| /* | 
 |  * Copyright (c) 2016, Alliance for Open Media. All rights reserved. | 
 |  * | 
 |  * This source code is subject to the terms of the BSD 2 Clause License and | 
 |  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
 |  * was not distributed with this source code in the LICENSE file, you can | 
 |  * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
 |  * Media Patent License 1.0 was not distributed with this source code in the | 
 |  * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
 |  */ | 
 |  | 
 | #include <memory.h> | 
 | #include <math.h> | 
 | #include <time.h> | 
 | #include <stdio.h> | 
 | #include <stdbool.h> | 
 | #include <string.h> | 
 | #include <assert.h> | 
 |  | 
 | #include "aom_dsp/flow_estimation/ransac.h" | 
 | #include "aom_dsp/mathutils.h" | 
 | #include "aom_mem/aom_mem.h" | 
 |  | 
 | // TODO(rachelbarker): Remove dependence on code in av1/encoder/ | 
 | #include "av1/encoder/random.h" | 
 |  | 
 | #define MAX_MINPTS 4 | 
 | #define MINPTS_MULTIPLIER 5 | 
 |  | 
 | #define INLIER_THRESHOLD 1.25 | 
 | #define INLIER_THRESHOLD_SQUARED (INLIER_THRESHOLD * INLIER_THRESHOLD) | 
 |  | 
 | // Number of initial models to generate | 
 | #define NUM_TRIALS 20 | 
 |  | 
 | // Number of times to refine the best model found | 
 | #define NUM_REFINES 5 | 
 |  | 
 | // Flag to enable functions for finding TRANSLATION type models. | 
 | // | 
 | // These modes are not considered currently due to a spec bug (see comments | 
 | // in gm_get_motion_vector() in av1/common/mv.h). Thus we don't need to compile | 
 | // the corresponding search functions, but it is nice to keep the source around | 
 | // but disabled, for completeness. | 
 | #define ALLOW_TRANSLATION_MODELS 0 | 
 |  | 
 | typedef struct { | 
 |   int num_inliers; | 
 |   double sse;  // Sum of squared errors of inliers | 
 |   int *inlier_indices; | 
 | } RANSAC_MOTION; | 
 |  | 
 | //////////////////////////////////////////////////////////////////////////////// | 
 | // ransac | 
 | typedef bool (*FindTransformationFunc)(const Correspondence *points, | 
 |                                        const int *indices, int num_indices, | 
 |                                        double *params); | 
 | typedef void (*ScoreModelFunc)(const double *mat, const Correspondence *points, | 
 |                                int num_points, RANSAC_MOTION *model); | 
 |  | 
 | // vtable-like structure which stores all of the information needed by RANSAC | 
 | // for a particular model type | 
 | typedef struct { | 
 |   FindTransformationFunc find_transformation; | 
 |   ScoreModelFunc score_model; | 
 |  | 
 |   // The minimum number of points which can be passed to find_transformation | 
 |   // to generate a model. | 
 |   // | 
 |   // This should be set as small as possible. This is due to an observation | 
 |   // from section 4 of "Optimal Ransac" by A. Hast, J. Nysjö and | 
 |   // A. Marchetti (https://dspace5.zcu.cz/bitstream/11025/6869/1/Hast.pdf): | 
 |   // using the minimum possible number of points in the initial model maximizes | 
 |   // the chance that all of the selected points are inliers. | 
 |   // | 
 |   // That paper proposes a method which can deal with models which are | 
 |   // contaminated by outliers, which helps in cases where the inlier fraction | 
 |   // is low. However, for our purposes, global motion only gives significant | 
 |   // gains when the inlier fraction is high. | 
 |   // | 
 |   // So we do not use the method from this paper, but we do find that | 
 |   // minimizing the number of points used for initial model fitting helps | 
 |   // make the best use of the limited number of models we consider. | 
 |   int minpts; | 
 | } RansacModelInfo; | 
 |  | 
 | #if ALLOW_TRANSLATION_MODELS | 
 | static void score_translation(const double *mat, const Correspondence *points, | 
 |                               int num_points, RANSAC_MOTION *model) { | 
 |   model->num_inliers = 0; | 
 |   model->sse = 0.0; | 
 |  | 
 |   for (int i = 0; i < num_points; ++i) { | 
 |     const double x1 = points[i].x; | 
 |     const double y1 = points[i].y; | 
