| /* |
| * Copyright (c) 2023, Alliance for Open Media. All rights reserved. |
| * |
| * This source code is subject to the terms of the BSD 2 Clause License and |
| * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License |
| * was not distributed with this source code in the LICENSE file, you can |
| * obtain it at www.aomedia.org/license/software. If the Alliance for Open |
| * Media Patent License 1.0 was not distributed with this source code in the |
| * PATENTS file, you can obtain it at www.aomedia.org/license/patent. |
| */ |
| |
| #include <arm_neon.h> |
| #include <assert.h> |
| |
| #include "aom_dsp/arm/mem_neon.h" |
| #include "aom_dsp/arm/transpose_neon.h" |
| #include "av1/common/arm/compound_convolve_neon.h" |
| #include "config/aom_config.h" |
| #include "config/av1_rtcd.h" |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kDotProdPermuteTbl[48]) = { |
| 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, |
| 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10, |
| 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kMatMul6PermuteTbl[32]) = { |
| // clang-format off |
| 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9, |
| 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 |
| // clang-format on |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kMatMul8PermuteTbl[32]) = { |
| // clang-format off |
| 1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 10, |
| 5, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14 |
| // clang-format on |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kFilterPermuteTbl[16]) = { |
| // clang-format off |
| 1, 2, 3, 4, 5, 6, 7, 16, 16, 1, 2, 3, 4, 5, 6, 7 |
| // clang-format on |
| }; |
| |
| DECLARE_ALIGNED(16, static const uint8_t, kDotProdMergeBlockTbl[48]) = { |
| // clang-format off |
| // Shift left and insert new last column in transposed 4x4 block. |
| 1, 2, 3, 16, 5, 6, 7, 20, 9, 10, 11, 24, 13, 14, 15, 28, |
| // Shift left and insert two new columns in transposed 4x4 block. |
| 2, 3, 16, 17, 6, 7, 20, 21, 10, 11, 24, 25, 14, 15, 28, 29, |
| // Shift left and insert three new columns in transposed 4x4 block. |
| 3, 16, 17, 18, 7, 20, 21, 22, 11, 24, 25, 26, 15, 28, 29, 30 |
| // clang-format on |
| }; |
| |
| static inline int16x4_t convolve6_4_2d_h(uint8x16_t samples, |
| const int8x16_t x_filter, |
| const uint8x16_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl); |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum = vusmmlaq_s32(horiz_const, permuted_samples, x_filter); |
| |
| // We halved the convolution filter values so -1 from the right shift. |
| return vshrn_n_s32(sum, ROUND0_BITS - 1); |
| } |
| |
| static inline int16x8_t convolve6_8_2d_h(uint8x16_t samples, |
| const int8x16_t x_filter, |
| const uint8x16x2_t permute_tbl, |
| const int32x4_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } |
| uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]) }; |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum0123 = vusmmlaq_s32(horiz_const, permuted_samples[0], x_filter); |
| int32x4_t sum4567 = vusmmlaq_s32(horiz_const, permuted_samples[1], x_filter); |
| |
| // Narrow and re-pack. |
| // We halved the convolution filter values so -1 from the right shift. |
| return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), |
| vshrn_n_s32(sum4567, ROUND0_BITS - 1)); |
| } |
| |
| static inline void dist_wtd_convolve_2d_horiz_6tap_neon_i8mm( |
| const uint8_t *src, int src_stride, int16_t *im_block, const int im_stride, |
| const int16_t *x_filter_ptr, const int im_h, int w) { |
| const int bd = 8; |
| // A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // (The extra -1 is needed because we halved the filter values.) |
| const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) + |
| (1 << ((ROUND0_BITS - 1) - 1))); |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t x_filter = |
| vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); |
| |
| const uint8_t *src_ptr = src; |
| int16_t *dst_ptr = im_block; |
| int dst_stride = im_stride; |
| int height = im_h; |
| |
| if (w == 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl); |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x4_t d0 = convolve6_4_2d_h(s0, x_filter, permute_tbl, horiz_const); |
| int16x4_t d1 = convolve6_4_2d_h(s1, x_filter, permute_tbl, horiz_const); |
| int16x4_t d2 = convolve6_4_2d_h(s2, x_filter, permute_tbl, horiz_const); |
| int16x4_t d3 = convolve6_4_2d_h(s3, x_filter, permute_tbl, horiz_const); |
| |
| store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3); |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| height -= 4; |
| } while (height > 4); |
| |
| do { |
| uint8x16_t s0 = vld1q_u8(src_ptr); |
| |
| int16x4_t d0 = convolve6_4_2d_h(s0, x_filter, permute_tbl, horiz_const); |
| |
| vst1_s16(dst_ptr, d0); |
| |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--height != 0); |
| } else { |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x8_t d0 = convolve6_8_2d_h(s0, x_filter, permute_tbl, horiz_const); |
| int16x8_t d1 = convolve6_8_2d_h(s1, x_filter, permute_tbl, horiz_const); |
| int16x8_t d2 = convolve6_8_2d_h(s2, x_filter, permute_tbl, horiz_const); |
| int16x8_t d3 = convolve6_8_2d_h(s3, x_filter, permute_tbl, horiz_const); |
| |
| store_s16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width > 0); |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| height -= 4; |
| } while (height > 4); |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0 = vld1q_u8(s); |
| |
| int16x8_t d0 = convolve6_8_2d_h(s0, x_filter, permute_tbl, horiz_const); |
| |
| vst1q_s16(d, d0); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width > 0); |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--height != 0); |
| } |
| } |
| |
| static inline int16x8_t convolve8_8_2d_h(uint8x16_t samples, |
| const int8x16_t x_filter, |
| const uint8x8_t f0, |
| const uint8x16x2_t permute_tbl, |
| const uint16x8_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 10 } |
| // { 5, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14 } |
| uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]) }; |
| |
| // Calculate partial 7-tap convolution. |
| int32x4_t sum0123 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[0], x_filter); |
| int32x4_t sum4567 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[1], x_filter); |
| uint16x8_t sum = vreinterpretq_u16_s16( |
| vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567))); |
| |
| // Apply tap 0 and accumulate. |
| sum = vmlsl_u8(sum, vget_low_u8(samples), f0); |
| |
| sum = vaddq_u16(sum, horiz_const); |
| |
| // We halved the convolution filter values so -1 from the right shift. |
| return vreinterpretq_s16_u16(vshrq_n_u16(sum, ROUND0_BITS - 1)); |
| } |
| |
| static inline void dist_wtd_convolve_2d_horiz_8tap_neon_i8mm( |
| const uint8_t *src, int src_stride, int16_t *im_block, const int im_stride, |
| const int16_t *x_filter_ptr, const int im_h, int w) { |
| const int bd = 8; |
| // A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // (The extra -1 is needed because we halved the filter values.) |
| const uint16x8_t horiz_const = vdupq_n_u16((1 << (bd + FILTER_BITS - 2)) + |
| (1 << ((ROUND0_BITS - 1) - 1))); |
| |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul8PermuteTbl); |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 } |
| const uint8x16_t filter_idx = vld1q_u8(kFilterPermuteTbl); |
| const int8x16_t x_filter = |
| vqtbl1q_s8(vcombine_s8(x_filter_s8, vdup_n_s8(0)), filter_idx); |
| |
| // Since f0 is always negative and s0 is unsigned, subtract (unsigned) s0 * |
| // -f0 to avoid signed overflow. |
| const uint8x8_t f0 = vdup_n_u8(-x_filter_ptr[0] >> 1); |
| |
| const uint8_t *src_ptr = src; |
| int16_t *dst_ptr = im_block; |
