|  | /* | 
|  | * Copyright (c) 2020, Alliance for Open Media. All rights reserved | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <arm_neon.h> | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "aom_dsp/arm/aom_convolve8_neon.h" | 
|  | #include "aom_dsp/arm/mem_neon.h" | 
|  | #include "aom_dsp/arm/transpose_neon.h" | 
|  | #include "config/aom_dsp_rtcd.h" | 
|  |  | 
|  | static inline void scaled_convolve_horiz_neon( | 
|  | const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, | 
|  | const ptrdiff_t dst_stride, const InterpKernel *const x_filter, | 
|  | const int x0_q4, const int x_step_q4, int w, int h) { | 
|  | DECLARE_ALIGNED(16, uint8_t, temp[8 * 8]); | 
|  |  | 
|  | if (w == 4) { | 
|  | do { | 
|  | int x_q4 = x0_q4; | 
|  |  | 
|  | // Process a 4x4 tile. | 
|  | for (int r = 0; r < 4; ++r) { | 
|  | const uint8_t *s = &src[x_q4 >> SUBPEL_BITS]; | 
|  |  | 
|  | if (x_q4 & SUBPEL_MASK) { | 
|  | // Halve filter values (all even) to avoid the need for saturating | 
|  | // arithmetic in convolution kernels. | 
|  | const int16x8_t filter = | 
|  | vshrq_n_s16(vld1q_s16(x_filter[x_q4 & SUBPEL_MASK]), 1); | 
|  |  | 
|  | uint8x8_t t0, t1, t2, t3; | 
|  | load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); | 
|  | transpose_elems_inplace_u8_8x4(&t0, &t1, &t2, &t3); | 
|  |  | 
|  | int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); | 
|  | int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); | 
|  | int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); | 
|  | int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); | 
|  | int16x4_t s4 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); | 
|  | int16x4_t s5 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); | 
|  | int16x4_t s6 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); | 
|  | int16x4_t s7 = vget_high_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); | 
|  |  | 
|  | int16x4_t dd0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | uint8x8_t d0 = | 
|  | vqrshrun_n_s16(vcombine_s16(dd0, vdup_n_s16(0)), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8_4x1(&temp[4 * r], d0); | 
|  | } else { | 
|  | // Memcpy for non-subpel locations. | 
|  | s += SUBPEL_TAPS / 2 - 1; | 
|  |  | 
|  | for (int c = 0; c < 4; ++c) { | 
|  | temp[r * 4 + c] = s[c * src_stride]; | 
|  | } | 
|  | } | 
|  | x_q4 += x_step_q4; | 
|  | } | 
|  |  | 
|  | // Transpose the 4x4 result tile and store. | 
|  | uint8x8_t d01 = vld1_u8(temp + 0); | 
|  | uint8x8_t d23 = vld1_u8(temp + 8); | 
|  |  | 
|  | transpose_elems_inplace_u8_4x4(&d01, &d23); | 
|  |  | 
|  | store_u8x4_strided_x2(dst + 0 * dst_stride, 2 * dst_stride, d01); | 
|  | store_u8x4_strided_x2(dst + 1 * dst_stride, 2 * dst_stride, d23); | 
|  |  | 
|  | src += 4 * src_stride; | 
|  | dst += 4 * dst_stride; | 
|  | h -= 4; | 
|  | } while (h > 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // w >= 8 | 
|  | do { | 
|  | int x_q4 = x0_q4; | 
|  | uint8_t *d = dst; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | // Process an 8x8 tile. | 
|  | for (int r = 0; r < 8; ++r) { | 
|  | const uint8_t *s = &src[x_q4 >> SUBPEL_BITS]; | 
|  |  | 
|  | if (x_q4 & SUBPEL_MASK) { | 
|  | // Halve filter values (all even) to avoid the need for saturating | 
|  | // arithmetic in convolution kernels. | 
|  | const int16x8_t filter = | 
|  | vshrq_n_s16(vld1q_s16(x_filter[x_q4 & SUBPEL_MASK]), 1); | 
|  |  | 
|  | uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; | 
|  | load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
|  | transpose_elems_inplace_u8_8x8(&t0, &t1, &t2, &t3, &t4, &t5, &t6, | 
|  | &t7); | 
|  |  | 
|  | int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); | 
|  | int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); | 
|  | int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); | 
|  | int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); | 
|  | int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); | 
|  | int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); | 
|  | int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); | 
|  | int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); | 
|  |  | 
|  | uint8x8_t d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); | 
|  |  | 
|  | vst1_u8(&temp[r * 8], d0); | 
|  | } else { | 
|  | // Memcpy for non-subpel locations. | 
|  | s += SUBPEL_TAPS / 2 - 1; | 
|  |  | 