 |     const double x2 = points[i].rx; | 
 |     const double y2 = points[i].ry; | 
 |  | 
 |     const double proj_x = x1 + mat[0]; | 
 |     const double proj_y = y1 + mat[1]; | 
 |  | 
 |     const double dx = proj_x - x2; | 
 |     const double dy = proj_y - y2; | 
 |     const double sse = dx * dx + dy * dy; | 
 |  | 
 |     if (sse < INLIER_THRESHOLD_SQUARED) { | 
 |       model->inlier_indices[model->num_inliers++] = i; | 
 |       model->sse += sse; | 
 |     } | 
 |   } | 
 | } | 
 | #endif  // ALLOW_TRANSLATION_MODELS | 
 |  | 
 | static void score_affine(const double *mat, const Correspondence *points, | 
 |                          int num_points, RANSAC_MOTION *model) { | 
 |   model->num_inliers = 0; | 
 |   model->sse = 0.0; | 
 |  | 
 |   for (int i = 0; i < num_points; ++i) { | 
 |     const double x1 = points[i].x; | 
 |     const double y1 = points[i].y; | 
 |     const double x2 = points[i].rx; | 
 |     const double y2 = points[i].ry; | 
 |  | 
 |     const double proj_x = mat[2] * x1 + mat[3] * y1 + mat[0]; | 
 |     const double proj_y = mat[4] * x1 + mat[5] * y1 + mat[1]; | 
 |  | 
 |     const double dx = proj_x - x2; | 
 |     const double dy = proj_y - y2; | 
 |     const double sse = dx * dx + dy * dy; | 
 |  | 
 |     if (sse < INLIER_THRESHOLD_SQUARED) { | 
 |       model->inlier_indices[model->num_inliers++] = i; | 
 |       model->sse += sse; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #if ALLOW_TRANSLATION_MODELS | 
 | static bool find_translation(const Correspondence *points, const int *indices, | 
 |                              int num_indices, double *params) { | 
 |   double sumx = 0; | 
 |   double sumy = 0; | 
 |  | 
 |   for (int i = 0; i < num_indices; ++i) { | 
 |     int index = indices[i]; | 
 |     const double sx = points[index].x; | 
 |     const double sy = points[index].y; | 
 |     const double dx = points[index].rx; | 
 |     const double dy = points[index].ry; | 
 |  | 
 |     sumx += dx - sx; | 
 |     sumy += dy - sy; | 
 |   } | 
 |  | 
 |   params[0] = sumx / np; | 
 |   params[1] = sumy / np; | 
 |   params[2] = 1; | 
 |   params[3] = 0; | 
 |   params[4] = 0; | 
 |   params[5] = 1; | 
 |   return true; | 
 | } | 
 | #endif  // ALLOW_TRANSLATION_MODELS | 
 |  | 
 | static bool find_rotzoom(const Correspondence *points, const int *indices, | 
 |                          int num_indices, double *params) { | 
 |   const int n = 4;    // Size of least-squares problem | 
 |   double mat[4 * 4];  // Accumulator for A'A | 
 |   double y[4];        // Accumulator for A'b | 
 |   double a[4];        // Single row of A | 
 |   double b;           // Single element of b | 
 |  | 
 |   least_squares_init(mat, y, n); | 
 |   for (int i = 0; i < num_indices; ++i) { | 
 |     int index = indices[i]; | 
 |     const double sx = points[index].x; | 
 |     const double sy = points[index].y; | 
 |     const double dx = points[index].rx; | 
 |     const double dy = points[index].ry; | 
 |  | 
 |     a[0] = 1; | 
 |     a[1] = 0; | 
 |     a[2] = sx; | 
 |     a[3] = sy; | 
 |     b = dx; | 
 |     least_squares_accumulate(mat, y, a, b, n); | 
 |  | 
 |     a[0] = 0; | 
 |     a[1] = 1; | 
 |     a[2] = sy; | 
 |     a[3] = -sx; | 
 |     b = dy; | 
 |     least_squares_accumulate(mat, y, a, b, n); | 
 |   } | 
 |  | 
 |   // Fill in params[0] .. params[3] with output model | 
 |   if (!least_squares_solve(mat, y, params, n)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Fill in remaining parameters | 
 |   params[4] = -params[3]; | 
 |   params[5] = params[2]; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | static bool find_affine(const Correspondence *points, const int *indices, | 
 |                         int num_indices, double *params) { | 
 |   // Note: The least squares problem for affine models is 6-dimensional, | 
 |   // but it splits into two independent 3-dimensional subproblems. | 
 |   // Solving these two subproblems separately and recombining at the end | 
 |   // results in less total computation than solving the 6-dimensional | 
 |   // problem directly. | 
