|  | /* | 
|  | * Copyright (c) 2023, Alliance for Open Media. All rights reserved. | 
|  | * | 
|  | * This source code is subject to the terms of the BSD 2 Clause License and | 
|  | * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License | 
|  | * was not distributed with this source code in the LICENSE file, you can | 
|  | * obtain it at www.aomedia.org/license/software. If the Alliance for Open | 
|  | * Media Patent License 1.0 was not distributed with this source code in the | 
|  | * PATENTS file, you can obtain it at www.aomedia.org/license/patent. | 
|  | */ | 
|  |  | 
|  | #include <arm_neon.h> | 
|  | #include <assert.h> | 
|  |  | 
|  | #include "aom_dsp/arm/mem_neon.h" | 
|  | #include "av1/common/arm/compound_convolve_neon.h" | 
|  | #include "config/aom_config.h" | 
|  | #include "config/av1_rtcd.h" | 
|  |  | 
|  | DECLARE_ALIGNED(16, static const uint8_t, dot_prod_permute_tbl[48]) = { | 
|  | 0, 1, 2,  3,  1, 2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6, | 
|  | 4, 5, 6,  7,  5, 6,  7,  8,  6,  7,  8,  9,  7,  8,  9,  10, | 
|  | 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 | 
|  | }; | 
|  |  | 
|  | static inline int16x4_t convolve4_4_2d_h(uint8x16_t samples, | 
|  | const int8x8_t x_filter, | 
|  | const int32x4_t correction, | 
|  | const uint8x16_t range_limit, | 
|  | const uint8x16_t permute_tbl) { | 
|  | // Clamp sample range to [-128, 127] for 8-bit signed dot product. | 
|  | int8x16_t clamped_samples = | 
|  | vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); | 
|  |  | 
|  | // Permute samples ready for dot product. | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl); | 
|  |  | 
|  | // Accumulate dot product into 'correction' to account for range clamp. | 
|  | int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, x_filter, 0); | 
|  |  | 
|  | // We halved the convolution filter values so -1 from the right shift. | 
|  | return vshrn_n_s32(sum, ROUND0_BITS - 1); | 
|  | } | 
|  |  | 
|  | static inline int16x8_t convolve8_8_2d_h(uint8x16_t samples, | 
|  | const int8x8_t x_filter, | 
|  | const int32x4_t correction, | 
|  | const uint8x16_t range_limit, | 
|  | const uint8x16x3_t permute_tbl) { | 
|  | int8x16_t clamped_samples, permuted_samples[3]; | 
|  | int32x4_t sum[2]; | 
|  |  | 
|  | // Clamp sample range to [-128, 127] for 8-bit signed dot product. | 
|  | clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); | 
|  |  | 
|  | // Permute samples ready for dot product. */ | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); | 
|  | // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 } | 
|  | permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); | 
|  | // { 8,  9, 10, 11,  9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } | 
|  | permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]); | 
|  |  | 
|  | // Accumulate dot product into 'correction' to account for range clamp. | 
|  | // First 4 output values. | 
|  | sum[0] = vdotq_lane_s32(correction, permuted_samples[0], x_filter, 0); | 
|  | sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], x_filter, 1); | 
|  | // Second 4 output values. | 
|  | sum[1] = vdotq_lane_s32(correction, permuted_samples[1], x_filter, 0); | 
|  | sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], x_filter, 1); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | // We halved the convolution filter values so -1 from the right shift. | 
|  | return vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1), | 
|  | vshrn_n_s32(sum[1], ROUND0_BITS - 1)); | 
|  | } | 
|  |  | 
|  | static inline void dist_wtd_convolve_2d_horiz_neon_dotprod( | 
|  | const uint8_t *src, int src_stride, int16_t *im_block, const int im_stride, | 
|  | const int16_t *x_filter_ptr, const int im_h, int w) { | 
|  | const int bd = 8; | 
|  | // Dot product constants and other shims. | 
|  | const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); | 
|  | // This shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding shifts | 
|  | // - which are generally faster than rounding shifts on modern CPUs. | 