| int dst_stride = im_stride; |
| int height = im_h; |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| int16x8_t d0 = |
| convolve8_8_2d_h(s0, x_filter, f0, permute_tbl, horiz_const); |
| int16x8_t d1 = |
| convolve8_8_2d_h(s1, x_filter, f0, permute_tbl, horiz_const); |
| int16x8_t d2 = |
| convolve8_8_2d_h(s2, x_filter, f0, permute_tbl, horiz_const); |
| int16x8_t d3 = |
| convolve8_8_2d_h(s3, x_filter, f0, permute_tbl, horiz_const); |
| |
| store_s16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width > 0); |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| height -= 4; |
| } while (height > 4); |
| |
| do { |
| const uint8_t *s = src_ptr; |
| int16_t *d = dst_ptr; |
| int width = w; |
| |
| do { |
| uint8x16_t s0 = vld1q_u8(s); |
| |
| int16x8_t d0 = |
| convolve8_8_2d_h(s0, x_filter, f0, permute_tbl, horiz_const); |
| |
| vst1q_s16(d, d0); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width > 0); |
| src_ptr += src_stride; |
| dst_ptr += dst_stride; |
| } while (--height != 0); |
| } |
| |
| void av1_dist_wtd_convolve_2d_neon_i8mm( |
| const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, |
| int h, const InterpFilterParams *filter_params_x, |
| const InterpFilterParams *filter_params_y, const int subpel_x_qn, |
| const int subpel_y_qn, ConvolveParams *conv_params) { |
| assert(w % 4 == 0); |
| assert(h % 4 == 0); |
| |
| DECLARE_ALIGNED(16, int16_t, |
| im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]); |
| |
| const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn); |
| const int clamped_x_taps = x_filter_taps < 6 ? 6 : x_filter_taps; |
| const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn); |
| const int clamped_y_taps = y_filter_taps < 6 ? 6 : y_filter_taps; |
| |
| const int im_h = h + clamped_y_taps - 1; |
| const int im_stride = MAX_SB_SIZE; |
| const int vert_offset = clamped_y_taps / 2 - 1; |
| const int horiz_offset = clamped_x_taps / 2 - 1; |
| const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset; |
| const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_y, subpel_y_qn & SUBPEL_MASK); |
| |
| const int16x8_t y_filter = vld1q_s16(y_filter_ptr); |
| |
| if (clamped_x_taps == 6) { |
| dist_wtd_convolve_2d_horiz_6tap_neon_i8mm(src_ptr, src_stride, im_block, |
| im_stride, x_filter_ptr, im_h, w); |
| } else { |
| dist_wtd_convolve_2d_horiz_8tap_neon_i8mm(src_ptr, src_stride, im_block, |
| im_stride, x_filter_ptr, im_h, w); |
| } |
| |
| if (clamped_y_taps == 6) { |
| if (conv_params->do_average) { |
| if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { |
| dist_wtd_convolve_2d_vert_6tap_dist_wtd_avg_neon( |
| im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h, |
| w); |
| } else { |
| dist_wtd_convolve_2d_vert_6tap_avg_neon(im_block, im_stride, dst8, |
| dst8_stride, conv_params, |
| y_filter, h, w); |
| } |
| } else { |
| dist_wtd_convolve_2d_vert_6tap_neon(im_block, im_stride, conv_params, |
| y_filter, h, w); |
| } |
| } else { |
| if (conv_params->do_average) { |
| if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { |
| dist_wtd_convolve_2d_vert_8tap_dist_wtd_avg_neon( |
| im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h, |
| w); |
| } else { |
| dist_wtd_convolve_2d_vert_8tap_avg_neon(im_block, im_stride, dst8, |
| dst8_stride, conv_params, |
| y_filter, h, w); |
| } |
| } else { |
| dist_wtd_convolve_2d_vert_8tap_neon(im_block, im_stride, conv_params, |
| y_filter, h, w); |
| } |
| } |
| } |
| |
| static inline uint16x4_t convolve6_4_x(uint8x16_t samples, |
| const int8x16_t x_filter, |
| const uint8x16_t permute_tbl, |
| const int32x4_t round_offset) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl); |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum = vusmmlaq_s32(round_offset, permuted_samples, x_filter); |
| |
| // We halved the convolution filter values so -1 from the right shift. |
| return vreinterpret_u16_s16(vshrn_n_s32(sum, ROUND0_BITS - 1)); |
| } |
| |
| static inline uint16x8_t convolve6_8_x(uint8x16_t samples, |
| const int8x16_t x_filter, |
| const uint8x16x2_t permute_tbl, |
| const int32x4_t round_offset) { |
| // Permute samples ready for matrix multiply. |
| // { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 } |
| // { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 } |
| uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]) }; |
| |
| // These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix |
| // (filter), destructively accumulating into the destination register. |
| int32x4_t sum0123 = vusmmlaq_s32(round_offset, permuted_samples[0], x_filter); |
| int32x4_t sum4567 = vusmmlaq_s32(round_offset, permuted_samples[1], x_filter); |
| |
| // Narrow and re-pack. |
| // We halved the convolution filter values so -1 from the right shift. |
| int16x8_t res = vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1), |
| vshrn_n_s32(sum4567, ROUND0_BITS - 1)); |
| return vreinterpretq_u16_s16(res); |
| } |
| |
| static inline uint16x8_t convolve8_8_x_usdot(uint8x16_t samples, |
| const int8x8_t x_filter, |
| const uint8x16x3_t permute_tbl, |
| const int32x4_t round_offset) { |
| uint8x16_t permuted_samples[3]; |
| int32x4_t sum[2]; |
| |
| // Permute samples ready for dot product. |
| // { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 } |
| permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]); |
| // { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 } |
| permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]); |
| // { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 } |
| permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]); |
| |
| // First 4 output values. |
| sum[0] = vusdotq_lane_s32(round_offset, permuted_samples[0], x_filter, 0); |
| sum[0] = vusdotq_lane_s32(sum[0], permuted_samples[1], x_filter, 1); |
| // Second 4 output values. |
| sum[1] = vusdotq_lane_s32(round_offset, permuted_samples[1], x_filter, 0); |
| sum[1] = vusdotq_lane_s32(sum[1], permuted_samples[2], x_filter, 1); |
| |
| // Narrow and re-pack. |
| // We halved the convolution filter values so -1 from the right shift. |
| int16x8_t res = vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1), |
| vshrn_n_s32(sum[1], ROUND0_BITS - 1)); |
| return vreinterpretq_u16_s16(res); |
| } |
| |
| static inline uint16x8_t convolve8_8_x_usmmla(uint8x16_t samples, |
| const int8x16_t x_filter, |
| const uint8x8_t f0, |
| const uint8x16x2_t permute_tbl, |
| const uint16x8_t horiz_const) { |
| // Permute samples ready for matrix multiply. |
| // { 1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 10 } |
| // { 5, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14 } |
| uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]), |
| vqtbl1q_u8(samples, permute_tbl.val[1]) }; |
| |
| // Calculate partial 7-tap convolution. |
| int32x4_t sum0123 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[0], x_filter); |
| int32x4_t sum4567 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[1], x_filter); |
| uint16x8_t sum = vreinterpretq_u16_s16( |
| vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567))); |
| |
| // Apply tap 0 and accumulate. |
| sum = vmlsl_u8(sum, vget_low_u8(samples), f0); |
| |
| sum = vaddq_u16(sum, horiz_const); |
| |
| // We halved the convolution filter values so -1 from the right shift. |
| return vshrq_n_u16(sum, ROUND0_BITS - 1); |
| } |
| |
| static inline void dist_wtd_convolve_x_dist_wtd_avg_6tap_neon_i8mm( |
| const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride, |
| uint8_t *dst8, int dst8_stride, int w, int h, const int16_t *x_filter_ptr, |
| const uint16_t fwd_offset, const uint16_t bck_offset) { |
| assert(w % 4 == 0); |
| assert(h % 4 == 0); |