 |   // | 
 |   // The two subproblems correspond to all the parameters which contribute | 
 |   // to the x output of the model, and all the parameters which contribute | 
 |   // to the y output, respectively. | 
 |  | 
 |   const int n = 3;       // Size of each least-squares problem | 
 |   double mat[2][3 * 3];  // Accumulator for A'A | 
 |   double y[2][3];        // Accumulator for A'b | 
 |   double x[2][3];        // Output vector | 
 |   double a[2][3];        // Single row of A | 
 |   double b[2];           // Single element of b | 
 |  | 
 |   least_squares_init(mat[0], y[0], n); | 
 |   least_squares_init(mat[1], y[1], n); | 
 |   for (int i = 0; i < num_indices; ++i) { | 
 |     int index = indices[i]; | 
 |     const double sx = points[index].x; | 
 |     const double sy = points[index].y; | 
 |     const double dx = points[index].rx; | 
 |     const double dy = points[index].ry; | 
 |  | 
 |     a[0][0] = 1; | 
 |     a[0][1] = sx; | 
 |     a[0][2] = sy; | 
 |     b[0] = dx; | 
 |     least_squares_accumulate(mat[0], y[0], a[0], b[0], n); | 
 |  | 
 |     a[1][0] = 1; | 
 |     a[1][1] = sx; | 
 |     a[1][2] = sy; | 
 |     b[1] = dy; | 
 |     least_squares_accumulate(mat[1], y[1], a[1], b[1], n); | 
 |   } | 
 |  | 
 |   if (!least_squares_solve(mat[0], y[0], x[0], n)) { | 
 |     return false; | 
 |   } | 
 |   if (!least_squares_solve(mat[1], y[1], x[1], n)) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   // Rearrange least squares result to form output model | 
 |   params[0] = x[0][0]; | 
 |   params[1] = x[1][0]; | 
 |   params[2] = x[0][1]; | 
 |   params[3] = x[0][2]; | 
 |   params[4] = x[1][1]; | 
 |   params[5] = x[1][2]; | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | // Return -1 if 'a' is a better motion, 1 if 'b' is better, 0 otherwise. | 
 | static int compare_motions(const void *arg_a, const void *arg_b) { | 
 |   const RANSAC_MOTION *motion_a = (RANSAC_MOTION *)arg_a; | 
 |   const RANSAC_MOTION *motion_b = (RANSAC_MOTION *)arg_b; | 
 |  | 
 |   if (motion_a->num_inliers > motion_b->num_inliers) return -1; | 
 |   if (motion_a->num_inliers < motion_b->num_inliers) return 1; | 
 |   if (motion_a->sse < motion_b->sse) return -1; | 
 |   if (motion_a->sse > motion_b->sse) return 1; | 
 |   return 0; | 
 | } | 
 |  | 
 | static bool is_better_motion(const RANSAC_MOTION *motion_a, | 
 |                              const RANSAC_MOTION *motion_b) { | 
 |   return compare_motions(motion_a, motion_b) < 0; | 
 | } | 
 |  | 
 | // Returns true on success, false on error | 
 | static bool ransac_internal(const Correspondence *matched_points, int npoints, | 
 |                             MotionModel *motion_models, int num_desired_motions, | 
 |                             const RansacModelInfo *model_info, | 
 |                             bool *mem_alloc_failed) { | 
 |   assert(npoints >= 0); | 
 |   int i = 0; | 
 |   int minpts = model_info->minpts; | 
 |   bool ret_val = true; | 
 |  | 
 |   unsigned int seed = (unsigned int)npoints; | 
 |  | 
 |   int indices[MAX_MINPTS] = { 0 }; | 
 |  | 
 |   // Store information for the num_desired_motions best transformations found | 
 |   // and the worst motion among them, as well as the motion currently under | 
 |   // consideration. | 
 |   RANSAC_MOTION *motions, *worst_kept_motion = NULL; | 
 |   RANSAC_MOTION current_motion; | 
 |  | 
 |   // Store the parameters and the indices of the inlier points for the motion | 
 |   // currently under consideration. | 
 |   double params_this_motion[MAX_PARAMDIM]; | 
 |  | 
 |   // Initialize output models, as a fallback in case we can't find a model | 
 |   for (i = 0; i < num_desired_motions; i++) { | 
 |     memcpy(motion_models[i].params, kIdentityParams, | 
 |            MAX_PARAMDIM * sizeof(*(motion_models[i].params))); | 
 |     motion_models[i].num_inliers = 0; | 
 |   } | 
 |  | 
 |   if (npoints < minpts * MINPTS_MULTIPLIER || npoints == 0) { | 
 |     return false; | 
 |   } | 
 |  | 
 |   int min_inliers = AOMMAX((int)(MIN_INLIER_PROB * npoints), minpts); | 
 |  | 
 |   motions = | 
