) { /* Skip if need resync */
pbi->refresh_frame_flags =
frame_is_sframe(cm) ? 0xFF : aom_rb_read_literal(rb, REF_FRAMES);
if (!pbi->refresh_frame_flags) {
// NOTE: "pbi->refresh_frame_flags == 0" indicates that the coded frame
// will not be used as a reference
cm->is_reference_frame = 0;
}
// Frame refs short signaling is off when error resilient mode is on.
if (cm->seq_params.enable_order_hint)
cm->frame_refs_short_signaling = aom_rb_read_bit(rb);
if (cm->frame_refs_short_signaling) {
// == LAST_FRAME ==
const int lst_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
const int lst_idx = cm->ref_frame_map[lst_ref];
// == GOLDEN_FRAME ==
const int gld_ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
const int gld_idx = cm->ref_frame_map[gld_ref];
// Most of the time, streams start with a keyframe. In that case,
// ref_frame_map will have been filled in at that point and will not
// contain any -1's. However, streams are explicitly allowed to start
// with an intra-only frame, so long as they don't then signal a
// reference to a slot that hasn't been set yet. That's what we are
// checking here.
if (lst_idx == -1)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests nonexistent reference");
if (gld_idx == -1)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests nonexistent reference");
av1_set_frame_refs(cm, lst_ref, gld_ref);
}
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
int ref = 0;
if (!cm->frame_refs_short_signaling) {
ref = aom_rb_read_literal(rb, REF_FRAMES_LOG2);
const int idx = cm->ref_frame_map[ref];
// Most of the time, streams start with a keyframe. In that case,
// ref_frame_map will have been filled in at that point and will not
// contain any -1's. However, streams are explicitly allowed to start
// with an intra-only frame, so long as they don't then signal a
// reference to a slot that hasn't been set yet. That's what we are
// checking here.
if (idx == -1)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Inter frame requests nonexistent reference");
RefBuffer *const ref_frame = &cm->frame_refs[i];
ref_frame->idx = idx;
ref_frame->buf = &frame_bufs[idx].buf;
ref_frame->map_idx = ref;
} else {
ref = cm->frame_refs[i].map_idx;
}
cm->ref_frame_sign_bias[LAST_FRAME + i] = 0;
if (cm->seq_params.frame_id_numbers_present_flag) {
int frame_id_length = cm->seq_params.frame_id_length;
int diff_len = cm->seq_params.delta_frame_id_length;
int delta_frame_id_minus1 = aom_rb_read_literal(rb, diff_len);
int ref_frame_id =
((cm->current_frame_id - (delta_frame_id_minus1 + 1) +
(1 << frame_id_length)) %
(1 << frame_id_length));
// Compare values derived from delta_frame_id_minus1 and
// refresh_frame_flags. Also, check valid for referencing
if (ref_frame_id != cm->ref_frame_id[ref] ||
cm->valid_for_referencing[ref] == 0)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference buffer frame ID mismatch");
}
}
if (!cm->error_resilient_mode && frame_size_override_flag) {
setup_frame_size_with_refs(cm, rb);
} else {
setup_frame_size(cm, frame_size_override_flag, rb);
}
if (cm->cur_frame_force_integer_mv) {
cm->allow_high_precision_mv = 0;
} else {
cm->allow_high_precision_mv = aom_rb_read_bit(rb);
}
cm->interp_filter = read_frame_interp_filter(rb);
cm->switchable_motion_mode = aom_rb_read_bit(rb);
}
cm->prev_frame = get_prev_frame(cm);
if (cm->primary_ref_frame != PRIMARY_REF_NONE &&
cm->frame_refs[cm->primary_ref_frame].idx < 0) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Reference frame containing this frame's initial "
