blob: aa4438a5064e8bf4159d7af43f2a2fa3196a4439 [file] [log] [blame]
/*
* Copyright (c) 2023, Alliance for Open Media. All rights reserved.
*
* This source code is subject to the terms of the BSD 2 Clause License and
* the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
* was not distributed with this source code in the LICENSE file, you can
* obtain it at www.aomedia.org/license/software. If the Alliance for Open
* Media Patent License 1.0 was not distributed with this source code in the
* PATENTS file, you can obtain it at www.aomedia.org/license/patent.
*/
#include <arm_neon.h>
#include <assert.h>
#include "aom_dsp/arm/mem_neon.h"
#include "aom_dsp/arm/transpose_neon.h"
#include "av1/common/arm/compound_convolve_neon.h"
#include "config/aom_config.h"
#include "config/av1_rtcd.h"
#include "convolve_neon_dotprod.h"
#include "convolve_neon_i8mm.h"
static inline int16x4_t convolve6_4_2d_h(uint8x16_t samples,
const int8x16_t x_filter,
const uint8x16_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl);
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum = vusmmlaq_s32(horiz_const, permuted_samples, x_filter);
// We halved the convolution filter values so -1 from the right shift.
return vshrn_n_s32(sum, ROUND0_BITS - 1);
}
static inline int16x8_t convolve6_8_2d_h(uint8x16_t samples,
const int8x16_t x_filter,
const uint8x16x2_t permute_tbl,
const int32x4_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
// { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 }
uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum0123 = vusmmlaq_s32(horiz_const, permuted_samples[0], x_filter);
int32x4_t sum4567 = vusmmlaq_s32(horiz_const, permuted_samples[1], x_filter);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
return vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
vshrn_n_s32(sum4567, ROUND0_BITS - 1));
}
static inline void dist_wtd_convolve_2d_horiz_6tap_neon_i8mm(
const uint8_t *src, int src_stride, int16_t *im_block, const int im_stride,
const int16_t *x_filter_ptr, const int im_h, int w) {
const int bd = 8;
// A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// (The extra -1 is needed because we halved the filter values.)
const int32x4_t horiz_const = vdupq_n_s32((1 << (bd + FILTER_BITS - 2)) +
(1 << ((ROUND0_BITS - 1) - 1)));
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 }
const int8x16_t x_filter =
vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
const uint8_t *src_ptr = src;
int16_t *dst_ptr = im_block;
int dst_stride = im_stride;
int height = im_h;
if (w == 4) {
const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl);
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
int16x4_t d0 = convolve6_4_2d_h(s0, x_filter, permute_tbl, horiz_const);
int16x4_t d1 = convolve6_4_2d_h(s1, x_filter, permute_tbl, horiz_const);
int16x4_t d2 = convolve6_4_2d_h(s2, x_filter, permute_tbl, horiz_const);
int16x4_t d3 = convolve6_4_2d_h(s3, x_filter, permute_tbl, horiz_const);
store_s16_4x4(dst_ptr, dst_stride, d0, d1, d2, d3);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
uint8x16_t s0 = vld1q_u8(src_ptr);
int16x4_t d0 = convolve6_4_2d_h(s0, x_filter, permute_tbl, horiz_const);
vst1_s16(dst_ptr, d0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--height != 0);
} else {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
int16x8_t d0 = convolve6_8_2d_h(s0, x_filter, permute_tbl, horiz_const);
int16x8_t d1 = convolve6_8_2d_h(s1, x_filter, permute_tbl, horiz_const);
int16x8_t d2 = convolve6_8_2d_h(s2, x_filter, permute_tbl, horiz_const);
int16x8_t d3 = convolve6_8_2d_h(s3, x_filter, permute_tbl, horiz_const);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0 = vld1q_u8(s);
int16x8_t d0 = convolve6_8_2d_h(s0, x_filter, permute_tbl, horiz_const);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--height != 0);
}
}
static inline int16x8_t convolve8_8_2d_h(uint8x16_t samples,
const int8x16_t x_filter,
const uint8x8_t f0,
const uint8x16x2_t permute_tbl,
const uint16x8_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 10 }
// { 5, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14 }
uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
// Calculate partial 7-tap convolution.
int32x4_t sum0123 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[0], x_filter);
int32x4_t sum4567 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[1], x_filter);
uint16x8_t sum = vreinterpretq_u16_s16(
vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)));
// Apply tap 0 and accumulate.
sum = vmlsl_u8(sum, vget_low_u8(samples), f0);
sum = vaddq_u16(sum, horiz_const);
// We halved the convolution filter values so -1 from the right shift.
return vreinterpretq_s16_u16(vshrq_n_u16(sum, ROUND0_BITS - 1));
}
static inline void dist_wtd_convolve_2d_horiz_8tap_neon_i8mm(
const uint8_t *src, int src_stride, int16_t *im_block, const int im_stride,
const int16_t *x_filter_ptr, const int im_h, int w) {
const int bd = 8;
// A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// (The extra -1 is needed because we halved the filter values.)
const uint16x8_t horiz_const = vdupq_n_u16((1 << (bd + FILTER_BITS - 2)) +
(1 << ((ROUND0_BITS - 1) - 1)));
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul8PermuteTbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 }
const uint8x16_t filter_idx = vld1q_u8(kFilterPermuteTbl);
const int8x16_t x_filter =
vqtbl1q_s8(vcombine_s8(x_filter_s8, vdup_n_s8(0)), filter_idx);
// Since f0 is always negative and s0 is unsigned, subtract (unsigned) s0 *
// -f0 to avoid signed overflow.
