|  | /* | 
|  | * Copyright (c) 2024, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <assert.h> | 
|  | #include <arm_neon.h> | 
|  | #include <stddef.h> | 
|  | #include <stdint.h> | 
|  |  | 
|  | #include "config/aom_config.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | #include "aom_dsp/aom_dsp_common.h" | 
|  | #include "aom_dsp/aom_filter.h" | 
|  | #include "aom_dsp/arm/mem_neon.h" | 
|  | #include "aom_dsp/arm/transpose_neon.h" | 
|  | #include "aom_ports/mem.h" | 
|  | #include "av1/common/arm/convolve_scale_neon.h" | 
|  | #include "av1/common/convolve.h" | 
|  | #include "av1/common/enums.h" | 
|  | #include "av1/common/filter.h" | 
|  |  | 
|  | // clang-format off | 
|  | DECLARE_ALIGNED(16, static const uint8_t, kScale2DotProdPermuteTbl[32]) = { | 
|  | 0, 1, 2, 3, 2, 3, 4, 5, 4, 5,  6,  7,  6,  7,  8,  9, | 
|  | 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 | 
|  | }; | 
|  | // clang-format on | 
|  |  | 
|  | static inline int16x4_t convolve8_4_h(const uint8x8_t s0, const uint8x8_t s1, | 
|  | const uint8x8_t s2, const uint8x8_t s3, | 
|  | const int8x8_t filter, | 
|  | const int32x4_t horiz_const) { | 
|  | const int8x16_t filters = vcombine_s8(filter, filter); | 
|  |  | 
|  | uint8x16_t s01 = vcombine_u8(s0, s1); | 
|  | uint8x16_t s23 = vcombine_u8(s2, s3); | 
|  |  | 
|  | int32x4_t sum01 = vusdotq_s32(horiz_const, s01, filters); | 
|  | int32x4_t sum23 = vusdotq_s32(horiz_const, s23, filters); | 
|  |  | 
|  | int32x4_t sum = vpaddq_s32(sum01, sum23); | 
|  |  | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vshrn_n_s32(sum, ROUND0_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline int16x8_t convolve8_8_h(const uint8x8_t s0, const uint8x8_t s1, | 
|  | const uint8x8_t s2, const uint8x8_t s3, | 
|  | const uint8x8_t s4, const uint8x8_t s5, | 
|  | const uint8x8_t s6, const uint8x8_t s7, | 
|  | const int8x8_t filter, | 
|  | const int32x4_t horiz_const) { | 
|  | const int8x16_t filters = vcombine_s8(filter, filter); | 
|  |  | 
|  | uint8x16_t s01 = vcombine_u8(s0, s1); | 
|  | uint8x16_t s23 = vcombine_u8(s2, s3); | 
|  | uint8x16_t s45 = vcombine_u8(s4, s5); | 
|  | uint8x16_t s67 = vcombine_u8(s6, s7); | 
|  |  | 
|  | int32x4_t sum01 = vusdotq_s32(horiz_const, s01, filters); | 
|  | int32x4_t sum23 = vusdotq_s32(horiz_const, s23, filters); | 
|  | int32x4_t sum45 = vusdotq_s32(horiz_const, s45, filters); | 
|  | int32x4_t sum67 = vusdotq_s32(horiz_const, s67, filters); | 
|  |  | 
|  | int32x4_t sum0123 = vpaddq_s32(sum01, sum23); | 
|  | int32x4_t sum4567 = vpaddq_s32(sum45, sum67); | 
|  |  | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), | 
|  | vshrn_n_s32(sum4567, ROUND0_BITS - 1)); | 
|  | } | 
|  |  | 
|  | static inline void convolve_horiz_scale_neon_i8mm(const uint8_t *src, | 
|  | int src_stride, int16_t *dst, | 
|  | int dst_stride, int w, int h, | 
|  | const int16_t *x_filter, | 
|  | const int subpel_x_qn, | 
|  | const int x_step_qn) { | 
|  | DECLARE_ALIGNED(16, int16_t, temp[8 * 8]); | 
|  | const int bd = 8; | 
|  | // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