|  | const int32_t horiz_const = | 
|  | ((1 << (bd + FILTER_BITS - 1)) + (1 << (ROUND0_BITS - 1))); | 
|  | // Halve the total because we will halve the filter values. | 
|  | const int32x4_t correction = | 
|  | vdupq_n_s32(((128 << FILTER_BITS) + horiz_const) / 2); | 
|  | const uint8x16_t range_limit = vdupq_n_u8(128); | 
|  |  | 
|  | const uint8_t *src_ptr = src; | 
|  | int16_t *dst_ptr = im_block; | 
|  | int dst_stride = im_stride; | 
|  | int height = im_h; | 
|  |  | 
|  | if (w == 4) { | 
|  | const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); | 
|  | // 4-tap filters are used for blocks having width <= 4. | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter = | 
|  | vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); | 
|  |  | 
|  | src_ptr += 2; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x4_t d0 = | 
|  | convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl); | 
|  | int16x4_t d1 = | 
|  | convolve4_4_2d_h(s1, x_filter, correction, range_limit, permute_tbl); | 
|  | int16x4_t d2 = | 
|  | convolve4_4_2d_h(s2, x_filter, correction, range_limit, permute_tbl); | 
|  | int16x4_t d3 = | 
|  | convolve4_4_2d_h(s3, x_filter, correction, range_limit, permute_tbl); | 
|  |  | 
|  | store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height > 4); | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0 = vld1q_u8(src_ptr); | 
|  |  | 
|  | int16x4_t d0 = | 
|  | convolve4_4_2d_h(s0, x_filter, correction, range_limit, permute_tbl); | 
|  |  | 
|  | vst1_s16(dst_ptr, d0); | 
|  |  | 
|  | src_ptr += src_stride; | 
|  | dst_ptr += dst_stride; | 
|  | } while (--height != 0); | 
|  | } else { | 
|  | const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src_ptr; | 
|  | int16_t *d = dst_ptr; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit, | 
|  | permute_tbl); | 
|  | int16x8_t d1 = convolve8_8_2d_h(s1, x_filter, correction, range_limit, | 
|  | permute_tbl); | 
|  | int16x8_t d2 = convolve8_8_2d_h(s2, x_filter, correction, range_limit, | 
|  | permute_tbl); | 
|  | int16x8_t d3 = convolve8_8_2d_h(s3, x_filter, correction, range_limit, | 
|  | permute_tbl); | 
|  |  | 
|  | store_s16_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width > 0); | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height > 4); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src_ptr; | 
|  | int16_t *d = dst_ptr; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0 = vld1q_u8(s); | 
|  |  | 
|  | int16x8_t d0 = convolve8_8_2d_h(s0, x_filter, correction, range_limit, | 
|  | permute_tbl); | 
|  |  | 
|  | vst1q_s16(d, d0); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width > 0); | 
|  | src_ptr += src_stride; | 
|  | dst_ptr += dst_stride; | 
|  | } while (--height != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_dist_wtd_convolve_2d_neon_dotprod( | 
|  | const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, | 
|  | int h, const InterpFilterParams *filter_params_x, | 
|  | const InterpFilterParams *filter_params_y, const int subpel_x_qn, | 
|  | const int subpel_y_qn, ConvolveParams *conv_params) { | 
|  | assert(w % 4 == 0); | 
|  | assert(h % 4 == 0); | 
|  |  | 
|  | DECLARE_ALIGNED(16, int16_t, | 
|  | im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]); | 
|  |  | 
|  | const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); | 
|  | const int clamped_y_taps = y_filter_taps < 6 ? 6 : y_filter_taps; | 
|  |  | 
|  | const int im_h = h + clamped_y_taps - 1; | 
|  | const int im_stride = MAX_SB_SIZE; | 
|  | const int vert_offset = clamped_y_taps / 2 - 1; | 
|  | const int horiz_offset = filter_params_x->taps / 2 - 1; | 
|  | const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset; | 
|  | const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( | 
|  | filter_params_x, subpel_x_qn & SUBPEL_MASK); | 
|  | const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( | 
|  | filter_params_y, subpel_y_qn & SUBPEL_MASK); | 
|  |  | 
|  | const int16x8_t y_filter = vld1q_s16(y_filter_ptr); | 
|  |  | 
|  | dist_wtd_convolve_2d_horiz_neon_dotprod(src_ptr, src_stride, im_block, | 