"frame context is unavailable.");
}
if (!cm->intra_only && pbi->need_resync != 1) {
if (frame_might_allow_ref_frame_mvs(cm))
cm->allow_ref_frame_mvs = aom_rb_read_bit(rb);
else
cm->allow_ref_frame_mvs = 0;
for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) {
RefBuffer *const ref_buf = &cm->frame_refs[i];
av1_setup_scale_factors_for_frame(
&ref_buf->sf, ref_buf->buf->y_crop_width,
ref_buf->buf->y_crop_height, cm->width, cm->height);
}
}
}
av1_setup_frame_buf_refs(cm);
av1_setup_frame_sign_bias(cm);
cm->cur_frame->intra_only = cm->frame_type == KEY_FRAME || cm->intra_only;
cm->cur_frame->frame_type = cm->frame_type;
if (cm->seq_params.frame_id_numbers_present_flag) {
/* If bitmask is set, update reference frame id values and
mark frames as valid for reference */
int refresh_frame_flags = pbi->refresh_frame_flags;
for (int i = 0; i < REF_FRAMES; i++) {
if ((refresh_frame_flags >> i) & 1) {
cm->ref_frame_id[i] = cm->current_frame_id;
cm->valid_for_referencing[i] = 1;
}
}
}
get_frame_new_buffer(cm)->bit_depth = cm->bit_depth;
get_frame_new_buffer(cm)->color_primaries = cm->color_primaries;
get_frame_new_buffer(cm)->transfer_characteristics =
cm->transfer_characteristics;
get_frame_new_buffer(cm)->matrix_coefficients = cm->matrix_coefficients;
get_frame_new_buffer(cm)->monochrome = cm->seq_params.monochrome;
get_frame_new_buffer(cm)->chroma_sample_position = cm->chroma_sample_position;
get_frame_new_buffer(cm)->color_range = cm->color_range;
get_frame_new_buffer(cm)->render_width = cm->render_width;
get_frame_new_buffer(cm)->render_height = cm->render_height;
if (pbi->need_resync) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Keyframe / intra-only frame required to reset decoder"
" state");
}
const int might_bwd_adapt =
!(cm->large_scale_tile) && !(cm->disable_cdf_update);
if (might_bwd_adapt) {
cm->refresh_frame_context = aom_rb_read_bit(rb)
? REFRESH_FRAME_CONTEXT_DISABLED
: REFRESH_FRAME_CONTEXT_BACKWARD;
} else {
cm->refresh_frame_context = REFRESH_FRAME_CONTEXT_DISABLED;
}
// Generate next_ref_frame_map.
lock_buffer_pool(pool);
int ref_index = 0;
for (int mask = pbi->refresh_frame_flags; mask; mask >>= 1) {
if (mask & 1) {
cm->next_ref_frame_map[ref_index] = cm->new_fb_idx;
++frame_bufs[cm->new_fb_idx].ref_count;
} else {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
}
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
++ref_index;
}
for (; ref_index < REF_FRAMES; ++ref_index) {
cm->next_ref_frame_map[ref_index] = cm->ref_frame_map[ref_index];
// Current thread holds the reference frame.
if (cm->ref_frame_map[ref_index] >= 0)
++frame_bufs[cm->ref_frame_map[ref_index]].ref_count;
}
unlock_buffer_pool(pool);
pbi->hold_ref_buf = 1;
if (cm->allow_intrabc && NO_FILTER_FOR_IBC) {
// Set parameters corresponding to no filtering.
struct loopfilter *lf = &cm->lf;
lf->filter_level[0] = 0;
lf->filter_level[1] = 0;
cm->cdef_bits = 0;
cm->cdef_strengths[0] = 0;
cm->nb_cdef_strengths = 1;
cm->cdef_uv_strengths[0] = 0;
cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
}
read_tile_info(pbi, rb);
setup_quantization(cm, rb);
xd->bd = (int)cm->bit_depth;
if (cm->primary_ref_frame == PRIMARY_REF_NONE) {
av1_setup_past_independence(cm);
}
setup_segmentation(cm, rb);
{
int delta_q_allowed = 1;
cm->delta_q_res = 1;
cm->delta_lf_res = 1;
cm->delta_lf_present_flag = 0;
cm->delta_lf_multi = 0;
if (delta_q_allowed == 1 && cm->base_qindex > 0) {
cm->delta_q_present_flag = aom_rb_read_bit(rb);
} else {
cm->delta_q_present_flag = 0;
}
if (cm->delta_q_present_flag) {