|  | // shifts - which are generally faster than rounding shifts on modern CPUs. | 
|  | // Divide the total by 4: we halved the filter values and will use a pairwise | 
|  | // add in the convolution kernel. | 
|  | const int32x4_t horiz_offset = vdupq_n_s32( | 
|  | ((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))) >> 2); | 
|  |  | 
|  | if (w == 4) { | 
|  | do { | 
|  | int x_qn = subpel_x_qn; | 
|  |  | 
|  | // Process a 4x4 tile. | 
|  | for (int r = 0; r < 4; r++) { | 
|  | const uint8_t *const s = &src[x_qn >> SCALE_SUBPEL_BITS]; | 
|  |  | 
|  | const ptrdiff_t filter_offset = | 
|  | SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
|  | // Filter values are all even so halve them to fit in int8_t. | 
|  | const int8x8_t filter = | 
|  | vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1); | 
|  |  | 
|  | uint8x8_t t0, t1, t2, t3; | 
|  | load_u8_8x4(s, src_stride, &t0, &t1, &t2, &t3); | 
|  |  | 
|  | int16x4_t d0 = convolve8_4_h(t0, t1, t2, t3, filter, horiz_offset); | 
|  |  | 
|  | vst1_s16(&temp[r * 4], d0); | 
|  | x_qn += x_step_qn; | 
|  | } | 
|  |  | 
|  | // Transpose the 4x4 result tile and store. | 
|  | int16x4_t d0, d1, d2, d3; | 
|  | load_s16_4x4(temp, 4, &d0, &d1, &d2, &d3); | 
|  |  | 
|  | transpose_elems_inplace_s16_4x4(&d0, &d1, &d2, &d3); | 
|  |  | 
|  | store_s16_4x4(dst, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | dst += 4 * dst_stride; | 
|  | src += 4 * src_stride; | 
|  | h -= 4; | 
|  | } while (h > 0); | 
|  | } else { | 
|  | do { | 
|  | int x_qn = subpel_x_qn; | 
|  | int16_t *d = dst; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | // Process an 8x8 tile. | 
|  | for (int r = 0; r < 8; r++) { | 
|  | const uint8_t *const s = &src[(x_qn >> SCALE_SUBPEL_BITS)]; | 
|  |  | 
|  | const ptrdiff_t filter_offset = | 
|  | SUBPEL_TAPS * ((x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
|  | // Filter values are all even so halve them to fit in int8_t. | 
|  | const int8x8_t filter = | 
|  | vshrn_n_s16(vld1q_s16(x_filter + filter_offset), 1); | 
|  |  | 
|  | uint8x8_t t0, t1, t2, t3, t4, t5, t6, t7; | 
|  | load_u8_8x8(s, src_stride, &t0, &t1, &t2, &t3, &t4, &t5, &t6, &t7); | 
|  |  | 
|  | int16x8_t d0 = convolve8_8_h(t0, t1, t2, t3, t4, t5, t6, t7, filter, | 
|  | horiz_offset); | 
|  |  | 
|  | vst1q_s16(&temp[r * 8], d0); | 
|  |  | 
|  | x_qn += x_step_qn; | 
|  | } | 
|  |  | 
|  | // Transpose the 8x8 result tile and store. | 
|  | int16x8_t d0, d1, d2, d3, d4, d5, d6, d7; | 
|  | load_s16_8x8(temp, 8, &d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
|  |  | 
|  | transpose_elems_inplace_s16_8x8(&d0, &d1, &d2, &d3, &d4, &d5, &d6, &d7); | 
|  |  | 
|  | store_s16_8x8(d, dst_stride, d0, d1, d2, d3, d4, d5, d6, d7); | 
|  |  | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  |  | 
|  | dst += 8 * dst_stride; | 
|  | src += 8 * src_stride; | 
|  | h -= 8; | 
|  | } while (h > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline int16x4_t convolve8_4_h_scale_2(uint8x16_t samples, | 
|  | const int8x8_t filters, | 
|  | const int32x4_t horiz_const, | 