|  | im_stride, x_filter_ptr, im_h, w); | 
|  |  | 
|  | if (clamped_y_taps == 6) { | 
|  | if (conv_params->do_average) { | 
|  | if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { | 
|  | dist_wtd_convolve_2d_vert_6tap_dist_wtd_avg_neon( | 
|  | im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h, | 
|  | w); | 
|  | } else { | 
|  | dist_wtd_convolve_2d_vert_6tap_avg_neon(im_block, im_stride, dst8, | 
|  | dst8_stride, conv_params, | 
|  | y_filter, h, w); | 
|  | } | 
|  | } else { | 
|  | dist_wtd_convolve_2d_vert_6tap_neon(im_block, im_stride, conv_params, | 
|  | y_filter, h, w); | 
|  | } | 
|  | } else { | 
|  | if (conv_params->do_average) { | 
|  | if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { | 
|  | dist_wtd_convolve_2d_vert_8tap_dist_wtd_avg_neon( | 
|  | im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h, | 
|  | w); | 
|  | } else { | 
|  | dist_wtd_convolve_2d_vert_8tap_avg_neon(im_block, im_stride, dst8, | 
|  | dst8_stride, conv_params, | 
|  | y_filter, h, w); | 
|  | } | 
|  | } else { | 
|  | dist_wtd_convolve_2d_vert_8tap_neon(im_block, im_stride, conv_params, | 
|  | y_filter, h, w); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline uint16x4_t convolve4_4_x(uint8x16_t samples, | 
|  | const int8x8_t x_filter, | 
|  | const int32x4_t correction, | 
|  | const uint8x16_t range_limit, | 
|  | const uint8x16_t permute_tbl) { | 
|  | // Clamp sample range to [-128, 127] for 8-bit signed dot product. | 
|  | int8x16_t clamped_samples = | 
|  | vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); | 
|  |  | 
|  | // Permute samples ready for dot product. | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | int8x16_t permuted_samples = vqtbl1q_s8(clamped_samples, permute_tbl); | 
|  |  | 
|  | // Accumulate dot product into 'correction' to account for range clamp. | 
|  | int32x4_t sum = vdotq_lane_s32(correction, permuted_samples, x_filter, 0); | 
|  |  | 
|  | // We halved the convolution filter values so -1 from the right shift. | 
|  | return vreinterpret_u16_s16(vshrn_n_s32(sum, ROUND0_BITS - 1)); | 
|  | } | 
|  |  | 
|  | static inline uint16x8_t convolve8_8_x(uint8x16_t samples, | 
|  | const int8x8_t x_filter, | 
|  | const int32x4_t correction, | 
|  | const uint8x16_t range_limit, | 
|  | const uint8x16x3_t permute_tbl) { | 
|  | int8x16_t clamped_samples, permuted_samples[3]; | 
|  | int32x4_t sum[2]; | 
|  |  | 
|  | // Clamp sample range to [-128, 127] for 8-bit signed dot product. | 
|  | clamped_samples = vreinterpretq_s8_u8(vsubq_u8(samples, range_limit)); | 
|  |  | 
|  | // Permute samples ready for dot product. */ | 
|  | // { 0,  1,  2,  3,  1,  2,  3,  4,  2,  3,  4,  5,  3,  4,  5,  6 } | 
|  | permuted_samples[0] = vqtbl1q_s8(clamped_samples, permute_tbl.val[0]); | 
|  | // { 4,  5,  6,  7,  5,  6,  7,  8,  6,  7,  8,  9,  7,  8,  9, 10 } | 
|  | permuted_samples[1] = vqtbl1q_s8(clamped_samples, permute_tbl.val[1]); | 
|  | // { 8,  9, 10, 11,  9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } | 
|  | permuted_samples[2] = vqtbl1q_s8(clamped_samples, permute_tbl.val[2]); | 
|  |  | 
|  | // Accumulate dot product into 'correction' to account for range clamp. | 
|  | // First 4 output values. | 
|  | sum[0] = vdotq_lane_s32(correction, permuted_samples[0], x_filter, 0); | 
|  | sum[0] = vdotq_lane_s32(sum[0], permuted_samples[1], x_filter, 1); | 
|  | // Second 4 output values. | 
|  | sum[1] = vdotq_lane_s32(correction, permuted_samples[1], x_filter, 0); | 
|  | sum[1] = vdotq_lane_s32(sum[1], permuted_samples[2], x_filter, 1); | 
|  |  | 
|  | // Narrow and re-pack. | 
|  | // We halved the convolution filter values so -1 from the right shift. | 
|  | int16x8_t res = vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1), | 
|  | vshrn_n_s32(sum[1], ROUND0_BITS - 1)); | 
|  | return vreinterpretq_u16_s16(res); | 
|  | } | 
|  |  | 
|  | static inline void dist_wtd_convolve_x_dist_wtd_avg_neon_dotprod( | 
|  | const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, | 
|  | int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, | 