xd->prev_qindex = cm->base_qindex;
cm->delta_q_res = 1 << aom_rb_read_literal(rb, 2);
if (!cm->allow_intrabc || !NO_FILTER_FOR_IBC)
cm->delta_lf_present_flag = aom_rb_read_bit(rb);
if (cm->delta_lf_present_flag) {
xd->prev_delta_lf_from_base = 0;
cm->delta_lf_res = 1 << aom_rb_read_literal(rb, 2);
cm->delta_lf_multi = aom_rb_read_bit(rb);
const int frame_lf_count =
av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2;
for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id)
xd->prev_delta_lf[lf_id] = 0;
}
}
}
xd->cur_frame_force_integer_mv = cm->cur_frame_force_integer_mv;
for (int i = 0; i < MAX_SEGMENTS; ++i) {
const int qindex = cm->seg.enabled
? av1_get_qindex(&cm->seg, i, cm->base_qindex)
: cm->base_qindex;
xd->lossless[i] = qindex == 0 && cm->y_dc_delta_q == 0 &&
cm->u_dc_delta_q == 0 && cm->u_ac_delta_q == 0 &&
cm->v_dc_delta_q == 0 && cm->v_ac_delta_q == 0;
xd->qindex[i] = qindex;
}
cm->coded_lossless = is_coded_lossless(cm, xd);
cm->all_lossless = cm->coded_lossless && av1_superres_unscaled(cm);
setup_segmentation_dequant(cm);
if (cm->coded_lossless) {
cm->lf.filter_level[0] = 0;
cm->lf.filter_level[1] = 0;
}
if (cm->coded_lossless || !cm->seq_params.enable_cdef) {
cm->cdef_bits = 0;
cm->cdef_strengths[0] = 0;
cm->cdef_uv_strengths[0] = 0;
}
if (cm->all_lossless || !cm->seq_params.enable_restoration) {
cm->rst_info[0].frame_restoration_type = RESTORE_NONE;
cm->rst_info[1].frame_restoration_type = RESTORE_NONE;
cm->rst_info[2].frame_restoration_type = RESTORE_NONE;
}
assert(IMPLIES(cm->all_lossless, av1_superres_unscaled(cm)));
setup_loopfilter(cm, rb);
if (!cm->coded_lossless && cm->seq_params.enable_cdef) {
setup_cdef(cm, rb);
}
if (!cm->all_lossless && cm->seq_params.enable_restoration) {
decode_restoration_mode(cm, rb);
}
cm->tx_mode = read_tx_mode(cm, rb);
cm->reference_mode = read_frame_reference_mode(cm, rb);
if (cm->reference_mode != SINGLE_REFERENCE) setup_compound_reference_mode(cm);
av1_setup_skip_mode_allowed(cm);
cm->skip_mode_flag = cm->is_skip_mode_allowed ? aom_rb_read_bit(rb) : 0;
if (frame_might_allow_warped_motion(cm))
cm->allow_warped_motion = aom_rb_read_bit(rb);
else
cm->allow_warped_motion = 0;
cm->reduced_tx_set_used = aom_rb_read_bit(rb);
if (cm->allow_ref_frame_mvs && !frame_might_allow_ref_frame_mvs(cm)) {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Frame wrongly requests reference frame MVs");
}
if (!frame_is_intra_only(cm)) read_global_motion(cm, rb);
cm->cur_frame->film_grain_params_present = cm->film_grain_params_present;
if (cm->show_frame || cm->showable_frame) {
read_film_grain(cm, rb);
}
set_single_tile_decoding_mode(&pbi->common);
return 0;
}
#ifdef NDEBUG
#define debug_check_frame_counts(cm) (void)0
#else // !NDEBUG
static void debug_check_frame_counts(const AV1_COMMON *const cm) {
FRAME_COUNTS zero_counts;
av1_zero(zero_counts);
assert(cm->refresh_frame_context != REFRESH_FRAME_CONTEXT_BACKWARD ||
cm->error_resilient_mode);
assert(!memcmp(cm->counts.partition, zero_counts.partition,
sizeof(cm->counts.partition)));
assert(!memcmp(cm->counts.switchable_interp, zero_counts.switchable_interp,
sizeof(cm->counts.switchable_interp)));
assert(!memcmp(cm->counts.inter_compound_mode,
zero_counts.inter_compound_mode,
sizeof(cm->counts.inter_compound_mode)));
assert(!memcmp(cm->counts.interintra, zero_counts.interintra,
sizeof(cm->counts.interintra)));
assert(!memcmp(cm->counts.wedge_interintra, zero_counts.wedge_interintra,
sizeof(cm->counts.wedge_interintra)));
assert(!memcmp(cm->counts.compound_type, zero_counts.compound_type,