|  | const uint8x16x2_t permute_tbl) { | 
|  | // Permute samples ready for dot product. | 
|  | // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5,  6,  7,  6,  7,  8,  9 } | 
|  | // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 } | 
|  | uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples, permute_tbl.val[1]) }; | 
|  |  | 
|  | int32x4_t sum = vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); | 
|  | sum = vusdotq_lane_s32(sum, perm_samples[1], filters, 1); | 
|  |  | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vshrn_n_s32(sum, ROUND0_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline int16x8_t convolve8_8_h_scale_2(uint8x16_t samples[2], | 
|  | const int8x8_t filters, | 
|  | const int32x4_t horiz_const, | 
|  | const uint8x16x2_t permute_tbl) { | 
|  | // Permute samples ready for dot product. | 
|  | // { 0, 1, 2, 3, 2, 3, 4, 5, 4, 5,  6,  7,  6,  7,  8,  9 } | 
|  | // { 4, 5, 6, 7, 6, 7, 8, 9, 8, 9, 10, 11, 10, 11, 12, 13 } | 
|  | uint8x16_t perm_samples[4] = { vqtbl1q_u8(samples[0], permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples[0], permute_tbl.val[1]), | 
|  | vqtbl1q_u8(samples[1], permute_tbl.val[0]), | 
|  | vqtbl1q_u8(samples[1], permute_tbl.val[1]) }; | 
|  |  | 
|  | // First 4 output values. | 
|  | int32x4_t sum0123 = | 
|  | vusdotq_lane_s32(horiz_const, perm_samples[0], filters, 0); | 
|  | sum0123 = vusdotq_lane_s32(sum0123, perm_samples[1], filters, 1); | 
|  |  | 
|  | // Second 4 output values. | 
|  | int32x4_t sum4567 = | 
|  | vusdotq_lane_s32(horiz_const, perm_samples[2], filters, 0); | 
|  | sum4567 = vusdotq_lane_s32(sum4567, perm_samples[3], filters, 1); | 
|  |  | 
|  | // We halved the filter values so -1 from right shift. | 
|  | return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), | 
|  | vshrn_n_s32(sum4567, ROUND0_BITS - 1)); | 
|  | } | 
|  |  | 
|  | static inline void convolve_horiz_scale_2_neon_i8mm( | 
|  | const uint8_t *src, int src_stride, int16_t *dst, int dst_stride, int w, | 
|  | int h, const int16_t *x_filter) { | 
|  | const int bd = 8; | 
|  | // A shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
|  | // shifts - which are generally faster than rounding shifts on modern CPUs. | 
|  | // The additional -1 is needed because we are halving the filter values. | 
|  | const int32x4_t horiz_offset = | 
|  | vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) + (1 << (ROUND0_BITS - 2))); | 
|  |  | 
|  | const uint8x16x2_t permute_tbl = vld1q_u8_x2(kScale2DotProdPermuteTbl); | 
|  | // Filter values are all even so halve them to fit in int8_t. | 
|  | const int8x8_t filter = vshrn_n_s16(vld1q_s16(x_filter), 1); | 
|  |  | 
|  | if (w == 4) { | 
|  | do { | 
|  | const uint8_t *s = src; | 
|  | int16_t *d = dst; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x4_t d0 = | 
|  | convolve8_4_h_scale_2(s0, filter, horiz_offset, permute_tbl); | 
|  | int16x4_t d1 = | 
|  | convolve8_4_h_scale_2(s1, filter, horiz_offset, permute_tbl); | 
|  | int16x4_t d2 = | 
|  | convolve8_4_h_scale_2(s2, filter, horiz_offset, permute_tbl); | 