|  | for (int c = 0; c < 8; ++c) { | 
|  | temp[r * 8 + c] = s[c * src_stride]; | 
|  | } | 
|  | } | 
|  | x_q4 += x_step_q4; | 
|  | } | 
|  |  | 
|  | // Transpose the 8x8 result tile and store. | 
|  | uint8x8_t d0, d1, d2, d3, d4, d5, d6, d7; | 
|  | load_u8_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
|  |  | 
|  | transpose_elems_inplace_u8_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
|  |  | 
|  | store_u8_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); | 
|  |  | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  |  | 
|  | src += 8 * src_stride; | 
|  | dst += 8 * dst_stride; | 
|  | h -= 8; | 
|  | } while (h > 0); | 
|  | } | 
|  |  | 
|  | static inline void scaled_convolve_vert_neon( | 
|  | const uint8_t *src, const ptrdiff_t src_stride, uint8_t *dst, | 
|  | const ptrdiff_t dst_stride, const InterpKernel *const y_filter, | 
|  | const int y0_q4, const int y_step_q4, int w, int h) { | 
|  | int y_q4 = y0_q4; | 
|  |  | 
|  | if (w == 4) { | 
|  | do { | 
|  | const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; | 
|  |  | 
|  | if (y_q4 & SUBPEL_MASK) { | 
|  | // Halve filter values (all even) to avoid the need for saturating | 
|  | // arithmetic in convolution kernels. | 
|  | const int16x8_t filter = | 
|  | vshrq_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1); | 
|  |  | 
|  | uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; | 
|  | load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
|  |  | 
|  | int16x4_t s0 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t0))); | 
|  | int16x4_t s1 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t1))); | 
|  | int16x4_t s2 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t2))); | 
|  | int16x4_t s3 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t3))); | 
|  | int16x4_t s4 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t4))); | 
|  | int16x4_t s5 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t5))); | 
|  | int16x4_t s6 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t6))); | 
|  | int16x4_t s7 = vget_low_s16(vreinterpretq_s16_u16(vmovl_u8(t7))); | 
|  |  | 
|  | int16x4_t dd0 = convolve8_4(s0, s1, s2, s3, s4, s5, s6, s7, filter); | 
|  | // We halved the filter values so -1 from right shift. | 
|  | uint8x8_t d0 = | 
|  | vqrshrun_n_s16(vcombine_s16(dd0, vdup_n_s16(0)), FILTER_BITS - 1); | 
|  |  | 
|  | store_u8_4x1(dst, d0); | 
|  | } else { | 
|  | // Memcpy for non-subpel locations. | 
|  | memcpy(dst, &s[(SUBPEL_TAPS / 2 - 1) * src_stride], 4); | 
|  | } | 
|  |  | 
|  | y_q4 += y_step_q4; | 
|  | dst += dst_stride; | 
|  | } while (--h != 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (w == 8) { | 
|  | do { | 
|  | const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; | 
|  |  | 
|  | if (y_q4 & SUBPEL_MASK) { | 
|  | // Halve filter values (all even) to avoid the need for saturating | 
|  | // arithmetic in convolution kernels. | 
|  | const int16x8_t filter = | 
|  | vshrq_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1); | 
|  |  | 
|  | uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; | 
|  | load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
|  |  | 
|  | int16x8_t s0 = vreinterpretq_s16_u16(vmovl_u8(t0)); | 
|  | int16x8_t s1 = vreinterpretq_s16_u16(vmovl_u8(t1)); | 
|  | int16x8_t s2 = vreinterpretq_s16_u16(vmovl_u8(t2)); | 
|  | int16x8_t s3 = vreinterpretq_s16_u16(vmovl_u8(t3)); | 
|  | int16x8_t s4 = vreinterpretq_s16_u16(vmovl_u8(t4)); | 
|  | int16x8_t s5 = vreinterpretq_s16_u16(vmovl_u8(t5)); | 
|  | int16x8_t s6 = vreinterpretq_s16_u16(vmovl_u8(t6)); | 
|  | int16x8_t s7 = vreinterpretq_s16_u16(vmovl_u8(t7)); | 
|  |  | 
|  | uint8x8_t d0 = convolve8_8(s0, s1, s2, s3, s4, s5, s6, s7, filter); | 
|  |  | 
|  | vst1_u8(dst, d0); | 
|  | } else { | 
|  | // Memcpy for non-subpel locations. | 
|  | memcpy(dst, &s[(SUBPEL_TAPS / 2 - 1) * src_stride], 8); | 
|  | } | 
|  |  | 
|  | y_q4 += y_step_q4; | 
|  | dst += dst_stride; | 
|  | } while (--h != 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // w >= 16 | 
|  | do { | 
|  | const uint8_t *s = &src[(y_q4 >> SUBPEL_BITS) * src_stride]; | 
|  | uint8_t *d = dst; | 
|  | int width = w; | 
|  |  | 
|  | if (y_q4 & SUBPEL_MASK) { | 
|  | do { | 
|  | // Halve filter values (all even) to avoid the need for saturating | 
|  | // arithmetic in convolution kernels. | 
|  | const int16x8_t filter = | 
|  | vshrq_n_s16(vld1q_s16(y_filter[y_q4 & SUBPEL_MASK]), 1); | 