 |       (RANSAC_MOTION *)aom_calloc(num_desired_motions, sizeof(RANSAC_MOTION)); | 
 |  | 
 |   // Allocate one large buffer which will be carved up to store the inlier | 
 |   // indices for the current motion plus the num_desired_motions many | 
 |   // output models | 
 |   // This allows us to keep the allocation/deallocation logic simple, without | 
 |   // having to (for example) check that `motions` is non-null before allocating | 
 |   // the inlier arrays | 
 |   int *inlier_buffer = (int *)aom_malloc(sizeof(*inlier_buffer) * npoints * | 
 |                                          (num_desired_motions + 1)); | 
 |  | 
 |   if (!(motions && inlier_buffer)) { | 
 |     ret_val = false; | 
 |     *mem_alloc_failed = true; | 
 |     goto finish_ransac; | 
 |   } | 
 |  | 
 |   // Once all our allocations are known-good, we can fill in our structures | 
 |   worst_kept_motion = motions; | 
 |  | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     motions[i].inlier_indices = inlier_buffer + i * npoints; | 
 |   } | 
 |   memset(¤t_motion, 0, sizeof(current_motion)); | 
 |   current_motion.inlier_indices = inlier_buffer + num_desired_motions * npoints; | 
 |  | 
 |   for (int trial_count = 0; trial_count < NUM_TRIALS; trial_count++) { | 
 |     lcg_pick(npoints, minpts, indices, &seed); | 
 |  | 
 |     if (!model_info->find_transformation(matched_points, indices, minpts, | 
 |                                          params_this_motion)) { | 
 |       continue; | 
 |     } | 
 |  | 
 |     model_info->score_model(params_this_motion, matched_points, npoints, | 
 |                             ¤t_motion); | 
 |  | 
 |     if (current_motion.num_inliers < min_inliers) { | 
 |       // Reject models with too few inliers | 
 |       continue; | 
 |     } | 
 |  | 
 |     if (is_better_motion(¤t_motion, worst_kept_motion)) { | 
 |       // This motion is better than the worst currently kept motion. Remember | 
 |       // the inlier points and sse. The parameters for each kept motion | 
 |       // will be recomputed later using only the inliers. | 
 |       worst_kept_motion->num_inliers = current_motion.num_inliers; | 
 |       worst_kept_motion->sse = current_motion.sse; | 
 |  | 
 |       // Rather than copying the (potentially many) inlier indices from | 
 |       // current_motion.inlier_indices to worst_kept_motion->inlier_indices, | 
 |       // we can swap the underlying pointers. | 
 |       // | 
 |       // This is okay because the next time current_motion.inlier_indices | 
 |       // is used will be in the next trial, where we ignore its previous | 
 |       // contents anyway. And both arrays will be deallocated together at the | 
 |       // end of this function, so there are no lifetime issues. | 
 |       int *tmp = worst_kept_motion->inlier_indices; | 
 |       worst_kept_motion->inlier_indices = current_motion.inlier_indices; | 
 |       current_motion.inlier_indices = tmp; | 
 |  | 
 |       // Determine the new worst kept motion and its num_inliers and sse. | 
 |       for (i = 0; i < num_desired_motions; ++i) { | 
 |         if (is_better_motion(worst_kept_motion, &motions[i])) { | 
 |           worst_kept_motion = &motions[i]; | 
 |         } | 
 |       } | 
 |     } | 
 |   } | 
 |  | 
 |   // Sort the motions, best first. | 
 |   qsort(motions, num_desired_motions, sizeof(RANSAC_MOTION), compare_motions); | 
 |  | 
 |   // Refine each of the best N models using iterative estimation. | 
 |   // | 
 |   // The idea here is loosely based on the iterative method from | 
 |   // "Locally Optimized RANSAC" by O. Chum, J. Matas and Josef Kittler: | 
 |   // https://cmp.felk.cvut.cz/ftp/articles/matas/chum-dagm03.pdf | 
 |   // | 
 |   // However, we implement a simpler version than their proposal, and simply | 
 |   // refit the model repeatedly until the number of inliers stops increasing, | 
 |   // with a cap on the number of iterations to defend against edge cases which | 
 |   // only improve very slowly. | 
 |   for (i = 0; i < num_desired_motions; ++i) { | 
 |     if (motions[i].num_inliers <= 0) { | 