|  | int16x4_t d3 = | 
|  | convolve8_4_h_scale_2(s3, filter, horiz_offset, permute_tbl); | 
|  |  | 
|  | store_s16_4x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 4; | 
|  | width -= 4; | 
|  | } while (width != 0); | 
|  |  | 
|  | dst += 4 * dst_stride; | 
|  | src += 4 * src_stride; | 
|  | h -= 4; | 
|  | } while (h > 0); | 
|  | } else { | 
|  | do { | 
|  | const uint8_t *s = src; | 
|  | int16_t *d = dst; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0[2], s1[2], s2[2], s3[2]; | 
|  | load_u8_16x4(s, src_stride, &s0[0], &s1[0], &s2[0], &s3[0]); | 
|  | load_u8_16x4(s + 8, src_stride, &s0[1], &s1[1], &s2[1], &s3[1]); | 
|  |  | 
|  | int16x8_t d0 = | 
|  | convolve8_8_h_scale_2(s0, filter, horiz_offset, permute_tbl); | 
|  | int16x8_t d1 = | 
|  | convolve8_8_h_scale_2(s1, filter, horiz_offset, permute_tbl); | 
|  | int16x8_t d2 = | 
|  | convolve8_8_h_scale_2(s2, filter, horiz_offset, permute_tbl); | 
|  | int16x8_t d3 = | 
|  | convolve8_8_h_scale_2(s3, filter, horiz_offset, permute_tbl); | 
|  |  | 
|  | store_s16_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 16; | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  |  | 
|  | dst += 4 * dst_stride; | 
|  | src += 4 * src_stride; | 
|  | h -= 4; | 
|  | } while (h > 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_convolve_2d_scale_neon_i8mm(const uint8_t *src, int src_stride, | 
|  | uint8_t *dst, int dst_stride, int w, int h, | 
|  | const InterpFilterParams *filter_params_x, | 
|  | const InterpFilterParams *filter_params_y, | 
|  | const int subpel_x_qn, const int x_step_qn, | 
|  | const int subpel_y_qn, const int y_step_qn, | 
|  | ConvolveParams *conv_params) { | 
|  | if (w < 4 || h < 4) { | 
|  | av1_convolve_2d_scale_c(src, src_stride, dst, dst_stride, w, h, | 
|  | filter_params_x, filter_params_y, subpel_x_qn, | 
|  | x_step_qn, subpel_y_qn, y_step_qn, conv_params); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // For the interpolation 8-tap filters are used. | 
|  | assert(filter_params_y->taps <= 8 && filter_params_x->taps <= 8); | 
|  |  | 
|  | DECLARE_ALIGNED(32, int16_t, | 
|  | im_block[(2 * MAX_SB_SIZE + MAX_FILTER_TAP) * MAX_SB_SIZE]); | 
|  | int im_h = (((h - 1) * y_step_qn + subpel_y_qn) >> SCALE_SUBPEL_BITS) + | 
|  | filter_params_y->taps; | 
|  | int im_stride = MAX_SB_SIZE; | 
|  | CONV_BUF_TYPE *dst16 = conv_params->dst; | 
|  | const int dst16_stride = conv_params->dst_stride; | 
|  |  | 
|  | // Account for needing filter_taps / 2 - 1 lines prior and filter_taps / 2 | 
|  | // lines post both horizontally and vertically. | 
|  | const ptrdiff_t horiz_offset = filter_params_x->taps / 2 - 1; | 
|  | const ptrdiff_t vert_offset = (filter_params_y->taps / 2 - 1) * src_stride; | 
|  |  | 
|  | // Horizontal filter | 
|  | if (x_step_qn != 2 * (1 << SCALE_SUBPEL_BITS)) { | 
|  | convolve_horiz_scale_neon_i8mm( | 
|  | src - horiz_offset - vert_offset, src_stride, im_block, im_stride, w, | 
|  | im_h, filter_params_x->filter_ptr, subpel_x_qn, x_step_qn); | 
|  | } else { | 
|  | assert(subpel_x_qn < (1 << SCALE_SUBPEL_BITS)); | 