| |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| // A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // (The extra -1 is needed because we halved the filter values.) |
| const int32x4_t round_offset_shim = vdupq_n_s32( |
| (round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1))); |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t x_filter = |
| vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); |
| |
| if (w == 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl); |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint16x4_t d0 = |
| convolve6_4_x(s0, x_filter, permute_tbl, round_offset_shim); |
| uint16x4_t d1 = |
| convolve6_4_x(s1, x_filter, permute_tbl, round_offset_shim); |
| uint16x4_t d2 = |
| convolve6_4_x(s2, x_filter, permute_tbl, round_offset_shim); |
| uint16x4_t d3 = |
| convolve6_4_x(s3, x_filter, permute_tbl, round_offset_shim); |
| |
| uint16x4_t dd0, dd1, dd2, dd3; |
| load_u16_4x4(dst, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d01_u8, d23_u8; |
| compute_dist_wtd_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset, |
| bck_offset, round_offset_vec, &d01_u8, &d23_u8); |
| |
| store_u8x4_strided_x2(dst8 + 0 * dst8_stride, dst8_stride, d01_u8); |
| store_u8x4_strided_x2(dst8 + 2 * dst8_stride, dst8_stride, d23_u8); |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| dst8 += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); |
| do { |
| const uint8_t *s = src; |
| uint16_t *d = dst; |
| uint8_t *d_u8 = dst8; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint16x8_t d0 = |
| convolve6_8_x(s0, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d1 = |
| convolve6_8_x(s1, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d2 = |
| convolve6_8_x(s2, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d3 = |
| convolve6_8_x(s3, x_filter, permute_tbl, round_offset_shim); |
| |
| uint16x8_t dd0, dd1, dd2, dd3; |
| load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; |
| compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset, |
| bck_offset, round_offset_vec, &d0_u8, &d1_u8, |
| &d2_u8, &d3_u8); |
| |
| store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); |
| |
| s += 8; |
| d += 8; |
| d_u8 += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| dst8 += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } |
| } |
| |
| static inline void dist_wtd_convolve_x_dist_wtd_avg_8tap_neon_i8mm( |
| const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride, |
| uint8_t *dst8, int dst8_stride, int w, int h, const int16_t *x_filter_ptr, |
| const uint16_t fwd_offset, const uint16_t bck_offset) { |
| assert(w % 4 == 0); |
| assert(h % 4 == 0); |
| |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| // A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // (The extra -1 is needed because we halved the filter values.) |
| const int32x4_t round_offset_shim = vdupq_n_s32( |
| (round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1))); |
| |
| const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl); |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| |
| do { |
| const uint8_t *s = src; |
| uint16_t *d = dst; |
| uint8_t *d_u8 = dst8; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint16x8_t d0 = |
| convolve8_8_x_usdot(s0, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d1 = |
| convolve8_8_x_usdot(s1, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d2 = |
| convolve8_8_x_usdot(s2, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d3 = |
| convolve8_8_x_usdot(s3, x_filter, permute_tbl, round_offset_shim); |
| |
| uint16x8_t dd0, dd1, dd2, dd3; |
| load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; |
| compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset, |
| bck_offset, round_offset_vec, &d0_u8, &d1_u8, |
| &d2_u8, &d3_u8); |
| |
| store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); |
| |
| s += 8; |
| d += 8; |
| d_u8 += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| dst8 += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } |
| |
| static inline void dist_wtd_convolve_x_avg_6tap_neon_i8mm( |
| const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride, |
| uint8_t *dst8, int dst8_stride, int w, int h, const int16_t *x_filter_ptr) { |
| assert(w % 4 == 0); |
| assert(h % 4 == 0); |
| |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| // A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // (The extra -1 is needed because we halved the filter values.) |
| const int32x4_t round_offset_shim = vdupq_n_s32( |
| (round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1))); |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t x_filter = |
| vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); |
| |
| if (w == 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl); |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint16x4_t d0 = |
| convolve6_4_x(s0, x_filter, permute_tbl, round_offset_shim); |
| uint16x4_t d1 = |
| convolve6_4_x(s1, x_filter, permute_tbl, round_offset_shim); |
| uint16x4_t d2 = |
| convolve6_4_x(s2, x_filter, permute_tbl, round_offset_shim); |
| uint16x4_t d3 = |
| convolve6_4_x(s3, x_filter, permute_tbl, round_offset_shim); |
| |
| uint16x4_t dd0, dd1, dd2, dd3; |
| load_u16_4x4(dst, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d01_u8, d23_u8; |
| compute_basic_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, |
| round_offset_vec, &d01_u8, &d23_u8); |
| |
| store_u8x4_strided_x2(dst8 + 0 * dst8_stride, dst8_stride, d01_u8); |
| store_u8x4_strided_x2(dst8 + 2 * dst8_stride, dst8_stride, d23_u8); |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| dst8 += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); |
| do { |
| const uint8_t *s = src; |
| uint16_t *d = dst; |
| uint8_t *d_u8 = dst8; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint16x8_t d0 = |
| convolve6_8_x(s0, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d1 = |
| convolve6_8_x(s1, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d2 = |
| convolve6_8_x(s2, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d3 = |
| convolve6_8_x(s3, x_filter, permute_tbl, round_offset_shim); |
| |
| uint16x8_t dd0, dd1, dd2, dd3; |
| load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; |
| compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, |
| round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8); |
| |
| store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); |
| |
| s += 8; |
| d += 8; |
| d_u8 += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| dst8 += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } |
| } |
| |
| static inline void dist_wtd_convolve_x_avg_8tap_neon_i8mm( |
| const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride, |
| uint8_t *dst8, int dst8_stride, int w, int h, const int16_t *x_filter_ptr) { |
| assert(w % 4 == 0); |
| assert(h % 4 == 0); |
| |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| // A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // (The extra -1 is needed because we halved the filter values.) |
| const uint16x8_t round_offset_shim = vdupq_n_u16( |
| (round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1))); |
| |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul8PermuteTbl); |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 } |
| const uint8x16_t filter_idx = vld1q_u8(kFilterPermuteTbl); |
| const int8x16_t x_filter = |
| vqtbl1q_s8(vcombine_s8(x_filter_s8, vdup_n_s8(0)), filter_idx); |
| |
| // Since f0 is always negative and s0 is unsigned, subtract (unsigned) s0 * |
| // -f0 to avoid signed overflow. |
| const uint8x8_t f0 = vdup_n_u8(-x_filter_ptr[0] >> 1); |
| |
| do { |
| const uint8_t *s = src; |
| uint16_t *d = dst; |
| uint8_t *d_u8 = dst8; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint16x8_t d0 = convolve8_8_x_usmmla(s0, x_filter, f0, permute_tbl, |