const uint8x8_t f0 = vdup_n_u8(-x_filter_ptr[0] >> 1);
const uint8_t *src_ptr = src;
int16_t *dst_ptr = im_block;
int dst_stride = im_stride;
int height = im_h;
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
int16x8_t d0 =
convolve8_8_2d_h(s0, x_filter, f0, permute_tbl, horiz_const);
int16x8_t d1 =
convolve8_8_2d_h(s1, x_filter, f0, permute_tbl, horiz_const);
int16x8_t d2 =
convolve8_8_2d_h(s2, x_filter, f0, permute_tbl, horiz_const);
int16x8_t d3 =
convolve8_8_2d_h(s3, x_filter, f0, permute_tbl, horiz_const);
store_s16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
height -= 4;
} while (height > 4);
do {
const uint8_t *s = src_ptr;
int16_t *d = dst_ptr;
int width = w;
do {
uint8x16_t s0 = vld1q_u8(s);
int16x8_t d0 =
convolve8_8_2d_h(s0, x_filter, f0, permute_tbl, horiz_const);
vst1q_s16(d, d0);
s += 8;
d += 8;
width -= 8;
} while (width > 0);
src_ptr += src_stride;
dst_ptr += dst_stride;
} while (--height != 0);
}
void av1_dist_wtd_convolve_2d_neon_i8mm(
const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w,
int h, const InterpFilterParams *filter_params_x,
const InterpFilterParams *filter_params_y, const int subpel_x_qn,
const int subpel_y_qn, ConvolveParams *conv_params) {
assert(w % 4 == 0);
assert(h % 4 == 0);
DECLARE_ALIGNED(16, int16_t,
im_block[(MAX_SB_SIZE + SUBPEL_TAPS - 1) * MAX_SB_SIZE]);
const int x_filter_taps = get_filter_tap(filter_params_x, subpel_x_qn);
const int clamped_x_taps = x_filter_taps < 6 ? 6 : x_filter_taps;
const int y_filter_taps = get_filter_tap(filter_params_y, subpel_y_qn);
const int clamped_y_taps = y_filter_taps < 6 ? 6 : y_filter_taps;
const int im_h = h + clamped_y_taps - 1;
const int im_stride = MAX_SB_SIZE;
const int vert_offset = clamped_y_taps / 2 - 1;
const int horiz_offset = clamped_x_taps / 2 - 1;
const uint8_t *src_ptr = src - vert_offset * src_stride - horiz_offset;
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
const int16x8_t y_filter = vld1q_s16(y_filter_ptr);
if (clamped_x_taps == 6) {
dist_wtd_convolve_2d_horiz_6tap_neon_i8mm(src_ptr, src_stride, im_block,
im_stride, x_filter_ptr, im_h, w);
} else {
dist_wtd_convolve_2d_horiz_8tap_neon_i8mm(src_ptr, src_stride, im_block,
im_stride, x_filter_ptr, im_h, w);
}
if (clamped_y_taps == 6) {
if (conv_params->do_average) {
if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) {
dist_wtd_convolve_2d_vert_6tap_dist_wtd_avg_neon(
im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h,
w);
} else {
dist_wtd_convolve_2d_vert_6tap_avg_neon(im_block, im_stride, dst8,
dst8_stride, conv_params,
y_filter, h, w);
}
} else {
dist_wtd_convolve_2d_vert_6tap_neon(im_block, im_stride, conv_params,
y_filter, h, w);
}
} else {
if (conv_params->do_average) {
if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) {
dist_wtd_convolve_2d_vert_8tap_dist_wtd_avg_neon(
im_block, im_stride, dst8, dst8_stride, conv_params, y_filter, h,
w);
} else {
dist_wtd_convolve_2d_vert_8tap_avg_neon(im_block, im_stride, dst8,
dst8_stride, conv_params,
y_filter, h, w);
}
} else {
dist_wtd_convolve_2d_vert_8tap_neon(im_block, im_stride, conv_params,
y_filter, h, w);
}
}
}
static inline uint16x4_t convolve6_4_x(uint8x16_t samples,
const int8x16_t x_filter,
const uint8x16_t permute_tbl,
const int32x4_t round_offset) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
uint8x16_t permuted_samples = vqtbl1q_u8(samples, permute_tbl);
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum = vusmmlaq_s32(round_offset, permuted_samples, x_filter);
// We halved the convolution filter values so -1 from the right shift.
return vreinterpret_u16_s16(vshrn_n_s32(sum, ROUND0_BITS - 1));
}
static inline uint16x8_t convolve6_8_x(uint8x16_t samples,
const int8x16_t x_filter,
const uint8x16x2_t permute_tbl,
const int32x4_t round_offset) {
// Permute samples ready for matrix multiply.
// { 0, 1, 2, 3, 4, 5, 6, 7, 2, 3, 4, 5, 6, 7, 8, 9 }
// { 4, 5, 6, 7, 8, 9, 10, 11, 6, 7, 8, 9, 10, 11, 12, 13 }
uint8x16_t permuted_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
// These instructions multiply a 2x8 matrix (samples) by an 8x2 matrix
// (filter), destructively accumulating into the destination register.
int32x4_t sum0123 = vusmmlaq_s32(round_offset, permuted_samples[0], x_filter);
int32x4_t sum4567 = vusmmlaq_s32(round_offset, permuted_samples[1], x_filter);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
int16x8_t res = vcombine_s16(vshrn_n_s32(sum0123, ROUND0_BITS - 1),
vshrn_n_s32(sum4567, ROUND0_BITS - 1));
return vreinterpretq_u16_s16(res);
}
static inline uint16x8_t convolve8_8_x_usdot(uint8x16_t samples,
const int8x8_t x_filter,
const uint8x16x3_t permute_tbl,
const int32x4_t round_offset) {
uint8x16_t permuted_samples[3];
int32x4_t sum[2];
// Permute samples ready for dot product.
// { 0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6 }
permuted_samples[0] = vqtbl1q_u8(samples, permute_tbl.val[0]);
// { 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 10 }
permuted_samples[1] = vqtbl1q_u8(samples, permute_tbl.val[1]);
// { 8, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 14 }
permuted_samples[2] = vqtbl1q_u8(samples, permute_tbl.val[2]);
// First 4 output values.
sum[0] = vusdotq_lane_s32(round_offset, permuted_samples[0], x_filter, 0);
sum[0] = vusdotq_lane_s32(sum[0], permuted_samples[1], x_filter, 1);
// Second 4 output values.
sum[1] = vusdotq_lane_s32(round_offset, permuted_samples[1], x_filter, 0);
sum[1] = vusdotq_lane_s32(sum[1], permuted_samples[2], x_filter, 1);
// Narrow and re-pack.
// We halved the convolution filter values so -1 from the right shift.
int16x8_t res = vcombine_s16(vshrn_n_s32(sum[0], ROUND0_BITS - 1),
vshrn_n_s32(sum[1], ROUND0_BITS - 1));
return vreinterpretq_u16_s16(res);
}
static inline uint16x8_t convolve8_8_x_usmmla(uint8x16_t samples,
const int8x16_t x_filter,
const uint8x8_t f0,
const uint8x16x2_t permute_tbl,
const uint16x8_t horiz_const) {
// Permute samples ready for matrix multiply.
// { 1, 2, 3, 4, 5, 6, 7, 8, 3, 4, 5, 6, 7, 8, 9, 10 }
// { 5, 6, 7, 8, 9, 10, 11, 12, 7, 8, 9, 10, 11, 12, 13, 14 }
uint8x16_t perm_samples[2] = { vqtbl1q_u8(samples, permute_tbl.val[0]),
vqtbl1q_u8(samples, permute_tbl.val[1]) };
// Calculate partial 7-tap convolution.
int32x4_t sum0123 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[0], x_filter);
int32x4_t sum4567 = vusmmlaq_s32(vdupq_n_s32(0), perm_samples[1], x_filter);
uint16x8_t sum = vreinterpretq_u16_s16(
vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567)));
// Apply tap 0 and accumulate.
sum = vmlsl_u8(sum, vget_low_u8(samples), f0);
sum = vaddq_u16(sum, horiz_const);
// We halved the convolution filter values so -1 from the right shift.
return vshrq_n_u16(sum, ROUND0_BITS - 1);
}
static inline void dist_wtd_convolve_x_dist_wtd_avg_6tap_neon_i8mm(
const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride,
uint8_t *dst8, int dst8_stride, int w, int h, const int16_t *x_filter_ptr,
const uint16_t fwd_offset, const uint16_t bck_offset) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
// A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// (The extra -1 is needed because we halved the filter values.)