|  |  | 
|  | uint8x16_t t0, t1, t2, t3, t4, t5, t6, t7; | 
|  | load_u8_16x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
|  |  | 
|  | int16x8_t s0[2], s1[2], s2[2], s3[2], s4[2], s5[2], s6[2], s7[2]; | 
|  | s0[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t0))); | 
|  | s1[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t1))); | 
|  | s2[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t2))); | 
|  | s3[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t3))); | 
|  | s4[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t4))); | 
|  | s5[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t5))); | 
|  | s6[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t6))); | 
|  | s7[0] = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(t7))); | 
|  |  | 
|  | s0[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t0))); | 
|  | s1[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t1))); | 
|  | s2[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t2))); | 
|  | s3[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t3))); | 
|  | s4[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t4))); | 
|  | s5[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t5))); | 
|  | s6[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t6))); | 
|  | s7[1] = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(t7))); | 
|  |  | 
|  | uint8x8_t d0 = convolve8_8(s0[0], s1[0], s2[0], s3[0], s4[0], s5[0], | 
|  | s6[0], s7[0], filter); | 
|  | uint8x8_t d1 = convolve8_8(s0[1], s1[1], s2[1], s3[1], s4[1], s5[1], | 
|  | s6[1], s7[1], filter); | 
|  |  | 
|  | vst1q_u8(d, vcombine_u8(d0, d1)); | 
|  |  | 
|  | s += 16; | 
|  | d += 16; | 
|  | width -= 16; | 
|  | } while (width != 0); | 
|  | } else { | 
|  | // Memcpy for non-subpel locations. | 
|  | s += (SUBPEL_TAPS / 2 - 1) * src_stride; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0 = vld1q_u8(s); | 
|  | vst1q_u8(d, s0); | 
|  | s += 16; | 
|  | d += 16; | 
|  | width -= 16; | 
|  | } while (width != 0); | 
|  | } | 
|  |  | 
|  | y_q4 += y_step_q4; | 
|  | dst += dst_stride; | 
|  | } while (--h != 0); | 
|  | } | 
|  |  | 
|  | void aom_scaled_2d_neon(const uint8_t *src, ptrdiff_t src_stride, uint8_t *dst, | 
|  | ptrdiff_t dst_stride, const InterpKernel *filter, | 
|  | int x0_q4, int x_step_q4, int y0_q4, int y_step_q4, | 
|  | int w, int h) { | 
|  | // Fixed size intermediate buffer, im_block, places limits on parameters. | 
|  | // 2d filtering proceeds in 2 steps: | 
|  | //   (1) Interpolate horizontally into an intermediate buffer, temp. | 
|  | //   (2) Interpolate temp vertically to derive the sub-pixel result. | 
|  | // Deriving the maximum number of rows in the im_block buffer (135): | 
|  | // --Smallest scaling factor is x1/2 ==> y_step_q4 = 32 (Normative). | 
|  | // --Largest block size is 64x64 pixels. | 
|  | // --64 rows in the downscaled frame span a distance of (64 - 1) * 32 in the | 
|  | //   original frame (in 1/16th pixel units). | 
|  | // --Must round-up because block may be located at sub-pixel position. | 
|  | // --Require an additional SUBPEL_TAPS rows for the 8-tap filter tails. | 
|  | // --((64 - 1) * 32 + 15) >> 4 + 8 = 135. | 
|  | // --Require an additional 8 rows for the horiz_w8 transpose tail. | 
|  | // When calling in frame scaling function, the smallest scaling factor is x1/4 | 
|  | // ==> y_step_q4 = 64. Since w and h are at most 16, the temp buffer is still | 
|  | // big enough. | 
|  | DECLARE_ALIGNED(16, uint8_t, im_block[(135 + 8) * 64]); | 
|  | const int im_height = | 
|  | (((h - 1) * y_step_q4 + y0_q4) >> SUBPEL_BITS) + SUBPEL_TAPS; | 
|  | const ptrdiff_t im_stride = 64; | 
|  |  | 
|  | assert(w <= 64); | 
|  | assert(h <= 64); | 
|  | assert(y_step_q4 <= 32 || (y_step_q4 <= 64 && h <= 32)); | 
|  | assert(x_step_q4 <= 64); | 
|  |  | 
|  | // Account for needing SUBPEL_TAPS / 2 - 1 lines prior and SUBPEL_TAPS / 2 | 
|  | // lines post both horizontally and vertically. | 
|  | const ptrdiff_t horiz_offset = SUBPEL_TAPS / 2 - 1; | 
|  | const ptrdiff_t vert_offset = (SUBPEL_TAPS / 2 - 1) * src_stride; | 
|  |  | 
|  | scaled_convolve_horiz_neon(src - horiz_offset - vert_offset, src_stride, | 
|  | im_block, im_stride, filter, x0_q4, x_step_q4, w, | 
|  | im_height); | 
|  |  | 
|  | scaled_convolve_vert_neon(im_block, im_stride, dst, dst_stride, filter, y0_q4, | 
|  | y_step_q4, w, h); | 
|  | } |