|  | // The filter index is calculated using the | 
|  | // ((subpel_x_qn + x * x_step_qn) & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS | 
|  | // equation, where the values of x are from 0 to w. If x_step_qn is a | 
|  | // multiple of SCALE_SUBPEL_MASK we can leave it out of the equation. | 
|  | const ptrdiff_t filter_offset = | 
|  | SUBPEL_TAPS * ((subpel_x_qn & SCALE_SUBPEL_MASK) >> SCALE_EXTRA_BITS); | 
|  | const int16_t *x_filter = filter_params_x->filter_ptr + filter_offset; | 
|  |  | 
|  | // The source index is calculated using the (subpel_x_qn + x * x_step_qn) >> | 
|  | // SCALE_SUBPEL_BITS, where the values of x are from 0 to w. If subpel_x_qn | 
|  | // < (1 << SCALE_SUBPEL_BITS) and x_step_qn % (1 << SCALE_SUBPEL_BITS) == 0, | 
|  | // the source index can be determined using the value x * (x_step_qn / | 
|  | // (1 << SCALE_SUBPEL_BITS)). | 
|  | convolve_horiz_scale_2_neon_i8mm(src - horiz_offset - vert_offset, | 
|  | src_stride, im_block, im_stride, w, im_h, | 
|  | x_filter); | 
|  | } | 
|  |  | 
|  | // Vertical filter | 
|  | if (filter_params_y->interp_filter == MULTITAP_SHARP) { | 
|  | if (UNLIKELY(conv_params->is_compound)) { | 
|  | if (conv_params->do_average) { | 
|  | if (conv_params->use_dist_wtd_comp_avg) { | 
|  | compound_dist_wtd_convolve_vert_scale_8tap_neon( | 
|  | im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, | 
|  | filter_params_y->filter_ptr, conv_params, subpel_y_qn, y_step_qn); | 
|  | } else { | 
|  | compound_avg_convolve_vert_scale_8tap_neon( | 
|  | im_block, im_stride, dst, dst_stride, dst16, dst16_stride, w, h, | 
|  | filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
|  | } | 
|  | } else { | 
|  | compound_convolve_vert_scale_8tap_neon( | 
|  | im_block, im_stride, dst16, dst16_stride, w, h, | 
|  | filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
|  | } | 
|  | } else { | 
|  | convolve_vert_scale_8tap_neon(im_block, im_stride, dst, dst_stride, w, h, | 
|  | filter_params_y->filter_ptr, subpel_y_qn, | 
|  | y_step_qn); | 
|  | } | 
|  | } else { | 
|  | if (UNLIKELY(conv_params->is_compound)) { | 
|  | if (conv_params->do_average) { | 
|  | if (conv_params->use_dist_wtd_comp_avg) { | 
|  | compound_dist_wtd_convolve_vert_scale_6tap_neon( | 
|  | im_block + im_stride, im_stride, dst, dst_stride, dst16, | 
|  | dst16_stride, w, h, filter_params_y->filter_ptr, conv_params, | 
|  | subpel_y_qn, y_step_qn); | 
|  | } else { | 
|  | compound_avg_convolve_vert_scale_6tap_neon( | 
|  | im_block + im_stride, im_stride, dst, dst_stride, dst16, | 
|  | dst16_stride, w, h, filter_params_y->filter_ptr, subpel_y_qn, | 
|  | y_step_qn); | 
|  | } | 
|  | } else { | 
|  | compound_convolve_vert_scale_6tap_neon( | 
|  | im_block + im_stride, im_stride, dst16, dst16_stride, w, h, | 
|  | filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
|  | } | 
|  | } else { | 
|  | convolve_vert_scale_6tap_neon( | 
|  | im_block + im_stride, im_stride, dst, dst_stride, w, h, | 
|  | filter_params_y->filter_ptr, subpel_y_qn, y_step_qn); | 
|  | } | 
|  | } | 
|  | } |