const int32x4_t round_offset_shim = vdupq_n_s32(
(round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1)));
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 }
const int8x16_t x_filter =
vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
if (w == 4) {
const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl);
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 =
convolve6_4_x(s0, x_filter, permute_tbl, round_offset_shim);
uint16x4_t d1 =
convolve6_4_x(s1, x_filter, permute_tbl, round_offset_shim);
uint16x4_t d2 =
convolve6_4_x(s2, x_filter, permute_tbl, round_offset_shim);
uint16x4_t d3 =
convolve6_4_x(s3, x_filter, permute_tbl, round_offset_shim);
uint16x4_t dd0, dd1, dd2, dd3;
load_u16_4x4(dst, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d01_u8, d23_u8;
compute_dist_wtd_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset,
bck_offset, round_offset_vec, &d01_u8, &d23_u8);
store_u8x4_strided_x2(dst8 + 0 * dst8_stride, dst8_stride, d01_u8);
store_u8x4_strided_x2(dst8 + 2 * dst8_stride, dst8_stride, d23_u8);
src += 4 * src_stride;
dst += 4 * dst_stride;
dst8 += 4 * dst8_stride;
h -= 4;
} while (h != 0);
} else {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl);
do {
const uint8_t *s = src;
uint16_t *d = dst;
uint8_t *d_u8 = dst8;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x8_t d0 =
convolve6_8_x(s0, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d1 =
convolve6_8_x(s1, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d2 =
convolve6_8_x(s2, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d3 =
convolve6_8_x(s3, x_filter, permute_tbl, round_offset_shim);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset,
bck_offset, round_offset_vec, &d0_u8, &d1_u8,
&d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
s += 8;
d += 8;
d_u8 += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
dst8 += 4 * dst8_stride;
h -= 4;
} while (h != 0);
}
}
static inline void dist_wtd_convolve_x_dist_wtd_avg_8tap_neon_i8mm(
const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride,
uint8_t *dst8, int dst8_stride, int w, int h, const int16_t *x_filter_ptr,
const uint16_t fwd_offset, const uint16_t bck_offset) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
// A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// (The extra -1 is needed because we halved the filter values.)
const int32x4_t round_offset_shim = vdupq_n_s32(
(round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1)));
const uint8x16x3_t permute_tbl = vld1q_u8_x3(kDotProdPermuteTbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
do {
const uint8_t *s = src;
uint16_t *d = dst;
uint8_t *d_u8 = dst8;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x8_t d0 =
convolve8_8_x_usdot(s0, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d1 =
convolve8_8_x_usdot(s1, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d2 =
convolve8_8_x_usdot(s2, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d3 =
convolve8_8_x_usdot(s3, x_filter, permute_tbl, round_offset_shim);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset,
bck_offset, round_offset_vec, &d0_u8, &d1_u8,
&d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
s += 8;
d += 8;
d_u8 += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
dst8 += 4 * dst8_stride;
h -= 4;
} while (h != 0);
}
static inline void dist_wtd_convolve_x_avg_6tap_neon_i8mm(
const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride,
uint8_t *dst8, int dst8_stride, int w, int h, const int16_t *x_filter_ptr) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
// A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// (The extra -1 is needed because we halved the filter values.)
const int32x4_t round_offset_shim = vdupq_n_s32(
(round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1)));
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 }
const int8x16_t x_filter =
vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
if (w == 4) {
const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl);
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 =
convolve6_4_x(s0, x_filter, permute_tbl, round_offset_shim);
uint16x4_t d1 =
convolve6_4_x(s1, x_filter, permute_tbl, round_offset_shim);
uint16x4_t d2 =
convolve6_4_x(s2, x_filter, permute_tbl, round_offset_shim);
uint16x4_t d3 =
convolve6_4_x(s3, x_filter, permute_tbl, round_offset_shim);
uint16x4_t dd0, dd1, dd2, dd3;
load_u16_4x4(dst, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d01_u8, d23_u8;
compute_basic_avg_4x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3,
round_offset_vec, &d01_u8, &d23_u8);
store_u8x4_strided_x2(dst8 + 0 * dst8_stride, dst8_stride, d01_u8);
store_u8x4_strided_x2(dst8 + 2 * dst8_stride, dst8_stride, d23_u8);
src += 4 * src_stride;
dst += 4 * dst_stride;
dst8 += 4 * dst8_stride;
h -= 4;
} while (h != 0);
} else {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl);
do {
const uint8_t *s = src;
uint16_t *d = dst;
uint8_t *d_u8 = dst8;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x8_t d0 =
convolve6_8_x(s0, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d1 =
convolve6_8_x(s1, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d2 =
convolve6_8_x(s2, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d3 =
convolve6_8_x(s3, x_filter, permute_tbl, round_offset_shim);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3,
round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
s += 8;
d += 8;
d_u8 += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
dst8 += 4 * dst8_stride;
h -= 4;
} while (h != 0);
}
}
static inline void dist_wtd_convolve_x_avg_8tap_neon_i8mm(
const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride,
uint8_t *dst8, int dst8_stride, int w, int h, const int16_t *x_filter_ptr) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
// A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// (The extra -1 is needed because we halved the filter values.)
const uint16x8_t round_offset_shim = vdupq_n_u16(
(round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1)));
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul8PermuteTbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 }
const uint8x16_t filter_idx = vld1q_u8(kFilterPermuteTbl);
const int8x16_t x_filter =
vqtbl1q_s8(vcombine_s8(x_filter_s8, vdup_n_s8(0)), filter_idx);
// Since f0 is always negative and s0 is unsigned, subtract (unsigned) s0 *
// -f0 to avoid signed overflow.
const uint8x8_t f0 = vdup_n_u8(-x_filter_ptr[0] >> 1);
do {
const uint8_t *s = src;
uint16_t *d = dst;
uint8_t *d_u8 = dst8;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x8_t d0 = convolve8_8_x_usmmla(s0, x_filter, f0, permute_tbl,
round_offset_shim);
uint16x8_t d1 = convolve8_8_x_usmmla(s1, x_filter, f0, permute_tbl,
round_offset_shim);
uint16x8_t d2 = convolve8_8_x_usmmla(s2, x_filter, f0, permute_tbl,
round_offset_shim);
uint16x8_t d3 = convolve8_8_x_usmmla(s3, x_filter, f0, permute_tbl,
round_offset_shim);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3,
round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
s += 8;
d += 8;
d_u8 += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
dst8 += 4 * dst8_stride;
h -= 4;
} while (h != 0);
}
static inline void dist_wtd_convolve_x_6tap_neon_i8mm(
const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const int16_t *x_filter_ptr) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
// A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// (The extra -1 is needed because we halved the filter values.)