sizeof(cm->counts.compound_type)));
assert(!memcmp(cm->counts.motion_mode, zero_counts.motion_mode,
sizeof(cm->counts.motion_mode)));
assert(!memcmp(cm->counts.intra_inter, zero_counts.intra_inter,
sizeof(cm->counts.intra_inter)));
assert(!memcmp(cm->counts.skip, zero_counts.skip, sizeof(cm->counts.skip)));
}
#endif // NDEBUG
struct aom_read_bit_buffer *av1_init_read_bit_buffer(
AV1Decoder *pbi, struct aom_read_bit_buffer *rb, const uint8_t *data,
const uint8_t *data_end) {
rb->bit_offset = 0;
rb->error_handler = error_handler;
rb->error_handler_data = &pbi->common;
rb->bit_buffer = data;
rb->bit_buffer_end = data_end;
return rb;
}
void av1_read_frame_size(struct aom_read_bit_buffer *rb, int num_bits_width,
int num_bits_height, int *width, int *height) {
*width = aom_rb_read_literal(rb, num_bits_width) + 1;
*height = aom_rb_read_literal(rb, num_bits_height) + 1;
}
BITSTREAM_PROFILE av1_read_profile(struct aom_read_bit_buffer *rb) {
int profile = aom_rb_read_literal(rb, PROFILE_BITS);
return (BITSTREAM_PROFILE)profile;
}
void superres_post_decode(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
BufferPool *const pool = cm->buffer_pool;
if (av1_superres_unscaled(cm)) return;
assert(!cm->all_lossless);
lock_buffer_pool(pool);
av1_superres_upscale(cm, pool);
unlock_buffer_pool(pool);
}
static void dec_setup_frame_boundary_info(AV1_COMMON *const cm) {
int row, col;
for (row = 0; row < cm->mi_rows; ++row) {
BOUNDARY_TYPE *bi = cm->boundary_info + row * cm->mi_stride;
for (col = 0; col < cm->mi_cols; ++col) {
*bi = 0;
bi++;
}
}
av1_setup_frame_boundary_info(cm);
}
int av1_decode_frame_headers_and_setup(AV1Decoder *pbi,
#if CONFIG_TRAILING_BITS
struct aom_read_bit_buffer *rb,
#endif
const uint8_t *data,
#if !CONFIG_TRAILING_BITS
const uint8_t *data_end,
#endif
const uint8_t **p_data_end) {
AV1_COMMON *const cm = &pbi->common;
const int num_planes = av1_num_planes(cm);
MACROBLOCKD *const xd = &pbi->mb;
#if CONFIG_BITSTREAM_DEBUG
bitstream_queue_set_frame_read(cm->current_video_frame * 2 + cm->show_frame);
#endif
#if CONFIG_MISMATCH_DEBUG
mismatch_move_frame_idx_r();
#endif
for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) {
cm->global_motion[i] = default_warp_params;
cm->cur_frame->global_motion[i] = default_warp_params;
}
xd->global_motion = cm->global_motion;
#if !CONFIG_TRAILING_BITS
struct aom_read_bit_buffer rb;
#endif
read_uncompressed_header(pbi,
#if CONFIG_TRAILING_BITS
rb);
#else
av1_init_read_bit_buffer(pbi, &rb, data, data_end));
#endif
#if CONFIG_TRAILING_BITS
av1_check_trailing_bits(pbi, rb);
#endif
// If cm->single_tile_decoding = 0, the independent decoding of a single tile
// or a section of a frame is not allowed.
if (!cm->single_tile_decoding &&
(pbi->dec_tile_row >= 0 || pbi->dec_tile_col >= 0)) {
pbi->dec_tile_row = -1;
pbi->dec_tile_col = -1;
}
#if CONFIG_TRAILING_BITS
pbi->uncomp_hdr_size = aom_rb_bytes_read(rb);
#else
pbi->uncomp_hdr_size = aom_rb_bytes_read(&rb);
#endif
YV12_BUFFER_CONFIG *new_fb = get_frame_new_buffer(cm);
xd->cur_buf = new_fb;
if (av1_allow_intrabc(cm)) {
av1_setup_scale_factors_for_frame(
&cm->sf_identity, xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height,
xd->cur_buf->y_crop_width, xd->cur_buf->y_crop_height);
}
if (cm->show_existing_frame) {
// showing a frame directly
#if CONFIG_TRAILING_BITS
*p_data_end = data + aom_rb_bytes_read(rb);
#else
*p_data_end = data + aom_rb_bytes_read(&rb);
#endif
if (cm->reset_decoder_state) {
// Use the default frame context values.