|  | ConvolveParams *conv_params) { | 
|  | assert(w % 4 == 0); | 
|  | assert(h % 4 == 0); | 
|  |  | 
|  | const int bd = 8; | 
|  | const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; | 
|  | const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + | 
|  | (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); | 
|  | const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); | 
|  |  | 
|  | const uint16_t fwd_offset = conv_params->fwd_offset; | 
|  | const uint16_t bck_offset = conv_params->bck_offset; | 
|  |  | 
|  | // Horizontal filter. | 
|  | const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( | 
|  | filter_params_x, subpel_x_qn & SUBPEL_MASK); | 
|  | const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); | 
|  |  | 
|  | // Dot-product constants and other shims. | 
|  | const uint8x16_t range_limit = vdupq_n_u8(128); | 
|  | // Fold round_offset into the dot-product filter correction constant. The | 
|  | // additional shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
|  | // shifts - which are generally faster than rounding shifts on modern CPUs. | 
|  | // Halve the total because we will halve the filter values. | 
|  | int32x4_t correction = | 
|  | vdupq_n_s32(((128 << FILTER_BITS) + (round_offset << ROUND0_BITS) + | 
|  | (1 << (ROUND0_BITS - 1))) / | 
|  | 2); | 
|  |  | 
|  | const int horiz_offset = filter_params_x->taps / 2 - 1; | 
|  | const uint8_t *src_ptr = src - horiz_offset; | 
|  | CONV_BUF_TYPE *dst_ptr = conv_params->dst; | 
|  | uint8_t *dst8_ptr = dst8; | 
|  | int dst_stride = conv_params->dst_stride; | 
|  | int height = h; | 
|  |  | 
|  | if (w == 4) { | 
|  | const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); | 
|  | // 4-tap filters are used for blocks having width <= 4. | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter = | 
|  | vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); | 
|  |  | 
|  | src_ptr += 2; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint16x4_t d0 = | 
|  | convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x4_t d1 = | 
|  | convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x4_t d2 = | 
|  | convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x4_t d3 = | 
|  | convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl); | 
|  |  | 
|  | uint16x4_t dd0, dd1, dd2, dd3; | 
|  | load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3); | 
|  |  | 
|  | uint8x8_t d01_u8, d23_u8; | 
|  | compute_dist_wtd_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset, | 
|  | bck_offset, round_offset_vec, &d01_u8, &d23_u8); | 
|  |  | 
|  | store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d01_u8); | 
|  | store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d23_u8); | 
|  |  | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | dst8_ptr += 4 * dst8_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | } else { | 
|  | const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src_ptr; | 
|  | CONV_BUF_TYPE *d = dst_ptr; | 
|  | uint8_t *d_u8 = dst8_ptr; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint16x8_t d0 = | 
|  | convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x8_t d1 = | 
|  | convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x8_t d2 = | 
|  | convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x8_t d3 = | 
|  | convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl); | 
|  |  | 
|  | uint16x8_t dd0, dd1, dd2, dd3; | 
|  | load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); | 
|  |  | 
|  | uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; | 
|  | compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset, | 
|  | bck_offset, round_offset_vec, &d0_u8, &d1_u8, | 
|  | &d2_u8, &d3_u8); | 
|  |  | 
|  | store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | d_u8 += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | dst8_ptr += 4 * dst8_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void dist_wtd_convolve_x_avg_neon_dotprod( | 
|  | const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, | 
|  | int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, | 