const int32x4_t round_offset_shim = vdupq_n_s32(
(round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1)));
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f0, f1, f2, f3, f4, f5, 0, 0, 0, f0, f1, f2, f3, f4, f5, 0 }
const int8x16_t x_filter =
vcombine_s8(vext_s8(x_filter_s8, x_filter_s8, 1), x_filter_s8);
if (w == 4) {
const uint8x16_t permute_tbl = vld1q_u8(kMatMul6PermuteTbl);
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(src, src_stride, &s0, &s1, &s2, &s3);
uint16x4_t d0 =
convolve6_4_x(s0, x_filter, permute_tbl, round_offset_shim);
uint16x4_t d1 =
convolve6_4_x(s1, x_filter, permute_tbl, round_offset_shim);
uint16x4_t d2 =
convolve6_4_x(s2, x_filter, permute_tbl, round_offset_shim);
uint16x4_t d3 =
convolve6_4_x(s3, x_filter, permute_tbl, round_offset_shim);
store_u16_4x4(dst, dst_stride, d0, d1, d2, d3);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul6PermuteTbl);
do {
const uint8_t *s = src;
uint16_t *d = dst;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x8_t d0 =
convolve6_8_x(s0, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d1 =
convolve6_8_x(s1, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d2 =
convolve6_8_x(s2, x_filter, permute_tbl, round_offset_shim);
uint16x8_t d3 =
convolve6_8_x(s3, x_filter, permute_tbl, round_offset_shim);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
}
}
static inline void dist_wtd_convolve_x_8tap_neon_i8mm(
const uint8_t *src, int src_stride, uint16_t *dst, int dst_stride, int w,
int h, const int16_t *x_filter_ptr) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
// A shim of 1 << ((ROUND0_BITS - 1) - 1) enables us to use non-rounding
// shifts - which are generally faster than rounding shifts on modern CPUs.
// (The extra -1 is needed because we halved the filter values.)
const uint16x8_t round_offset_shim = vdupq_n_u16(
(round_offset << (ROUND0_BITS - 1)) + (1 << ((ROUND0_BITS - 1) - 1)));
const uint8x16x2_t permute_tbl = vld1q_u8_x2(kMatMul8PermuteTbl);
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t x_filter_s8 = vshrn_n_s16(vld1q_s16(x_filter_ptr), 1);
// Stagger the filter for use with the matrix multiply instructions.
// { f1, f2, f3, f4, f5, f6, f7, 0, 0, f1, f2, f3, f4, f5, f6, f7 }
const uint8x16_t filter_idx = vld1q_u8(kFilterPermuteTbl);
const int8x16_t x_filter =
vqtbl1q_s8(vcombine_s8(x_filter_s8, vdup_n_s8(0)), filter_idx);
// Since f0 is always negative and s0 is unsigned, subtract (unsigned) s0 *
// -f0 to avoid signed overflow.
const uint8x8_t f0 = vdup_n_u8(-x_filter_ptr[0] >> 1);
do {
const uint8_t *s = src;
uint16_t *d = dst;
int width = w;
do {
uint8x16_t s0, s1, s2, s3;
load_u8_16x4(s, src_stride, &s0, &s1, &s2, &s3);
uint16x8_t d0 = convolve8_8_x_usmmla(s0, x_filter, f0, permute_tbl,
round_offset_shim);
uint16x8_t d1 = convolve8_8_x_usmmla(s1, x_filter, f0, permute_tbl,
round_offset_shim);
uint16x8_t d2 = convolve8_8_x_usmmla(s2, x_filter, f0, permute_tbl,
round_offset_shim);
uint16x8_t d3 = convolve8_8_x_usmmla(s3, x_filter, f0, permute_tbl,
round_offset_shim);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
s += 8;
d += 8;
width -= 8;
} while (width != 0);
src += 4 * src_stride;
dst += 4 * dst_stride;
h -= 4;
} while (h != 0);
}
void av1_dist_wtd_convolve_x_neon_i8mm(
const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w,
int h, const InterpFilterParams *filter_params_x, const int subpel_x_qn,
ConvolveParams *conv_params) {
const int16_t *x_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_x, subpel_x_qn & SUBPEL_MASK);
const int filter_taps =
get_filter_tap(filter_params_x, subpel_x_qn & SUBPEL_MASK);
src -= (SUBPEL_TAPS / 2 - 1);
if (conv_params->do_average) {
if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) {
if (filter_taps < 8) {
dist_wtd_convolve_x_dist_wtd_avg_6tap_neon_i8mm(
src + 1, src_stride, conv_params->dst, conv_params->dst_stride,
dst8, dst8_stride, w, h, x_filter_ptr, conv_params->fwd_offset,
conv_params->bck_offset);
return;
}
dist_wtd_convolve_x_dist_wtd_avg_8tap_neon_i8mm(
src, src_stride, conv_params->dst, conv_params->dst_stride, dst8,
dst8_stride, w, h, x_filter_ptr, conv_params->fwd_offset,
conv_params->bck_offset);
} else {
if (filter_taps < 8) {
dist_wtd_convolve_x_avg_6tap_neon_i8mm(
src + 1, src_stride, conv_params->dst, conv_params->dst_stride,
dst8, dst8_stride, w, h, x_filter_ptr);
return;
}
dist_wtd_convolve_x_avg_8tap_neon_i8mm(src, src_stride, conv_params->dst,
conv_params->dst_stride, dst8,
dst8_stride, w, h, x_filter_ptr);
}
} else {
if (filter_taps < 8) {
dist_wtd_convolve_x_6tap_neon_i8mm(src + 1, src_stride, conv_params->dst,
conv_params->dst_stride, w, h,
x_filter_ptr);
return;
}
dist_wtd_convolve_x_8tap_neon_i8mm(src, src_stride, conv_params->dst,
conv_params->dst_stride, w, h,
x_filter_ptr);
}
}
static inline int16x4_t convolve8_4_y(const uint8x16_t s0, const uint8x16_t s1,
const int8x8_t filters) {
int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0);
sum = vusdotq_lane_s32(sum, s1, filters, 1);
// Further narrowing and packing is performed by the caller.
return vmovn_s32(sum);
}
static inline uint16x8_t convolve8_8_y(const uint8x16_t s0_lo,
const uint8x16_t s0_hi,
const uint8x16_t s1_lo,
const uint8x16_t s1_hi,
const int8x8_t filters,
const int16x8_t round_offset) {
int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0_lo, filters, 0);
sum0123 = vusdotq_lane_s32(sum0123, s1_lo, filters, 1);
int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s0_hi, filters, 0);
sum4567 = vusdotq_lane_s32(sum4567, s1_hi, filters, 1);
// Narrow and re-pack.
int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
// We halved the filter values so -1 from right shift.
return vreinterpretq_u16_s16(
vrsraq_n_s16(round_offset, sum, ROUND0_BITS - 1));
}
static inline void dist_wtd_convolve_y_8tap_neon_i8mm(
const uint8_t *src_ptr, int src_stride, int w, int h,
const int16_t *y_filter_ptr, ConvolveParams *conv_params) {
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
CONV_BUF_TYPE *dst_ptr = conv_params->dst;
const int dst_stride = conv_params->dst_stride;
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter_ptr), 1);
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
if (w == 4) {
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
src_ptr += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// (see horizontal case) required before computing the dot product.