| round_offset_shim); |
| uint16x8_t d1 = convolve8_8_x_usmmla(s1, x_filter, f0, permute_tbl, |
| round_offset_shim); |
| uint16x8_t d2 = convolve8_8_x_usmmla(s2, x_filter, f0, permute_tbl, |
| round_offset_shim); |
| uint16x8_t d3 = convolve8_8_x_usmmla(s3, x_filter, f0, permute_tbl, |
| round_offset_shim); |
| |
| uint16x8_t dd0, dd1, dd2, dd3; |
| load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; |
| compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, |
| round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8); |
| |
| store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); |
| |
| s += 8; |
| d += 8; |
| d_u8 += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| dst8 += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } |
| |
| static inline void dist_wtd_convolve_x_6tap_neon_i8mm( |
| const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, |
| int h, const int16_t *x_filter_ptr) { |
| assert(w % 4 == 0); |
| assert(h % 4 == 0); |
| |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| // A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // (The extra -1 is needed because we halved the filter values.) |
| const int32x4_t round_offset_shim = vdupq_n_s32( |
| (round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1))); |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 } |
| const int8x16_t x_filter = |
| vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8); |
| |
| if (w == 4) { |
| const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl); |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint16x4_t d0 = |
| convolve6_4_x(s0, x_filter, permute_tbl, round_offset_shim); |
| uint16x4_t d1 = |
| convolve6_4_x(s1, x_filter, permute_tbl, round_offset_shim); |
| uint16x4_t d2 = |
| convolve6_4_x(s2, x_filter, permute_tbl, round_offset_shim); |
| uint16x4_t d3 = |
| convolve6_4_x(s3, x_filter, permute_tbl, round_offset_shim); |
| |
| store_u16_4x4(dst, dst_stride, d0, d1, d2, d3); |
| |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl); |
| do { |
| const uint8_t *s = src; |
| uint16_t *d = dst; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint16x8_t d0 = |
| convolve6_8_x(s0, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d1 = |
| convolve6_8_x(s1, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d2 = |
| convolve6_8_x(s2, x_filter, permute_tbl, round_offset_shim); |
| uint16x8_t d3 = |
| convolve6_8_x(s3, x_filter, permute_tbl, round_offset_shim); |
| |
| store_u16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } |
| } |
| |
| static inline void dist_wtd_convolve_x_8tap_neon_i8mm( |
| const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride, int w, |
| int h, const int16_t *x_filter_ptr) { |
| assert(w % 4 == 0); |
| assert(h % 4 == 0); |
| |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| // A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding |
| // shifts - which are generally faster than rounding shifts on modern CPUs. |
| // (The extra -1 is needed because we halved the filter values.) |
| const uint16x8_t round_offset_shim = vdupq_n_u16( |
| (round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1))); |
| |
| const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul8PermuteTbl); |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1); |
| |
| // Stagger the filter for use with the matrix multiply instructions. |
| // { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 } |
| const uint8x16_t filter_idx = vld1q_u8(kFilterPermuteTbl); |
| const int8x16_t x_filter = |
| vqtbl1q_s8(vcombine_s8(x_filter_s8, vdup_n_s8(0)), filter_idx); |
| |
| // Since f0 is always negative and s0 is unsigned, subtract (unsigned) s0 * |
| // -f0 to avoid signed overflow. |
| const uint8x8_t f0 = vdup_n_u8(-x_filter_ptr[0] >> 1); |
| |
| do { |
| const uint8_t *s = src; |
| uint16_t *d = dst; |
| int width = w; |
| |
| do { |
| uint8x16_t s0, s1, s2, s3; |
| load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3); |
| |
| uint16x8_t d0 = convolve8_8_x_usmmla(s0, x_filter, f0, permute_tbl, |
| round_offset_shim); |
| uint16x8_t d1 = convolve8_8_x_usmmla(s1, x_filter, f0, permute_tbl, |
| round_offset_shim); |
| uint16x8_t d2 = convolve8_8_x_usmmla(s2, x_filter, f0, permute_tbl, |
| round_offset_shim); |
| uint16x8_t d3 = convolve8_8_x_usmmla(s3, x_filter, f0, permute_tbl, |
| round_offset_shim); |
| |
| store_u16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| s += 8; |
| d += 8; |
| width -= 8; |
| } while (width != 0); |
| src += 4 * src_stride; |
| dst += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } |
| |
| void av1_dist_wtd_convolve_x_neon_i8mm( |
| const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, |
| int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn, |
| ConvolveParams *conv_params) { |
| const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| const int filter_taps = |
| get_filter_tap(filter_params_x, subpel_x_qn & SUBPEL_MASK); |
| |
| src -= (SUBPEL_TAPS / 2 - 1); |
| |
| if (conv_params->do_average) { |
| if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { |
| if (filter_taps < 8) { |
| dist_wtd_convolve_x_dist_wtd_avg_6tap_neon_i8mm( |
| src + 1, src_stride, conv_params->dst, conv_params->dst_stride, |
| dst8, dst8_stride, w, h, x_filter_ptr, conv_params->fwd_offset, |
| conv_params->bck_offset); |
| return; |
| } |
| |
| dist_wtd_convolve_x_dist_wtd_avg_8tap_neon_i8mm( |
| src, src_stride, conv_params->dst, conv_params->dst_stride, dst8, |
| dst8_stride, w, h, x_filter_ptr, conv_params->fwd_offset, |
| conv_params->bck_offset); |
| } else { |
| if (filter_taps < 8) { |
| dist_wtd_convolve_x_avg_6tap_neon_i8mm( |
| src + 1, src_stride, conv_params->dst, conv_params->dst_stride, |
| dst8, dst8_stride, w, h, x_filter_ptr); |
| return; |
| } |
| |
| dist_wtd_convolve_x_avg_8tap_neon_i8mm(src, src_stride, conv_params->dst, |
| conv_params->dst_stride, dst8, |
| dst8_stride, w, h, x_filter_ptr); |
| } |
| } else { |
| if (filter_taps < 8) { |
| dist_wtd_convolve_x_6tap_neon_i8mm(src + 1, src_stride, conv_params->dst, |
| conv_params->dst_stride, w, h, |
| x_filter_ptr); |
| return; |
| } |
| |
| dist_wtd_convolve_x_8tap_neon_i8mm(src, src_stride, conv_params->dst, |
| conv_params->dst_stride, w, h, |
| x_filter_ptr); |
| } |
| } |
| |
| static inline int16x4_t convolve8_4_y(const uint8x16_t s0, const uint8x16_t s1, |
| const int8x8_t filters) { |
| int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); |
| sum = vusdotq_lane_s32(sum, s1, filters, 1); |
| |
| // Further narrowing and packing is performed by the caller. |
| return vmovn_s32(sum); |
| } |
| |
| static inline uint16x8_t convolve8_8_y(const uint8x16_t s0_lo, |
| const uint8x16_t s0_hi, |
| const uint8x16_t s1_lo, |
| const uint8x16_t s1_hi, |
| const int8x8_t filters, |
| const int16x8_t round_offset) { |
| int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters, 0); |
| sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters, 1); |
| |
| int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters, 0); |
| sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters, 1); |
| |
| // Narrow and re-pack. |
| int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); |
| |
| // We halved the filter values so -1 from right shift. |
| return vreinterpretq_u16_s16( |
| vrsraq_n_s16(round_offset, sum, ROUND0_BITS - 1)); |
| } |
| |
| static inline void dist_wtd_convolve_y_8tap_neon_i8mm( |
| const uint8_t *src_ptr, int src_stride, int w, int h, |
| const int16_t *y_filter_ptr, ConvolveParams *conv_params) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| |
| CONV_BUF_TYPE *dst_ptr = conv_params->dst; |
| const int dst_stride = conv_params->dst_stride; |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter_ptr), 1); |