|  | ConvolveParams *conv_params) { | 
|  | assert(w % 4 == 0); | 
|  | assert(h % 4 == 0); | 
|  |  | 
|  | const int bd = 8; | 
|  | const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; | 
|  | const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + | 
|  | (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); | 
|  | const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); | 
|  |  | 
|  | // Horizontal filter. | 
|  | const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( | 
|  | filter_params_x, subpel_x_qn & SUBPEL_MASK); | 
|  | const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); | 
|  |  | 
|  | // Dot-product constants and other shims. | 
|  | const uint8x16_t range_limit = vdupq_n_u8(128); | 
|  | // Fold round_offset into the dot-product filter correction constant. The | 
|  | // additional shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
|  | // shifts - which are generally faster than rounding shifts on modern CPUs. | 
|  | // Halve the total because we will halve the filter values. | 
|  | int32x4_t correction = | 
|  | vdupq_n_s32(((128 << FILTER_BITS) + (round_offset << ROUND0_BITS) + | 
|  | (1 << (ROUND0_BITS - 1))) / | 
|  | 2); | 
|  |  | 
|  | const int horiz_offset = filter_params_x->taps / 2 - 1; | 
|  | const uint8_t *src_ptr = src - horiz_offset; | 
|  | CONV_BUF_TYPE *dst_ptr = conv_params->dst; | 
|  | uint8_t *dst8_ptr = dst8; | 
|  | int dst_stride = conv_params->dst_stride; | 
|  | int height = h; | 
|  |  | 
|  | if (w == 4) { | 
|  | const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); | 
|  | // 4-tap filters are used for blocks having width <= 4. | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter = | 
|  | vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); | 
|  |  | 
|  | src_ptr += 2; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint16x4_t d0 = | 
|  | convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x4_t d1 = | 
|  | convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x4_t d2 = | 
|  | convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x4_t d3 = | 
|  | convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl); | 
|  |  | 
|  | uint16x4_t dd0, dd1, dd2, dd3; | 
|  | load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3); | 
|  |  | 
|  | uint8x8_t d01_u8, d23_u8; | 
|  | compute_basic_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, | 
|  | round_offset_vec, &d01_u8, &d23_u8); | 
|  |  | 
|  | store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d01_u8); | 
|  | store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d23_u8); | 
|  |  | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | dst8_ptr += 4 * dst8_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | } else { | 
|  | const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src_ptr; | 
|  | CONV_BUF_TYPE *d = dst_ptr; | 
|  | uint8_t *d_u8 = dst8_ptr; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint16x8_t d0 = | 
|  | convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x8_t d1 = | 
|  | convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x8_t d2 = | 
|  | convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x8_t d3 = | 
|  | convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl); | 
|  |  | 
|  | uint16x8_t dd0, dd1, dd2, dd3; | 
|  | load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); | 
|  |  | 
|  | uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; | 
|  | compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, | 
|  | round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8); | 
|  |  | 
|  | store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | d_u8 += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | dst8_ptr += 4 * dst8_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static inline void dist_wtd_convolve_x_neon_dotprod( | 
|  | const uint8_t *src, int src_stride, int w, int h, | 
|  | const InterpFilterParams *filter_params_x, const int subpel_x_qn, | 
|  | ConvolveParams *conv_params) { | 
|  | assert(w % 4 == 0); | 
|  | assert(h % 4 == 0); | 