uint8x16_t s0123, s1234, s2345, s3456;
transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123);
transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234);
transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345);
transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456);
do {
uint8x8_t s7, s8, s9, sA;
load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &sA);
uint8x16_t s4567, s5678, s6789, s789A;
transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT = { { s3456, s789A } };
s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
int16x4_t d0 = convolve8_4_y(s0123, s4567, filter);
int16x4_t d1 = convolve8_4_y(s1234, s5678, filter);
int16x4_t d2 = convolve8_4_y(s2345, s6789, filter);
int16x4_t d3 = convolve8_4_y(s3456, s789A, filter);
// We halved the filter values so -1 from right shift.
int16x8_t d01 =
vrsraq_n_s16(round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1);
int16x8_t d23 =
vrsraq_n_s16(round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1);
store_u16x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride,
vreinterpretq_u16_s16(d01));
store_u16x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride,
vreinterpretq_u16_s16(d23));
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123 = s4567;
s1234 = s5678;
s2345 = s6789;
s3456 = s789A;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const uint8_t *s = src_ptr;
CONV_BUF_TYPE *d = dst_ptr;
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample
// permute (see horizontal case) required before computing the dot
// product.
uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
s3456_lo, s3456_hi;
transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
do {
uint8x8_t s7, s8, s9, sA;
load_u8_8x4(s, src_stride, &s7, &s8, &s9, &sA);
uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi,
s789A_lo, s789A_hi;
transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT_lo = { { s3456_lo, s789A_lo } };
s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]);
s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]);
s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]);
uint8x16x2_t samples_LUT_hi = { { s3456_hi, s789A_hi } };
s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]);
s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]);
s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]);
uint16x8_t d0 = convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi,
filter, round_offset_vec);
uint16x8_t d1 = convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi,
filter, round_offset_vec);
uint16x8_t d2 = convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi,
filter, round_offset_vec);
uint16x8_t d3 = convolve8_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi,
filter, round_offset_vec);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s1234_lo = s5678_lo;
s1234_hi = s5678_hi;
s2345_lo = s6789_lo;
s2345_hi = s6789_hi;
s3456_lo = s789A_lo;
s3456_hi = s789A_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w != 0);
}
}
static inline void dist_wtd_convolve_y_8tap_dist_wtd_avg_neon_i8mm(
const uint8_t *src_ptr, int src_stride, uint8_t *dst8_ptr,
const int dst8_stride, int w, int h, const int16_t *y_filter_ptr,
ConvolveParams *conv_params) {
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
const uint16_t fwd_offset = conv_params->fwd_offset;
const uint16_t bck_offset = conv_params->bck_offset;
CONV_BUF_TYPE *dst_ptr = conv_params->dst;
const int dst_stride = conv_params->dst_stride;
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter_ptr), 1);
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
if (w == 4) {
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
src_ptr += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// (see horizontal case) required before computing the dot product.
uint8x16_t s0123, s1234, s2345, s3456;
transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123);
transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234);
transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345);
transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456);
do {
uint8x8_t s7, s8, s9, sA;
load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &sA);
uint8x16_t s4567, s5678, s6789, s789A;
transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT = { { s3456, s789A } };
s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
int16x4_t d0 = convolve8_4_y(s0123, s4567, filter);
int16x4_t d1 = convolve8_4_y(s1234, s5678, filter);
int16x4_t d2 = convolve8_4_y(s2345, s6789, filter);
int16x4_t d3 = convolve8_4_y(s3456, s789A, filter);
// We halved the filter values so -1 from right shift.
uint16x8_t d01 = vreinterpretq_u16_s16(vrsraq_n_s16(
round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1));
uint16x8_t d23 = vreinterpretq_u16_s16(vrsraq_n_s16(
round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1));
uint16x4_t dd0, dd1, dd2, dd3;
load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8;
compute_dist_wtd_avg_8x2(vcombine_u16(dd0, dd1), vcombine_u16(dd2, dd3),
d01, d23, fwd_offset, bck_offset,
round_offset_vec, &d0_u8, &d1_u8);
store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d0_u8);
store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d1_u8);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123 = s4567;
s1234 = s5678;
s2345 = s6789;
s3456 = s789A;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
dst8_ptr += 4 * dst8_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const uint8_t *s = src_ptr;
CONV_BUF_TYPE *d = dst_ptr;
uint8_t *d_u8 = dst8_ptr;
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample
// permute (see horizontal case) required before computing the dot
// product.
uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
s3456_lo, s3456_hi;
transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
do {
uint8x8_t s7, s8, s9, sA;
load_u8_8x4(s, src_stride, &s7, &s8, &s9, &sA);
uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi,
s789A_lo, s789A_hi;
transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT_lo = { { s3456_lo, s789A_lo } };
s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]);
s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]);
s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]);
uint8x16x2_t samples_LUT_hi = { { s3456_hi, s789A_hi } };
s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]);
s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]);
s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]);
uint16x8_t d0 = convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi,
filter, round_offset_vec);
uint16x8_t d1 = convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi,
filter, round_offset_vec);
uint16x8_t d2 = convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi,
filter, round_offset_vec);
uint16x8_t d3 = convolve8_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi,
filter, round_offset_vec);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset,
bck_offset, round_offset_vec, &d0_u8, &d1_u8,
&d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s1234_lo = s5678_lo;
s1234_hi = s5678_hi;
s2345_lo = s6789_lo;
s2345_hi = s6789_hi;
s3456_lo = s789A_lo;
s3456_hi = s789A_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
d_u8 += 4 * dst8_stride;
height -= 4;
} while (height != 0);
src_ptr += 8;
dst_ptr += 8;
dst8_ptr += 8;
w -= 8;
} while (w != 0);
}
}
static inline void dist_wtd_convolve_y_8tap_avg_neon_i8mm(
const uint8_t *src_ptr, int src_stride, uint8_t *dst8_ptr,
const int dst8_stride, int w, int h, const int16_t *y_filter_ptr,
ConvolveParams *conv_params) {
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
CONV_BUF_TYPE *dst_ptr = conv_params->dst;
const int dst_stride = conv_params->dst_stride;
// Filter values are even, so halve to reduce intermediate precision reqs.
const int8x8_t filter = vshrn_n_s16(vld1q_s16(y_filter_ptr), 1);
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
if (w == 4) {
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(src_ptr, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
src_ptr += 7 * src_stride;
// This operation combines a conventional transpose and the sample permute
// (see horizontal case) required before computing the dot product.