*cm->fc = cm->frame_contexts[FRAME_CONTEXT_DEFAULTS];
cm->pre_fc = &cm->frame_contexts[FRAME_CONTEXT_DEFAULTS];
if (!cm->fc->initialized)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
}
return 0;
}
cm->setup_mi(cm);
cm->current_frame_seg_map = cm->cur_frame->seg_map;
av1_setup_motion_field(cm);
av1_setup_block_planes(xd, cm->subsampling_x, cm->subsampling_y, num_planes);
if (cm->primary_ref_frame == PRIMARY_REF_NONE) {
// use the default frame context values
*cm->fc = cm->frame_contexts[FRAME_CONTEXT_DEFAULTS];
cm->pre_fc = &cm->frame_contexts[FRAME_CONTEXT_DEFAULTS];
} else {
*cm->fc = cm->frame_contexts[cm->frame_refs[cm->primary_ref_frame].idx];
cm->pre_fc = &cm->frame_contexts[cm->frame_refs[cm->primary_ref_frame].idx];
}
if (!cm->fc->initialized)
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Uninitialized entropy context.");
av1_zero(cm->counts);
xd->corrupted = 0;
return 0;
}
// Once-per-frame initialization
static void setup_frame_info(AV1Decoder *pbi) {
AV1_COMMON *const cm = &pbi->common;
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
av1_alloc_restoration_buffers(cm);
}
dec_setup_frame_boundary_info(cm);
}
void av1_decode_tg_tiles_and_wrapup(AV1Decoder *pbi, const uint8_t *data,
const uint8_t *data_end,
const uint8_t **p_data_end, int startTile,
int endTile, int initialize_flag) {
AV1_COMMON *const cm = &pbi->common;
MACROBLOCKD *const xd = &pbi->mb;
if (initialize_flag) setup_frame_info(pbi);
*p_data_end = decode_tiles(pbi, data, data_end, startTile, endTile);
const int num_planes = av1_num_planes(cm);
// If the bit stream is monochrome, set the U and V buffers to a constant.
if (num_planes < 3) set_planes_to_neutral_grey(cm, xd, 1);
if (endTile != cm->tile_rows * cm->tile_cols - 1) {
return;
}
if (!(cm->allow_intrabc && NO_FILTER_FOR_IBC)) {
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
av1_loop_restoration_save_boundary_lines(&pbi->cur_buf->buf, cm, 0);
}
if (!cm->skip_loop_filter && !cm->coded_lossless &&
(cm->cdef_bits || cm->cdef_strengths[0] || cm->cdef_uv_strengths[0])) {
av1_cdef_frame(&pbi->cur_buf->buf, cm, &pbi->mb);
}
superres_post_decode(pbi);
if (cm->rst_info[0].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[1].frame_restoration_type != RESTORE_NONE ||
cm->rst_info[2].frame_restoration_type != RESTORE_NONE) {
av1_loop_restoration_save_boundary_lines(&pbi->cur_buf->buf, cm, 1);
av1_loop_restoration_filter_frame((YV12_BUFFER_CONFIG *)xd->cur_buf, cm);
}
}
if (!xd->corrupted) {
if (cm->refresh_frame_context == REFRESH_FRAME_CONTEXT_BACKWARD) {
*cm->fc = pbi->tile_data[cm->largest_tile_id].tctx;
av1_reset_cdf_symbol_counters(cm->fc);
} else {
debug_check_frame_counts(cm);
}
} else {
aom_internal_error(&cm->error, AOM_CODEC_CORRUPT_FRAME,
"Decode failed. Frame data is corrupted.");
}
#if CONFIG_INSPECTION
if (pbi->inspect_cb != NULL) {
(*pbi->inspect_cb)(pbi, pbi->inspect_ctx);
}
#endif
// Non frame parallel update frame context here.
if (!cm->large_scale_tile) {
cm->frame_contexts[cm->new_fb_idx] = *cm->fc;
}
}