| |
| const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); |
| |
| if (w == 4) { |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| src_ptr += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // (see horizontal case) required before computing the dot product. |
| uint8x16_t s0123, s1234, s2345, s3456; |
| transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); |
| transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234); |
| transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345); |
| transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456); |
| |
| do { |
| uint8x8_t s7, s8, s9, sA; |
| load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &sA); |
| |
| uint8x16_t s4567, s5678, s6789, s789A; |
| transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT = { { s3456, s789A } }; |
| s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| int16x4_t d0 = convolve8_4_y(s0123, s4567, filter); |
| int16x4_t d1 = convolve8_4_y(s1234, s5678, filter); |
| int16x4_t d2 = convolve8_4_y(s2345, s6789, filter); |
| int16x4_t d3 = convolve8_4_y(s3456, s789A, filter); |
| |
| // We halved the filter values so -1 from right shift. |
| int16x8_t d01 = |
| vrsraq_n_s16(round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1); |
| int16x8_t d23 = |
| vrsraq_n_s16(round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1); |
| |
| store_u16x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, |
| vreinterpretq_u16_s16(d01)); |
| store_u16x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, |
| vreinterpretq_u16_s16(d23)); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123 = s4567; |
| s1234 = s5678; |
| s2345 = s6789; |
| s3456 = s789A; |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| int height = h; |
| const uint8_t *s = src_ptr; |
| CONV_BUF_TYPE *d = dst_ptr; |
| |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| s += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample |
| // permute (see horizontal case) required before computing the dot |
| // product. |
| uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, |
| s3456_lo, s3456_hi; |
| transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); |
| transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); |
| transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); |
| transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); |
| |
| do { |
| uint8x8_t s7, s8, s9, sA; |
| load_u8_8x4(s, src_stride, &s7, &s8, &s9, &sA); |
| |
| uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, |
| s789A_lo, s789A_hi; |
| transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT_lo = { { s3456_lo, s789A_lo } }; |
| s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]); |
| s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]); |
| s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]); |
| |
| uint8x16x2_t samples_LUT_hi = { { s3456_hi, s789A_hi } }; |
| s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]); |
| s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]); |
| s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]); |
| |
| uint16x8_t d0 = convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, |
| filter, round_offset_vec); |
| uint16x8_t d1 = convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, |
| filter, round_offset_vec); |
| uint16x8_t d2 = convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, |
| filter, round_offset_vec); |
| uint16x8_t d3 = convolve8_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, |
| filter, round_offset_vec); |
| |
| store_u16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123_lo = s4567_lo; |
| s0123_hi = s4567_hi; |
| s1234_lo = s5678_lo; |
| s1234_hi = s5678_hi; |
| s2345_lo = s6789_lo; |
| s2345_hi = s6789_hi; |
| s3456_lo = s789A_lo; |
| s3456_hi = s789A_hi; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| src_ptr += 8; |
| dst_ptr += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| static inline void dist_wtd_convolve_y_8tap_dist_wtd_avg_neon_i8mm( |
| const uint8_t *src_ptr, int src_stride, uint8_t *dst8_ptr, |
| const int dst8_stride, int w, int h, const int16_t *y_filter_ptr, |
| ConvolveParams *conv_params) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| |
| const uint16_t fwd_offset = conv_params->fwd_offset; |
| const uint16_t bck_offset = conv_params->bck_offset; |
| |
| CONV_BUF_TYPE *dst_ptr = conv_params->dst; |
| const int dst_stride = conv_params->dst_stride; |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter_ptr), 1); |
| |
| const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); |
| |
| if (w == 4) { |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| src_ptr += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // (see horizontal case) required before computing the dot product. |
| uint8x16_t s0123, s1234, s2345, s3456; |
| transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); |
| transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234); |
| transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345); |
| transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456); |
| |
| do { |
| uint8x8_t s7, s8, s9, sA; |
| load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &sA); |
| |
| uint8x16_t s4567, s5678, s6789, s789A; |
| transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT = { { s3456, s789A } }; |
| s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| int16x4_t d0 = convolve8_4_y(s0123, s4567, filter); |
| int16x4_t d1 = convolve8_4_y(s1234, s5678, filter); |
| int16x4_t d2 = convolve8_4_y(s2345, s6789, filter); |
| int16x4_t d3 = convolve8_4_y(s3456, s789A, filter); |
| |
| // We halved the filter values so -1 from right shift. |
| uint16x8_t d01 = vreinterpretq_u16_s16(vrsraq_n_s16( |
| round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1)); |
| uint16x8_t d23 = vreinterpretq_u16_s16(vrsraq_n_s16( |
| round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1)); |
| |
| uint16x4_t dd0, dd1, dd2, dd3; |
| load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8; |
| compute_dist_wtd_avg_8x2(vcombine_u16(dd0, dd1), vcombine_u16(dd2, dd3), |
| d01, d23, fwd_offset, bck_offset, |
| round_offset_vec, &d0_u8, &d1_u8); |
| |
| store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d0_u8); |
| store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d1_u8); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123 = s4567; |
| s1234 = s5678; |
| s2345 = s6789; |
| s3456 = s789A; |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| dst8_ptr += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| int height = h; |
| const uint8_t *s = src_ptr; |
| CONV_BUF_TYPE *d = dst_ptr; |
| uint8_t *d_u8 = dst8_ptr; |
| |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| s += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample |
| // permute (see horizontal case) required before computing the dot |
| // product. |
| uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, |
| s3456_lo, s3456_hi; |
| transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); |
| transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); |
| transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); |
| transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); |
| |
| do { |
| uint8x8_t s7, s8, s9, sA; |
| load_u8_8x4(s, src_stride, &s7, &s8, &s9, &sA); |
| |
| uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, |
| s789A_lo, s789A_hi; |
| transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT_lo = { { s3456_lo, s789A_lo } }; |
| s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]); |
| s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]); |
| s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]); |
| |