uint8x16_t s0123, s1234, s2345, s3456;
transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123);
transpose_concat_elems_u8_4x4(s1, s2, s3, s4, &s1234);
transpose_concat_elems_u8_4x4(s2, s3, s4, s5, &s2345);
transpose_concat_elems_u8_4x4(s3, s4, s5, s6, &s3456);
do {
uint8x8_t s7, s8, s9, sA;
load_u8_8x4(src_ptr, src_stride, &s7, &s8, &s9, &sA);
uint8x16_t s4567, s5678, s6789, s789A;
transpose_concat_elems_u8_4x4(s7, s8, s9, sA, &s789A);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT = { { s3456, s789A } };
s4567 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
s5678 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
s6789 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
int16x4_t d0 = convolve8_4_y(s0123, s4567, filter);
int16x4_t d1 = convolve8_4_y(s1234, s5678, filter);
int16x4_t d2 = convolve8_4_y(s2345, s6789, filter);
int16x4_t d3 = convolve8_4_y(s3456, s789A, filter);
// We halved the filter values so -1 from right shift.
uint16x8_t d01 = vreinterpretq_u16_s16(vrsraq_n_s16(
round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1));
uint16x8_t d23 = vreinterpretq_u16_s16(vrsraq_n_s16(
round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1));
uint16x4_t dd0, dd1, dd2, dd3;
load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8;
compute_basic_avg_8x2(vcombine_u16(dd0, dd1), vcombine_u16(dd2, dd3), d01,
d23, round_offset_vec, &d0_u8, &d1_u8);
store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d0_u8);
store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d1_u8);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123 = s4567;
s1234 = s5678;
s2345 = s6789;
s3456 = s789A;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
dst8_ptr += 4 * dst8_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const uint8_t *s = src_ptr;
CONV_BUF_TYPE *d = dst_ptr;
uint8_t *d_u8 = dst8_ptr;
uint8x8_t s0, s1, s2, s3, s4, s5, s6;
load_u8_8x7(s, src_stride, &s0, &s1, &s2, &s3, &s4, &s5, &s6);
s += 7 * src_stride;
// This operation combines a conventional transpose and the sample
// permute (see horizontal case) required before computing the dot
// product.
uint8x16_t s0123_lo, s0123_hi, s1234_lo, s1234_hi, s2345_lo, s2345_hi,
s3456_lo, s3456_hi;
transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
transpose_concat_elems_u8_8x4(s1, s2, s3, s4, &s1234_lo, &s1234_hi);
transpose_concat_elems_u8_8x4(s2, s3, s4, s5, &s2345_lo, &s2345_hi);
transpose_concat_elems_u8_8x4(s3, s4, s5, s6, &s3456_lo, &s3456_hi);
do {
uint8x8_t s7, s8, s9, sA;
load_u8_8x4(s, src_stride, &s7, &s8, &s9, &sA);
uint8x16_t s4567_lo, s4567_hi, s5678_lo, s5678_hi, s6789_lo, s6789_hi,
s789A_lo, s789A_hi;
transpose_concat_elems_u8_8x4(s7, s8, s9, sA, &s789A_lo, &s789A_hi);
// Merge new data into block from previous iteration.
uint8x16x2_t samples_LUT_lo = { { s3456_lo, s789A_lo } };
s4567_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[0]);
s5678_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[1]);
s6789_lo = vqtbl2q_u8(samples_LUT_lo, merge_block_tbl.val[2]);
uint8x16x2_t samples_LUT_hi = { { s3456_hi, s789A_hi } };
s4567_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[0]);
s5678_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[1]);
s6789_hi = vqtbl2q_u8(samples_LUT_hi, merge_block_tbl.val[2]);
uint16x8_t d0 = convolve8_8_y(s0123_lo, s0123_hi, s4567_lo, s4567_hi,
filter, round_offset_vec);
uint16x8_t d1 = convolve8_8_y(s1234_lo, s1234_hi, s5678_lo, s5678_hi,
filter, round_offset_vec);
uint16x8_t d2 = convolve8_8_y(s2345_lo, s2345_hi, s6789_lo, s6789_hi,
filter, round_offset_vec);
uint16x8_t d3 = convolve8_8_y(s3456_lo, s3456_hi, s789A_lo, s789A_hi,
filter, round_offset_vec);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3,
round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s1234_lo = s5678_lo;
s1234_hi = s5678_hi;
s2345_lo = s6789_lo;
s2345_hi = s6789_hi;
s3456_lo = s789A_lo;
s3456_hi = s789A_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
d_u8 += 4 * dst8_stride;
height -= 4;
} while (height != 0);
src_ptr += 8;
dst_ptr += 8;
dst8_ptr += 8;
w -= 8;
} while (w != 0);
}
}
static inline int16x4_t convolve4_4_y(const uint8x16_t s0,
const int8x8_t filters) {
int32x4_t sum = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0);
// Further narrowing and packing is performed by the caller.
return vmovn_s32(sum);
}
static inline uint16x8_t convolve4_8_y(const uint8x16_t s0, const uint8x16_t s1,
const int8x8_t filters,
const int16x8_t round_offset) {
int32x4_t sum0123 = vusdotq_lane_s32(vdupq_n_s32(0), s0, filters, 0);
int32x4_t sum4567 = vusdotq_lane_s32(vdupq_n_s32(0), s1, filters, 0);
// Narrow and re-pack.
int16x8_t sum = vcombine_s16(vmovn_s32(sum0123), vmovn_s32(sum4567));
// We halved the filter values so -1 from right shift.
return vreinterpretq_u16_s16(
vrsraq_n_s16(round_offset, sum, ROUND0_BITS - 1));
}
static inline void dist_wtd_convolve_y_4tap_neon_i8mm(
const uint8_t *src_ptr, int src_stride, int w, int h,
const int16_t *y_filter_ptr, ConvolveParams *conv_params) {
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
CONV_BUF_TYPE *dst_ptr = conv_params->dst;
const int dst_stride = conv_params->dst_stride;
// Filter values are even, so halve to reduce intermediate precision reqs.
const int16x8_t filter_s16 =
vcombine_s16(vld1_s16(y_filter_ptr + 2), vdup_n_s16(0));
const int8x8_t filter = vshrn_n_s16(filter_s16, 1);
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
uint8x16x2_t samples_LUT;
if (w == 4) {
uint8x8_t s0, s1, s2, s3;
load_u8_8x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
src_ptr += 4 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
uint8x16_t s0123;
transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123);
do {
uint8x8_t s4, s5, s6, s7;
load_u8_8x4(src_ptr, src_stride, &s4, &s5, &s6, &s7);
uint8x16_t s4567;
transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567);
// Merge new data into block from previous iteration.
samples_LUT.val[0] = s0123;
samples_LUT.val[1] = s4567;
uint8x16_t s1234 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
uint8x16_t s2345 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
uint8x16_t s3456 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
int16x4_t d0 = convolve4_4_y(s0123, filter);
int16x4_t d1 = convolve4_4_y(s1234, filter);
int16x4_t d2 = convolve4_4_y(s2345, filter);
int16x4_t d3 = convolve4_4_y(s3456, filter);
// We halved the filter values so -1 from right shift.