|  |  | 
|  | const int bd = 8; | 
|  | const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; | 
|  | const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + | 
|  | (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); | 
|  |  | 
|  | // Horizontal filter. | 
|  | const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( | 
|  | filter_params_x, subpel_x_qn & SUBPEL_MASK); | 
|  | const int16x8_t x_filter_s16 = vld1q_s16(x_filter_ptr); | 
|  |  | 
|  | // Dot-product constants and other shims. | 
|  | const uint8x16_t range_limit = vdupq_n_u8(128); | 
|  | // Fold round_offset into the dot-product filter correction constant. The | 
|  | // additional shim of 1 << (ROUND0_BITS - 1) enables us to use non-rounding | 
|  | // shifts - which are generally faster than rounding shifts on modern CPUs. | 
|  | // Halve the total because we will halve the vilter values. | 
|  | int32x4_t correction = | 
|  | vdupq_n_s32(((128 << FILTER_BITS) + (round_offset << ROUND0_BITS) + | 
|  | (1 << (ROUND0_BITS - 1))) / | 
|  | 2); | 
|  |  | 
|  | const int horiz_offset = filter_params_x->taps / 2 - 1; | 
|  | const uint8_t *src_ptr = src - horiz_offset; | 
|  | CONV_BUF_TYPE *dst_ptr = conv_params->dst; | 
|  | int dst_stride = conv_params->dst_stride; | 
|  | int height = h; | 
|  |  | 
|  | if (w == 4) { | 
|  | const uint8x16_t permute_tbl = vld1q_u8(dot_prod_permute_tbl); | 
|  | // 4-tap filters are used for blocks having width <= 4. | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter = | 
|  | vshrn_n_s16(vcombine_s16(vld1_s16(x_filter_ptr + 2), vdup_n_s16(0)), 1); | 
|  |  | 
|  | src_ptr += 2; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint16x4_t d0 = | 
|  | convolve4_4_x(s0, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x4_t d1 = | 
|  | convolve4_4_x(s1, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x4_t d2 = | 
|  | convolve4_4_x(s2, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x4_t d3 = | 
|  | convolve4_4_x(s3, x_filter, correction, range_limit, permute_tbl); | 
|  |  | 
|  | store_u16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | } else { | 
|  | const uint8x16x3_t permute_tbl = vld1q_u8_x3(dot_prod_permute_tbl); | 
|  | // Filter values are even, so halve to reduce intermediate precision reqs. | 
|  | const int8x8_t x_filter = vshrn_n_s16(x_filter_s16, 1); | 
|  |  | 
|  | do { | 
|  | const uint8_t *s = src_ptr; | 
|  | CONV_BUF_TYPE *d = dst_ptr; | 
|  | int width = w; | 
|  |  | 
|  | do { | 
|  | uint8x16_t s0, s1, s2, s3; | 
|  | load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); | 
|  |  | 
|  | uint16x8_t d0 = | 
|  | convolve8_8_x(s0, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x8_t d1 = | 
|  | convolve8_8_x(s1, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x8_t d2 = | 
|  | convolve8_8_x(s2, x_filter, correction, range_limit, permute_tbl); | 
|  | uint16x8_t d3 = | 
|  | convolve8_8_x(s3, x_filter, correction, range_limit, permute_tbl); | 
|  |  | 
|  | store_u16_8x4(d, dst_stride, d0, d1, d2, d3); | 
|  |  | 
|  | s += 8; | 
|  | d += 8; | 
|  | width -= 8; | 
|  | } while (width != 0); | 
|  | src_ptr += 4 * src_stride; | 
|  | dst_ptr += 4 * dst_stride; | 
|  | height -= 4; | 
|  | } while (height != 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | void av1_dist_wtd_convolve_x_neon_dotprod( | 
|  | const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, | 
|  | int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, | 
|  | ConvolveParams *conv_params) { | 
|  | if (conv_params->do_average) { | 
|  | if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { | 
|  | dist_wtd_convolve_x_dist_wtd_avg_neon_dotprod( | 
|  | src, src_stride, dst8, dst8_stride, w, h, filter_params_x, | 
|  | subpel_x_qn, conv_params); | 
|  | } else { | 
|  | dist_wtd_convolve_x_avg_neon_dotprod(src, src_stride, dst8, dst8_stride, | 
|  | w, h, filter_params_x, subpel_x_qn, | 
|  | conv_params); | 
|  | } | 
|  | } else { | 
|  | dist_wtd_convolve_x_neon_dotprod(src, src_stride, w, h, filter_params_x, | 
|  | subpel_x_qn, conv_params); | 
|  | } | 
|  | } |