| uint8x16x2_t samples_LUT_hi = { { s3456_hi, s789A_hi } }; |
| s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]); |
| s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]); |
| s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]); |
| |
| uint16x8_t d0 = convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, |
| filter, round_offset_vec); |
| uint16x8_t d1 = convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, |
| filter, round_offset_vec); |
| uint16x8_t d2 = convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, |
| filter, round_offset_vec); |
| uint16x8_t d3 = convolve8_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, |
| filter, round_offset_vec); |
| |
| uint16x8_t dd0, dd1, dd2, dd3; |
| load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; |
| compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset, |
| bck_offset, round_offset_vec, &d0_u8, &d1_u8, |
| &d2_u8, &d3_u8); |
| |
| store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123_lo = s4567_lo; |
| s0123_hi = s4567_hi; |
| s1234_lo = s5678_lo; |
| s1234_hi = s5678_hi; |
| s2345_lo = s6789_lo; |
| s2345_hi = s6789_hi; |
| s3456_lo = s789A_lo; |
| s3456_hi = s789A_hi; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| d_u8 += 4 * dst8_stride; |
| height -= 4; |
| } while (height != 0); |
| src_ptr += 8; |
| dst_ptr += 8; |
| dst8_ptr += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| static inline void dist_wtd_convolve_y_8tap_avg_neon_i8mm( |
| const uint8_t *src_ptr, int src_stride, uint8_t *dst8_ptr, |
| const int dst8_stride, int w, int h, const int16_t *y_filter_ptr, |
| ConvolveParams *conv_params) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| |
| CONV_BUF_TYPE *dst_ptr = conv_params->dst; |
| const int dst_stride = conv_params->dst_stride; |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter_ptr), 1); |
| |
| const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); |
| |
| if (w == 4) { |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| src_ptr += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // (see horizontal case) required before computing the dot product. |
| uint8x16_t s0123, s1234, s2345, s3456; |
| transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); |
| transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234); |
| transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345); |
| transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456); |
| |
| do { |
| uint8x8_t s7, s8, s9, sA; |
| load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &sA); |
| |
| uint8x16_t s4567, s5678, s6789, s789A; |
| transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT = { { s3456, s789A } }; |
| s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| int16x4_t d0 = convolve8_4_y(s0123, s4567, filter); |
| int16x4_t d1 = convolve8_4_y(s1234, s5678, filter); |
| int16x4_t d2 = convolve8_4_y(s2345, s6789, filter); |
| int16x4_t d3 = convolve8_4_y(s3456, s789A, filter); |
| |
| // We halved the filter values so -1 from right shift. |
| uint16x8_t d01 = vreinterpretq_u16_s16(vrsraq_n_s16( |
| round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1)); |
| uint16x8_t d23 = vreinterpretq_u16_s16(vrsraq_n_s16( |
| round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1)); |
| |
| uint16x4_t dd0, dd1, dd2, dd3; |
| load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8; |
| compute_basic_avg_8x2(vcombine_u16(dd0, dd1), vcombine_u16(dd2, dd3), d01, |
| d23, round_offset_vec, &d0_u8, &d1_u8); |
| |
| store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d0_u8); |
| store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d1_u8); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123 = s4567; |
| s1234 = s5678; |
| s2345 = s6789; |
| s3456 = s789A; |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| dst8_ptr += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| int height = h; |
| const uint8_t *s = src_ptr; |
| CONV_BUF_TYPE *d = dst_ptr; |
| uint8_t *d_u8 = dst8_ptr; |
| |
| uint8x8_t s0, s1, s2, s3, s4, s5, s6; |
| load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6); |
| s += 7 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample |
| // permute (see horizontal case) required before computing the dot |
| // product. |
| uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi, |
| s3456_lo, s3456_hi; |
| transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); |
| transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi); |
| transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi); |
| transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi); |
| |
| do { |
| uint8x8_t s7, s8, s9, sA; |
| load_u8_8x4(s, src_stride, &s7, &s8, &s9, &sA); |
| |
| uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi, |
| s789A_lo, s789A_hi; |
| transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi); |
| |
| // Merge new data into block from previous iteration. |
| uint8x16x2_t samples_LUT_lo = { { s3456_lo, s789A_lo } }; |
| s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]); |
| s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]); |
| s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]); |
| |
| uint8x16x2_t samples_LUT_hi = { { s3456_hi, s789A_hi } }; |
| s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]); |
| s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]); |
| s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]); |
| |
| uint16x8_t d0 = convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi, |
| filter, round_offset_vec); |
| uint16x8_t d1 = convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi, |
| filter, round_offset_vec); |
| uint16x8_t d2 = convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi, |
| filter, round_offset_vec); |
| uint16x8_t d3 = convolve8_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi, |
| filter, round_offset_vec); |
| |
| uint16x8_t dd0, dd1, dd2, dd3; |
| load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; |
| compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, |
| round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8); |
| |
| store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123_lo = s4567_lo; |
| s0123_hi = s4567_hi; |
| s1234_lo = s5678_lo; |
| s1234_hi = s5678_hi; |
| s2345_lo = s6789_lo; |
| s2345_hi = s6789_hi; |
| s3456_lo = s789A_lo; |
| s3456_hi = s789A_hi; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| d_u8 += 4 * dst8_stride; |
| height -= 4; |
| } while (height != 0); |
| src_ptr += 8; |
| dst_ptr += 8; |
| dst8_ptr += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| static inline int16x4_t convolve4_4_y(const uint8x16_t s0, |
| const int8x8_t filters) { |
| int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); |
| |
| // Further narrowing and packing is performed by the caller. |
| return vmovn_s32(sum); |
| } |
| |
| static inline uint16x8_t convolve4_8_y(const uint8x16_t s0, const uint8x16_t s1, |
| const int8x8_t filters, |
| const int16x8_t round_offset) { |
| int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0); |
| int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s1, filters, 0); |
| |
| // Narrow and re-pack. |
| int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)); |
| |
| // We halved the filter values so -1 from right shift. |
| return vreinterpretq_u16_s16( |
| vrsraq_n_s16(round_offset, sum, ROUND0_BITS - 1)); |
| } |
| |
| static inline void dist_wtd_convolve_y_4tap_neon_i8mm( |
| const uint8_t *src_ptr, int src_stride, int w, int h, |
| const int16_t *y_filter_ptr, ConvolveParams *conv_params) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| |
| CONV_BUF_TYPE *dst_ptr = conv_params->dst; |
| const int dst_stride = conv_params->dst_stride; |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int16x8_t filter_s16 = |