int16x8_t d01 =
vrsraq_n_s16(round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1);
int16x8_t d23 =
vrsraq_n_s16(round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1);
store_u16x4_strided_x2(dst_ptr + 0 * dst_stride, dst_stride,
vreinterpretq_u16_s16(d01));
store_u16x4_strided_x2(dst_ptr + 2 * dst_stride, dst_stride,
vreinterpretq_u16_s16(d23));
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123 = s4567;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const uint8_t *s = src_ptr;
CONV_BUF_TYPE *d = dst_ptr;
uint8x8_t s0, s1, s2, s3;
load_u8_8x4(s, src_stride, &s0, &s1, &s2, &s3);
s += 4 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
uint8x16_t s0123_lo, s0123_hi;
transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
do {
uint8x8_t s4, s5, s6, s7;
load_u8_8x4(s, src_stride, &s4, &s5, &s6, &s7);
uint8x16_t s4567_lo, s4567_hi;
transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi);
// Merge new data into block from previous iteration.
samples_LUT.val[0] = s0123_lo;
samples_LUT.val[1] = s4567_lo;
uint8x16_t s1234_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
uint8x16_t s2345_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
uint8x16_t s3456_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
samples_LUT.val[0] = s0123_hi;
samples_LUT.val[1] = s4567_hi;
uint8x16_t s1234_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
uint8x16_t s2345_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
uint8x16_t s3456_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
uint16x8_t d0 =
convolve4_8_y(s0123_lo, s0123_hi, filter, round_offset_vec);
uint16x8_t d1 =
convolve4_8_y(s1234_lo, s1234_hi, filter, round_offset_vec);
uint16x8_t d2 =
convolve4_8_y(s2345_lo, s2345_hi, filter, round_offset_vec);
uint16x8_t d3 =
convolve4_8_y(s3456_lo, s3456_hi, filter, round_offset_vec);
store_u16_8x4(d, dst_stride, d0, d1, d2, d3);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
height -= 4;
} while (height != 0);
src_ptr += 8;
dst_ptr += 8;
w -= 8;
} while (w != 0);
}
}
static inline void dist_wtd_convolve_y_4tap_avg_neon_i8mm(
const uint8_t *src_ptr, int src_stride, uint8_t *dst8_ptr,
const int dst8_stride, int w, int h, const int16_t *y_filter_ptr,
ConvolveParams *conv_params) {
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
CONV_BUF_TYPE *dst_ptr = conv_params->dst;
const int dst_stride = conv_params->dst_stride;
// Filter values are even, so halve to reduce intermediate precision reqs.
const int16x8_t filter_s16 =
vcombine_s16(vld1_s16(y_filter_ptr + 2), vdup_n_s16(0));
const int8x8_t filter = vshrn_n_s16(filter_s16, 1);
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
uint8x16x2_t samples_LUT;
if (w == 4) {
uint8x8_t s0, s1, s2, s3;
load_u8_8x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
src_ptr += 4 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
uint8x16_t s0123;
transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123);
do {
uint8x8_t s4, s5, s6, s7;
load_u8_8x4(src_ptr, src_stride, &s4, &s5, &s6, &s7);
uint8x16_t s4567;
transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567);
// Merge new data into block from previous iteration.
samples_LUT.val[0] = s0123;
samples_LUT.val[1] = s4567;
uint8x16_t s1234 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
uint8x16_t s2345 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
uint8x16_t s3456 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
int16x4_t d0 = convolve4_4_y(s0123, filter);
int16x4_t d1 = convolve4_4_y(s1234, filter);
int16x4_t d2 = convolve4_4_y(s2345, filter);
int16x4_t d3 = convolve4_4_y(s3456, filter);
// We halved the filter values so -1 from right shift.
uint16x8_t d01 = vreinterpretq_u16_s16(vrsraq_n_s16(
round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1));
uint16x8_t d23 = vreinterpretq_u16_s16(vrsraq_n_s16(
round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1));
uint16x4_t dd0, dd1, dd2, dd3;
load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8;
compute_basic_avg_8x2(vcombine_u16(dd0, dd1), vcombine_u16(dd2, dd3), d01,
d23, round_offset_vec, &d0_u8, &d1_u8);
store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d0_u8);
store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d1_u8);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123 = s4567;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
dst8_ptr += 4 * dst8_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const uint8_t *s = src_ptr;
CONV_BUF_TYPE *d = dst_ptr;
uint8_t *d_u8 = dst8_ptr;
uint8x8_t s0, s1, s2, s3;
load_u8_8x4(s, src_stride, &s0, &s1, &s2, &s3);
s += 4 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
uint8x16_t s0123_lo, s0123_hi;
transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
do {
uint8x8_t s4, s5, s6, s7;
load_u8_8x4(s, src_stride, &s4, &s5, &s6, &s7);
uint8x16_t s4567_lo, s4567_hi;
transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi);
// Merge new data into block from previous iteration.
samples_LUT.val[0] = s0123_lo;
samples_LUT.val[1] = s4567_lo;
uint8x16_t s1234_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
uint8x16_t s2345_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
uint8x16_t s3456_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
samples_LUT.val[0] = s0123_hi;
samples_LUT.val[1] = s4567_hi;
uint8x16_t s1234_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
uint8x16_t s2345_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
uint8x16_t s3456_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
uint16x8_t d0 =
convolve4_8_y(s0123_lo, s0123_hi, filter, round_offset_vec);
uint16x8_t d1 =
convolve4_8_y(s1234_lo, s1234_hi, filter, round_offset_vec);
uint16x8_t d2 =
convolve4_8_y(s2345_lo, s2345_hi, filter, round_offset_vec);
uint16x8_t d3 =
convolve4_8_y(s3456_lo, s3456_hi, filter, round_offset_vec);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_basic_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3,
round_offset_vec, &d0_u8, &d1_u8, &d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
d_u8 += 4 * dst8_stride;
height -= 4;
} while (height != 0);
src_ptr += 8;
dst_ptr += 8;
dst8_ptr += 8;
w -= 8;
} while (w != 0);
}
}
static inline void dist_wtd_convolve_y_4tap_dist_wtd_avg_neon_i8mm(
const uint8_t *src_ptr, int src_stride, uint8_t *dst8_ptr,
const int dst8_stride, int w, int h, const int16_t *y_filter_ptr,
ConvolveParams *conv_params) {
const int bd = 8;
const int offset_bits = bd + 2 * FILTER_BITS - ROUND0_BITS;
const int16_t round_offset = (1 << (offset_bits - COMPOUND_ROUND1_BITS)) +
(1 << (offset_bits - COMPOUND_ROUND1_BITS - 1));
const int16x8_t round_offset_vec = vdupq_n_s16(round_offset);
const uint16_t fwd_offset = conv_params->fwd_offset;
const uint16_t bck_offset = conv_params->bck_offset;
CONV_BUF_TYPE *dst_ptr = conv_params->dst;
const int dst_stride = conv_params->dst_stride;
// Filter values are even, so halve to reduce intermediate precision reqs.