 |       // Output model has already been initialized to the identity model, | 
 |       // so just skip setup | 
 |       continue; | 
 |     } | 
 |  | 
 |     bool bad_model = false; | 
 |     for (int refine_count = 0; refine_count < NUM_REFINES; refine_count++) { | 
 |       int num_inliers = motions[i].num_inliers; | 
 |       assert(num_inliers >= min_inliers); | 
 |  | 
 |       if (!model_info->find_transformation(matched_points, | 
 |                                            motions[i].inlier_indices, | 
 |                                            num_inliers, params_this_motion)) { | 
 |         // In the unlikely event that this model fitting fails, we don't have a | 
 |         // good fallback. So leave this model set to the identity model | 
 |         bad_model = true; | 
 |         break; | 
 |       } | 
 |  | 
 |       // Score the newly generated model | 
 |       model_info->score_model(params_this_motion, matched_points, npoints, | 
 |                               ¤t_motion); | 
 |  | 
 |       // At this point, there are three possibilities: | 
 |       // 1) If we found more inliers, keep refining. | 
 |       // 2) If we found the same number of inliers but a lower SSE, we want to | 
 |       //    keep the new model, but further refinement is unlikely to gain much. | 
 |       //    So commit to this new model | 
 |       // 3) It is possible, but very unlikely, that the new model will have | 
 |       //    fewer inliers. If it does happen, we probably just lost a few | 
 |       //    borderline inliers. So treat the same as case (2). | 
 |       if (current_motion.num_inliers > motions[i].num_inliers) { | 
 |         motions[i].num_inliers = current_motion.num_inliers; | 
 |         motions[i].sse = current_motion.sse; | 
 |         int *tmp = motions[i].inlier_indices; | 
 |         motions[i].inlier_indices = current_motion.inlier_indices; | 
 |         current_motion.inlier_indices = tmp; | 
 |       } else { | 
 |         // Refined model is no better, so stop | 
 |         // This shouldn't be significantly worse than the previous model, | 
 |         // so it's fine to use the parameters in params_this_motion. | 
 |         // This saves us from having to cache the previous iteration's params. | 
 |         break; | 
 |       } | 
 |     } | 
 |  | 
 |     if (bad_model) continue; | 
 |  | 
 |     // Fill in output struct | 
 |     memcpy(motion_models[i].params, params_this_motion, | 
 |            MAX_PARAMDIM * sizeof(*motion_models[i].params)); | 
 |     for (int j = 0; j < motions[i].num_inliers; j++) { | 
 |       int index = motions[i].inlier_indices[j]; | 
 |       const Correspondence *corr = &matched_points[index]; | 
 |       motion_models[i].inliers[2 * j + 0] = (int)rint(corr->x); | 
 |       motion_models[i].inliers[2 * j + 1] = (int)rint(corr->y); | 
 |     } | 
 |     motion_models[i].num_inliers = motions[i].num_inliers; | 
 |   } | 
 |  | 
 | finish_ransac: | 
 |   aom_free(inlier_buffer); | 
 |   aom_free(motions); | 
 |  | 
 |   return ret_val; | 
 | } | 
 |  | 
 | static const RansacModelInfo ransac_model_info[TRANS_TYPES] = { | 
 |   // IDENTITY | 
 |   { NULL, NULL, 0 }, | 
 | // TRANSLATION | 
 | #if ALLOW_TRANSLATION_MODELS | 
 |   { find_translation, score_translation, 1 }, | 
 | #else | 
 |   { NULL, NULL, 0 }, | 
 | #endif | 
 |   // ROTZOOM | 
 |   { find_rotzoom, score_affine, 2 }, | 
 |   // AFFINE | 
 |   { find_affine, score_affine, 3 }, | 
 | }; | 
 |  | 
 | // Returns true on success, false on error | 
 | bool ransac(const Correspondence *matched_points, int npoints, | 
 |             TransformationType type, MotionModel *motion_models, | 
 |             int num_desired_motions, bool *mem_alloc_failed) { | 
 | #if ALLOW_TRANSLATION_MODELS | 
 |   assert(type > IDENTITY && type < TRANS_TYPES); | 
 | #else | 
 |   assert(type > TRANSLATION && type < TRANS_TYPES); | 
 | #endif  // ALLOW_TRANSLATION_MODELS | 
 |  | 
 |   return ransac_internal(matched_points, npoints, motion_models, | 
 |                          num_desired_motions, &ransac_model_info[type], | 
 |                          mem_alloc_failed); | 
 | } |