| vcombine_s16(vld1_s16(y_filter_ptr + 2), vdup_n_s16(0)); |
| const int8x8_t filter = vshrn_n_s16(filter_s16, 1); |
| const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); |
| uint8x16x2_t samples_LUT; |
| |
| if (w == 4) { |
| uint8x8_t s0, s1, s2, s3; |
| load_u8_8x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); |
| src_ptr += 4 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // required before computing the dot product. |
| uint8x16_t s0123; |
| transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); |
| |
| do { |
| uint8x8_t s4, s5, s6, s7; |
| load_u8_8x4(src_ptr, src_stride, &s4, &s5, &s6, &s7); |
| |
| uint8x16_t s4567; |
| transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567); |
| |
| // Merge new data into block from previous iteration. |
| samples_LUT.val[0] = s0123; |
| samples_LUT.val[1] = s4567; |
| uint8x16_t s1234 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| uint8x16_t s2345 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| uint8x16_t s3456 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| int16x4_t d0 = convolve4_4_y(s0123, filter); |
| int16x4_t d1 = convolve4_4_y(s1234, filter); |
| int16x4_t d2 = convolve4_4_y(s2345, filter); |
| int16x4_t d3 = convolve4_4_y(s3456, filter); |
| |
| // We halved the filter values so -1 from right shift. |
| int16x8_t d01 = |
| vrsraq_n_s16(round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1); |
| int16x8_t d23 = |
| vrsraq_n_s16(round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1); |
| |
| store_u16x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride, |
| vreinterpretq_u16_s16(d01)); |
| store_u16x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride, |
| vreinterpretq_u16_s16(d23)); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123 = s4567; |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| int height = h; |
| const uint8_t *s = src_ptr; |
| CONV_BUF_TYPE *d = dst_ptr; |
| |
| uint8x8_t s0, s1, s2, s3; |
| load_u8_8x4(s, src_stride, &s0, &s1, &s2, &s3); |
| s += 4 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // required before computing the dot product. |
| uint8x16_t s0123_lo, s0123_hi; |
| transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); |
| |
| do { |
| uint8x8_t s4, s5, s6, s7; |
| load_u8_8x4(s, src_stride, &s4, &s5, &s6, &s7); |
| |
| uint8x16_t s4567_lo, s4567_hi; |
| transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi); |
| |
| // Merge new data into block from previous iteration. |
| samples_LUT.val[0] = s0123_lo; |
| samples_LUT.val[1] = s4567_lo; |
| uint8x16_t s1234_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| uint8x16_t s2345_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| uint8x16_t s3456_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| samples_LUT.val[0] = s0123_hi; |
| samples_LUT.val[1] = s4567_hi; |
| uint8x16_t s1234_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| uint8x16_t s2345_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| uint8x16_t s3456_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| uint16x8_t d0 = |
| convolve4_8_y(s0123_lo, s0123_hi, filter, round_offset_vec); |
| uint16x8_t d1 = |
| convolve4_8_y(s1234_lo, s1234_hi, filter, round_offset_vec); |
| uint16x8_t d2 = |
| convolve4_8_y(s2345_lo, s2345_hi, filter, round_offset_vec); |
| uint16x8_t d3 = |
| convolve4_8_y(s3456_lo, s3456_hi, filter, round_offset_vec); |
| |
| store_u16_8x4(d, dst_stride, d0, d1, d2, d3); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123_lo = s4567_lo; |
| s0123_hi = s4567_hi; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| height -= 4; |
| } while (height != 0); |
| src_ptr += 8; |
| dst_ptr += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| static inline void dist_wtd_convolve_y_4tap_avg_neon_i8mm( |
| const uint8_t *src_ptr, int src_stride, uint8_t *dst8_ptr, |
| const int dst8_stride, int w, int h, const int16_t *y_filter_ptr, |
| ConvolveParams *conv_params) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| |
| CONV_BUF_TYPE *dst_ptr = conv_params->dst; |
| const int dst_stride = conv_params->dst_stride; |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int16x8_t filter_s16 = |
| vcombine_s16(vld1_s16(y_filter_ptr + 2), vdup_n_s16(0)); |
| const int8x8_t filter = vshrn_n_s16(filter_s16, 1); |
| const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); |
| uint8x16x2_t samples_LUT; |
| |
| if (w == 4) { |
| uint8x8_t s0, s1, s2, s3; |
| load_u8_8x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); |
| src_ptr += 4 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // required before computing the dot product. |
| uint8x16_t s0123; |
| transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); |
| |
| do { |
| uint8x8_t s4, s5, s6, s7; |
| load_u8_8x4(src_ptr, src_stride, &s4, &s5, &s6, &s7); |
| |
| uint8x16_t s4567; |
| transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567); |
| |
| // Merge new data into block from previous iteration. |
| samples_LUT.val[0] = s0123; |
| samples_LUT.val[1] = s4567; |
| uint8x16_t s1234 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| uint8x16_t s2345 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| uint8x16_t s3456 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| int16x4_t d0 = convolve4_4_y(s0123, filter); |
| int16x4_t d1 = convolve4_4_y(s1234, filter); |
| int16x4_t d2 = convolve4_4_y(s2345, filter); |
| int16x4_t d3 = convolve4_4_y(s3456, filter); |
| |
| // We halved the filter values so -1 from right shift. |
| uint16x8_t d01 = vreinterpretq_u16_s16(vrsraq_n_s16( |
| round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1)); |
| uint16x8_t d23 = vreinterpretq_u16_s16(vrsraq_n_s16( |
| round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1)); |
| |
| uint16x4_t dd0, dd1, dd2, dd3; |
| load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8; |
| compute_basic_avg_8x2(vcombine_u16(dd0, dd1), vcombine_u16(dd2, dd3), d01, |
| d23, round_offset_vec, &d0_u8, &d1_u8); |
| |
| store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d0_u8); |
| store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d1_u8); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123 = s4567; |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| dst8_ptr += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| int height = h; |
| const uint8_t *s = src_ptr; |
| CONV_BUF_TYPE *d = dst_ptr; |
| uint8_t *d_u8 = dst8_ptr; |
| |
| uint8x8_t s0, s1, s2, s3; |
| load_u8_8x4(s, src_stride, &s0, &s1, &s2, &s3); |
| s += 4 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // required before computing the dot product. |
| uint8x16_t s0123_lo, s0123_hi; |
| transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); |
| |
| do { |
| uint8x8_t s4, s5, s6, s7; |
| load_u8_8x4(s, src_stride, &s4, &s5, &s6, &s7); |
| |
| uint8x16_t s4567_lo, s4567_hi; |
| transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi); |
| |
| // Merge new data into block from previous iteration. |
| samples_LUT.val[0] = s0123_lo; |
| samples_LUT.val[1] = s4567_lo; |
| uint8x16_t s1234_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| uint8x16_t s2345_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| uint8x16_t s3456_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| samples_LUT.val[0] = s0123_hi; |
| samples_LUT.val[1] = s4567_hi; |
| uint8x16_t s1234_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| uint8x16_t s2345_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| uint8x16_t s3456_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| uint16x8_t d0 = |
| convolve4_8_y(s0123_lo, s0123_hi, filter, round_offset_vec); |
| uint16x8_t d1 = |