const int16x8_t filter_s16 =
vcombine_s16(vld1_s16(y_filter_ptr + 2), vdup_n_s16(0));
const int8x8_t filter = vshrn_n_s16(filter_s16, 1);
const uint8x16x3_t merge_block_tbl = vld1q_u8_x3(kDotProdMergeBlockTbl);
uint8x16x2_t samples_LUT;
if (w == 4) {
uint8x8_t s0, s1, s2, s3;
load_u8_8x4(src_ptr, src_stride, &s0, &s1, &s2, &s3);
src_ptr += 4 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
uint8x16_t s0123;
transpose_concat_elems_u8_4x4(s0, s1, s2, s3, &s0123);
do {
uint8x8_t s4, s5, s6, s7;
load_u8_8x4(src_ptr, src_stride, &s4, &s5, &s6, &s7);
uint8x16_t s4567;
transpose_concat_elems_u8_4x4(s4, s5, s6, s7, &s4567);
// Merge new data into block from previous iteration.
samples_LUT.val[0] = s0123;
samples_LUT.val[1] = s4567;
uint8x16_t s1234 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
uint8x16_t s2345 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
uint8x16_t s3456 = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
int16x4_t d0 = convolve4_4_y(s0123, filter);
int16x4_t d1 = convolve4_4_y(s1234, filter);
int16x4_t d2 = convolve4_4_y(s2345, filter);
int16x4_t d3 = convolve4_4_y(s3456, filter);
// We halved the filter values so -1 from right shift.
uint16x8_t d01 = vreinterpretq_u16_s16(vrsraq_n_s16(
round_offset_vec, vcombine_s16(d0, d1), ROUND0_BITS - 1));
uint16x8_t d23 = vreinterpretq_u16_s16(vrsraq_n_s16(
round_offset_vec, vcombine_s16(d2, d3), ROUND0_BITS - 1));
uint16x4_t dd0, dd1, dd2, dd3;
load_u16_4x4(dst_ptr, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8;
compute_dist_wtd_avg_8x2(vcombine_u16(dd0, dd1), vcombine_u16(dd2, dd3),
d01, d23, fwd_offset, bck_offset,
round_offset_vec, &d0_u8, &d1_u8);
store_u8x4_strided_x2(dst8_ptr + 0 * dst8_stride, dst8_stride, d0_u8);
store_u8x4_strided_x2(dst8_ptr + 2 * dst8_stride, dst8_stride, d1_u8);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123 = s4567;
src_ptr += 4 * src_stride;
dst_ptr += 4 * dst_stride;
dst8_ptr += 4 * dst8_stride;
h -= 4;
} while (h != 0);
} else {
do {
int height = h;
const uint8_t *s = src_ptr;
CONV_BUF_TYPE *d = dst_ptr;
uint8_t *d_u8 = dst8_ptr;
uint8x8_t s0, s1, s2, s3;
load_u8_8x4(s, src_stride, &s0, &s1, &s2, &s3);
s += 4 * src_stride;
// This operation combines a conventional transpose and the sample permute
// required before computing the dot product.
uint8x16_t s0123_lo, s0123_hi;
transpose_concat_elems_u8_8x4(s0, s1, s2, s3, &s0123_lo, &s0123_hi);
do {
uint8x8_t s4, s5, s6, s7;
load_u8_8x4(s, src_stride, &s4, &s5, &s6, &s7);
uint8x16_t s4567_lo, s4567_hi;
transpose_concat_elems_u8_8x4(s4, s5, s6, s7, &s4567_lo, &s4567_hi);
// Merge new data into block from previous iteration.
samples_LUT.val[0] = s0123_lo;
samples_LUT.val[1] = s4567_lo;
uint8x16_t s1234_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
uint8x16_t s2345_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
uint8x16_t s3456_lo = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
samples_LUT.val[0] = s0123_hi;
samples_LUT.val[1] = s4567_hi;
uint8x16_t s1234_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[0]);
uint8x16_t s2345_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[1]);
uint8x16_t s3456_hi = vqtbl2q_u8(samples_LUT, merge_block_tbl.val[2]);
uint16x8_t d0 =
convolve4_8_y(s0123_lo, s0123_hi, filter, round_offset_vec);
uint16x8_t d1 =
convolve4_8_y(s1234_lo, s1234_hi, filter, round_offset_vec);
uint16x8_t d2 =
convolve4_8_y(s2345_lo, s2345_hi, filter, round_offset_vec);
uint16x8_t d3 =
convolve4_8_y(s3456_lo, s3456_hi, filter, round_offset_vec);
uint16x8_t dd0, dd1, dd2, dd3;
load_u16_8x4(d, dst_stride, &dd0, &dd1, &dd2, &dd3);
uint8x8_t d0_u8, d1_u8, d2_u8, d3_u8;
compute_dist_wtd_avg_8x4(dd0, dd1, dd2, dd3, d0, d1, d2, d3, fwd_offset,
bck_offset, round_offset_vec, &d0_u8, &d1_u8,
&d2_u8, &d3_u8);
store_u8_8x4(d_u8, dst8_stride, d0_u8, d1_u8, d2_u8, d3_u8);
// Prepare block for next iteration - re-using as much as possible.
// Shuffle everything up four rows.
s0123_lo = s4567_lo;
s0123_hi = s4567_hi;
s += 4 * src_stride;
d += 4 * dst_stride;
d_u8 += 4 * dst8_stride;
height -= 4;
} while (height != 0);
src_ptr += 8;
dst_ptr += 8;
dst8_ptr += 8;
w -= 8;
} while (w != 0);
}
}
void av1_dist_wtd_convolve_y_neon_i8mm(
const uint8_t *src, int src_stride, uint8_t *dst8, int dst8_stride, int w,
int h, const InterpFilterParams *filter_params_y, const int subpel_y_qn,
ConvolveParams *conv_params) {
assert(w % 4 == 0);
assert(h % 4 == 0);
const int16_t *y_filter_ptr = av1_get_interp_filter_subpel_kernel(
filter_params_y, subpel_y_qn & SUBPEL_MASK);
if (get_filter_tap(filter_params_y, subpel_y_qn) <= 4) {
if (conv_params->do_average) {
if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) {
dist_wtd_convolve_y_4tap_dist_wtd_avg_neon_i8mm(
src - src_stride, src_stride, dst8, dst8_stride, w, h, y_filter_ptr,
conv_params);
} else {
dist_wtd_convolve_y_4tap_avg_neon_i8mm(src - src_stride, src_stride,
dst8, dst8_stride, w, h,
y_filter_ptr, conv_params);
}
} else {
dist_wtd_convolve_y_4tap_neon_i8mm(src - src_stride, src_stride, w, h,
y_filter_ptr, conv_params);
}
} else { // filter tap >= 6
if (conv_params->do_average) {
if (UNLIKELY(conv_params->use_dist_wtd_comp_avg)) {
dist_wtd_convolve_y_8tap_dist_wtd_avg_neon_i8mm(
src - 3 * src_stride, src_stride, dst8, dst8_stride, w, h,
y_filter_ptr, conv_params);
} else {
dist_wtd_convolve_y_8tap_avg_neon_i8mm(src - 3 * src_stride, src_stride,
dst8, dst8_stride, w, h,
y_filter_ptr, conv_params);
}
} else {
dist_wtd_convolve_y_8tap_neon_i8mm(src - 3 * src_stride, src_stride, w, h,
y_filter_ptr, conv_params);
}
}
}