| convolve4_8_y(s1234_lo, s1234_hi, filter, round_offset_vec); |
| uint16x8_t d2 = |
| convolve4_8_y(s2345_lo, s2345_hi, filter, round_offset_vec); |
| uint16x8_t d3 = |
| convolve4_8_y(s3456_lo, s3456_hi, filter, round_offset_vec); |
| |
| uint16x8_t dd0, dd1, dd2, dd3; |
| load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; |
| compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, |
| round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8); |
| |
| store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123_lo = s4567_lo; |
| s0123_hi = s4567_hi; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| d_u8 += 4 * dst8_stride; |
| height -= 4; |
| } while (height != 0); |
| src_ptr += 8; |
| dst_ptr += 8; |
| dst8_ptr += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| static inline void dist_wtd_convolve_y_4tap_dist_wtd_avg_neon_i8mm( |
| const uint8_t *src_ptr, int src_stride, uint8_t *dst8_ptr, |
| const int dst8_stride, int w, int h, const int16_t *y_filter_ptr, |
| ConvolveParams *conv_params) { |
| const int bd = 8; |
| const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS; |
| const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) + |
| (1 << (offset_bits - COMPOUND_ROUND1_BITS - 1)); |
| const int16x8_t round_offset_vec = vdupq_n_s16(round_offset); |
| |
| const uint16_t fwd_offset = conv_params->fwd_offset; |
| const uint16_t bck_offset = conv_params->bck_offset; |
| |
| CONV_BUF_TYPE *dst_ptr = conv_params->dst; |
| const int dst_stride = conv_params->dst_stride; |
| |
| // Filter values are even, so halve to reduce intermediate precision reqs. |
| const int16x8_t filter_s16 = |
| vcombine_s16(vld1_s16(y_filter_ptr + 2), vdup_n_s16(0)); |
| const int8x8_t filter = vshrn_n_s16(filter_s16, 1); |
| const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl); |
| uint8x16x2_t samples_LUT; |
| |
| if (w == 4) { |
| uint8x8_t s0, s1, s2, s3; |
| load_u8_8x4(src_ptr, src_stride, &s0, &s1, &s2, &s3); |
| src_ptr += 4 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // required before computing the dot product. |
| uint8x16_t s0123; |
| transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123); |
| |
| do { |
| uint8x8_t s4, s5, s6, s7; |
| load_u8_8x4(src_ptr, src_stride, &s4, &s5, &s6, &s7); |
| |
| uint8x16_t s4567; |
| transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567); |
| |
| // Merge new data into block from previous iteration. |
| samples_LUT.val[0] = s0123; |
| samples_LUT.val[1] = s4567; |
| uint8x16_t s1234 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| uint8x16_t s2345 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| uint8x16_t s3456 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| int16x4_t d0 = convolve4_4_y(s0123, filter); |
| int16x4_t d1 = convolve4_4_y(s1234, filter); |
| int16x4_t d2 = convolve4_4_y(s2345, filter); |
| int16x4_t d3 = convolve4_4_y(s3456, filter); |
| |
| // We halved the filter values so -1 from right shift. |
| uint16x8_t d01 = vreinterpretq_u16_s16(vrsraq_n_s16( |
| round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1)); |
| uint16x8_t d23 = vreinterpretq_u16_s16(vrsraq_n_s16( |
| round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1)); |
| |
| uint16x4_t dd0, dd1, dd2, dd3; |
| load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8; |
| compute_dist_wtd_avg_8x2(vcombine_u16(dd0, dd1), vcombine_u16(dd2, dd3), |
| d01, d23, fwd_offset, bck_offset, |
| round_offset_vec, &d0_u8, &d1_u8); |
| |
| store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d0_u8); |
| store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d1_u8); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123 = s4567; |
| |
| src_ptr += 4 * src_stride; |
| dst_ptr += 4 * dst_stride; |
| dst8_ptr += 4 * dst8_stride; |
| h -= 4; |
| } while (h != 0); |
| } else { |
| do { |
| int height = h; |
| const uint8_t *s = src_ptr; |
| CONV_BUF_TYPE *d = dst_ptr; |
| uint8_t *d_u8 = dst8_ptr; |
| |
| uint8x8_t s0, s1, s2, s3; |
| load_u8_8x4(s, src_stride, &s0, &s1, &s2, &s3); |
| s += 4 * src_stride; |
| |
| // This operation combines a conventional transpose and the sample permute |
| // required before computing the dot product. |
| uint8x16_t s0123_lo, s0123_hi; |
| transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi); |
| |
| do { |
| uint8x8_t s4, s5, s6, s7; |
| load_u8_8x4(s, src_stride, &s4, &s5, &s6, &s7); |
| |
| uint8x16_t s4567_lo, s4567_hi; |
| transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi); |
| |
| // Merge new data into block from previous iteration. |
| samples_LUT.val[0] = s0123_lo; |
| samples_LUT.val[1] = s4567_lo; |
| uint8x16_t s1234_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| uint8x16_t s2345_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| uint8x16_t s3456_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| samples_LUT.val[0] = s0123_hi; |
| samples_LUT.val[1] = s4567_hi; |
| uint8x16_t s1234_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]); |
| uint8x16_t s2345_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]); |
| uint8x16_t s3456_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]); |
| |
| uint16x8_t d0 = |
| convolve4_8_y(s0123_lo, s0123_hi, filter, round_offset_vec); |
| uint16x8_t d1 = |
| convolve4_8_y(s1234_lo, s1234_hi, filter, round_offset_vec); |
| uint16x8_t d2 = |
| convolve4_8_y(s2345_lo, s2345_hi, filter, round_offset_vec); |
| uint16x8_t d3 = |
| convolve4_8_y(s3456_lo, s3456_hi, filter, round_offset_vec); |
| |
| uint16x8_t dd0, dd1, dd2, dd3; |
| load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3); |
| |
| uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8; |
| compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset, |
| bck_offset, round_offset_vec, &d0_u8, &d1_u8, |
| &d2_u8, &d3_u8); |
| |
| store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8); |
| |
| // Prepare block for next iteration - re-using as much as possible. |
| // Shuffle everything up four rows. |
| s0123_lo = s4567_lo; |
| s0123_hi = s4567_hi; |
| |
| s += 4 * src_stride; |
| d += 4 * dst_stride; |
| d_u8 += 4 * dst8_stride; |
| height -= 4; |
| } while (height != 0); |
| src_ptr += 8; |
| dst_ptr += 8; |
| dst8_ptr += 8; |
| w -= 8; |
| } while (w != 0); |
| } |
| } |
| |
| void av1_dist_wtd_convolve_y_neon_i8mm( |
| const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w, |
| int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn, |
| ConvolveParams *conv_params) { |
| assert(w % 4 == 0); |
| assert(h % 4 == 0); |
| |
| const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel( |
| filter_params_y, subpel_y_qn & SUBPEL_MASK); |
| |
| if (get_filter_tap(filter_params_y, subpel_y_qn) <= 4) { |
| if (conv_params->do_average) { |
| if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { |
| dist_wtd_convolve_y_4tap_dist_wtd_avg_neon_i8mm( |
| src - src_stride, src_stride, dst8, dst8_stride, w, h, y_filter_ptr, |
| conv_params); |
| } else { |
| dist_wtd_convolve_y_4tap_avg_neon_i8mm(src - src_stride, src_stride, |
| dst8, dst8_stride, w, h, |
| y_filter_ptr, conv_params); |
| } |
| } else { |
| dist_wtd_convolve_y_4tap_neon_i8mm(src - src_stride, src_stride, w, h, |
| y_filter_ptr, conv_params); |
| } |
| } else { // filter tap >= 6 |
| if (conv_params->do_average) { |
| if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) { |
| dist_wtd_convolve_y_8tap_dist_wtd_avg_neon_i8mm( |
| src - 3 * src_stride, src_stride, dst8, dst8_stride, w, h, |
| y_filter_ptr, conv_params); |
| } else { |
| dist_wtd_convolve_y_8tap_avg_neon_i8mm(src - 3 * src_stride, src_stride, |
| dst8, dst8_stride, w, h, |
| y_filter_ptr, conv_params); |
| } |
| } else { |
| dist_wtd_convolve_y_8tap_neon_i8mm(src - 3 * src_stride, src_stride, w, h, |
| y_filter_ptr, conv_params); |
| } |
| } |
| } |